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Abstract: The baseline of a specific variable defines the average behavior of that variable and it must
be built from long data series that represent its spatial and temporal variability. In coastal and marine
waters, phytoplankton can produce blooms characterized by a wide range of total cells number or
chlorophyll a concentration. Classifying a phytoplankton abundance increase as a bloom depends
on the species, the study area and the season. The objective of this study was to define the baseline
of satellite absorption coefficients in Todos Santos Bay (Baja California, Mexico) to determine the
presence of phytoplankton blooms based on the satellite inherent optical properties index (satellite
IOP index). Two field points were selected according to historical bloom reports. To build the baseline,
the data of phytoplankton absorption coefficients (aphy,GIOP) and detritus plus colored dissolved
organic matter (CDOM) (adCDOM,GIOP ) from the generalized inherent optical property (GIOP) satellite
model of the NASA moderate resolution imaging spectroradiometer (MODIS-Aqua) sensor was
studied for the period 2003 to 2016. Field data taken during a phytoplankton bloom event on June
2017 was used to validate the use of satellite products. The association between field and satellite
data had a significant positive correlation. The satellite baseline detected a trend change from high
values to low values of the satellite IOP index since 2010. Improved wastewater treatment to waters
discharged into the Bay, and increased aquaculture of filter-feeding mollusks could have been the
cause. The methodology proposed in this study can be a supplementary tool for permanent in situ
monitoring programs. This methodology offers several advantages: A complete spatial coverage
of the specific coastal area under study, appropriate temporal resolution and a tool for building an
objective baseline to detect deviation from average conditions during phytoplankton bloom events.

Keywords: remote sensing; absorption coefficients; phytoplankton bloom; MODIS-Aqua;
Pacific Ocean; baseline

1. Introduction

Blooms are proliferation events of phytoplankton species, such as dinoflagellates, diatoms and
cyanobacteria in aquatic ecosystems [1]. They can last less than 24 h (fast blooms), can last for several
days [2] or last for weeks [3]. To be able to detect a bloom, it is necessary to determine the baseline
condition of any phytoplankton property in order to detect deviations from that baseline having into
account climatic variability. The baseline can be defined as the average value over which fluctuations
can occur within a range that contains most of the observed cases [4,5]. The baseline can be calculated
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from a compilation of years of historical data that define an average of past performance, or from a
rapid measurement of current production before initiating a change [6].

Data can be obtained from in situ monitoring, but, in recent years, remote sensing technologies
have been indicated as an adequate tool for providing a synoptic view of extensive ocean or coastal
areas, being effective in complementing in situ sampling programs [7–9]. Chlorophyll a (Chla) has
been widely used as a proxy for phytoplankton biomass in both remote sensing and in situ monitoring
programs [8]. However, other phytoplankton properties can be monitored from remote sensing
and be applied to the study of blooms. For example, Blondeau-Patissier et al. (2014) [10] defined a
phytoplankton bloom as “a biological event composed of micro-algal species that is sustained both
over time and space and that results in noticeable changes in satellite radiances at wavelengths used
for algal bloom proxies due to an increase in biomass in comparison to surrounding algal bloom-free
waters”. The inherent optical properties (IOPs) are considered as one of the most robust phytoplankton
properties that can be monitored from remote sensing data [10–13]. The study of IOPs is especially
relevant in optically complex waters, such as coastal waters, where optically active constituents (colored
dissolved organic matter (CDOM) and detritus) are as important as Chla and show their own patterns
during algal bloom conditions [10,14]. Recent findings propose the use of IOPs for the detection of
algal blooms [15–17], instead of only Chla. The use of IOPs from remote sensing technology may allow
long-time monitoring at moderate- or high-spatial resolution and high-temporal resolution [18–20],
which is essential to build the baseline.

