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Graphic representation of the different trapped NR populations within the metal-ion 

exchanged zeolites. The proposed scheme describe their fast and ultrafast photophysical 

behaviour (LE: Local Excited, ICT: Internal Charge Transfer and CS: Charge Separated 

State). 
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Abstract 

We report on the photodynamics of Nile Red (NR) interacting with faujasite (NaY)-type 

zeolites having different Na/Al ratios and charge balancing metals (Li+, Mg2+, and Cs+) 

in dichloromethane (DCM) suspensions. The encapsulation of NR within these 

materials leads to the formation of different populations, reflected in H- and J-

aggregates, monomers, and surface adsorbed species. Due to the interaction of the dye 

with both the Brønsted and Lewis sites of the zeolite, a bathochromic shift is observed 

in the steady-state diffuse transmittance and emission spectra. The relative contribution 

of each population is affected by the Na/Al ratio and the nature of the doping metal ion. 

These findings are further explored by femto- to nanosecond time-resolved emission 

experiments, where a multi-exponential behaviour is observed for the excited samples. 

The fluorescence lifetimes range from ~100 ps to ~2 ns. They are assigned to the 

emission from H- and J-aggregates and monomers. At low Na/Al ratios, we observe an 

increase in the fluorescence time constants which is explained in terms of H-bonds 

formation between NR and the zeolite framework, while the change in the emission 

lifetimes for the metal ion exchanged zeolites is due to the variation of the properties 

(size and polarization ability) of the exchange cation. An ultrafast formation (~200 fs) 

of a charge-separated state (CS) followed by a vibrational cooling (~1-2 ps) are 

observed in the fluorescence up-conversion transients. These results indicate a strong 

interaction between NR and the studied zeolites and may help for the design of metal 

ion sensors and for a better understanding of nanocatalysis. 

Keywords: Lewis and Brönsted acidity; H- and J-aggregates; host-guest interaction; 
Silica-based materials 
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Introduction  

Zeolites have been extensively used as organized media in a wide range of 

applications, such as heterogeneous catalysts, drying agents, molecular sieves, chemical 

sensors, and nanocarriers in drug delivery.[1-15] 

Zeolites are crystalline, microporous aluminosilicates with open framework 

structures consisting of channels and cages of discrete nanometric sizes.[16-21] A 

zeolite is considered a solid acid-base pair, where the protons and the matrix oxygens 

represent the Brønsted and Lewis sites, respectively.[22] On the other hand, the 

exchangeable cations interact in a weaker fashion with the anionic lattice through ionic-

type bonds. Zeolites aptitude to accept electron pairs make these materials act as Lewis 

acids.  

The chemical properties, including the composition, nature of the cations, and 

lattice structure, of faujasites can be well tuned. Due to the reduced space and the rich 

variety of interaction sites within the faujasite framework, these materials are capable of 

changing and controlling the behaviour of confined organic and inorganic molecules 

through specific and non-specific host-guest and guest-guest interactions.[23, 24] Thus, 

the structural features and the physicochemical properties of zeolites can be monitored 

by the use of specific guest molecules acting as probes through steady-state and 

transient spectroscopy, in addition to other techniques. In this regard, several studies 

have demonstrated that the photobehaviours of several encapsulated molecules, such as 

salicylaldehyde azine (SAA), 1-phenylazo-2-naphthol (Sudan I), 2-(2-

hydroxyphenyl)benzoxazole (HBO), or (E)-2-(2-hydroxybenzyliden)amino-4-

nitrophenol (HBA-4NP),[25-30] are largely affected by the composition and structure of 

the host zeolite.  

Nile Red (NR, Scheme 1) is one of the best candidates to explore the effect of the 

zeolite structure composition on the acidic properties of the catalytic sites. NR is a 

highly polar and hydrogen-bond sensitive fluorescent molecule with strong 

solvatochromism observed in different solvents.[31-33] The dependence of the NR 

photobehaviour on the solvent polarity, which has been reported in several experimental 

and theoretical works, is due to the intramolecular charge-transfer (ICT) character in 

NR’s electronically first singlet excited state.[34-36] This behaviour is a consequence of 

the presence of electron donor (diethylamino) and electron acceptor (quinoid) moieties 

in the molecular structure.[37] Due to NR’s remarkable sensibility to the 
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microenvironment, NR has been widely employed to probe the chemical and structural 

properties of different heterogeneous and/or organized media.[38-54] Recently, the 

behaviour of NR in the presence of both normal and doped (with Al, Ga, Ti, and Zr) 

MCM41 mesoporous materials in dichloromethane (DCM) suspensions was reported to 

be affected at both its ground and excited states by Brønsted (H-bond formation) and 

Lewis interactions between the dye and the host.50 Different populations (monomers 

and H- and J-aggregates) were observed in the steady-state experiments, associated with 

large bathochromic shifts. The femto- to nanosecond dynamics of the NR/R-MCM41 

complexes revealed great complexity compared with the dynamics observed for the free 

dye in pure DCM. The encapsulation of NR within faujasite zeolites 13X and LZY-82 

was previously observed using steady-state and picosecond-time-resolved emission 

studies.[52] 

The obtained results are of interest in the design of metal-ion sensors The ET(30) 

values for 13X and LZY-82 zeolites were estimated to be 55.5 ± 1, indicating that the 

micropolarity of the zeolite environment was similar to that of a 1:1 (v/v) aqueous 

solution of methanol. However, observation of the dynamics of NR/zeolites complexes 

on the ultrafast time scale, which may provide more accurate descriptions of these 

systems, has not been performed. 

Herein, we explore the interaction of NR with Na-Y-type zeolites containing 

different Na/Al ratios and charge-balancing metals in DCM suspensions using steady-

state, UV-visible, and time-resolved (femto- to nanosecond) emission spectroscopies. 

Our aim was to characterize the zeolites and the effects of structural changes on the 

photophysical behaviour of the probe. The results showed that the interaction with the 

hosts affects both the ground-(S0) and excited-(S1) state properties of NR in terms of the 

acidities (Brønsted and Lewis) and electrostatic interactions experienced by the dye in 

contact with the host framework. We observed the formation of different ground-state 

populations of NR (monomers, H- and J-aggregates, and surface-adsorbed species) 

whose relative contributions depended on the Na/Al ratio and the nature of the metal 

ions. These findings were further supported by time-resolved picosecond emission 

measurements, which revealed multi-exponential behaviours for the studied composites. 

Femtosecond-fluorescence spectroscopy showed an ultrafast formation (~200 fs) of a 

charge-separated (CS) state, followed by vibrational cooling in the range of ~1-2 ps. To 

obtain a more accurate characterization, we compared the dynamics observed here with 
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those obtained in presence of the MCM41-based mesoporous materials previously 

reported.[52] 

The obtained results are of interest in the design of metal-ion sensors and to 

understand photocatalytic mechanisms using this type of host materials. 

