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INTRODUCCION

Tiempo atras, grupos como Pervasive Faban investigado en el campo de las tecnologias
Netflow y las bases de datos, descubriendo su gatgncomplejidad. El Lenguaje de Manipulacién de
Datos (DML) y el Lenguaje Estructurado de Consul(8QL) para la obtencion de datos son
probablemente algunas de las tecnologias mas atilasestra disposicion para el analisis de grandes
cantidades de datos interrelacionados. Tambiénoriueonstatados los grandes requerimientos de
hardware necesarios para trabajar con dichos datmsendo el proyecto inalcanzable. Pero con el
tiempo el hardware se abarata y se hace mas poteetse cambio junto a algunas optimizaciones
podrian hacer posible el proyecto.

Hoy en dia las redes gestionan enormes cantidagldsafico, y su diagnostico y analisis se
vuelve mas dificil cada dia. Intentar guardar dicildormacion para su posterior analisis es
impracticable. Esta es la razon de usar Netflowoger solo la informacion mas importante de cada
conexion de datos.

Con Netflow recibimos estadisticas de routers yt@dwas permitiendonos analizarlas mas tarde.
Algunos de estos datos son el origen y el destinduracion y la hora de comienzo, ademas deldgo
datos y su tamafo. Almacenar esta informacion ssjueser facil, y normalmente se ha realizado en
archivos de formato propietario y con herramieqias dependen del vendedor.

Este trabajo evaluara varios sistemas de gestitrasies de datos (DBMS) como una alternativa
a los archivos propietarios usando herramientas pmdsntes y formatos mas abiertos, por ello
elegiremos sistemas GNU/GPL en nuestra apuesta poftware libre.

Netflow tiene varias versiones, usaremos la masuogpara IPv4: la version 5. Y como bases de
datos analizaremos: MySQL, PostgreSQL y SQLitediterentes estructuras de datos y consultas. Para
importar los datos usaremos la utilidad flow-exutatlas flow-utils con algunas mejoras.



INTRODUCTION

Some time ago, groups prior to us like Pervasivaestéhave previously researched into the field
of Netflow and Databases discovering its strengthd weakness. The Data Manipulation Language
(DML), further exposed, and Structured Query LamguéSQL) for querying data are probably one of
the most useful things that this technology carvipieto us to analyse vast amounts of interreldted.

It was also shown its high-demanding requirementeims of CPU power and storage space resources
probably making it not worth to afford. But aloragt years while CPU power has greatly grown, storag
space has been dramatically increased. This res@aost change and the ability to transform data to
less CPU demanding resource can have better resudte/er requirements.

Today's networks send and receive huge amountaféitt Network diagnosis and data tracking
is becoming more and more difficult. Try to recadd analyse that huge amount of data is almost
impossible, and that's one of the main reasonsirtihdr develop the Netflow concept: aggregate the
most important data from every connection in a rtimvad network.

With Netflow we receive statistics from routers aswlitches in near real time, allowing us to
store it for further analysis or maybe even to rdacproblems in our network. Netflow will tell us
statistics about every connection that crossednetwork. Some of that information is the source and
destination, the duration, time stamps and flovesiBut even with that aggregation it is a vastwamo
of data and that is useful to store for future gsial Storage and analysis of big amounts of data i
complex and requires a lot of resources to prod¢ssally the storage and analysis of NetFlow da h
been conducted with vendor specific tools and lyifiles to analyse them.

This work will evaluate the possibility to use commdatabase management systems as an
alternative solution because nowadays databases draatly evolved and provide characteristics not
available or not affordable in the old netflow-tedbrmat. Some powerful characteristics of those
systems usable in this work are: application/verdiia independency, cluster server data distributio
and a powerful standardized data query framework.

There are many different database management syseanh one with its own data storage
management system, retrieving-data language andoaieto do it, and that could make this analysis
too specific being a first approach to find, itdan be done, the way to store netflow data in abdete
system in a feasible way. As a first approach I fetus in SQL based DBMS to compare some database
systems based in this technology.

As Netflow was designed with big networks in mitids work focuses on storing huge amounts
of netflow data and getting performance statidiicglentify bottlenecks for solving or improvingetim.
Also, as any technology, has its own limits and péthis work will be to identify them to know ued
which circumstances we can use it. It is unsur@ig solution is better than the current situatona
comparison between different database managemsteinsy and the current solution should be done.

Netflow technology is evolving to new versions bme will focus on version 5 and IPv4
addresses as currently is the facto standard wsedriinstitution. As a research group we prefetsto
that are open to the community, we prefer freensot and thus we support Linux O.S. And GNU/GPL
database servers. Therefore, MySQL, PostgreSQIS@idte were good candidates to participate in this
work.
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USE CASES OF NETFLOW/DB

Storing data in a database is not difficult, whert enake it difficult is doing it in the best way fo
our needs and achieve the best performance, attmplish this we need to think about how is going
to be used.

Following instructions | met with people from ougghrtment on the Measurement, Security and
Routing areas to ask about how this work can Hemtand focusing this work on this target. Those ar
the common case uses of Netflow that should beideresi on this work to be improved with databases.

Statistics

More than 70% of the requested 'features’ aboatwiork are related with getting statistics
about network traffic.

Nearly all of them are statistics already founaé@iwork monitoring tools like Ntop, Cacti...
Statistics like Top Hosts, cumulative distributidby prefix, AS, protocol, flow duration....).
General traffic statistics sorted, filtered andtsgdbng time laps in several ways.

Real time statistics were not requested on thia.are

A useful feature would be to map AS numbers tong&yorks.

Security Analysis:

Looking into the contents of every single packet ba very tedious, not feasible, and even
useless. Instead, taking a look to general netwtatistics can be really useful to find out the
next step to follow or realise about a securitybfem such as connections from unexpected
network areas, trojan traffic or any unexpectedvoet traffic behaviour.

Monitoring connections can not be done by hand, ihetead in an automated way by
comparing traffic patterns along time, this monitgris done with statistics and deviation
parameters.

Netflow data can provide traffic patterns about,R26tms, malware...

In this area, real time statistics or analysis banneeded for fast responsiveness against
security threads.

BGP routing:

As one of the main topics in our research grougasimunications between Autonomous
Systems (AS). BGP routing protocol is of speciatiast and like other IP protocols Netflow

will provide information about updates done betwemrters.

The aggregated data provided by netflows will nlavaus to find specific BGP problems, but

will provide useful information to find strange l@fours or to get a general overview about
BGP traffic and create topology diagrams.

Netflows, reverse engineering and complex datahjaseies can discover router policies on a
remote network or, pointed by someone in our graygn who maid a BGP mistake and
propagated it over our network.

As our group is really interested on this topiaretating flows over time (among others) can
be a very useful tool, and the use of databaseswaply needs previously not covered by the
use of old netflow analysing tools.



BACKGROUND

Netflow was introduced years ago by Cisco Systems for speeding up connections in routers and
switches” with access lists by reorganizing the caches used to forward the traffic with the statistics
collected from the device itself. This technique improves several parts of the device traffic management
but also the collected data can be really useful for other meanings such network statistics or traffic
surveillance.

Netflow architecture works as a side service to
the network if possible not affecting communications as
demonstrated in Figure 1. Configured routers and LAN LAN
switches (exporters) on a network will collect data
(connections) that crosses them, summarize (aggregate)
it and send it to a specified host running a flow capturer
(collector) that will store all received data. Later in off-
line mode this data will be analysed by other tools.
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Connections in a network are also called flows,
and are identified by those fields together: source IP,
source port, destination IP and destination port, and Internet storage
even if connections are bi-directional, for Netflow they
are considered one-way ﬂpws and thus we will have Figure 1: Netflow Architecture (sre-wikipedia)
two flows for each connection.

Netflow works in the following manner: When the first packet of a new connection crosses the
switch or router a new netflow record is created in the device's cache to track all information related to it
like: number of packets, bytes sent, source and destination Autonomous System number, time stamp of
the first and last packet, source and destination IP Address/Port and network mask, incoming/outcoming
interface, Internet Protocol type used and other fields.

There are some conditions that will consider a flow as finished. Obviously one of them is the
end of transmission packet or receiving a reset packet. For broken connections can be the idle time
condition, and for long connections a timeout can be configured. After one of this conditions is met the
flow data is marked as ready to be sent.

When some of those flows are ready the device puts together several of them, adds a header with
common information to create the full netflow packet and sends them all together to the configured
destination for being further processed.

