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ABSTRACT 10 

Intact almond kernels (N=360, half sweet and half bitter) were analyzed using attenuated 11 

total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) for the prediction 12 

of amygdalin concentration and to classify them according to their bitterness. Amygdalin 13 

concentrations for sweet and bitter almonds, determined by high performance liquid 14 

chromatography, were between 0.7-350 and 15000-50000 mg kg-1, respectively. 15 

Concentrations were successfully predicted by applying partial least squares (PLS) to the 16 

pre-treated spectral data with R2p of 0.951 and RMSEP of 0.398. Additionally, linear 17 

discriminant analysis (LDA), quadratic discriminant analysis (QDA) and PLS-DA 18 

models were constructed to classify samples according to their bitterness. All three 19 

models provided a satisfactory discrimination of almonds into sweet and bitter categories, 20 

providing overall accuracy values of 83.3 %, 86.1 % and 98.6 %, respectively. The results 21 

indicate the potential of ATR-FTIR spectroscopy for the reliable, easy and fast prediction 22 

of amygdalin concentration, and for almond classification according to their bitterness. 23 

 24 

Keywords: ATR-FTIR, amygdalin concentration, bitterness, intact almonds, PLS, 25 

almond discrimination 26 

  27 
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1. Introduction 28 

 29 

Almonds are a very much valued nut due to their high nutritional and sensory 30 

attributes (Grane-Teruel et al., 2001). The almond has been positioned in the market as a 31 

healthy and versatile product in its different uses, which had led to a doubling of demand 32 

around the world (Velasco & Aznar, 2016). Spain has the biggest area of almond 33 

cultivation in the world with more than 600,000 hectares in 2015 (Velasco & Aznar, 34 

2016). Since 2010, Spanish production has remained relatively stable, reaching 48,000 35 

tons in 2014 (Velasco & Aznar, 2016). This production represents 4.5 % of the world 36 

total and it places Spain in third place behind the USA and Australia. 37 

Sweet almond is the most commonly consumed form, however, bitter almonds are 38 

also valued, primarily for the extraction of flavour extracts, which are processed before 39 

consumption to remove the poisonous substances (Borrás et al., 2014). Almond bitter 40 

flavour is due to the presence of cyanogenic glucosides, like amygdalin and prunasin 41 

(Sánchez-Pérez et al., 2008). In mature almonds, the only cyanogenic glucoside found is 42 

amygdalin, since prunasin (normally found in roots, leaves and kernel of immature 43 

almonds) is converted into amygdalin during maturation. Almond bitter flavour is a 44 

consequence of the enzymatic hydrolysis produced by β-glucosidase, which produces 45 

benzaldehydes, sugars and hydrogen cyanide. Therefore, because of their toxicity and 46 

because chemical components are different among sweet and bitter almonds, it is 47 

important to distinguish them for two main reasons: 1) to guarantee homogeneous lots of 48 

almonds in food industry and 2) to avoid possible health problems related to the 49 

consumption of bitter almonds.  50 

Some interesting analytical techniques have been applied to almond quality 51 

control, for example, vibrational spectroscopy methods, such as Fourier transform 52 
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infrared (FTIR) spectroscopy (Ellis et al., 2005). FTIR is fast, easy, non-destructive and 53 

a relatively inexpensive technique (Vahur et al., 2009). Samples do not need any pre-54 

treatment to register spectra in a few seconds (Ellis et al., 2002). In addition, other 55 

advantage of this spectroscopy technique is its application in foodstuffs that can be fresh, 56 

dried, liquid or solid (Dogan et al., 2007). The quantification and qualification of almond 57 

quality by FTIR consists of acquiring a fingerprint characteristic of any point of the 58 

almond, providing thus information about their grade of bitterness, the type of variety or 59 

the rate of spoilage, among others. The integration of FTIR and chemometrics in tandem 60 

could provide an excellent methodology that could be able to qualitatively and/or 61 

quantitatively classify sweet and bitter almonds based on extracted spectra features. Some 62 

applications of the FTIR spectroscopy previously published in the almond field included 63 

the quality control of medicinal almonds (Chun-Song et al., 2017), the classification of 64 

almond cultivars by measuring the spectra in almond oil (Beltrán et al., 2009) and in 65 