 

1. Experimental 

NR and anhydrous DCM (spectroscopic grade ≥99.8%) were purchased from 

Sigma-Aldrich and used without further purification. The faujasite zeolites (CBV 500, 

CBV 300, and CBV 100, Table 1S in the Supporting Information, SI) were all 

purchased from Zeolyst and used as received. The Li-Y, Mg-Y, and Cs-Y faujasites 

were obtained by an ion-exchange procedure using CBV 500 as a precursor, and the 

sample preparation is explained in the SI. Details on the synthesis of the NR/zeolite 

samples (CBV 500, CBV 300, CBV 100, Li-Y, Mg-Y, and Cs-Y), together with the dye 

loading efficiencies, are given in Figure 1S and Table 2S. 

Steady-state UV-visible absorption and diffuse-transmittance (DT) spectra were 

recorded on a Jasco V-670 equipped with a 60-mm integrating sphere (ISN-723). 

Emission spectra were recorded using a Fluoromax-4 (Jobin-Yvone).  

Emission lifetimes were measured using a picosecond time-correlated single-

photon-counting (TCSPC) spectrophotometer (FluoTime 200, PicoQuant), as previously 

described.[55] The fluorescence signal, gated at the magic angle (54.7°), was monitored 

at a 90° angle with respect to the excitation beam at discrete emission wavelengths. The 

samples were excited by a 40-ps pulsed diode laser centred at 635 nm (< 5 mW, 40 

MHz repetition rate). For excitation at 750 nm, we used the output from a pulsed (90 fs, 

2.5 W, 80 MHz) Ti:sapphire oscillator (Mai Tai HP, Spectra Physics). In these 

experiments, the fs laser excitation was set at a very low power to avoid undesired 

photochemistry. The instrument response function (IRF) was ~70 ps and was measured 

using a standard LUDOX (Sigma-Aldrich) solution placed in a 1 cm cell. No 

differences between the measured IRF in the LUDOX solution and pure zeolite 

suspensions in DCM were observed. The decay data were analysed using the FluoFit 

software package (PicoQuant). Exponential decay functions were convoluted with an 

experimental response function and fit to the experimental decay. The shorter 

component, which was resolved after a convolution process, had a decay time of 15 ps. 

The quality of the fits as well as the number of exponentials were carefully selected 
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based on the reduced χ2 values (which were ≤ 1.1) and the distributions of residuals. For 

higher values of χ2, the used exponential function was disregarded, and other 

components were added to improve the quality of the fit. The estimated uncertainty of 

the time constants, considering the errors from the experiments as well as those arising 

from the multi-exponential fit of the signals, was ~20%. 

Time-resolved emission decays were collected using a fluorescence up-conversion 

technique.[28] The system consisted of a femtosecond optical parameter oscillator 

(Inspire Auto 100) pumped by 820-nm pulses (90 fs, 2.5 W, 80 MHz) from a 

Ti:sapphire oscillator (MaiTai HP, Spectra Physics) to generate the excitation beam at 

562 nm (~15-20 mW). The polarization of the latter was set to the magic angle with 

respect to the fundamental beam. The sample was placed in a 1-mm-thick rotating cell. 

The fluorescence was focused with reflective optics into a 0.3-mm β-BaB2O4 (BBO) 

crystal and gated with the fundamental femtosecond beam. The IRF of the apparatus 

(measured as the Raman signal of the pure solvent) was ~200 fs (full width at half-

maximum, FWHM) at the excitation wavelength. To analyse the decays, a multi-

exponential function convoluted with the IRF was used to fit the experimental data. In 

all cases, the errors for the calculated time components were smaller than 15%. All the 

experiments were performed at room temperature (293 K). 

 

2. Results and Discussion 

2.1. Steady-State UV-Visible Absorption and Emission Studies 

2.1.1. Steady-State Absorption Measurements of NR Interacting with the CBV and the 

Metal-Ion-Exchanged M-Y (M = Li+, Mg2+, Cs+) Zeolites 

To begin, we recorded the steady-state UV-visible spectra of NR upon interaction 

with the different CBV (different Na/Al ratios) and metal-ion-exchanged M-Y (M = Li+, 

Mg2+, Cs+) zeolites. When preparing the NR/CBV and NR/M-Y composites, upon 

addition of the zeolite to the DCM solution, we observed an instantaneous colour 

change of the zeolite powder from white to light green or blue, suggesting an immediate 

interaction between the dye and the zeolite materials (Inset of Figure 1A). For these 

composites, we obtained higher loading efficiencies compared to the ones using 

MCM41 under the same experimental conditions, thus suggesting a stronger interaction 

of NR with the zeolite cages.[52] This behaviour will be further discussed taking into 

account the properties of the different mesoporous materials in Section 2.4. 
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Figure 1 shows the normalized UV-visible DT spectra of NR (2 × 10-5 M) in the 

presence of (A): (1) CBV 500, (2) CBV 300, and (3) CBV 100 and (B): (1) Li-Y, (2) 

Mg-Y, and (3) Cs-Y in DCM suspensions, together with the absorption spectrum of the 

dye dissolved in the same solvent as a reference. For the composite suspensions, the 

scattered background was removed by subtracting the DT spectra of the unloaded 

zeolites. In pure DCM, the dye exhibited a broad, structureless band with a maximum 

absorption intensity at ~537 nm, assigned to the S0 → S1 (π,π*) transition.[32-36] The 

large bathochromic shift from ~537 to 598 nm (~1900 cm-1) and the appearance of 

structured bands for both the NR/CBV and NR/M-Y samples indicate the formation of 

different NR populations strongly interacting with the host frameworks. As suggested in 

Figure 1, for all the DCM-dissolved composites, a very small amount of free NR existed 

in equilibrium with the encapsulated species, but the band of the free dye was not 

detectable in the DT spectra. 

To obtain a better understanding of the origin of these absorption changes, the 

normalized DT spectra were deconvoluted into their constituting components. 

 

2.1.2. Deconvolution Analysis of the DT Spectra of NR Interacting with the CBV 

Zeolites 

The deconvoluted NR/CBV DT spectra consist of six bands centred at 549, 593, 

622-623, 646-651, 679-681, and 734-736 nm with relative contributions to the total 

spectra (% integral intensities) of 15-22, 25-31, 13-17, 22-2, 4,4-9, and 4-14%, 

respectively (Figure 2S, panels A, B, and C). The large number of bands required to 

obtain an accurate fit of the DT spectra reflects the heterogeneity of the samples. The 

longest dimension of NR (~15 Å, Scheme 1) slightly exceeds that of the faujasite 

supercage (~13 Å in diameter). Moreover, the short dimension of NR (~6 Å) is also 

comparable to the diameter of the “windows” interconnecting the cages (7-8 Å). 

Therefore, NR can diffuse within the inner channels and pores of the hosting zeolite, 

and the encapsulated species are most likely located between two neighbouring 

supercages.  

Band at 549 nm: this band does not differ considerably from the corresponding 

band of the free NR in DCM (537 nm), suggesting that the dye is still exposed to the 

DCM solvation.[34-36] Moreover, the use of more concentrated initial solutions of NR 

leads to a broadening of the band, together with an increase of the % integral intensity 
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(Figure 3S and Table 3S). Based on these considerations, we assign this band to NR 

species weakly interacting with the zeolite framework. 