There have been several versions of the netflow protocol along the time, having thus, differences.
The first version (v1) was restricted to [Pv4 and neither IP mask or AS numbers, it is a very old version
now obsolete. Version 2, 3 and 4 were never released to the public domain and only used internally by
Cisco. Version 5 is the most commonly used version and the one we will use, further details following.
Version 6 is not any more used and only had extra information about the protocol encapsulation. Version
7 is like version 5 with a source router field. The 8™ version had also the same information as version 5
but with several ways of data aggregation, and finally version 9 and 10 are based on templates, allowing
more flexibility for big networks. Version 10 is actually being ratified as an IETF standard.

The most widely used packet is version 5, having two parts: a general flow header format as seen
in Table 1 referring to up to 30 flow records, each specific flow data recorded as in Table 2 field format.



Table 1: Netflow version 5 original header paclatiat

Bytes Field name Description

0-1 version Netflow export format version number

2-3 count Number of flows exported in this packeBQ)-

4-7 sys_uptime Current time in milliseconds sinceekport device booted
8-11 unix_secs Current count of seconds since 0000 1870 (Epoch)
12-15 unix_nsecs Residual nanoseconds since 000019TC
16-19 flow_sequence| Sequence counter of total flees s

20 engine_type Type of flow-switching engine

21 engine_id Slot number of the flow-switching engine
2223 | sampling_interva :;i:::vg/ro bits hold the sampling mode; remaining it hold value of samplir

Table 2: Netflow version 5 original flow record foat
Bytes Field name Description

0-3 srcaddr Source IP address
4-7 dstaddr Destination IP address
8-11 nexthop IP address of next hop router
12-13 input SNMP index of input interface
14-15 output SNMP index of output interface
16-19 dPkts Packets in the flow
20-23 dOctets Total number of Layer 3 bytes in thekpts of the flow
24-27 first SysUptime at start of flow
28-31 last SysUptime at the time the last packeheffiow was received
32-33 srcport TCP/UDP source port number or equivalen
34-35 dstport TCP/UDP destination port number oremjeint

36 padl Unused (zero) bytes

37 tcp_flags Cumulative OR of TCP flags

38 prot IP protocol type (for example, TCP = 6; UDRA

39 tos IP type of service (ToS)

40-41 src_as Autonomous system number of the soeitber origin or peer
42-43 dst_as Autonomous system number of the destinaither origin or peer

44 src_mask Source address prefix mask bits

45 dst_mask Destination address prefix mask bits
46-47 pad2 Unused (zero) bytes

A database can be just a human-readable file aoapgof binary files managed by a whole
system, but what they have in common is that thesessery structured data together, and usualty, bi

amounts of them.

Along time, data has been stored in different wayany years ago nearly human readable plain
text file were used to store data, that data reguas much storage space as we see: one bytecfor ea
character, including spaces and other hidden cteasacThe following text is structured data in afe

the many possible plain text formats, this is Con8eparated Values (CSV):

Year,Make,Model,Description,Price
1997,Ford,E350,"ac, abs, moon",3000.00
1999,Chevy,"Venture "'Extended Edition™","",4900.0 0

1999,Chevy,"Venture ""Extended Edition, Very Large"

",".5000.00
7
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This data requires one byte for each character,tlaeg require to be converted into internal
computer binary representation to be processetntes more resources. But there are other ways to
store the same data, some of them are not humaaliea one of them is calldginary data As an
example, the numbdr997here requires 4 bytes and needs a binary conveisin stored as binary data
can require only 1 byte and no need to do the picanversion.

As binary data is not supposed to be read by a huihaan be stored depending on technical
reasons. Some ways can be in a smaller compresgedtliat saves us space or in a long format if it
improves performance or makes it easier to modityadusing the right choice for our needs will make
the difference. Usually the following resources ianplied when working with data: CPU, Input/Output
and storage space. Each data type has a diffenpaict on those resources but they work togethers, Th
using the right data type with the right resourogpact combination will help to get the best
performance.

When first database systems appeared they start&tore data in binary format, requiring less
time to convert and process data and adding indexbs able to find quicker the solicited data. yrhe
used to provide a vendor specific interface to s€data, that allowed programmers to spend theitime
developing applications instead of programming lovevels data management. There are different
kinds of Database Management Systems (DBMS), mosk with a concept calletiables A table has a
designed data structure allowing to store speeiiitity (event) data, and by having several tablesan
store all data we are going to use.

A single datum is an event from our world beingeatl) and as our world, everything is related
and thus the data too. As databases were growiragstirted to be duplicated and more correlated and
that raised a problem: having same data duplicegdgqdires keeping up to date every single instance,
requiring more resources. Next step in databadersgswas to correlate stored data between tabiss, t
allowed to have less duplicated data and by mehassict relationshipsdata integrity and consistency
reached a new level. Next level was to allow databdo have his owlanguageto do different tasks,
this is calledData Manipulation LanguagéDML). DML is a structured language to create amdirce
the whole database, to alter it and to fully aceesbmanipulate data contained on it.

As explainedrelational databasesire a very effective form to store and keep orgahiwell
structured data with the possibility to ‘connddiirelated information. Today, information is pavwand
storing and accessing to it is really importantnd specific methods and languages to access data
finally became a problem as migrating data frontesysto system was really difficult. A new common
method to access data emerged several years ggotad a DML to helpStructured Query Language
(SQL) and most important database systems sugmertainguage today, though with different versions
and functionalities. All of them conform at leastane of the old wide spread versions: SQL-92 ok-SQ
2000. As a bottom line can be said that “When hgabig amounts of data the best to analyse it is to
have the most powerful tools”.
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Figure 2: First approach elected in this wc

For an initial approach we will join three
important factors together: Database knowledge,
Netflow knowledge and our specific needs as a
networks research group. All together will allow
us to design a system that should be able to
answer our requirements.

Database analysers and monitoring of
resources will conduct us along all our trajectory
on the right path. While an initial test will veyif
that we are in the right starting point, our
knowledge about networks and databases will
lead us from initial data optimization to database
optimization.

Having discovered along the way new
possibilities that will allow us to test new ideas.
Ideas that will direct us to discard some of them
and point us to a new beginning with a deep
knowledge about this solution to compare it with
new ones.

Diagram shown inFigure 2 shows the
process followed as an initial approach, having a
single table in the DB to store all data.

Storing Netflow onto a database can have
another great advantage, if we can use a standard
like SQL to access data, we will be able to
choose between different database systems and
be vendor-free. This common method to access

data to/from the database will also allow us to vy similar methods to analyse and compare them,
obtaining trustable results. This common metho@vislving to a more powerful and more flexible
language allowing us to retrieve results easier faster. But each vendor tries to improve its own
database system creating some differences in tigeidg@e by means of optimizations.

Those optimizations to the different aspects todhmbase system sometimes can make a big
difference but also some incompatibilities, we vidave them out of our scope for this work to be
implemented in the final implementation. As evemgghe same SQL language, the implementation of
the DB can be different for each DBMS and fieldeyp common design will be created and another one
with some specific characteristics to know whicle amperforms better.

The one-table design has been chosen as thegpsbach for several reasons like: easy record
insertion, existing flow export tool, no need tokop master keys... That simplicity can be a goag w
to deal with some hundred millions of flow recordach day, as even with only one table many
optimizations can be done. Other ways to storel#ta into a relational database system can be:



Using also only one table:

By means of hash functions, create a shorter umpguoeary key with the AS-IP Addr-Mask-
Protocol fields to store it instead of those fieldsyuiring less space and disk 1/0O. A shorter
and unique key will allow us to fetch more effidignrequired records but the trade-off of
this solution is the cost of increasing query camjl, this will not allow a person to create
the queries by hand, but the use of functionsusea interface can help on this problem.

Using several tables:

With two tables: A master table for the fields wbentify a flow or with the most important
fields (AS-IP Addr-Mask-Protocol) plus an uniquendifier if needed, and a secondary/slave
table for all the other data. By having a 1:N (reasiave) relationship, the most repetitive
data will be written only once in the master tales will save 1/0 to disk probably making
it faster to save flow records.

The trade-offs for this solution, is that a unigdentifier is needed to correlate data from
both tables and the need to rewrite the flow-expmot. Looking up for this identifier in the
master key each time we receive a new flow candrg slow, a possible solution for this
problem would be to implement a cache on the flayeet tool having last ten to fifty
thousand of stored identifiers.

Three or more tables: Following this idea, data loarsplit even in more tables, e.g. storing
in a third table data not usually requested astioptput SNMP interface or Type of Service.
Another table can be used to store common fieldgj@i@erying data, the destination address
for the next hop can be a good one, source anthdsh AS may be also candidates. There
are many possible combinations and its performaaoedepend also on network topology or
traffic pattern, this would require a full new raseh that can be taken after the present one.