The IOPs are represented by the light absorption coefficients by phytoplankton (aphy(λ)), detritus
(ad(λ)), CDOM (aCDOM(λ)) and by the particulate backscattering coefficient (bbp(λ)) [21]. A variety
of semi-analytical approaches have been proposed to determine IOPs from the remotely measured
spectral reflectance, especially for optically complex waters [22,23]. Among them, the algorithm
generalized inherent optical property (GIOP) is part of the standard NASA OBPG (Ocean Biology
Processing Group)products, with the consideration that it considers (ad(λ)) and (aCDOM(λ)) as an
integrated variable called (adg(λ)).

The use of IOPs for the evaluation of phytoplankton blooms has been applied in recent years [14].
Santamaría-del-Ángel et al. (2015) [5] and Aguilar-Maldonado et al. (2018) [24] used in situ data
as input to calculate an index, called the IOP index, which values could be associated to bloom or
non-blooms conditions. Later, Aguilar-Maldonado et al. (2018) [20] adapted the in situ IOP index for
using satellite products (aphy(λ) and adg(λ)) as input. The advantage of using satellite products was
mapping the index at a moderate resolution scale on a specific moment. However, their approach was
based on the evaluation of spatial anomalies, that is, the reference conditions were determined based
on the spatial differences of these variables during some single time (day or month). The calculation of
anomalies is used to determine the change magnitude necessary to assert that a specific phenomenon
is causing an effect [25–28]. According to the anomalies theory, the baseline can be interpreted as the
boundary on which if a value is above it is described as a positive anomaly (or increase), while if a value
is below it indicates a negative anomaly (or decrement) [29]. Simple or climatological anomalies can be
calculated. In climatological anomalies, the average value of the data is replaced by twelve monthly
averages. Both simple anomalies and climatological anomalies are defined locally, their definition is
valid only for the data series region. To be able to compare different regions is necessary to calculate the
standardized anomalies, which are based on data standardization or Z transformation [29]. The concept
of standardized anomaly is widely used in physical oceanography [30,31].

In this study, we propose the application of the IOP index, based on the use of time series
standardized anomalies, to build a baseline of phytoplankton (aphy,GIOP) and detritus plus CDOM
(adg,GIOP ) absorption coefficients obtained from satellite products. The objective is to evaluate deviations
from the baseline that can be associated to bloom conditions according the IOP index results. We worked
with data from Todos Santos Bay (TSB) (Baja California, México) and specifically with one bloom
observed during May–June 2017 when in situ data were available from previous studies.
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2. Methodology

2.1. Study Area and Field Data

TSB is a semi-enclosed bay located on the northwestern Pacific coast of Baja California (Mexico),
approximately 100 km south of the Mexico–USA border (Figure 1). The bay is limited to the north by
Punta San Miguel and to the south by Punta Banda. Surface water characteristics in this area are closely
related to the California Current System (CCS), which produces the upwelling of cold and nutrient-rich
subsurface water along the Baja California peninsula coast. The predominant circulation pattern is a
southeastern flux into the bay, except when there is a change of flow direction to the northeast, Punta Banda,
which induces surface water to flow out of the bay [32]. Primary productivity in TSB is characteristically
high (daily average 1.03 g C m−2 inshore and 0.18 g C m−2 offshore) [33,34]. The city of Ensenada
(228 km2, 466,815 inhabitants according to the last population census) [35] is located to the east of the bay.
The Ensenada Harbor is one of the most important harbors in the Mexican Pacific. Aquaculture activities
of high economic importance are carried out inside or near the bay, among them, tuna fattening and the
cultivation of bivalve mollusks (such as oyster, clam, mussels, mule paw and ax callus).
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Figure 1. Study area, Todos Santos Bay (Baja California, Mexico). Points from 1 to 6 are field stations.
The rectangle shows a bivalve mollusks cultivation area and the oval a tuna fattening area. Dashed lines
and arrows indicate predominant circulation pattern.