Band at 622-623 nm: next, based on previous reports,[52, 53] we suggest that the 

band centred at ~620 nm is due to the monomer population interacting with the 

framework through H bonds, where the acidity (OH groups) of the zeolite leads to a 

strong interaction with the dye, likely involving the NR carbonyl group.[51-56]  

Bands at 593 and 646-651 nm: on the other hand, several studies on NR 

interacting with silica-based materials have demonstrated dye aggregation.[47-51] 

Moreover, we recently showed evidence for the formation of H- and J-aggregates of NR 

within MCM41 mesoporous materials.[52, 53] Aggregation is a common process for 

many organic molecules even at low concentrations. The limited space provided by the 

host promotes specific and non-specific interactions between the adsorbed molecules, 

which may lead to the formation of both H-(face-to-face) and J-(face-to-tail) 

aggregates.[57-64] Thus, following excitonic theory, we assign the band blueshifted by 

~790 cm-1 (593 nm) with respect to that of the encapsulated monomers to H-aggregates 

and assign the band redshifted by ~650 cm-1 (~650 nm) to J-aggregates. The observed 

difference between the emission intensity maxima of the aggregates lies in the different 

energy levels involved in their electronic transitions. These energies depend on the type 

of monomer-monomer interaction (charge-charge and dipole-dipole) and on the 

behaviour of the involved species interacting with the framework. A general rule cannot 

be used to predict the exact shifts that the spectra of the aggregates will exhibit, due to 

the intrinsic guest-guest and guest-host interactions in each system. J-aggregate 

absorptions are characterized by a sharp band, but due to the heterogeneity of the 

samples, the resulting absorption becomes broader. In this case, several positions and/or 

orientations that the molecules can assume with respect to the host system lead to a 

broadened J-aggregate band.  

Band at 679-681 nm: Al-rich zeolites show the presence of extraframework (EF) 

Al-oxide-containing species, which are mostly responsible for the formation of Lewis 

acidic sites.[65] The structures of six different extraframework aluminium species (Al3+, 

Al(OH)2+, AlO+, Al(OH)2+, AlO(OH), and Al(OH)3), which can likely exist and 

coordinate in zeolites, were recently studied by density functional theory (DFT).[66] All 

the zeolites studied in the present work were characterized to have small SiO2/Al2O3 

mole ratio values (5.1, Table 1S), suggesting the presence of EF species and Lewis 
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acidity, in addition to Brønsted acidity. Consequently, the formation of a second 

population of J-type-aggregates (J-aggregates-2, ~680 nm band) in the vicinity of the Al 

centres is expected,[65] in agreement with previously reported results on NR interacting 

with Al-doped MCM41 materials.[53] 

Band at 734-736 nm: finally, the redshifted band at ~735 nm likely arises from 

NR species strongly stabilized in specific internal acidic sites of the zeolite. Here, the 

strong H-bonding ability and the high polarity of the host framework may stabilize the 

lowest unoccupied molecular orbital (LUMO) energy of the encapsulated dye, thus 

redshifting the NR absorption. The above assignment is supported by the reduction of 

the absorption intensity of the redshifted band after washing the NR:zeolite complexes 

with DCM (as an example, see Figure 1S). The strongly acidic sites of a protonic zeolite 

can enhance the adsorption of DCM.[67] Therefore, we rationally determine a 

competition existing between NR and DCM for those acidic sites during the washing 

procedure. Due to its high strength of interaction with the zeolite, DCM likely replaces 

most of the adsorbed NR molecules from the inner cavities to the superficial sites of the 

zeolite. 

Now, we turn our attention to comparing the DT spectra of the three NR/CBV 

composites. We observed different relative contributions to the total DT spectrum of the 

NR populations in presence of CBV 500, CBV 300, or CBV 100. The percent of weakly 

interacting NR (band at 550 nm), being 15% for both CBV 500 and CBV 300, increases 

to 22% for CBV 100. The population of H-aggregates (band at 593 nm) also becomes 

larger for CBV 100 (the integral intensities increase from 25 to 31% from CBV 500 to 

CBV 100), while the population of J-aggregates (band at ~650 nm) is nearly unchanged 

(integral intensity = 24 and 22% for CBV 500 and CBV 100, respectively). Finally, the 

band at ~735 nm shows the highest intensity in the presence of CBV 500, which is also 

confirmed from the deconvolution of the DT spectra, where the integral intensity for 

this band increases from 4 to 14% from CBV 100 to CBV 500.  

The obtained results can be understood considering the specific properties of the 

studied CBV zeolites. First, CBV 500 shows the lowest Na/Al ratio (0.01, Table 1S), 

and the nominal cation is an ammonium (NH4
+) ion. On the other hand, CBV 100 solely 

contains Na+ as the nominal charge-compensating cation (Na/Al ratio = 1.2). This 

indicates the presence of extra free Na+ species in the zeolite framework, which 

provides to the zeolite an extra electrostatic character. 
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Finally, CBV 300, also containing NH4
+ as a nominal cation, is an intermediate 

case (Na/Al ratio = 0.17, Table 1S). The deamination process of the NH4Y zeolite 

occurs in two endothermic steps: 1) desorption of NH3 from the small pores at 250 °C 

and 2) desorption of NH3 from the large pores between 300 and 400 °C (for the 

definition of the small and large pore structures, vide infra).66 These dissociations lead 

to the formation of acidic sites within the zeolite framework, which are weaker in the 

small pores than in the large ones.[68] Thus, we expect that, during the drying process 

in our experimental procedure (6 h at 480 °C) to prepare the zeolite for mixing with NR 

in DCM, NH3 is most likely fully liberated and that protons reside in the framework. As 

a result, the number of OH groups and thus the acidity of the zeolite increase. Among 

the studied CBV zeolites, the heating process converts CBV 500 into the most acidic 

framework, with the smallest amount of Na+ cations. In the NaY zeolite, the cations are 

primarily located in sites I (in the hexagonal prism) and I′ (in the sodalite cage, close to 

the hexagonal window of the hexagonal prism) in the small pore system and in sites II 

(at the centre of the hexagonal window between the sodalite cage and the supercage) in 

the large pore system.[69] In presence of a sufficient number of Na+ cations, such as in 

CBV 100, sites II are nearly always the preferred site for ion occupation, as this site is 

nearly always completely populated because the distribution at sites II minimizes the 

cation-cation repulsions.  

The different acidity, Na+ content, and Na+ distribution in CBV 500, CBV 300, 

and CBV 100 should affect the contribution of each NR population. More specifically, 

the increased contribution from the weakly interacting NR species in the presence of 

CBV 100 with respect to the case of CBV 500 and CBV 300 is due to the favourable 

electrostatic interactions of NR with Na+ cations (sometimes referred to as π-cation 

interactions), which are most abundant in CBV 100 as its Na/Al ratio is higher than one 

(1.2). For the NR/CBV500 and NR/CBV300 composites, as their Na/Al ratios are lower 

than one (0.01 and 0.17, respectively), the electrostatic interactions with the free Na+ 

species are supposed to be nearly absent. Moreover, the number of the monomers and 

H-aggregates increase, and the number of J-aggregates decreases from CBV 500 to 

CBV 100 due to the reduced number of acidic interaction sites. Remarkably, the 

smallest number of Na+ cations in CBV 500 should correspond to the highest number of 

available sites II. As a result, red-absorbing NR species may be favoured at these 
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positions. The lower contribution from the J-aggregates-2 for CBV 100 is most likely 

because of the competition of NR with the Na+ ions occupying the Al sites. 