grounded almonds (Valdés et al., 2013), among others. Only one study has discriminated 66 

almonds according to their bitterness, but using NIR and Raman spectroscopy (Borrás et 67 

al., 2014).  Micklander et al. (2002) predicted the amygdalin concentration in bitter 68 

almonds using Raman spectroscopy. However, calibration was performed by spiking 69 

sweet almonds with different concentrations of amygdalin standard, and not with real 70 

values of samples which could be established with other techniques such as high 71 

performance liquid chromagraphy (HPLC).  72 

The aim of this work is the application of ATR-FTIR spectroscopy followed by 73 

multivariate analysis of the spectral data as a non-destructive methodology for the 74 

prediction of amygdalin concentration (measured by HPLC) of intact almonds and for the 75 

classification of almonds according to their bitterness. 76 

 77 
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2. Materials and methods 78 

 79 

2.1. Reagents and almond samples 80 

 81 

To determine amygdalin concentration, an amygdalin standard for HPLC from 82 

Sigma-Aldrich (St. Louis, Missouri, USA) of ≥ 97.0 % of purity was used. Different 83 

solvents, such as deionized water (obtained using an Aquinity deionizer from 84 

Membrapure GmbH (Berlin, Germany), acetonitrile (ACN, HPLC Far UV/Gradient 85 

Grade, J.T. Baker, The Netherlands), acetone (Panreac, Barcelona, Spain) and methanol 86 

(MeOH, AGR ACS, ISO, Ph.Eur. Assay ≥ 99.8 %, Labkem, Barcelona, Spain) were also 87 

used. 88 

A batch of 360 almonds, kindly provided by Agricoop (Alicante, Spain), were 89 

employed in this work. This batch is composed by 180 sweet and 180 bitter almonds. 90 

Although the genetic variety of the bitter almonds is unknown, the sweet almonds were 91 

selected from six different genetic varieties (30 almonds each), which are ‘Comuna’, 92 

‘Guara’, ‘Largueta’, ‘Marcona’, ‘Planeta’ and ‘Rumbeta’. All samples included in the 93 

work were selected for absence of damage, and of similar colour and size.  94 

 95 

2.2. ATR-FTIR 96 

 97 

FTIR spectra were registered using a Tensor 27 spectrometer from Bruker Optics 98 

(Milan, Italy) dotted with a deuterated triglycine sulphate (DTGS) detector which is 99 

coupled to an ATR accessory (Specac Inc., Woodstock, Georgia, USA) composed of a 100 

zinc selenide (ZnSe) crystal. Spectra were registered in the absorbance mode as the mean 101 

of 32 scans in the 4000–600 cm-1 spectral range and using a resolution of 4 cm-1. The 102 
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FTIR spectrometer was controlled using the OPUS software version 5.0 (Bruker Optics). 103 

The acquisition spectral time was 20 s. Each almond kernel (with skin) was placed on the 104 

ZnSe crystal and the spectra was measured. Two points were collected for each sample 105 

on each side of the almond, and the mean of both spectra were employed for statistical 106 

analysis. After each measurement, the crystal was cleaned using acetone and dried with 107 

a cellulose tissue.  108 

 109 

2.3. Amygdalin extraction and quantification by HPLC 110 

 111 

After spectral measurement, each almond was immersed in hot water to eliminate 112 

almond skin. After keeping almonds at room temperature to allow them to be dried, they 113 

were grinded with a porcelain mortar, and mixed with 20 mL MeOH. This suspension 114 

was maintained under constant stirring during 24h, being the supernatant finally passed 115 

through a syringe filter of polytetrafluoroethylene (PTFE) (0.22 μm, Scharlab, Barcelona, 116 

Spain). The filtered supernatant was directly injected into the HPLC system when 117 

obtained from sweet almonds, and it was diluted with MeOH in a 1:10 (v/v) proportion 118 

for bitter almonds in order to have amygdalin concentrations within the linear range of 119 

the calibration curve. 120 

Supernatants were then analyzed by HPLC (LaChrom Elite” liquid 121 

chromatograph from Hitachi Ltd.,Tokyo, Japan), fitted with an auto-sampler (model L-122 