TSB is characterized by a dominance of diatoms during the upwelling season (spring–summer),
which alternates with a dominance of dinoflagellates when nutrients are depleted [36].
Recurrent dinoflagellate blooms have been observed since at least 1901 [32]. However, dinoflagellate algal
bloom (DAB) events in this area have increased considerably in extension and frequency over the past
two decades [37]. Aguilar-Maldonado et al. (2018) [24] reported a bloom during June 2017 that lasted
three weeks. Field sampling was done on June 2, and surface water samples were obtained from the six
stations represented in Figure 1. Water column depth is about 20 m in the field points located nearer the
coast (4, 5 and 6). Water column depth increases to 40 m in field points 1 and 2, and it reaches 120 m in
field point 3 [38]. The bloom was analyzed in Aguilar-Maldonado et al. (2018) [24], and their results are
used in this study to compare field data with remote sensing data.

2.2. Image Processing and Calculations of the IOP Satellite Index

The methodology is based on the use of an extensive satellite database of the GIOP
model of the TSB, in order to obtain the baseline. The variables aphy,GIOP and adCDOM,GIOP were
derived from images of the moderate resolution imaging spectroradiometer (MODIS)-Aqua sensor
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(https://oceancolor.gsfc.nasa.gov/atbd/giop/). We download daily Ocean Level-2 products, distributed
by the NASA Goddard Space Flight Center’s Ocean Data Processing System (ODPS) which are already
atmospherically corrected. The images spatial resolution was 1 km2. 3 × 3 pixels windows were taken
around the pixel of interest, and the aggregation method of these pixels was the average. Absorption
coefficients data were obtained using NASA’s SeaDAS V.7.5 software.

Two points were selected (points 4 and 6 in Figure 1) to extract their time series. These points were
selected based on their strategic interest, because historical records of blooms events have been reported
in the bivalve mollusk culture area and tuna fattening farms. To build the May and June baseline, daily
images were used for the months of May and June since 2003 to 2016 (Table 1 summarizes the number
of data available), and the following procedure was applied.

Table 1. Available remote sensing data used to build the baseline since 2003 to 2016.

Point Month # Observed Days (2003–2016)

4
May 111
June 146

6
May 101
June 115

First, the absorption coefficients, aphy,GIOP and adCDOM,GIOP for the pixels of interest, were standardized
applying Equation (1):

Z =
x− x
SD

(1)

where:

x is the value to be standardized (each day absorption coefficient);
x is the average of the studied period (for May, all May data since 2003 to 2016; for June, all June data
since 2003 to 2016);
SD is the standard deviation of the studied period (for May, all May data since 2003 to 2016; for June,
all June data since 2003 to 2016).

Second, the satellite IOP index was calculated as a standardized orthogonal empirical Function
(SOEF) for each day, according to Equation (2):

IOPindex satellite =
[
(b1,1 ∗Zaphy,GIOP) + (b1,2 ∗ZadCDOM,GIOP)

]
(2)

where Zaphy,GIOP and Zadg,GIOP are the aphy,GIOP and adCDOM,GIOP standardized values and b1,1, b1,2 are the
first eigenvectors resulting from the SOEF, to see in detail the procedure see Aguilar-Maldonado et al.
(2018) [20].

Then, the average satellite IOP index was calculated for May and June, and this will be considered
the baseline for that specific months in that specific region. The baseline will be continuously feed each
year with new data. Once we have calculated the baseline of satellite IOP index, we can compare any
data with that baseline value.

The values of the satellite IOP index for May–June 2017 were calculated and classified as follows:
(1) Values in the interval (−1, 1) indicate average values of the specific site or non-bloom conditions;
(2) values in the interval (1, 1.6) are positive anomalies (above the average) and represent a transitional
state from anomalous to average values, or vice versa (decaying or growing bloom conditions),
depending on the behavior of the data set; (3) values higher than 1.6 are strongly anomalous and
indicate a phytoplankton bloom event. These thresholds are defined thanks to the standardization
of the data. In a normal distribution, the inverse cumulative distribution function (ICDF) [5],
defines 1.6 standard deviations as the limit of values without noise with a 90% confidence level.