 

2.1.3. Deconvolution Analysis of the DT Spectra of NR Interacting with the Metal-Ion-

Exchanged M-Y (M = Li+, Mg2+, Cs+) Zeolites 

When exchanging the cation from Na+ to Li+, Mg2+, or Cs+, several zeolite 

characteristics change, inducing modifications in the overall adsorption strength and 

generating defects that increase the acidity of the material.[70] The variation of the 

cation size, while bearing the same charge, affects both the polarizability and the 

electrophilicity of the ion. Similar to the NR/CBV samples, the NR/M-Y DT spectra 

(Figure 2S, panels D, E, and F and Table 3S) are composed of six bands (except for 

NR/Cs-Y) centred at 549, 593, 622-623, 646-648, 673-679, and 707-735 nm, with 

contributions to the whole spectra (% integral intensities) of 14-22, 27-30, 18-23, 22-29, 

4-7, and ~5%, respectively.  

To estimate the effect of metal substitution in the zeolite framework on the 

steady-state behaviours of the NR:zeolite composites, we will compare the obtained 

results with those found for NR/CBV 500, as CBV 500 is the precursor for the three 

synthesized M-Y zeolites. It is worth to mention that the M/Al values are 1, 0.13, and 

0.15 for Li-, Mg-Y, and Cs-Y zeolite, respectively, thus excluding the presence of free 

metal cationic species within the framework. 

For the NR/Li-Y sample, the contribution of the weakly interacting NR (22%) is 

larger than that calculated for NR/CBV 500 (15%), which is due to the higher electron 

affinity of Li+ compared to that of Na+ (EA = 59.6 and 52.9 kJmol-1, respectively) and, 

therefore, due to the stronger electrostatic interactions exerted from the Li+ cations to 

the NR molecules. Both the H- and J-aggregates show similar contributions to those in 

the presence of CBV 500; however, an increase of the monomer population is observed 

(from 13 to 18% from NR/CBV 500 to NR/Li-Y), in disfavour of the red-absorbing 

species (%integral intensities = 14 and 5 for NR/CBV 500 and NR/Li-Y, respectively). 

The increase of the monomer contribution is explained by the smaller size of Li+ (d = 

0.76 Å)[71] compared to that of Na+ (d = 1.02 Å),[71] thus allowing more space for the 

guest molecules to interact with the zeolite framework. 

For NR/Mg-Y, the contributions from the monomers (622 nm) and both J-type 

populations slightly increase compared to those for Li-Y, while the H-aggregates show 
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the same integral intensity value. The observed changes reflect the smaller size of Mg2+ 

(d = 0.72 Å)[71] compared to the other ions, which provides more available space to 

accommodate the NR molecules within the zeolite framework.  

Upon further increasing the size of the cation, such as in the case of Cs-Y (d = 

1.67 Å),[71] the contribution from the ~550 nm band is clearly reduced (from 22 to 

14% from Li-Y to Cs-Y), while the redshifted band completely disappears. This 

behaviour is rationally explained by the large volume of Cs+, which competes with NR 

close to the surface sites of the zeolite. Cs+ ions have been shown to be too large to pass 

through the small pore system (sites I and I′).[68] Therefore, Cs+ should be distributed 

preferentially at sites II, suggesting that the red-absorbing species may coordinate at 

these positions, which is inhibited by the presence of Cs+. Thus, NR packing within the 

inner cavities of the Cs-Y zeolite is favoured, as suggested by the increased 

contributions of the H-aggregate, monomer, and J-aggregate bands.  

To further characterize the distribution of NR populations within the used zeolites, 

we studied all the composites at different initial concentrations of the dye. Figure 4S 

shows the DT spectra of NR interacting with the CBV 500, CBV 300, and Cs-Y 

zeolites. No significant changes at varying initial concentrations were observed in the 

absorption profiles, except for CBV 100 (Figure 1C). For CBV 100, as the NR 

concentration decreases from 2 × 10-5 to 2 × 10-6 M, the monomers and J-aggregates are 

favoured with respect to the H-aggregates and the weakly interacting species. This 

observation was also confirmed by the deconvolution analysis of the DT spectra, where 

the contributions from the monomers and J-aggregates to the total spectrum increased 

from 17 to 21% and from 22 to 32%, respectively. On the other hand, the H-aggregate 

contribution is reduced from 31 to 27%, while the contribution of J-aggregates-2 

remains nearly constant (~4%). The relative intensity of the weakly interacting NR 

species also decreases from 22 to 16%. Finally, no redshifted band was detected at the 

lowest concentration of NR. The observed changes, observed only for the least acidic 

zeolite (CBV 100), are ascribed to the larger dye occupancy sites, and, therefore, to a 

partial disaggregation of the dye (in the case of the H-aggregates), favouring 

interactions with the zeolite walls (monomers and J-aggregates).  

 

2.1.4. Steady-State Emission Spectra of NR Interacting with the CBV and the Metal-Ion-

Exchanged M-Y (M = Li+, Mg2+, Cs+) Zeolites 
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Figure 2 shows the steady-state UV-visible emission spectra of NR (2 × 10-5 M) in 

the presence of (A): (1) CBV 500, (2) CBV 300, and (3) CBV 100 and (B): (1) Li-Y, (2) 

Mg-Y, and (3) Cs-Y in DCM suspensions upon excitation at 600 nm (region mainly 

containing H-aggregates and monomers). The emission (λexc = 470 nm) from the free 

dye in pure DCM is also shown for comparison. The spectra of the composites show a 

main band with a maximum intensity at ~670 nm and a shoulder at ~725 nm. These 

features are redshifted (1520-1840 and 1820 cm-1 for the CBV and the M-Y zeolites, 

respectively) in comparison to the emission of the dye in pure DCM. The redshift is due 

to the formation of H bonds and aggregates, which also reduce the fluorescence 

intensity due to the presence of ICT and additional non-radiative decay channels, such 

as self-quenching processes.[52] We assign the main band (λmax ~670 nm) to the 

emission of NR monomers interacting with the zeolite framework, while the shoulder at 

~725 nm is ascribed to the J-aggregates formed inside the zeolite framework. No clear 

contribution from the H-aggregates is observed in the fluorescence spectra due to their 

forbidden excitonic transitions and thus short lifetime, which reduces their steady-state 

emission intensity.[52] Finally, the excitation at 750 nm of both the DCM-washed and 

unwashed NR:zeolite complexes were recorded. The washed samples did not display 

any clear emission at this excitation wavelength, while the unwashed samples showed a 

new, weak emission band at ~770 nm. As an example, the excitation of unwashed 

NR/CBV 300 is reported in Figure 2A (black dashed line). This mismatched emission 

behaviour between the washed and the unwashed samples is explained by a low number 

of red-absorbing species in the washed sample (vide supra), along with a lower 

fluorescence quantum yield. The emission decays will provide additional information 

(vide infra).  