Using temporary tables to summarize informationitas being received and store only
needed information in a permanent table every aay/minute, making smaller the problem
of storing and retrieving data. The trade-off istgbvious, this solution looses connections
details and may be not acceptable to us.
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CHALLENGES

Different DBMS have different possibilities, eacheowith its own characteristics, and some of
those possibilities can change results substantiadl this work is a first approach we will leave t
DBMS mainly with the default out-of-the-box optioaed concentrate on our work so further research
after this one can be done in the optimizationeo¥ars if needed.

In any system and at any level, buffers are a comteohnique to improve performance, and
DBMS also have this option heavily effecting penfiance. But enabling this option has a side efiéct:
e.g. power supply fails, some data can be lostftbstside effect can be solved by several waysai\s
example, this option is enabled by default on My8Qlflush option) but not on PostgreSE&L(‘fsync
option) or SQLIt& (‘pragma synchronousption). To equally compare DBMS this behavicuowd be
taken in account, and as there are many ways ve satonveniences, we will enable buffers to find o
the maximum performance reachable. As using buffarshave non-realistic behaviour when running
tests, care should be take to avoid test intenattyoflushing data still in the buffers to the disk

After the initial DB design and looking tkey reads/writegrom MySQL show global status
and tools likesglite3_analyzefor field type and row sizes overhead, the I/Ofquenance was detected
as the greatest bottleneck as it is obvious byhtlgee quantity of data to be stored. As NetFlow p&k
were never in mind to be stored in a DB, disk spau@ thus 1/0 performance is wasted depending on
DB field size (32/64 bit), data format (IP Addresses plain text/number), useless fields for ouppses
or data that is duplicated like time stamp fields.

Filtering large amounts of data can be a resouxperesive operation, databases have the
possibility to use indexes for faster data acdessthis option can require even more 1/0O acceddanga
it slower rather than faster. Most probably the agéndexes is not worth for us as usually we will
retrieve much more data than the low percentage indexes where designed for. But as the
characteristics of our data is mainly WORM (writece, read many) there can be a chance to be worth.
Also as indexes require more data to be writteth&odisk, this write operation should be as fast as
possible if we want to use it in a real time netwtw-database packet dump without using the ohdflo
tools method as an intermediate step. At the emdiase real time indexing is not possible due to
performance issues, offline indexing such as delajistributed indexing can be an option, for this
reason we will research on indexing usage anywaeXes can be created with different field types an
combinations of them, some tests should be donestahe feasibility of this feature or to betteol
how to design indexes. Through data to be storemhiig formed by numbers and probably they will
have a smaller data diversity than one formed byfuH alphabet, this data diversity can reallyeaffto
index creation and we should be aware of this.

As we want to compare our new DB methodology wiik bld flow-tools methodology we
should compare them with the same task, methodoataining the same results. Every DBMS has
several methods/libraries to retrieve the data,eawh one can have its own architecture, behaaiodr
performance. Chosen DBMS have in common a standlaedStructured Query Language (SQL) to
access the data, this method allows us to fetchd#te in the same way for any of those databases
making results comparable. This query languageery ypowerful and even being a standard, each
DBMS has its own optimizations that really can eiffthe performance. We need to create as much
generic queries as we can for reliable resultsjngethe in-DB optimizations for further research.

11



RESOLUTION

To equally compare all DBMS, option to use buff¢semetimes known as: disable buffer
synchronization) has been enabled on all of thencake of MySQL the environmeftiish variable was
set to OFF to get this behaviour, while in Post@Ee$onfiguration filefsyncoption was set to OFF and
in SQLite the environment optidPragma synchronousas configured to 0 (OFF)

Disk buffers on system memory have a major impadiming results. As I/O is the slowest part
of our system, having that data already in a fastory will distort results. To achieve comparabid a
repeatable results, we clear those buffers betwgpariments as explained in tfiestbed Description
part of theDataset and Testbeskction.

But even enabling buffers, I/O performance was tstd slow not allowing us to store our dataset
neither being faster enough for a medium-sized oktwResource monitoring was used to find
bottlenecks and solve them up to an acceptabld.@@ommands suctistat, iostatand tools likeMRTG
were used to monitor CPU, hard disk I/O, free spemezl and RAM memory usage.

MONITORING RESOURCES

While dstatwas used for real time monitoring over all resegrand processors to fine tune other
monitoring toolsjostattool is only used for I/O stats. Last one is chllom flow-exportevery 100.000
records are stored into the database to fetchrpet/output KB read/written from/to the hard disk
database partition as followssstat -kd /dev/sda3 | grep "sda3" | awk ‘{printf \ "%bs\t%s\n\",
$5, $6)  This data joined with time stamps was used toterd#@e time-spent/data-written over saved
records graphs later showed.

MRTG was configured to supervise, among othersfdlh@wving system properties:

— User/Kernel Raw CPU usage to analflee-export DBMS and kernel behaviour.

— CPU I/O RawWait to improve I/O speed operations

— Data read/written from/to the database storagetipartto control data 1/0O and correlate it
over time spent.

— Memory/cache usage to control memory usage ancedasmaviour.

On the following, MRTG graphs will show system bebar in general tests, while in the
Resultssection they will show on a per-test basis thdlém¢cks found and how them affect to the
system, proposing solutions to solve them.

At the very beginning, a low level bug was founowshg down I/O access, the SCSI controller
is assumed by our Routerlab administrators to be¢hson of this behaviour. Without this fix, naon
database was able to deal with the big amountsata @e were in the needed to store. By means of
comparison of different Loadgen machines, kernedieas, SCSI modules loaded and system behaviour
it was found that using different SCSI kernel medylthe same kernel had a great performance imcreas
The kernel options aré-usion MPT ScsiHost drivers for SA8Sid the wrong modules being loaded
correspond tanptbase mptsasand mptscsihthrough they officially support our LSI SAS 1068&rd
they do not seem to work very well. Even morehatrhoment of writing th€onclusionsection another
optimization was found, while all tests have beemel running kernel 2.6.30.10 running the new
MPT2SAS modules, removing them from the kernel ificantly reduced the time to perform some
indexed tests.

Taking as a base a defauthage being used at the laboratory and after nghai sample test
several timesFigures 3 and 4revealed the first bottleneck. System has a high) @@ wait time:

' Debian Lenny 32bit running a 2.6.18-6 686 kernel.
12



under-using CPU power for the DBMS running as aesyprocess and for th®w-exporttool running

as a user process. Further research demonstratdedrring loaded kernel module for the storage
controller as the reason of this penalty. Graplwswvsim the first 24h the problem, while in the 148

the problem is solved.

This behaviour caused the high-performance systebe table to write only around 7 Mb/sec to
the hard disk as seen at the beginningigure 5. The same problem also leaded the module to send
about four times more data to the hard disk, thissed the tests to require much more time to fiagsh
seen in the peaks difference between the firsta@vththe last 10h shown in the graphsFigure 6 we
can appreciate the kernel cache usage and behamouverify that memory is being released. Once
solved, the system was able to deal with the sasiefour times faster and not being overloadedGn |
operations.
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FIELD TYPES

As seen above, I/O activity heavily depend on thangjity and type of data, one of the main
topics of this study will be this topic. It is vecpmmon in computer science to store timestamypbeas
number of seconds since 1970-January-1st usudlgdddnix Epoch, the advantage is that it fits jast
an integer number using 32 bits (4 bytes) whiletiade-stamp fields on databases require 8-12 bytes,
requiring thus more data to be read/written. B=g.Sep 17 2010 20:40:43 will be converted to
number1284748843 . Database DateTime field type requires 8-12 bytesrse it allows to store more
data and more precise than Epoch field like: foatiof a second, time zone, wider range of dates, o
even time intervals. Epoch timestamps can onlyesttates from year 1970 until 2038, one-second
precision and no time zone information, while aadtad DateTime field can store dates from year 4713
BC until 5874897 AD with microsecond precision dimie zone information.

For IP addresses there are two common ways to ist@®normal text requiring from 7 bytes up
to 15 or with a simple formula converting it to anmbel®!, requiring only 4 bytes. Doing this operation
is safe as the maximum IPv4 Address value: 2552856255 will be converted to: 4.294.967.295 that
perfectly fits in a 4 byte unsigned integer fieldhe unsigned (only positive numbers) characteristic
very important as without this the maximum valudl W& only 2.147.483.648 and it can not be stored
and will require more bytes to do it.