The satellite IOP index results were compared with the field IOP index results obtained by
Aguilar-Maldonado et al. (2018) [20] for the same data and points. A Spearman rank correlation

https://oceancolor.gsfc.nasa.gov/atbd/giop/
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analysis was performed to test statistically significant correlations between the satellite and the field
data absorption coefficients. Daily satellite chlorophyll a concentration (mg·m−3) was obtained from
MODIS Aqua, MODIS Terra and VIIRS (Visible Infrared Imaging Radiometer Suite), with the OCI
algorithm. A multi-sensor approach was used to overcome cloud cover. These data were used to
compare May and June data in Todos Santos Bay with the satellite IOP index.

3. Results and Discussion

The calculated baseline of satellite IOP index, for the period since 2003 to 2016, for field point 4 was
0.001 in May and 0.006 in June, and for field point 6 it was 0.002 in May and 0.009 in June. As time goes by
the data base of aphy,GIOP and adCDOM,GIOP will be increasing with new data, and consequently the baseline
can be modified. There exist studies which warn that climate change can have an effect on phytoplankton
due to changing water column stratification and resource availability, mainly nutrients and light,
or intensified grazing by heterotrophs [39,40]. So, baseline data feeding is of paramount importance
because phytoplankton blooms characteristics (timing, frequency, composition and intensity) are
expected to change with climate in a way that is hard to predict [41]. Already, several studies have
observed advance in phytoplankton spring bloom timing and changing bloom magnitudes [40]. To be
able to distinguish a bloom event, daily satellite IOP index must be compared with this baseline.
In Table 2 the IOP index statistics from 2003 to 2016 are summarized. The frequency of IOP index
values above 1.6, and thus in active bloom conditions is between 6% to 7% for that period. In Table 3
we analyze the monthly frequency of IOP index values >1.6 by year. The temporal series show a trend
inversion since 2010–2011. From 2003 to 2009, the satellite IOP index >1.6 frequency was between
8% and 38% (except for some months it was 0%). From 2010 to 2016, the IOP index did not exceed
1.6, except in June at point 6 (11%). Even in the months with higher frequency of IOP index >1.6,
the persistence of these values was reduced mostly to one observation (a day). Only sporadically
we detected active blooms condition during two (May 2005 point 4, and May 2003 point 6) or three
(May 2006 and June 2007 at point 4) consecutive days.

Table 2. Inherent optical properties (IOP) index statistics from 2003 to 2016. Frequency of IOP index in
each interval is calculated as number of cases divided by number of total observations.

Frequency of IOP Index Values (%)
Minimum IOP Index Maximum IOP Index

<1 1–1.6 >1.6

Point 4 May 81 13 6 −1.31 5.20
Point 4 June 85 8 7 −0.88 5.16
Point 6 May 79 15 6 −1.24 3.54
Point 6 June 87 7 6 −1.12 4.29

Table 3. Monthly frequency (%) of IOP index values >1.6 by year from 2003 to 2016. Frequency of IOP
index (%) is calculated as number of cases divided by number of month observations.

Point 4 May Point 4 June Point 6 May Point 6 June

2003 0 17 38 0
2004 8 18 9 25
2005 25 11 17 20
2006 29 10 0 0
2007 0 27 0 14
2008 11 0 0 0
2009 0 20 25 0
2010 0 0 0 0
2011 0 0 0 11
2012 0 0 0 0
2013 0 0 0 0
2014 0 0 0 0
2015 0 0 0 0
2016 0 0 0 0
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The availability of long term data series is essential to distinguish the natural variability of the
ecosystem from other causes of variability such as climatic variability or anthropogenic factors [4,5].
In the city of Ensenada, they operate six wastewater treatment plants that provide secondary treatment
to the water that collects the sewage system, with a total installed capacity of 917 L/s and an estimated
treated flow of 552 L/s [42]. Two of this plants started to operate one in 2009 “Northeast plant”
(52 L/s) and the other in 2010 “Maneadero plant” (7.2 L/s) (Figure 1). Water quality improvement in
the receiving waters, have been previously observed in Todos Santos Bay after construction of new
treatment facilities [43]. Treated wastewater discharges have to accomplish the Mexican government
pollution thresholds for wastewaters [44]. This change can affect phytoplankton biomass and other
optically active components (detritus and CDOM), decreasing their concentration. In addition,
the cultivation of bivalve mollusks in the bay (see area in Figure 1) has increased in recent years [45].
Bivalve filter-feeding mollusks are important components of coastal ecosystems because they remove
large quantities of suspended material from the water, primarily phytoplankton [46]. Both factors,
wastewater treatment and bivalve aquaculture could have contributed to a decrease in the satellite
IOP index.