Before studying the emission decays, we explored the concentration effect on the 

emission spectra of the NR:zeolite composites. As suggested by the DT spectra (Section 

2.1.4.), the emission behaviours of NR interacting with CBV 500 and CBV 300 do not 

depend on the initial concentration of the dye, and the fluorescence spectra preserve 

similar shapes (Figure 5SA and 5SB). On the other hand, in presence of CBV 100 and 

using different initial NR concentrations (from 2 × 10-5 to 2 × 10-6 M), we observed a 

hypsochromic shift of the emission when the dye concentration decreases (Figure 2C). 

This shift reflects the higher contribution of the monomers to the total emission 

spectrum. Surprisingly, we found a concentration dependence of the emission spectrum 
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for NR/Cs-Y (Figure 5SC); however, the DT does not undergo noticeable changes 

(Section 2.1.4. and Figure 4SC). Upon decreasing the initial dye concentration, the 

emission blue shifts, indicating a higher contribution of monomers (549 nm) to the total 

fluorescence. This difference, not observed from the DT spectra, could be due to an 

increase of the fluorescence quantum yield of the monomers at lower dye 

concentrations.  

 

2.2. Time-Resolved Emission Measurements 

2.2.1. Emission Decays of NR Interacting with the CBV Zeolites (CBV 500, CBV 300, 

CBV 100) in DCM Suspensions  

The photodynamic properties of fluorescent probes are typically influenced by the 

host environment. To obtain insights into the dynamics of NR interacting with the 

studied CBV zeolites, we performed picosecond-resolved emission measurements upon 

excitation at 635 (region corresponding to the monomers and H- and J-aggregates) and 

750 (region corresponding to the red-absorbing species) nm. In pure DCM, the emission 

decay of NR shows a single component with a lifetime of 4.4 ns, corresponding to the 

emission of the CS state formed by excitation of the dye.[52] Note that at 635 nm we do 

not excite free NR, as it absorbs at shorter wavelengths. Figure 3A shows the emission 

decays of the NR/CBV complexes excited at 635 and 750 nm recording at 700 and 810 

nm. Table 1 and Table 4S give the values of the emission lifetimes (τi) obtained from 

multi-exponential fits of the experimental results. For all the studied composites, the fits 

give three decaying components, with values (pre-exponential factors at 700 nm, Ai%) 

of τ1 = 90, 76, and 80 ps (36, 38, and 36%), τ2 = 0.42, 0.38, and 0.39 ns (55, 51, and 

43%), and τ3 = 1.43, 1.19, and 1.07 ns (9, 11, and 21%) for NR interacting with CBV 

500, CBV 300, and CBV 100, respectively.  

Following excitonic theory, the H-aggregate lifetime should be shorter than the J-

aggregate lifetime due to their forbidden transition. Thus, we ascribe the longest 

lifetime, τ3, to the monomers, while τ1 and τ2 correspond to the lifetimes of the H- and J-

aggregates, respectively. Notably, the number of components obtained from the fit of 

the emission decays well matches the number of NR populations excited at 635 nm (see 

Figure 2SA, 2SB, and 2SC). Therefore, τ1, τ2, and τ3 represent the average emission 

lifetimes of the collection of H-aggregates, J-aggregates and monomers, respectively. 
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The emission lifetimes slightly decrease from CBV 500 to CBV 100. As stated in 

Section 2.1.2., among the studied CBV zeolites, CBV 100 contains the most Na+ cations 

in the framework. As a result, the high number of charge-compensating cations in CBV 

100 gives the smallest available volume for the guest, thus favouring increments of self-

quenching and other non-radiative relaxation processes as well as stronger guest-host 

interactions. From the amplitudes of each component at all the observed wavelengths, in 

all three systems, the monomers have the smallest contribution to the species located in 

the zeolite framework (Table 4S). The amplitudes of the emission decay components for 

the H- and J-aggregates do not show a systematic dependence on the observation 

wavelength, while those of monomers decrease in the red section of the emission 

spectrum (for CBV 500 and CBV 300) or remain constant (for CBV 100). 

 

2.2.2. Emission Decays of NR Interacting with the Metal-Ion-Exchanged M-Y (M = Li+, 

Mg2+, Cs+) Zeolites 

In the presence of the metal-ion-exchanged M-Y zeolites with excitation at 635 

nm (region corresponding to the monomers and H- and J-aggregates), we observed 

multi-exponential behaviours in the emission decays of the composites (Figure 3B). The 

obtained lifetime values are τ1 = 183, 130, and 224 ps; τ2 = 0.67, 0.57, and 0.73 ns; τ3 = 

1.50, 1.42, and 1.48 ns for NR interacting with Li-Y, Mg-Y, and Cs-Y, respectively 

(Table 1 and Table 4S).  

Similar to the CBV zeolites, we assign the longest lifetime (τ3) to the emission of 

the monomers interacting with the framework, while τ1 and τ2 correspond to the H- and 

J-aggregates, respectively. The lifetimes of the monomers are similar to those found for 

the precursor CBV 500. Thus, metal-ion exchange does not significantly affect the 

emission behaviour of this species. In contrast, the H- and J-aggregates display slower 

dynamics in presence of the metal cations. The longer time constants for NR/Li-Y are 

likely due to the higher polarizing power of Li+, whose strong electric field might 

provoke a distortion in the position/orientation of the aggregates, thus affecting (in this 

case, weakening) their intermolecular interactions. The presence of such polarizing 

cations near the excited NR molecules should theoretically affect their electronic 

transitions, as the NR transition involves a charge-transfer process followed by fast 

electronic redistribution. On the other hand, in presence of Cs-Y, the large size of Cs+ 

could induce a partial or even total breakage of the aggregates, thus reducing/disrupting 
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their interactions and increasing their emission lifetimes in their detection region. In this 

case, monomers are the favoured species, showing the highest contribution (Table 4S). 

Finally, for NR/Mg-Y, we would expect the strongest interaction of Mg2+ with the 

aggregates due to the small size of the ion and its double charge. In contrast, we 

observed shorter lifetimes for both the H- and J-aggregates, which is explained by the 

different locations of Mg2+ and Li+ within the zeolite framework. Particularly, small 

divalent cations, such as Ni2+, Mg2+, and Cu2+, tend to locate in site I to be stabilized by 

the six oxygen atoms, while monovalent cations, such as Li+ and Cu+, can be reasonably 

stabilized by only three oxygen atoms in site I′.[69] The different positions of Li+ and 

Mg2+ might explain the differences observed in the lifetime values; the Li+ ions are 

likely closer to the NR aggregates and exert a greater effect on them. However, a direct 

comparison between the three M-Y zeolites is not easy because the concentrations of 

the exchange cations are not comparable (see the syntheses of the M-Y zeolites in the 

SI). 

 

2.2.3. Concentration Effect on the Emission Decays of NR Interacting with CBV 100 

Zeolite 

Picosecond-resolved emission experiments were performed to study the 

photobehaviours of the guest populations at different initial concentrations (from 2 × 10-

6 to 2 × 10-5 M). Figures 3C, 6SA, and 6SB, together with Table 2, show the results. The 

lack of concentration dependences of the steady-state behaviours of the NR/CBV 500 

and NR/CBV 300 hybrids is also reflected in the time-resolved decay analysis, where 

the obtained lifetimes for the employed concentrations are very similar.  