Depending on the DB there is a third option, to aspecific field type like PostgreSQL INET
field (12 bytes) for this data that usually reqgsitess bytes than the plain text version and affeyso
specific functions and syntax but only small speegdrovement. The conversion is, having a dotted IP
Address:aaa.bbb.ccc.ddd and the formulafaaa*256 3)+(bbb*256 2)+(ccc*256)+(ddd) the
IP Address192.168.55.89 will be converted 103232249689 . The side effect of storing timestamps
or IP Address as integer numbers is that we willdn® convert the data and take care about how is
being stored at the time of designing the SQL q@eryt is not the same comparing “> 2008-05-15" as
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text/date than “> 1210802400” as an epoch number.

Results from this work will help to determine thatimal way to store data in the future, but for
now we should adapt original Netflow informationdor needs. Usual data sent in Netflow packets has
two main disadvantages for our research: nearliesser not needed fields, and dependency in time
stamp fields between NetfloWweader packeand flow records To get into the worst-case of storage
requirements and data manipulation we will try tiares nearly all fields and only a few unneededifel
will be ignored. In this study, original and coméihchosen fields written to the database are shiown
Table 3while in Table 4ignored fields and the reason are shown.

Table 3: Fields stored in our database

Field name Description
src_exporter Source IP address of router/switch rixgpflows
secs_flowstart Timestamp when flow started
secs_flowend Timestamp when flow finished
secs_export Timestamp when flow was saved to theAliBrnative timestamp
src_addr Source IP address of flow
src_mask Source address prefix mask bits
src_port TCP/UDP source port number or equivalent
src_as Autonomous system number of the sourcer eitlggn or peer
dst_addr Destination IP address
dst_mask Destination address prefix mask bits
dst_port TCP/UDP destination port number or equivale
dst_as Autonomous system number of the destinatitirer origin or peer
input_if SNMP number for input interface at the estporouter/switch
output_if SNMP number for output interface at theaxer router/switch
next_hop IP address of next hop router
num_packets Packets in the flow
num_bytes Total number of Layer 3 bytes in the pecéethe flow
ip_prot IP protocol type
tcp_flags Cumulative OR of TCP flags
ip_tos IP type of service (ToS)
Table 4: Fieldsnot stored in our database
Field name Reason
version Unneeded: Always will be version 5 in oupesiment.
count Unneeded: Each flow is a record.
Sys_uptime
UNiX_SEcs Com_bined: No need of nanose(_:ond precision and depey between fields will
—= require more pro-record calculations.
unix_nsecs

flow_sequence

Unneeded data in a pro-flow recordldese.

engine_type Unneeded data.
engine_id Unneeded data.
sampling_interval | Unneeded data in a pro-flow reatathbase.
first Combined: Added to Unix timestamps above we caleulsecs_flowstart afd
last secs_flowend
padl Ending optimization: Perhaps in final implementatedata padding pro record ¢an
pad2 be worth to align to storage sector size.
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Depending on our needs some fields can be remdeedexample:input_if and output_if
probably they will be not frequently used or reqdir Fieldsrc_exporterhas been added from the IP
layer packet as it can be really useful to filtatadfrom a big network only with this field. Netflo
protocol uses the local exporter device time arté ttaknow when connections have started and when
finished, if this time-stamp is wrong or not weinehronized with other devices that will resultdata
misplaced on time. Our own fielslecs_exporis used to correct this or use it as a referencéxt
wrongly exported data, but in the case we are aboait time synchronization on all devices, thigdfie
can also be removed.

To be able to compare the performance betweenreiifind of fields and sizes, database was
redesigned to use also alternative field typestdoesDateTime and IP addresses creating thus two
variants: the first one only with Int32 fields bgigenericto all databases and another one with database
specific fields like PostgreSQL:INET or MySQL:Dateie, sometimes referenced herepéantext as
they does not require data conversion by us on @@kies. The difference between data field sizéls an
calculated row sizes can be seefable 5.

Table 5: Generic vs Specific field type DB tablerfat

DATABASE SYSTEM
FIELD MySql * PostgreSQL SQLite3 **
Generic Specific Generic Specific Generig Specific
IP Addr fields (x3] Int32* | Text (15b) Int64 Inet (12b) Int Text (var**)
Timestamps (x3] Int32 * [DateTime (8b)| Int64 Timestamp (8b) Int Text (var**)
src & dst mask Int8 Int8 Int16 Int16 Int Int
src & dst port Int16 Int16 Int32 Int32 Int Int
src & dst as Int16 Int16 Int32 Int32 Int Int
input/output if Int16 Int16 Int32 Int16 Int Int
num_packets Int32 Int32 Int64 Int64 Int Int
num_bytes Int32 Int32 Int64 Int64 Int Int
ip_prot Int8 Int8 Int16 Int16 Int Int
tcp_flags Int8 Int8 Int16 Int16 Int Int
ip_tos Int8 Int8 Int16 Int16 Int Int
Row size: 49 byted 94 bytes 98 bytes 110 bytes (vadiable (variable)

* MySql supports unsigned numeric types, allowirsto use smaller types.
** SQLite3 adapts automatically field type andesto the received value.

Specified row size indicates in theory how muchcspaill be required by each flow record in
the table giving us an idea about the differencestofage requirements between databases. It can be
easily appreciated how PostgreSQL requires twieesghace in the 'generic field' table but only a bit
more in the plaintext field' table mainly because specific time/date dRdAddresses fields are
practically identical.

Field sizes were chosen depending on the datawiiegontain, electing the field size that will
be able to store the maximum value by the netfl@aeokpt field, or the converted value. As MySQL
allows unsigned numbers: IP mask fields will starealue from 0-32 that will fit in an INT(8 bitshat
allows the 0-255 range, similarly it can be appliedthe IP protocol field, TCP flags and Interface
number fields, port numbers are on the range 0B5481 requires a 16 bit unsigned integer type
(INT16) while big values fields like num_packetsdamum_bytes (with values up td?Rrequire a 4
bytes field (INT32). In the 'generic field' tabls # Addresses and timestamps are saved as 32 bit
numbers they require a full INT32 4 bytes fieldayput in theplaintext version specific database types
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are used requiring different byte amounts.

As MySQL has unsigned types but PostgreSQL hasfiedd, types in PostgreSQL will need to
be bigger, exactly twice the size of MySQL fieldsd if PostgreSQL has no internal optimization & n
store those unused bytes it will 'waste' on didk ¢fathe reserved storage space. SQLite versina
small desktop DB with no client/server architectumended for small and medium datasets doesn& hav
many features presents in any other DB, one of tiseirld type specification. SQLite detects dyfaet
every time it access data, and stores it with béiaize fields depending on the value received.

INDEXING

It is a fact that field type heavily affects fiellddexing, and as in this study we have different
field types an index analysis based on the usa#itsits required for this kind of data will be @ r©ur
case uses reveal that requirements to create rnetlatat statistics mainly need to correlate orffittata
based on the following fields: AS numbers, IP AddrdP Ports and IP exporter address. They alsth nee
to filter data by flow timestamp to specific ranga®l exported timestamp to database in case ofgwron
timestamp synchronization between routers showd bé considered. This requirements are also very
common in any network monitoring tools like Cadiitop and others. Based on typical fields to be
sorted and filtered, ifable 6 are shown three different proposed groups forxnzdeation, called, A
andB with different combinations of single and compoumdiex fields.

Table 6: Group Indexes: simple and compound fields

Group O Group A Group B
IP Addr exporter IP Addr exporter IP Addr exporter
Flow exported time Flow exported time Flow exportieoet
Flow Start time Flow Start time + Flow End time FI&tart time + Flow End time
Flow End time Src AS + Src IP Addr Src IP Addr + 8pdPort
Src AS Dst AS + Dst IP Addr Dst IP Addr + Dst IP Port
DstAS Src AS + Dst AS
Src IP Addr
Dst IP Addr

Depending on several conditions and the specifit §Gery received, databases will use or not
indexed fields. Some of the conditions they focusape: type of field, possible speed improvement
based on internal statistics, field included infiliering part of the query, simple or compouneldi and
so on. As itis very common to filter by flow timagtps and IP address exporter all index groups have
those fields. While Group 0 has only simple fidldat should be used easier by the database ergine t
compound fields, Group A and B have compound figddshe commonly fields used together, joined in
two different combinations.