The daily temporal evolution of the satellite IOP index from 1 May to 30 June 2017, at points
4 and 6, is shown in Figures 2 and 3. The bars of the satellite IOP index were colored to facilitate
interpretation as follows: (1) Green color for values in the interval (−1, 1) show the average values of
the specific site or non-bloom conditions; (2) yellow color for values in the interval (1, 1.6) are above
the average and represent a transition state, and can be considered as a bloom pre-alert situation, and
(3) red color for values higher than 1.6 are highly anomalous and indicate an active phytoplankton
bloom, and can be considered as a bloom alert situation. Satellite chlorophyll a concentration (mg·m−3)
is overlapped in gray color bars.
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Figure 3. Temporal evolution of the satellite IOP index and satellite chlorophyll a (mg m−3) from 1 May
to 30 June 2017 at field point 6. The red line defines the limit of anomalous conditions (>1.6 standard
deviations of IOP index) and active bloom conditions. Green color bars show IOP index in non-bloom
conditions; yellow color bars show IOP index in bloom pre-alert conditions and red color bars show
IOP index in active phytoplankton bloom; and gray bars are chlorophyll a. Absence of bars is due to
cloud cover.

Daily data available for field point 6 is more reduced than for field point 4 (13 days as compared
to 23 days). There was no satellite information available for the day the field sampling was conducted
(2 June 2017) at none of the two points. In a conservative approach, in the absence of satellite images it
should be considered that the worst scenery remains until new information could be processed. In field
point 6 (Figure 3) a bloom pre-alert situation (yellow color) started on May 24 and was kept until 8 June
2017, as there was no satellite information during the 14 days the pre-alert was kept. On June 2 there
was an active bloom of a dinoflagellate, Lingulodinium polyedrum; cell counts exceeded 40 thousand
cells L−1 [24]. For this reason, it is important to clearly define which management measures should
be adopted during bloom pre-alert. On June 10 there was a decrease in the satellite IOP index that
reached average values or non-bloom conditions, but this lasted only until June 14 when an active
bloom condition was detected. At field point 4, the prior warning situation was reached several times,
but it was expanded to a maximum of 4 days because the availability of satellite data was greater and
the new data confirmed the decrease in the value of the satellite IOP index to non-bloom conditions.
TSB is a highly cloudy area which prevents the availability of daily satellite images. In the example,
the maximum period without satellite information was 14 days. This is a relevant challenge for using
polar-orbiting satellites, such as MODIS, that has been already pointed out in other cloudy areas such
as Cheasepeake Bay [9]. To improve this temporal resolution, two alternatives arise, either using a
multi-sensor approach or using sensors on geostationary platforms [8,9].