On the other hand, for the NR/CBV 100 composite, a clear change in the emission 

decays with varying initial NR concentrations was observed. When the dye 

concentration decreases from 2 × 10-5 to 9 × 10-6 M, the lifetimes approximately double 

their value: τ1 = 80 and 171 ps, τ2 = 0.39 and 0.72 ns, and τ3 = 1.07 and 2.08 ns for 

[NR]0 = 2 × 10-5 and 9 × 10-6 M, respectively. Upon further decreasing the concentration 

to 2 × 10-6 M, the emission decays become bi-exponential with time constants of τ1 = 

0.53 ns and τ2 = 2.22 ns, corresponding to the emission from the J-aggregates and 

monomers, respectively, while no fluorescence from the H-aggregates is detected. At 

lower concentrations, the interaction between the dye molecules becomes weaker, and 

hence, emission quenching is less probable. 
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Finally, the decay analysis for the NR/Cs-Y composite reveals a lack of H-

aggregate contribution to the total emission signal when the initial concentration of NR 

decreases (Figure 6SC and Table 2). The J-aggregates and monomers are characterized 

by time constants (τ1 and τ2) of 0.50 and 1.67 ns, respectively.  

 

2.3. Femtosecond Time-Resolved Emission Measurements 

2.3.1. Femtosecond Dynamics of NR Interacting with the CBV Zeolites (CBV 500, CBV 

300, CBV 100) and Metal-Ion-Exchanged M-Y Zeolites (M = Li+, Mg2+, Cs+) in DCM 

Suspensions 

We used femtosecond-fluorescence up-conversion spectroscopy to unravel the 

ultrafast photodynamics of NR within the studied zeolites. Figure 4 shows the transient 

emission decays of the NR:zeolite complexes upon excitation at 562 nm (region 

corresponding to the weakly interacting NR) with observation at 630 nm and 700 nm 

(for additional wavelengths of observation, see Figure 7S). Table 3 gives the results of 

the multi-exponential fits of the transient decays for all the composites. The NR 

dynamics within the studied zeolites show bi-exponential behaviour at the bluest region 

of the emission spectrum (630-650 nm) and a constant offset (τ3 in Table 3), which was 

fixed during the fit to the shortest time found in the picosecond emission studies. The 

time constants do not significantly change with the various hosts, with time constants of 

τ1 = 166-206 fs and τ2 = 1.30-1.56 ps and τ1 = 145-170 fs and τ2 = 1.09-2.32 ps for NR 

interacting with the CBV and the M-Y zeolites, respectively.  

At longer observation wavelengths (670-700 nm), τ1 is characterized by a rising 

component (Figure 8S), indicating a common channel for both the blue and red 

dynamics, which are assigned to the ICT of NR.[52] The ultrafast photobehaviour of 

NR in pure DCM is characterized by a single rising component with a lifetime of ~1 ps 

and a long offset resolved by the picosecond experiments (4.4 ns) in the 630-730 nm 

range.[52] The rising component in the suspensions is assigned to the formation of a CS 

state due to the ICT process occurring in the excited NR molecules. This assignment is 

in agreement with another report showing that the locally excited (LE) state of NR, 

which is formed within the excitation pulse, can relax by emission and/or ICT from the 

diethylamino to the carbonyl group, thus generating a CS structure.[52] The shortening 

of the ICT process for NR in presence of a zeolite host compared to the free dye in 

DCM (~1 ps) is explained by the increase of both the polarity and the H-bonding ability 
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of the medium, which, in turn, decrease the energy barrier between the LE and CS 

states. As a result, the CS state forms with higher efficiencies.[52] The second 

component (τ2) is attributed to a vibrational cooling (VC) process at the S1 level of the 

CS state. Scheme 2 summarizes the observed dynamics for metal-ion-exchanged 

zeolites containing NR monomers, H- and J-aggregates. Importantly, the obtained 

values represent averages of the relaxation times for the excited-state NR species. Due 

to the presence of multiple populations with different orientations and interactions in the 

framework, the results are likely a combination of all the contributions from the existing 

populations.  

 

2.3.2. Concentration Effect on the Femtosecond-Emission Dynamics of NR 

Interacting with the CBV 100 Zeolite 

Figure 4C shows the transient femtosecond-emission decays of NR at different 

initial concentrations (2 × 10-5-2 × 10-6 M) interacting with CBV 100. In the 630-650 

nm region, no variation of either the fast or ultrafast dynamics with the concentration 

was observed. However, in the middle of the emission spectrum, a very short decay of < 

100 fs appears between 670 and 689 nm, together with an offset. This contribution is 

higher for the lowest concentration, completely disappearing at 700 nm. The observed 

ultrafast component is clearly present at low concentrations of NR, while the component 

is not visible at the highest loading. Thus, this component arises due to a strong specific 

and localized interaction between the NR monomers with the CBV 100 framework. The 

lack of this component at the highest initial NR concentration and at other wavelengths 

of observation is explained by the stronger emissions of the other NR populations (for 

example, J-aggregates) that overlap with the contribution of the interacting monomers. 

Recently, the ultrafast dynamics of (E)-2-(2-hydroxybenzyliden)amino-4-nitrophenol 

(HBA-4NP) aggregates interacting with the NaY zeolite were observed to be affected 

by the initial concentration of the sample.[30] Particularly, for concentrated solutions, 

the guest-guest interactions slowed the photobehaviour of the interrogated species with 

respect to the diluted samples. 

 

2.4. Discussion of the Behaviour of NR within the Zeolite and Mesoporous 

Materials 
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Now, we will discuss the behaviour of NR in the studied CBV zeolites and 

compare this behaviour with those previously reported using R-MCM41 and Al-

MCM41 mesoporous materials.[52] Table 4 shows the time constants of the related fast 

and ultrafast dynamics of excited NR in presence of the mesoporous and zeolite 

materials. Table 4 also gives the values of some parameters of the host (pore/cavity 

diameter, SiO2/Al 2O3 molar ratio, and Brunauer-Emmett-Teller (BET) surface area) and 

the loading efficiency for each formed complex. To make a fair comparison of the 

obtained results, we must recall the main differences between the investigated hosts, 

i.e., the structure (hexagonal for R-MCM41 and Al-MCM41 and tetragonal for the CBV 

zeolites) and the composition (silanol groups for R-MCM41 and Al-MCM41 and Na+ 

cations and Al atoms for the CBV zeolites).  