Common denominators are:
All groups: Use indexes for IP address exporterfowd timestamps
Group 0: Use simple field indexing only.
Group A: Compound fields by Src or Dst AS+IP Addres
Group B: Compound fields by Src and Dst IP AddrPi?t and Src+Dst AS

DATA QUERY
To test and compare theetflow-tool€! library and selected database systems we willgdesi
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similar experiments (like data aggregation or st&s generation) for both methods, those expeitisnen
will be based on our real needs as stated in sedise cases of Netflow/DB. As experiments should be
as similar as possible, SQL queries will be singifand created conforming to a generic SQL syntax
accepted by all of them and leaving the use ofipdanctions and vendor specific extensions olt o
this work. Only mandatory conversions needed to pamen data for different field types have been
included in the queries and general statistic cengniisually included iflow-toolsreports will be added

to SQL queries to force the DB to do the same amotiwork asflow-toolsare doing. While SQL is
flexible and powerful,netflow-toolsis not so flexible and we are limited to use emgstreports or
combine and filter some of them. Two reports werlected with different characteristics to compare
filtering, indexing and data aggregation:

Query A: Number of flows every 10 minute time windows aloalfy the stored data. As an
example the query for MySQL database, storing DateTields as Integers:

SELECT from_unixtime(floor(fl_secs_flowstart/600) *600) as timeslide, count(*) as flow_count
FROM flows

GROUP BY timeslide

ORDER BY timeslide;

This query returns only 145 records, will not gedfph of indexes, process all records and doing
slightly aggregation by one restricted field witlwi data diversity. Partial result:

Time-window-start _ flows Time-window-start  flows

2003-05-28 00:00:00 100479 2003-05-28 00:40:00 9 6408
2003-05-28 00:10:00 98517 2003-05-28 00:50:00 9 4502
2003-05-28 00:20:00 97923 2003-05-28 01:00:00 10 5628
2003-05-28 00:30:00 99385 2003-05-28 01:10:00 9 5985

Query B: Number of connections and general statistics betwl€):00-20:00; aggregated by Src
IP Addr, Dst IP Addr, Src Port, Dst Port, IP pratbaumber and IP Type of Service. The query for
MySQL database, storing IP Addresses as integas fisllows:

SELECT inet_ntoa(fl_srcaddr) AS SrclP, inet_ntoa( fl_dstaddr) AS DstlIP, fl_srcport AS Sport,
fl_dstport AS DPort, fl_ipprot AS Prot, fl_iptos AS ToS, count(*) AS flows,
sum(fl_numbytes) AS octets, sum(fl_numpackets) AS p ackets

FROM flows f

WHERE fl_secs_flowstart >= unix_timestamp('2003-0 5-28 10:00:00") and

fl_secs_flowend <= unix_timestamp('2003-0 5-28 20:00:00"

GROUP BY fl_srcaddr, fl_dstaddr, fl_srcport, fl_d stport, fl_ipprot, fl_iptos

ORDER BY octets DESC;

This query returns near 2.9 million records becauseare aggregating by many fields
with a diversity index much higher than the pregiame. This query will try to take advantage ofmlo
timestamps filtering to don't process all recomdd a heavy use of aggregation. Partial result:

src-address _ dst-address SrcPort DstPort Prot ToS flows octets packets
128.109.192.0 131.96.0.0 37853 119 6 0 575 449716694 303600
140.142.9.47 233.0.73.20 1026 8000 17 0 590 288604928 206564
137.78.56.0 140.90.192.0 22 34546 6 0 589 192549428 131225
128.109.40.0 198.202.120.0 32770 32774 17 0 8 102342405 68365
128.59.31.169 224.2.211.27 61552 61552 17 0 587 78807899 65264
SQL TRANSACTIONS

Index creation was found to be very slow and sagohrtiques were proved to improve this task.
This task seems to have two important steps base@tabase behaviour: index in memory creation and
index on disk storage. In-memory creation requmasnly CPU power, showing a bottleneck by using
only one CPU at a time because tested databasarsysire not multi-cpu versions for this task. The
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second step, index on disk storage, can be optimazth any kind of buffer usage, this buffer can be
implemented by disabling the sync to disk optiorslagwn at the beginning, using SQL transactions to
send together several thousands of data insedmnalexes can be processed at a time or by systdm
hardware improvements.

With the use of SQL transactions, relational dagabacan implement atomic operations, this
technique allows to send complex and/or multiplercggs to be executed together, assuring that all of
them will be successfully executed or every modiféata will be reverted in case it wasn't. In our
situation the DB will process all the queries imEd in the same transaction together, probablytingea
also the indexes at the same time without requslog 1/O disk transfers and greatly reducing thed
diversity' problem as stated later. All analysedMIEBsupport at least simple transactions, we fotbed
use of them through source code modifications erildhv-exporttool.

An easier hardware configuration for faster I/O w@seconfigure the storage RAID system, a
RAID system are a group of hard disks that candsdigured in several ways to provide faster speed
performance, data duplicity to resist hardwareufas or bothA really easy and simple improvement
was to convert the Sun Microsystems RAID 1E int®RAID 0. While the first one provides data
reliability, the second one provides a much high@rtransfer ratio. The later was chosen to fintitbe
maximum reachable speed.

DATA GENERATION

Only when using indexes, tests using different dataces like real data and randomly generated
data showed a different I/O behaviour. Data analysported that I/O speed highly depends on data
being processedlata diversityor differences seen between in-data was the rdasahis behaviour: as
inserted data has bigger differences with the direstored data, time needed for index creation
increases. Flow-tools have a non-realistic netfigamerator, the algorithm changes over the timeabut
for version 0.67 the flow generation just incredsg®ne every single field in each flow. This dstaot
realistic at all, its characteristics are: huge ame of unrelated flows without aggregation datd an
without similarities. Generated data looks like tbikowing:

# flow-gen -n 100 |flow-print

srclP dstiP prot srcPort ds tPort octets  packets
[-]

0.0.0.88 255.255.0.88 17 88 65 368 89 89
0.0.0.89 255.255.089 17 89 65 369 90 90
0.0.0.90 255.255.0.90 17 90 65 370 91 91

(-]

Other netflow generation tools were tested showimge kind of realistic traffic but after some
more testing with thélow-gengenerated data and some strange behaviour anthefeour dataset |
realized about how much data diversity can affestlts. | thought it was mustto test with that kind of
data to discover database scalability and behawpwrorst conditions. This kind of data can be s&en
a very big network; even with millions of flows datvill be poorly related and data duplicity will be
very small. Along tests on databases with indettes,data showed a very different behaviour in CPU
usage and 1I/O throughput, being much higher tharoumreal data tests, through on tests without
indexes results were not affected. This test ig@alistic and not in-deep verified but should teas to
take care about the traffic pattern (usually nekwsize, design and usage) of the expected target
network where this work will be deployed in caseusing indexes.

FLOW-TOOLS IMPROVEMENTS

Finally, to support all designed testiow-exporttool was modified several times to fit our new
requirements. Some of those modifications were:
- Export data to different database systems: AddgUit83 and PostgreSQL support improved.
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Field type conversion: DateTime and IP Addreseasteger conversion.

Unification and correction of timestamp fields:tN@w header packet and flow records.
Data insertion statistics gathering: Disk 1/O Kansferred pro 100.000 SQL insertions.
Transaction control: Auto mode, disabled mode spetified records pro transaction mode.

The new look thatiow-exporttool has after these modifications is the follogyin

flow-export-v7 -h
Usage: flow-export-v7 [-1]-s] [-t numflows] [-h] [-
[database URI]

-l Translate IP Addresses to long i

-s Use ' as SQL separator instead o

-t flows Specify how many flows pro SQL t

Note: Transactions are ON and in AUTO mode
Formats: 0: cflowd, 1:pcap, 2:ASCII CSV, 3:
flow-tools RD version 0.67: built by eabarca@loadge

Jflow-export-v7 - -f 3 -u [DB URI] < [FILE]
- Transactions in AUTO mode.

TIME # Records KB Read KB Written
01:02:22 0 17695 42916592
01:02:34 100000 18207 42917168
01:02:46 200000 18419 42917608

d debug_level] [-f format] [-m mask_fields] -u

nteger (Incompatible with -s)
f" for [Inet/PGSQL] field type (Incompatible with -I)
ransaction will be sent (default: 1000)

unless you use -t0 to disable them.

MySQL, 4:wire, 5:PGSQL, 6:SQLite3
n140 on Mon Aug 16 17:42:20 CEST 2010
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DATASET AND TESTBED

DATASET DESCRIPTION

NAME:
Sample Netflow network data from netflow-tools Faite.