To assess the utility of the proposed methodology, we compared IOP index values with satellite
chlorophyll a values which is a more traditional approach to define high biomass phytoplankton
blooms. In Figures 2 and 3 we observed that at field points 4 and 6, chlorophyll a concentration
(mg·m−3) is, in general, below 24 mg·m−3 during non-bloom conditions, and during bloom conditions
it rises above this level. In our work, we tried to emphasize the need to compare one area with its
own long-term values (baseline) to be able to detect bloom conditions. There is not a unique biomass
value that can be considered as the threshold between bloom or non-bloom, because different areas
have different characteristics and different levels of biomass can be considered a bloom. But, we could
define a phytoplankton bloom as a deviation to higher values than standard seasonal patterns at a
specific site. The advantage of this methodology is that the baseline is calculated for any specific site to
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detect deviations from that baseline, and that makes possible the generalization of the methodology to
any area, and to all trophic conditions. Previously, the IOP index has been tested in optically complex
waters with different conditions, including the Upper Gulf of California which is considered as one
of the most biologically productive marine regions (peak chlorophyll a concentrations of 18.2 mg
m−3) [24]. Even in areas with extremely frequent blooms (Campeche, Yucatan Peninsula) the IOP
index is able to distinguish active blooms from decaying blooms [20]. The advantage of the IOP index
is that it is calculated having taken into account the three components of optically complex waters
(phytoplankton, CDOM and detritus), so it is able to distinguish between increases in phytoplankton
biomass from increases in CDOM (due to the degradation of organic matter, that is, the degradation of
the dead phytoplankton that formed the bloom) or detritus (from terrestrial discharges).

Having taken into account the calculation process of the satellite IOP index, the relative weight of
adCDOM,GIOP is lower than the aphy,GIOP . In consequence, to get high values of the IOP index (close to 1.6)
as a consequence of the increase in CDOM and detritus, this increase has to be striking. As an example,
the IOP index value suggests a pre-bloom situation at point 4 on June 8 (Figure 2), when the chlorophyll
concentration is relatively low. This can be due to a very anomalous increase in CDOM. The degradation
of phytoplankton cells from previous blooms causes the increase in CDOM. The morphology and
dominant currents of TSB favor a mechanical accumulation of this CDOM in the area of field points
4 and 6. This is very important because sometimes water discoloration is wrongly attributed to
phytoplankton blooms, when in fact the bloom is not active, and even may have originated in a near
area and been displaced by currents. Unfortunately, we did not have images available for the 10 days
prior to June 8, due to cloud cover, to be able to unveil our hypothesis of a previous bloom.

We analyzed the contribution of each absorption coefficient (aphy,GIOP and adCDOM,GIOP) to total
absorption from 2003 to 2016. The average contribution of phytoplankton was 56.4% for IOP index
values below 1; 45.4% for IOP index values between 1 and 1.6; and 57.0% for IOP index values above
1.6. That is, phytoplankton contribution is higher in non-bloom and in active bloom conditions,
while detritus and CDOM are higher in decaying bloom conditions. In Figure 4, we map the satellite
absorption coefficients from 25 May to 10 June 2017 in Todos Santos Bay. In the 2017 bloom, we observed
a 63% contribution of aphy,GIOP in field point 6, when active bloom conditions were detected. This higher
contribution of phytoplankton absorption can be well observed in Figure 4.

Satellite absorption coefficient were compared to previously published field data. The Spearman
correlation analysis between absorption coefficients showed a statistically significant positive correlation
(α = 0.05, n = 6). The correlation coefficient between aphy f ield data and aphy satellite was 0.809 (α < 0.05),
and correlation between adCDOM f ield data and adCDOM satellite was 0.671 (α < 0.05). Thus, the correlation
was higher for phytoplankton absorption coefficient, but in both cases can be considered a good
fit [7,47,48]. The satellite IOP index and the field IOP index behavior was similar in the six stations
sampled on June 2017 (Figure 5). In general, it can be observed that the satellite IOP index shows
higher values than the field IOP index, but the classification of the bloom condition was the same for
all the field points, except for field point 5. The field IOP index classified this point as non-bloom
conditions, while the satellite IOP index classified it as in active bloom conditions. Field points 1, 2,
3 and 4 were in non-bloom conditions, and had average values for this region. Field point 6 was in
active bloom conditions, it showed the highest anomaly with an IOP index value above 1.6.
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Figure 5. IOP index results in Todos Santos Bay. The results of the IOP index with field data obtained
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from 25 May to 10 June 2017 are represented by gray points. The points on or above the dashed line are
in active bloom conditions.