First, the molecular packing is more efficient in the zeolite nanocages despite 

their reduced dimensions (pore/cavity diameters of 35 and ~13 Å for the mesoporous 

materials and the zeolites, respectively) and BET areas (1000 and 970 m2/g for R-

MCM41 and Al-MCM41, respectively; 750, 925, and 900 m2/g for CBV 500, CBV 300, 

and CBV 100, respectively) with respect to the MCM41-based materials (Table 4). In 

fact, the loading efficiencies obtained for the zeolites (2.4, 2.5, and 2.6 × 1018 NR 

molecules/gzeolite for CBV 500, CBV 300, and CBV 100, respectively) are higher than 

those calculated for the mesoporous materials (1.9 and 2.0 × 1018 NR molecules/gMCM41 

for R-MCM41 and Al-MCM41, respectively) under the same experimental conditions 

(Table 4). These differences are due to electrostatic interactions between the 

encapsulated NR and the Na+ cations and the aluminosilicate framework of the zeolite 

cavity, which facilitate molecular trapping.[30] 

Both the spectral absorption and emission properties of NR interacting with the 

zeolite and MCM41 mesoporous materials are comparable in terms of the redshifts and 

broadening of the DT spectra (Table 3S and Ref. 52). Therefore, we expect that the dye 

exhibits similar interactions within the two types of hosts. However, while the 

distributions of the caged NR monomers and H-aggregates show very similar values, 

the distribution of J-aggregates is higher within the MCM41 mesoporous materials 

(Table 3S and Ref. 52) due to the higher surface acidity of these hosts, whose SiOH 

groups enhance H-bonding with the NR molecules.[52] 
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The increased rates of both the fast and ultrafast dynamics for the excited 

NR/CBV complexes compared to the rates for the NR/X-MCM41 complexes reflect the 

stronger host-guest interactions in the zeolite framework (Table 4). The emission 

lifetimes of the H-aggregates (τ1 in Table 4) are shortened by more than three times their 

initial value between the mesoporous and zeolite materials (τ1 = 320 and 310 ps for NR 

with R-MCM41 and Al-MCM41, respectively; τ1 = 90, 76, and 80 ps for NR with CBV 

500, CBV300, and CBV 100, respectively, Table 4). Less drastic but evident changes 

are also present for the J-aggregates and monomers, whose emission lifetimes in the 

mesoporous materials (~1 and ~2.5 ns, respectively) decrease to ~0.4 and ~1.2 ns in the 

zeolite framework (Table 4). Upon interaction of NR with the MCM41 mesoporous 

materials, the ICT process occurs within ~300 fs, while within the zeolite, this process 

is reduced to ~200 fs (Table 4). The VC process is also accelerated from the 

mesoporous (~3 ps) to zeolite (~1.5 ps) materials. The emission from the ICT state is 

strongly influenced by the energy gap of the excited state and CS state. Since the gap 

between the LE and CS states depends on the donor and acceptor strengths, the 

interaction of these groups with the environment is crucial. Recently, the computed S1 

potential-energy surfaces of a complex of NR with two water molecules showed that H 

bonds stabilize the CS state and lower the energy barrier for the LE to CS state 

transition.[37] Within the zeolite cavities, the spatial restriction strengthens the host-

guest and guest-guest specific and non-specific interactions, and as a result, the ICT 

process occurs more efficiently. The restricted motion also increases the vibronic 

coupling between the S1 and S0 states, thus enhancing the non-radiative deactivation 

pathways.[72] This effect is confirmed by the shortened time constants of the VC 

process in the NR/CBV composites.  

 

3. Conclusions 

In this study, we investigated the photophysics of NR interacting with NaY-type 

zeolites containing different Na/Al ratios and charge-balancing metal cations in DCM 

suspensions using steady-state absorption and emission and time-resolved spectroscopy 

techniques. The results showed that the interaction of the dye with these materials leads 

to the formation of different ground-state populations of NR (monomers, H- and J-

aggregates, and surface-adsorbed species) whose contributions to the total spectrum 
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depend on the Na+ content and the metal doping ratio. Large bathochromic shifts 

characterized both the absorption and emission spectra of the NR:zeolite complexes. 

Time-resolved picosecond emission measurements revealed multi-exponential 

behaviours for the studied compounds, while in pure DCM, the emission decays were 

fitted using a single-exponential function. The changes observed in the steady-state and 

the photodynamic properties of the investigated samples were explained in terms of the 

Brønsted (H-bond formation) and Lewis host-guest interactions and 

dimensions/polarizing properties of the exchanged cation. The femtosecond results 

indicated that the initially formed LE state of NR gives rise to a CS state within ~200 fs, 

followed by a VC process of ~1-2 ps. A comparison of the present results with previous 

ones obtained using MCM41-based materials show that the host-guest and guest-guest 

specific and non-specific interactions as well as the spatial restriction to motion of the 

guest play important roles in controlling the photobehaviours of the formed composites. 

The above findings indicate the potential use of NR to probe the various acidic 

sites of the studied NaY-type zeolites, which may contribute to the design of zeolite-

based metal-ion sensors and a better understanding of the field of nanocatalysis.  
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Supplementary Materials 

Table 1S displays the characteristics of the studied zeolites. Table 2S shows the Nile 

Red (NR) loading efficiencies for the studied zeolites. Figure 1S exhibits an example of 

the UV-visible absorption spectra of a sample before and after washed. Table 3S shows 

the UV-visible absorption maxima of the different NR population within the studied 

zeolites in DCM suspensions. Figure 2S displays the deconvolution of the UV-visible 

DT spectra of NR interacting with A) CBV 500, B) CBV 300, C) CBV 100, D) Li-Y, E) 

Mg-Y, and F) Cs-Y in DCM suspensions. Figure 3S shows the UV-visible DT 

deconvolution spectra of NR/CBV 100 at different initial NR concentrations: (A) 9 × 

10-6 M and (B) 2 × 10-6 M. Figure 4S and 5S exhibit the absorption and emission 
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spectra respectively of (A) CBV 500, (B) CBV 300, and (C) Cs-Y in DCM suspensions 

at different initial NR concentrations. Table 4S displays the fluorescence emission 

lifetimes of NR interacting with the different zeolites in DCM suspensions. Table 5S 

shows the fluorescence emission lifetimes of NR interacting with CBV 300 upon 

excitation at 750 nm. Figure 6S shows the magic-angle emission decays of NR 

interacting with (A) CBV 500, (B) CBV 300, and (C) Cs-Y in DCM suspensions at 

different initial NR concentrations. Figure 7S exhibits emission transient decays of NR 

interacting with (A) CBV 500, (B) CBV 300, (C) CBV 100, (D) Li-Y, (E) Mg-Y, and 

(F) Cs-Y in DCM suspensions. Figure 8S shows a comparison of the emission transient 

decays between 630 nm and 700 nm of observation wavelength of NR interacting with 

(A) CBV 500, (B) CBV 300, (C) CBV 100, (D) Li-Y, (E) Mg-Y, and (F) Cs-Y in DCM 

suspensions. 
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Tables, Figures, and Schemes 

Captions 

Table 1. Values of the fluorescence emission lifetimes (τi) obtained from a global multi-

exponential fit of the emission decays of NR (2 × 10-5 M) interacting with CBV 500, 

CBV 300, CBV 100, Li-Y, Mg-Y, and Cs-Y in DCM suspensions upon excitation at 

635 nm. 

Table 2. Values of the fluorescence emission lifetimes (τi) and normalized (to 100) pre-

exponential factors (Ai) obtained from a global multi-exponential fit of the emission 

decays of NR at different concentrations interacting with CBV 500, CBV 300, CBV 

100, Li-Y, Mg-Y, and Cs-Y in DCM suspensions upon excitation at 635 nm and 

observing at 700 nm. 