DESCRIPTIVE ABSTRACT:
Dataset retrieved from Abilene network by ATLA iQ(3-05-28.
ATLA is a Cisco Gigabit Switch Router (GSR) in Adaile network.
Abilene network is the old name for Internet2 US@sBarch network.

DATA ACQUISITION/COLLECTION SUMMARY:
Router was configured with sampled netflow witramgle rate of 1/100.
The data is anonymized by zeroing the last 11dfitee IP address.

SOURCE:
ftp://ftp.eng.oar.net/pub/flow-tools/sample-datalA¥V2003-05-28/

ARCHIVAL AND ACCESS INFORMATION:
ftp://ftp.eng.oar.net/pub/flow-tools/sample-dataARBVIE

SPECIAL NOTES:
Abilene documentatiorhttp://abilene.iu.edu
Internet2 websitehttp://www.internet2.edu
More and newest datasets under special arrangenasmailable, instructions in:
http://www.internet2.edu/observatory/archive/datlections.html#netflow

SIZE:
- File size : 423 Mbytes, flow-tools compression epdbl
— Total flows : Near 17 millions.
— Duration of data : 24 hours.
— Total Octets : Near 51.000 millions.
— Total Packets : Near 68 millions.

— Average flows / second : 196
— Average Kbits / second : 4706

PACKET SIZE DISTRIBUTION:

Logarithmic Packet size distribution
100

10

%

0
1-32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512 544 576 1024 1536

Packet size (bytes)
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TESTBED DESCRIPTION

This work has been researched at our G'LRobuterlab in the Deutsche Telekom Laboratories,
using Sun Microsystems Fire X4150 machines calleddgensin collaboration with the Technische
Universitat Berlin (TU-Berlin).

Tests were made on similar Loadgens, internally bened: #131, #137, #139 and #140.
Development, initial research and tests were don&li31. As some tests showed slightly different
results on different Loadgens, they were verifiesmparing results from #131/137/139. Finally,
Loadgen number 140 was used to discover maximunforpggince reachable on final tests by
establishing a faster 1/0 disk access.

As stated at the beginning, our research groupeprifols open to the community and all
software used in this work has GNU/GPL license. iBel.enny distribution together with MySQL,
PostgreSQL and SQLite, flow-tools and monitoringl$dike MRTG and DSTAT where constantly used.
Any improvement in any of this software is publeyailable.

HARDWARE CONFIGURATION:
All the four Loadgens have exactly the same hardwanfiguration:

Machine model:  Sun Microsystems Fire X4150

CPU: 2 Intel Xeon L5420 processors @ 2.50 GHz,rwadi cores each one.
RAM: 16 Gigabytes, though only 4 were used in oatse

Storage system: LS| SAS 1068E controller with foud Gigabytes SCSI hard disks

The only significant difference between Loadgen81#137/139 and Loadgen #140 is that the
first three of them were configured as Sun's RAB® and #140 was configured as RAID 0 (Mirror
mode) increasing I/O transfers up to the maximuforeeperforming final results, here shown.

SOFTWARE CONFIGURATION:

A default standard Routerlab Debian Lenny 5.01 t32badgen image with a 2.6.18-6 686
kernel, having being changed only to fix the statemtage system bug and upgraded to a 2.6.30.10
kernel was taken as a base system. Full systenrwmasng in 32 bit and only using 4 GB of RAM
memory. The distribution maintained the Libc6 v.2ate libraries and the following packages were
added to the base system:

- MySQL Server 5.0.51a-24+lenny2+spul with includegSQ@QL client
— PostgreSQL Server 8.3.9 with includesh! client

— SQLite 3 version 3.5.9

— dstat tool 0.6.7-1

- MRTG version 2.16.2-3

— flow-tools v. 0.68-12 (improved flow-export tool wéased in 0.67)
— iostat sysstat version 8.1.2

Database server's configuration files were lefisof-the-box with the following exceptions:
— Parameters changed as stated in this work, e.tgrlmyinchronization.
— All databases pointing to the same Ext3 partitiifierent from the base system but still in

" Germany-wide research and experimental facilitgp:Hwww.german-lab.de

RAID 1E uses 2-way mirroring on an arbitrary numbkdrives, leaving n/2 disk space and being toleta non-adjacent drives failing.
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the same RAID-0 system.

Without suffering any changes, parameters relaigeetformance tuning in MySQL were:

key_buffer =16M
max_allowed_packet = 16M
thread_stack =128K
thread_cache_size =8
query_cache_limit =1M
query_cache_size =16M

And for the PostgreSQL server as follows:
shared_buffers = 16 MB
checkpoint_segments = 3

SQLite3 had no configuration file at all in our exjments.

As for MRTG configuration the following SNMP MIBsexe loaded:
usr/share/snmp/mibs/UCD-SNMP-MIB.txt
lusr/share/snmp/mibs/TCP_MIB.txt
Jusr/share/snmp/mibs/HOST-RESOURCES-MIB.txt
lusr/share/snmp/mibs/UCD-DISKIO-MIB.txt

And the following objects monitored (together wstbhme parameters and routers.cgi script):
ssCpuRawUser.0&ssCpuRawSystem.0
ssCpuRawWait.0&ssCpuRawSystem.0
ssCpuRawldle.0&ssCpuRawldle.O0
ssCpuRawUser.0&ssCpuRawUser.0+ssCpuRawSystem.0&ssCp uRawsSystem.0+ssCpuRawNice.0&ssCpuRawNice.0
laLoadInt.1&laloadInt.2
1.3.6.1.2.1.25.2.3.1.6.1&memCached.0

1.3.6.1.2.1.25.2.3.1.6.32&1.3.6.1.2.1.25.2.3.1.6.32 (host..hrStorageUsed)
iostat -kd /dev/sda3 (kB_read & kB_wrtn) (ext3 data base storage partition)
TEST SETUP:

After several focused tests on kernel versionsguwiare combinations, larger or experimental
datasets and other specific situations, to comgatabase systems the basics of Experimental Design
were followed. Specially the principles ofthogonalityby means of altering only one factor on each
test, replication principle by repeating tests until main variatiappeared are identified or controlled
andblockingprinciple as orthogonality provides us to.

There were 24 final insertion tests, all combinagimf: 3 DBMS x 4 indexes x 2 field types,
altering each time only one factor, creating thas/w

- DBMS : MySQL/ PostgreSQL / SQLite3

- Indexes :noindex/index O/indexA/index B

- Field types: generic (integer) / plaintext (spexifi

For an easy interpretation of MRTG graphs, insert@sts had always the same execution order
and was as ifable 7. This allow us to compare different graphs aneérmtet relation between User
CPU, System CPU, /O throughput, I/O wait time &@wybstem's Cache that will lead us to know the
bottlenecks and test requirements and behavioyeidormance improving.
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Table 7: Insertion tests execution order

Ord. Test Ord. Test Ord. Test

MySql-No Index-Integer 9 PgSql-No Index-Integer 17  $@INo Index-Integer
MySql-Index O-Integer 10 PgSql-Index O-Integer 18 S@llndex O-Integer
MySqgl-No Index-Plaintext 11 PgSql-No Index-Plaintextl9 | SQLite-No Index-Plaintext
MySql-Index O-Plaintext 12 PgSql-Index O-Plaintext ~ 205QLite-Index O-Plaintext
MySql-Index A-Integer 13 PgSql-Index A-Integer 21  Seekindex A-Integer
2 S@index B-Integer
3SQLite-Index A-Plaintext
24SQLite-Index B-Plaintext

N
t

MySql-Index B-Integer 14 PgSql-Index B-Integer
MySql-Index A-Plaintext | 15/ PgSql-Index A-Plaintext
MySql-Index B-Plaintext| 16/ PgSql-Index B-Plaintext

N

O N OO0 WDN|PF

N

Tests were automated by the use of argument-basddderipts to run all tests from scratch in a
batch job, storing each test data in its own da@apsaving performance statistics on a results Bye
fetching those statistic files and joining theniain spreadsheet we create the graphs showingshe t
behaviour. Many other special tests were execuietbinpare kernel versions, loaded storage system
modules, different Loadgens, RAM memory availabldéhte system, available free disk space, etc... to
find a good test environment.

Two main scripts calledhult-insert.shand mult-query.shrun all the standard performance tests.
The file mult-insert.shcalls the scripttest-export.shwith several parameters like database type
(MySql/PostgreSQL/SQLite), index usage or not, type index (none/O/A/B), type of field
(generic/specific), transaction control, sourceaddés used. Those parameters at the end corrdgpon
a file name portion, having different files for &ddnd of task and joining all them together we stouct
the needed database structure. Those files caspiarific commands to delete and re-create the dsgab
structure, indexes and fields. Ttest-exporsh file joins all them, empties all caches and buffand
executes the improvdtbw-exporttool with the specified parameters in a pro-databsystem base.