The difference between the field IOP index and the satellite IOP index may be due to several factors.
The first is temporality, field observations are rarely done simultaneously with remote sensing [14].
In this study, samples were taken on 2 June 2017, while satellite data were a composite of the available
images since 25 May to 10 June 2017. In the specific case of field point 5, there were only three images
available, less than for the other field points. Laboratory results are based on discrete water samples of a
limited volume, while satellite results represent the average value of one pixel (1 km2) [14]. In addition,
it is known that phytoplankton blooms are characterized by a patchy distribution [10].

The Mexican Bivalve Mollusks Health Program aims at creating a historical database in order to
have background information of phytoplankton species of the Mexican littoral [49]. For this purpose,
a Permanent and Systematic Sampling Program has been defined. A weekly sampling frequency
and analysis of seawater, for phytoplankton cell count, was established in previously determined
sampling stations, under non-bloom conditions. The quantitative analysis of collected water samples
can offer information at species level but it has some limitations. The first limitation is that is not
possible to have quantitative information always due to limited laboratory facilities and personal,
so in that case qualitative analysis is done, with the consequent loss of information [49]. The second
one is the complexity of having high quality data of quantitative phytoplankton analysis [36,50]. It is
common a significant variability among laboratories in the methods used to sample, preserve and count,
identify and measure phytoplankton cell volume, the taxonomic nomenclature used and resolution
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reported. The satellite IOP index methodology proposed in this study aims to be a complementary
tool for permanent on-site monitoring programs. This methodology does not provide information at
species level, but allows to have a complete spatial coverage of TSB (or any other coastal area), while
on-site sampling should be limited to previously fixed sampling stations. This can be very helpful
to determine the extent of blooms events and affected areas, and also may detect bloom events in
non-monitored areas. Blooms can occur even at extremely low levels of Chla in oligotrophic seas
(<0.15 mg m−3) [51,52], without noticeable changes in water color due to low cell density which
complicates their detection [8,10], but the use of IOPs combined with the index approach proposed in
this work is able to detect any deviations from average values. One of the objectives of permanent
monitoring programs is to obtain background information of phytoplankton. In this sense, the use
of the satellite IOP index provides reliable information that may be more objective than traditional
phytoplankton analysis. It is true that this method cannot offer taxonomic information at present state,
but it provides important information about the background levels of phytoplankton, detritus and
CDOM that can be very useful for detecting anomalies. Therefore, it can serve as a first-level permanent
monitoring tool to support decisions about when and where it is necessary to take in situ samples.

Regarding sampling frequency, the Permanent Sampling Program [49] is quite ambitious in his
principles, it purposes weekly frequency for phytoplankton quantitative analysis, but this is not easy
to accomplish. MODIS GIOP products, which are the base for calculating the satellite IOP index,
are available at a daily frequency. However, this frequency could be reduced due to cloud cover.
Currently bloom events are not well documented and resolved because the mismatch in the time scales
of phytoplankton biomass variability (days-weeks) and in situ sampling (weeks months). In this study,
the TSB was selected to test the methodology and, despite being a particularly cloudy area, the satellite
IOP index proved to be useful and had a higher frequency than in situ sampling. Therefore, it is
expected that in less cloudy areas temporal resolution will be improved. Additionally, a multi-sensor
approach or the use of sensors on geostationary platforms can increase temporal resolution.

4. Conclusions

Long term monitoring is necessary to define the baseline conditions of a specific variable in a
specific area. In situ marine monitoring programs are used to compile background information on
phytoplankton abundance, which is especially important in coastal areas with uses such as aquaculture.
However, field sampling must be limited to specific points and data due to cost-effort efficiency.
The use of remote sensing products is useful to complete these programs because it has the advantage
of being able to map entire areas with high frequency. In this research, two points have been selected
to show how the analysis of absorption coefficients and the satellite IOP index baseline allow detecting
trend changes. In addition, the satellite IOP index allows detecting active phytoplankton bloom
conditions thanks to the anomalies theory. The satellite IOP index can be used as a first-level permanent
monitoring tool to support decisions about when and where it is necessary to take in situ samples,
and to define a strong background to detect anomalies.
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