2200) and an ultraviolet (UV) detector (model L-2400). Amygdalin was separated at a 123 

flow rate of 1.0 mL min-1 with a mixture of ACN and water (20:80, v/v) using an isocratic 124 

elution and a Liquid Purple C18 analytical column (250 x 4.6 mm i.d., 5 µm) (Análisis 125 

Vínicos, Tomelloso, Spain). Detection was monitored at 218 nm. Sample injection 126 

volume was 20 µL. 127 
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 128 

2.4. Spectra pre-processing and chemometric data treatment 129 

 130 

Spectral pre-processing and statistical analysis were performed using the 131 

statistical software program ‘The Unscrambler X’ (version 10.3, Camo Process SA, 132 

Trondheim, Norway). 133 

Various pre-treatment techniques were simultaneously applied to the ATR-FTIR 134 

data, such as standard normal variate (SNV) to correct multiplicative interferences, 135 

baseline shift variations and curvilinearity (Barnes et al., 1989), the second derivate (with 136 

2.3-gap-segment) and Savitzky-Golay smoothing using 15 points to extract useful 137 

information (Cortés et al., 2016, Rodriguez-Saona et al., 2001) and to improve the signal-138 

to-noise ratio (Gorry, 1990, Savitzky & Golay, 1964).  139 

After spectra pre-treatment and before multivariate analysis, data spectral 140 

variation was analyzed by principal component analysis (PCA) and the defective spectra 141 

due to a problem of acquisition were eliminated based on Hotelling’s T2 and squared 142 

residual statistics (Beghi et al., 2018). 143 

To proceed with chemometric analysis, a spectral data matrix was constructed. 144 

The 360 almond samples (180 sweet and 180 bitter) were introduced in rows, while both 145 

X- and Y-variables were introduced in columns. The X-variables (also called predictors), 146 

were the spectral data, while the Y-variables (or responses) were the amygdalin 147 

concentrations established by HPLC or, in the case of discriminant models, a dummy 148 

variable.  149 

To construct the chemometric models for both, amygdalin prediction and 150 

discrimination of almonds according to their bitterness, the total number of samples (N = 151 

360) was divided in two sets: training and evaluation. The training set contained 80 % of 152 
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the almonds, which were randomly selected. Once a model is constructed, it is internally 153 

validated using full cross-validation (CV, leave-one-out method) (Huang et al., 2008). 154 

The evaluation set contained the remaining 20 % of the samples (Soares et al., 2013). 155 

 156 

2.4.1. PLS model construction to predict amygdalin content 157 

A PLS model was constructed to predict amygdalin concentrations. For PLS, the 158 

covariance between the linear functions of the spectral variations (X-variables) and the 159 

corresponding defined value of amygdalin concentration (Y-variable) was maximized. 160 

The performance of the model was evaluated by the number of PLS factors (latent 161 

variables, LV), the root mean square error of calibration, cross-validation and prediction 162 

(RMSEC, RMSECV and RMSEP, respectively), and by the determination coefficient for 163 

calibration, cross-validation and prediction (R2C, R2CV, R2P, respectively). Satisfactory 164 

models are characterized by low RMSE, high R2 and small differences between RMSEC 165 

and RMSEP. Large differences could indicate the introduction of too many LVs in the 166 

model (Bureau et al., 2009). 167 

 168 

2.4.2. Discrimination of sweet and bitter almonds 169 

LDA, QDA and PLS-DA models were constructed to discriminate almonds according to 170 

their bitterness. These models are supervised algorithms based on the relationship 171 

between spectral intensity and sample characteristics; in this study, spectral variations 172 

were the X-variables and sweet and bitter categories were Y-variables. In the case of PLS-173 

DA, a reference value (sweet almonds = 0 and bitter almonds = 1) was assigned to each 174 

sample. In this study, a 0.5 threshold value was selected for the construction of the PLS-175 

DA models (Cortés et al., 2016, Camilo et al., 2012). Predicted values higher than 0.5 176 

indicated that the sample belongs to the bitter class. For LDA and QDA, the Y-variable 177 
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was a categorical value created by assigning different letters to sweet and bitter almonds. 178 