On the other side, theault-query.shscript takes the part of querying data, it dedatre SQL
gueries and the equivalefibw-report report executing timed queries on every configarapossible,
saving each query result, time spent and user/k€R& used on a file. As our data will be written-
once-read-many, queries are executed twice, tbiedite emptying buffers and caches, while the sbcon
one don't, this way we can compare the differeret@véen the first time some data is used, and the
followings. This is an important point because sigeond scenario will be the most common. At the
same time MRTG with configured statistics (CPU, RAMO) are being gathered for bottleneck
monitoring purposes.

All tests have been run several times, contragesglts. Most graphs are showing mean values
of three executions of the same test, all testsvetoalways the same behaviour and even peak
differences were statistically not significant.

As stated before, we have a WORM (Write Once, Rdady) scenario, thus making the cache
topic really important, and for this reason we walke care about cache behaviour in query tesexeTh
were 48 final querying tests: all the previous comabons, plus another variant; with and without
flushing caches after the previous query. This wayhave statistics for the 24 scenarios, knowirgg th
impact of the cache if we plan to query severaésithe same data, or mainly once.

Though not every variable in our tests was preténidebe controlled to make them 100%
reliable as emptying the full database partitiorriorning tests in different order, system's caahaé a
buffers were cleared before each test by meankeohéw tunable option in kernels >= 2.6.16 that is
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/proc/sys/ivm/drop_caches. By means of running tbhkowing command: sync; echo 3 >
Iproc/sys/vm/drop_caches we order the system to sync the filesystem buféerd free the page
cache, directory entries and inodes, obtaining tha desired effect.
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RESULTS
STORING DATA:

In Figure 7 are shown the results from the most simple tkat,will allow us to explain this kind
of graphs. In this graph we can see the performamgesert the near seventeen million records fiplgpt
a dot every 100.000 records (flows). This methotl allow us to check scalability as more data is
received and predict growth rate. On the Y-axisejgresented the time in seconds to do the operation
while in the X-axis is shown the number of recoffttsws) written, from the first one to the last ores
easy seen, time spent to write records is lineamgahll the test, with minor spikes and clearlyvsimg
MySQL as being twice faster as the other databgsterss. Reason for that can be, for SQLite as not
being a high-performance designed system and thgeusf automatic field size and type detection and
in case of PostgreSQL the need to store more dataMySQL as it does not support unsigned fields as
explained before, requiring more 1/0O as demongdratdow.

In contrast, same test run wiklaintextfield type showed slightly worse numbers, all dates
required about two seconds more to write the ddia is caused by the amount of data processed and
written, in e.g. MySQL with Integer field writes thisk 4.9 Mbytes/100K flows while in tHelaintext
version writes 10.2 Mb/100K flows, SQLite writestMb/100K for the Integer field and 18 Mb/100K
for the Plaintextversion. There is a curious effect, PostgreSQltesrb1l Mb/100K on the Integer test
and only 41 in the other and still is slower, thehaviour can be because its engine is not fastgénion
this operation. This test demonstrates for all lnkda systems using Integer fields performing bétean
Plaintext fields for insertion when not using index
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Figure 7: All DBMS, using Integer fields, no indexes, tractsons: Aut

In Figure 8 are shown all databases as before, with time tie wr the Y axis (right) and a new
variable on the Y axis (left): Megabytes writterthe disk also every 100.000 records, those liaes la
small right-pointing arrow to be recognized. Instlexperiment we are using Index 0O, this is thearas
for the big amount of data written to the disk, oaty the flow data, it also counts index storagd a
modification. Here we can see bigger differencesvben database systems as this tests is more 1/0
demanding. MySQL is still the best solution as seémwrite the lowest quantity of data and indexes,
helping to do it quicker. We can appreciate thanew it is writing more data to the disk at thedletime
spent to write records is constant, this meansgiigithat flow-export tool is not fast enough toyde
more data and it is the bottleneck in this expenime
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In the case of PostgreSQL is also constant, butinesjabout twice time to do the same task as
MySQL, if we pay attention to the curves of bothsoeSQL lines we can see some relationship
between them, as disk I/O fluctuates time does. @€l ite in this test does not performs very well,
even writing to the disk only twice as MySQL it t&eps about three times more than this one to do th
same task. Probably as SQLite is not pretendeeab wlith this amount of data the indexing engine is
not fast enough and creates a bottleneck whichapignive can solve by using SQL transactions and is
explained in the followindrigure 9. At the end of the graph we can appreciate a straagaviour in all
databases with oscillating times and written d#tés behaviour is explained later and calldata
diversity effectas this is a data pattern effect that will appeal graphs.

Figure 9 performs the same test Bgure 8 with the exception of a single factor: transaction
are forced to manual mode and set to 30.000 flewsize each transaction. This optimization made
SQLite to be faster than PosgreSQL by only reggiaround 21 seconds in contrast as the previously 4
seconds shown. If we compare blue arrow lines dh gaphs we can appreciate the same amount of
data written to disk, this is what makes us thib&a the indexing engine or internal operationbe&ing
the bottleneck on this indexing test. Other databsgstems were affected only slightly by using
transactions. Other tests made with different nundlbdlows pro transaction showed specific database
small speed improvements, usually with values betw2.000-40.000.
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Figure 9: All DBMS, Integer fields, Index 0, transactiofsrced to 30.00
26



PreviousFigure 8 and followingGraph 10 will allow us to compare between previous Index 0
and Index A. Should be noticed that both Y axidescan this graph are narrower as this test iefast
execute though line shapes are similar. Even ntboeigh both indexes have the same fields to index,
Index O is composed only by single fields whereadek A has half of those fields combined as
described in thdResolutionsection. Even if amount of data to process issdume in both tests, the
indexing of more fields has more overhead thatsthe of those fields, this is the reason for thi to
be faster in all insertion cases. Depending onbdet index size the difference will be proportipnal
showing PostgreSQL a reduction around 19% on reduime and data written. In facts of transactions,
same principles apply to SQLite, using them wilplgna good speed improvement, though number of
flows pro transaction should be optimized agaireckbdn of Index O or Index A will depend mostly on
guery performance. All databases perform in theesamanner as seen by line shapes but in case those
results are similar, Index A performs a bit be#tgrexpected.
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Figure 10: All DBMS, Integer fields, Index A, traictions: Auto
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In Figure 11 we can see performance of Index B, easily sedmaisthis one is the most resource
demanding test. The reason is number of indexddisfeend complexity of them. First, this Index B has
two more fields to index: Src_IP_Port and Dst_IRtPlooth combined in a single one. And second,
perhaps the complexity of combined records, in wigle in Index A [Src AS + Src IP Addr] field can
create combinations of 65.536 (ASN) x 4.294.967.@P%4 Int32) but both numbers are often related to
each other, in Index B [Src IP Addr + Src IP Paregults in the same amount of possible combingtion
but not so often correlated between them crealing more different data. As the last one will reguo
write and maintain more data on disk this resuita higher 1/0O activity greatly effecting on secerid
complete operation.

Below we can appreciate how Y axis (right) is ngénree times than Index A I/O activity and Y
axis (left) seconds is a bit higher. Worst resaits given by the database system requiring moretivad
is as always PostgreSQL. While the other databasgeras only increased I/O by two times factor, bein
it low, PostgreSQL did it by three scaling up t8@0 Mb/100K flows. While in Index A PostgreSQL
was faster than SQLite in this test twisted posgi@nd together with the transaction optimization f
SQLite it can advice us to better use SQLite thastg?eSQL in situations with several indexed fields

Even with this increment in I/O usage, MySQL resgto this test was really good, as it only
performs low I/O it does not supposed a problerit &md time to complete operation was the same in
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both tests. Only at the end when I/O requiremestst@ the maximum required about 17 seconds pro
100K flows in comparation with SQLite and PostgpeShat both required about 52 seconds.
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Figure 11: All DBMS, Integer fields, Index B, traigtions: Auto

Figure12is the same previous test but with Plaintext 8ellll database systems required more
time and I/O to process the data. This demonstiatieger fields as being better than the Plaintext
version and last one should be only used whenatat@ersion in data querying implies a big problem t
deal with.
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Figure 12: All DBMS, Plaintext fields, Index B, tisactions: Auto

Data diversity effect and system scalability witldléxes can be seen belowHigure 13. There
is no need to do this test without indexes as & aleeady shown iRigure 7 that line shape is linear and
constant and should work without problems. Dateegated for this experiment was from tih@wv-gen
tool as explained on thHeesolutionsection. This tool generates flows with field a@nts being numbers
sequentially increased by 1. This creates weirdvSlavith almost no relation between them at all,
allowing us to find the worst-case situation andgging system scalability.