Table 3. Values of the time constants (τi) and normalized (to 100) pre-exponential 

factors (Ai) obtained from a global multi-exponential fit of the fs-emission signals of 
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NR (2 × 10-5 M) interacting with the CBV (CBV 500, CBV 300, CBV 100) and the M-

Y (M = Li +, Mg2+, Cs+) zeolites in DCM suspensions upon excitation at 562 nm and 

observing from 630 nm to 700 nm.a 

Table 4. Values of some parameters, such as pore/cavity diameter, SiO2/Al2O3 mole 

ratio, BET surface area of the used zeolites (CBV 500, CBV300, and CBV 100) and the 

mesoporous materials (R-MCM41 and Al-MCM41) from Ref. 52, together with the 

times of the related fast end ultrafast dynamics upon excitation of their complexes with 

NR in DCM suspensions. The loading efficiencies are also reported for each formed 

composite 

Figure 1. Normalized (to the maximum of intensity) UV-visible DT spectra of NR (2 × 

10-5 M) interacting with (A): (1) CBV 500, (2) CBV 300, (3) CBV 100 and (B): (1) Li-

Y, (2) Mg-Y, (3) Cs-Y in DCM suspensions. A comparison with the normalized 

absorption spectrum of NR in a DCM solution is also shown (black solid line). The 

inset of (A) shows a picture of CBV zeolite with and without NR. 

Figure 2. Normalized (to the maximum of intensity) emission spectra of NR (2 × 10-5 

M) interacting with (A): CBV 500, CBV 300, CBV 100 and (B): Li-Y, Mg-Y, Cs-Y in 

DCM suspensions. The samples were excited at (A, B) 600 and ((A): black dashed line) 

750 nm. The comparison with the normalized emission spectrum of NR in a DCM 

solution (λexc = 470 nm) is also shown (black solid line). (C) Normalized to the 

maximum intensity emission spectra of NR/CBV 100 composites at different initial 

concentrations of NR: (1) 2 × 10-5 M, (2) 9 × 10-6 M, and (3) 2 × 10-6 M. 

Figure 3. Normalized (to the maximum of intensity) magic-angles emission decays of 

NR (2 × 10-5 M) interacting with (A): (1) CBV 500, (2) CBV 300, (3) CBV 100 and 

(B): (1) Li-Y, (2) Mg-Y, (3) Cs-Y in DCM suspensions upon excitation at (A, B) 635 

and ((A): (4)) 750 nm. (C) Normalized to the maximum of intensity magic-angles 

emission decays of NR interacting with CBV 100 at different initial concentrations: (1) 

2 × 10-5 M, (2) 9 × 10-6 M, and (3) 2 × 10-6 M in DCM suspensions upon excitation at 

635 nm. The solid lines are from the best multi-exponential fits to the experimental data. 

IRF is the instrumental response function (~70 ps).The observation wavelengths are 

((A): (1), (2), (3), B, C) 700 and ((A): (4)) 810 nm. 

Figure 4. Magic-angle femtosecond-emission transient decays of NR (2 × 10-5 M) 

interacting with different zeolites in DCM suspensions upon excitation at 562 nm and 

observing at (A) 630 and (B) 700 nm. The solid lines are from the best multi-
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exponential fits of the experimental data, and IRF is the instrumental response function 

(~200 fs). (C) Magic-angle femtosecond-emission transient decays of NR interacting 

with CBV 100 at different initial concentrations ((■) 2 × 10-5 M, (○) 8 × 10-6 M, and (●) 

2 × 10-6 M) in DCM suspensions upon excitation at 562 nm and observing at the 

wavelengths indicated in the Figure. The solid lines are from the best multi-exponential 

fits of the experimental data. 

Scheme 1. Cartoon showing the different NR populations generated when the dye 

interacts with the used zeolites. 

Scheme 2. Scheme of the energy levels and the lifetimes involved in the intramolecular 

charge transfer process of NR. LE and CS are the local excited- and charge separated 

state, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1 
 
 
 
 
 
 
 
 
 
 
 

Host λem/nm τ1/ps τ2/ns τ3/ns 

CBV 500 650-750 90 0.42 1.43 

CBV 300 650-750 76 0.38 1.19 

CBV 100 650-750 80 0.39 1.07 

Li-Y 650-750 183 0.67 1.50 

Mg-Y 650-750 130 0.57 1.42 

Cs-Y 650-750 224 0.73 1.48 

Host [NR]0/10-5 M  τ1/ps A1/% τ2/ns A2/% τ3/ns A3/% 
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Table 2 
aObservation wavelength = 650 nm. 
 
 
  

CBV 500 2 90 36 0.42 55 1.43 9 
0.9 90 51 0.48 37 1.61 12 

CBV 300 2 76 38 0.38 51 1.19 11 
0.9 72 25 0.38 49 1.39 26 

CBV 100 2 80 36 0.39 43 1.07 21 
0.9 171 35 0.72 49 2.08 16 
0.2 --- --- 0.53 34 2.22 66 

Cs-Ya 2 224 30 0.73 34 1.48 36 
0.8 --- --- 0.50 37 1.67 63 
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Table 3 
 

aNegative values of the amplitudes indicate rising components. Asterisk (*) indicates 
that the τ3 time constants were fixed from the values obtained in the ps-experiments. 
The uncertainties associated with the τ1 and τ2 values are also reported. 
 

 

 

  

Host λem/
nm 

τ1/fs 
(± 50 fs) 

A1/% τ2/ps  
(± 0.5 ps) 

A2/% τ3
*/ps A3/% 

CBV 500 630 190 23 1.3 8 90 69 
640 20 4 76 
650 8 1 91 
670 (-)4 3 93 
700 (-)2 2 96 

CBV 300 630 170 21 1.5 11 76 68 
640 16 7 77 
650 10 1 89 
670 (-)6 5 89 
700 (-)1 7 92 

CBV 100 630 210 30 1.6 3 80 67 
640 23 3 74 
650 14 4 82 
670 (-)16 6 78 
700 (-)7 1 92 

Li-Y 630 170 28 2.3 9 183 63 
640 12 4 84 
650 5 1 94 
670 (-)26 6 68 
700 (-)8 1 91 

Mg-Y 630 170 31 1.7 17 130 52 
640 26 15 59 
650 9 5 86 
670 (-)24 3 73 
700 (-)10 5 85 

Cs-Y 630 150 29 1.1 17 147 54 
640 24 9 67 
650 7 5 88 
670 (-)28 3 69 
700 (-)11 2 87 
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Table 4 

 a All the data relative to the mesoporous materials are shown in Ref. 52. 
 

 

 

 
 
 
 
 
 
 
 
 
 
  

Host 

Mesoporous 
Materialsa 

Zeolites 

R-
MCM41 

Al-
MCM41 

CBV 500 CBV 300 CBV 100 

Pore/Cavity diameter (Å) 35 35 ~13 ~13 ~13 

SiO2/Al 2O3 mole ratio - 30 5.1 5.1 5.1 

BET area (m2/g) 1000 970 750 925 900 

NRloading (1018 NR 
molecules/gHost)                                                                                                                             

1.9 2.0 2.4 2.5 2.6 

Fluorescence 
lifetimes  

H-aggregates 
(τ1/ps)  

320  310 90 76  80 

J-aggregates 
(τ2/ns) 

0.92 1.17 0.42 0.38 0.39 

Monomers 
(τ3/ns) 

2.49 2.69 1.43 1.19 1.07 

ICT (fs) 350 320 185 166 206 

VC (ps) 3.26 ~3.5 1.30 1.47 1.56 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Scheme 1 
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Scheme 2 
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