Both, LDA and QDA require a number of variables lower than the number of subjects for 179 

model construction (Wu et al., 2003, Sádecká et al., 2016). Therefore, it is necessary to 180 

perform a variable reduction before a statistical procedure can be applied. The reduction 181 

can be done by PCA scores as input data, since the principal components (PCs) are found 182 

as linear transformations that are uncorrelated (Rodriguez-Campos et al., 2011). 183 

Finally, the performance of the three discriminant models was estimated and 184 

compared by accuracy, which is defined as the ratio of evaluation set samples correctly 185 

assigned into their respective categories. 186 

 187 

3. Results and discussion 188 

 189 

3.1. Determination of amygdalin concentration in sweet and bitter almonds by HPLC 190 

 191 

The amygdalin concentration of the 360 almonds (bitter and sweet) was measured 192 

using the extraction and chromatographic conditions previously reported. The mean 193 

amygdalin concentration and ranges obtained for each class are shown in Table 1. The 194 

amygdalin concentration of bitter almonds (comprised between 15000 and 50000 mg kg-195 

1) was more than 400 times higher than the medium value of sweet almonds. On the other 196 

hand, the concentration in sweet almonds varied among the different varieties: the lowest 197 

content was obtained for ‘Planeta’ (0.7 mg kg-1), while the highest concentration was 198 

registered for ‘Guara’ (350 mg kg-1). These concentrations are similar to those previously 199 

published by other authors (Lee et al., 2013). 200 

 201 

  202 
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Table 1 203 

Amygdalin concentrations, with minimum and maximum values in parentheses, of the 204 

sweet and bitter almonds measured by HPLC. 205 

 206 

Almonds Genetic variety Amygdalin concentration (mg kg-1) 

Bitter Mix of varieties 
31000 

(15000-50000) 

Sweet 

‘Planeta’ 
20.4 

(0.7-211.3) 

‘Comuna’ 
40.0  

(1.0-174.7) 

‘Largueta’ 
70  

(20-180) 

‘Rumbeta’ 
80  

(3-19) 

‘Marcona’ 
65  

(6-173) 

‘Guara’ 
150  

(50-350) 

 207 

3.2. ATR-FIR spectral analysis 208 

 209 

The raw mean spectra of sweet and bitter intact almonds observed between 4000 210 

and 600 cm-1 is shown in Fig. 1. A total of 16 regions, which corresponded to each peak 211 

or shoulder observed, are evidenced in the spectra. Each one of these regions represented 212 

structural of functional group information, as indicated in Table 2. The whole spectra are 213 

the combination of many almond constituents, which are mainly represented by the 214 

combination of O-H stretching, C-H bending and C-O stretching. The broad band (3140-215 

2808 cm-1) containing three different peaks was mainly assigned to the stretching 216 
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vibrations of CH2 functional group (Hernández & Zacconi, 2009, Maqsood & Benjakul, 217 

2010). In this sense, this band could be associated with the saturated fatty acids fraction 218 

present in almonds. The band appearing between 1880–1680 cm-1 was due to the 219 

stretching movement of the typical ester carbonyl functional group (C=O) of the 220 

triacylglyceride esters (Beltrán et al., 2009, Vlachos et al., 2006). The band located 221 

around and 1490–1406 cm-1 is associated with the presence of CH bending vibrations in 222 

CH3 (Hernández & Zacconi, 2009). 223 

 224 

Fig. 1. Raw mean ATR-FTIR spectra for sweet and bitter almonds. 225 

  226 
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Table 2 227 

Bands observed in the 4000 – 600 cm-1 region of the ATR-FTIR spectra of sweet and 228 

bitter almondsa. 229 

Identification 
no. 

Wavenumber 
range (cm-1) 

Functional 
group 

Nominal 
frequency Mode of vibration 

1 3792-3660 O-H 3741 Stretching 

2 3660-3535 O-H 3629 Stretching 

3 3535-3400 O-H 3471 - 

4 3140-2985 =C-H (trans) 3025 Stretching 

5 2985-2882 -C-H (CH2) 2930 Stretching (asym) 

6 2882-2808 -C-H (CH2) 2860 Stretching (sym) 

7 2430-2280 
alkane 2360 Stretching 

alkane 2341 Stretching 

8 1880-1680 -C=O (ester) 1740 Stretching 

9 1680-1604 -C=C- (cis) 1654 Stretching 

10 1604-1490 N-H 1531 Bending 

11 1490-1406 -C-H (CH3) 1446 Bending (asym) 

12 1406-1296 O-H 1365 Bending (in plane) 

13 1296-1170 -C-O 1218 Stretching 

14 1170-950 -C-O 1033 Stretching 

15 950-830 -HC=CH- 
(cis)? 906 Bending 

(out of plane) 

16 760-600 C-H 680 Bending 
(out of plane) 

 230 
aAccording to references Rohman et al., 2011, Chen et al., 2010, Mbonyiryivuze et al., 231 

2015, Lingegowda et al., 2012, Conrad et al., 2014, Lerma-García et al., 2010. 232 

  233 
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3.3. PCA analysis 234 

 235 

The data from the pre-treated ATR-FTIR spectra were analyzed by PCA because 236 

is a simply, rapidly and accurately way to identify the different almond groups. The two 237 

first PCs summarized the 86 % of accumulative contribution of the original data, which 238 

means that nearly all the variation of the variables were explained by these two PCs. The 239 

first principal component (PC1) offers the main contribution (69 %), while the second 240 

one (PC2) explained 17 %. Fig. 2 shows the score plot and the X-loading plot of the 241 

training set samples based on the two first PCs. The score plot indicates that sweet and 242 

bitter almonds can be grouped into two separate groups. Specifically, sweet almonds are 243 

located on the positive axis of PC1, while the bitter almonds were located on the same 244 

axis but on the opposite side (negative axis of PC1). The X-loading plot indicated the 245 

absorbance peaks with greatest discriminatory effect on PCA. In particular, most of these 246 

peaks (Fig. 2B) were found at the nominal frequencies included in Table 2, such as 1218, 247 

1740, 2860 and 2930 cm-1, while the other main wavelength (2350 cm-1) is found within 248 

the wavenumber range of region 7.  249 

 250 
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 251 

Fig. 2. PCA (A) score plot and (B) X-loading plot of pre-treated spectral data of almonds. 252 
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leave-one-out cross-validation technique, R2CV and RMSECV values were 0.899 and 259 
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R2P and RMSEP values were 0.951 and 0.398, respectively. Taking into consideration 263 

that the RMSEP value was small, it could be concluded that the PLS model constructed 264 

also provided a good performance in the prediction of amygdalin concentration in the 265 

evaluation samples. The good results are also evidenced in Fig. 3.  266 

 267 

 268 

Fig. 3. Measured versus predicted amygdalin concentration by PLS in the evaluation set. 269 
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and eight and five samples of bitter category, respectively, were not correctly assigned. 281 

Thus, ATR-FTIR spectroscopy gave good classification performances on both classes 282 

studied, especially with the PLS-DA model with an accuracy percentage of 98.6 %, 283 

although the results of the QDA and LDA models were also very satisfactory with 86.1 284 

% and 83.3 % of accuracy, respectively.  285 

 286 

Table 3 287 

Assignation of the evaluation set samples into the two studied classes and overall 288 

accuracy using LDA, QDA and PLS-DA. 289 

 290 

Method True 
classes 

Predicted classes (%) Overall accuracy 
(%) Sweet Bitter 

LDA 
Sweet 88.89 11.11 

83.3 
Bitter 22.22 77.78 

QDA 
Sweet 86.11 13.89 

86.1 
Bitter 13.89 86.11 

PLS-DA Sweet 100 - 98.6 
Bitter 2.78 97.22 

 291 
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 292 

Fig. 4. Discrimination plots of the (A) LDA, (B) QDA and (C) PLS-DA models 293 

constructed to classify the evaluation set almonds into bitter and sweet categories. 294 
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4. Conclusions 295 

 296 

The results obtained by the discriminant methods (LDA, QDA and PLS-DA) 297 

indicate that the proposed ATR-FTIR technique is a promising alternative to identify 298 

bitter and sweet almonds. Moreover, the appropriate use of the PLS model can provide 299 

useful information for the prediction of amygdalin concentration in almonds. All these 300 

advantages combined with the saving time and non-destructive analysis of a large number 301 

of samples allow operators to quickly monitor characterization of intact almonds with the 302 

purpose of a better management of homogeneous lots. 303 
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