This experiment was done with four times more dhtn previous tests, it has 66.2 million
records. As our real data had only 17 millions, siaene data was repeated by joining it four times,
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having the common oscillating behaviour at the @idough real data is not completely real for using
this trick, the most important thing in this graptthe shape of the generated data. Generatedvdida

to disk about six times referred to real data, magg twice the time to do it. At the beginning @ata has
no relation between them generates more /O whéatmg indexes until it arrives to a point foumd i
record 27 millions. The reason for that number lmathat possible combinations stored in indexegbeg
to be similar/duplicated and thus 'related’ allayihe indexing engine to optimize indexes or comabin
similar fields requiring then, less 1/O transfefest demonstrates the importance of data diveasity
that the MySQL database system is able to deal pvidbably any kind of traffic pattern and traffizes
even using indexes.
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Figure 13: MySQL, Integer fields, Index 0, transacs: Auto

BOTTLENECKS

Specific test bottlenecks were found dependingeshrequirements. They were found thanks to,
among others, MRTG.

In the case without indexes, bottleneck was ftbe-exporttool not being able to export data
faster, though some optimizations can be doneglianges we did.

In overall, if we use indexes the problem is thenmdtiprocessor support on the database system
to manage them, 1/0O performance can be also agmobl

When querying data with indexes I/O performancdiésbottleneck, in case without indexes and
complex queries the no multiprocessor supporthalthe bottleneck.

SQLite executed extremely slow when using inderasch more than the other DBMS, | think
this behaviour occurs by the way its indexing eagsmimplemented.

It can be seen iRigures 14 to 17 some of those bottlenecks. In inserti@plys we can notice
three things related to tests performance: timénish each test marked by the width of each green
column (specially in the cached memory graph). W&deU usage and behaviour of our flow-export tool
measured by the height of the green column or @PUNait time depending on graph, and in the same
manner but with the blue line, CPU used by systeocgsses like database server. All four graphs are
from the same set of experiments and are correlatexiving behaviour and conditions of the different
tests.Table 8 shows some test execution details, explained bdétwhose graphs as an example.

29



Table 8: Test execution details

CASE TEST BEGIN| END Real User CPU System CPU
duration Time Time
- MySql (all) 17:10| 00:27, 07:17:00 - -
- PgSql (all) 00:27| 11:20 10:53:00 - -
- SQLite (all) 11:20| 03:21 16:01:00 - -

A | MySql-no index-Integer 17:10 17:30  00:20:0 00:02:39 :00019
B | MySql-index A-Plaintext 21:15 23:08 01:53:0( 00:03:45 0:@B:01
C PgSql-index B-Integer 06:05 08:03 01:58:00 00:03:24 :08G5
D SQLite-index O-Integer  12:12 14:46  02:34:00 01:01:08 :3Q110
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CASE A

This test is the fastest one. As it only lasts albwenty minutes is very difficult to appreciate it
in the graphs. As it is a no-index test, not asimaetta as others is written to disk, no I/O CPUtwaie
neither cached memory is required and it can be seehe proportion between real duration (20
minutes) and User/System CPU (about 4 minutes)igntést and the proportion on the other tests.

CASE B

In this scenario the bottleneck is on the flow-exfotient DB side; system CPU, CPU I/O wait
and disk I/O is very low while User CPU is near thaximum. The whole system is waiting for the User
CPU processes at all times. This can be causezbfoe data conversion and/or manipulation as thts te
needs to send more data as it is stored as plafotexat.

CASE C

Here is clearly seen how indexes and double setdsfiaffect to PostgreSQL, it requires writing
to disk about five times more data than other tastssystem is waiting for this action to finishvader
and higher green columns for CPU 1/0O Wait shows.

CASE D

As SQLite is not a client/server database systedoés not have a user process and a server
process, instead everything runs as a user praoesall System CPU spent time is not directly imedl
in internal database operations. Graphs show ahighy System CPU time while only a medium-level
User CPU time. This is probably caused becausersyist waiting for some unknown operation or high
and long CPU I/O Wait time to finish and at the saimme user-space processes are waiting the system
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to finish internal operations. This unknown opematcan be memory-related operations, it can belusua
as SQLite is not designed for managing huge ques\tif data.

Finally, to have a reference Table 9 are written some basic statistics about database and
best time to perform the 100,000 flows insertion:

Table 9: Database sizes and time to complete thertion

Database Field Type Index Size Time to store

PostgreSQL Integer none 2.3Gb 00:52
Integer Index-0 5.9Gb 01:17
Integer Index-A 5.0 Gb 01:09
Integer Index-B 5.5Ghb 01:58
Plaintext none 2.3Gb 00:57
Plaintext Index-0 5.9 Gb 01:23
Plaintext Index-A 5.0 Gb 01:09
Plaintext Index-B 55Gb 01:58

MySQL Integer none 0.9Gb 00:20
Integer Index-0 2.3 Gb 00:36
Integer Index-A 1.2Gb 00:32
Integer Index-B 2.1Gb 00:42
Plaintext none 1.8Gb 00:25
Plaintext Index-0 3.8Gb 01:30
Plaintext Index-A 3.0Gb 00:32
Plaintext Index-B 3.6 Gb 01:19

SQLite Integer none 1.4 Gb 00:52
Integer Index-0 3.3Gb 02:34
Integer Index-A 29Gb 01:56
Integer Index-B 3.2Gb 02:15
Plaintext none 2.8 Gb 01:15
Plaintext Index-0 5.9 Gb 02:32
Plaintext Index-A 5.4 Gb 01:56
Plaintext Index-B 5.7Gb 02:15

QUERYING DATA :

In the next page, ifrigures 20 to 22is shown an overview result of all tests: two @liént
gueries executed over all twenty four designedl#eta combinations; executing them twice: cleaning
and without cleaning system's buffers/cache. Flowlst structure does not have any option to compare
with the new database options, its results areatepdan each experiment for easy reading. Graptigeat
left side are from Query A, at right from Query BHrst row contains queries in databases using only
integer fields while the second row were createth \piaintext/specific fields. Each graph is showing
results for all database systems, being the fastdb each colour for the first query executiond dime
second one for the same query but without cleaburtgrs.

31



System's cache helps improving time to executeolyeting it up to the half mainly in two
situations: using MySql and indexes on the firstrguwithout being significant the type of fields)da
for SQLite with the second query in all cases. @a&lso helps every other tests by reducing the atnou
of time but only slightly.

Field type integer performs only slightly better Query B but around three/four times faster in
Query A than plaintext fields for nearly all databasystems.

Too many factors can be compared on those graphssbwe are searching for the best solution
we can easily discard some of those combinatioss Ipoking graphs. SQLite is proved to be the
slowest in all cases and with a great difference, aan discard it. Also there are no significant
differences between Index A and Index B and mogheftime Index O performs equally or better. No-
Index versions seem to perform better than the irgngalndex O version but we will keep this factor
take a closer look.

After simplifying those graphs we reduce complexyFigures 18 and 19where it can be
verified again that our indexing is not worth dtialany case. Focusing on Query A and No-Index bar
the performance between all three systems is ndalgame, providing MySQL and PostgreSQL more
flexibility and powerful language to retrieve wive¢ need. In case of Query B results are not so gsod
both database systems require much more time forpeit.
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Figure 18: Query A, Integer fields Figure 19: Query B, Integer fields

After these results some optimizations were donéhéodatabase systems demonstrating that
better results can be achieved. For MySQL incregkay_bufferparameter anduery_cache_sizdid
not make any effect, but for PostgreSQL increasimgilable and cached memory reduced time to
perform Query B-no index from 120 seconds to arpiable amount of 70 seconds.
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INTEGER FIELDS

PLAINTEXT FIELDS
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Figure 22: Query A, Plaintext fields, 1st and 2ixee@ution
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CONCLUSIONS

In this work we have compared three database sgstemthe specific task of storing and
accessing huge amounts of Netflow protocol dateedttn databases. This comparation is not only to
know wether it is possible or not to do it with aladses, it is also to know which one of the three
databases is the best for this specific scenario.

After many tests PostgreSQL showed that it willuiegja much faster and larger storage system
than others, but in contrast complex queries welldxecuted two times faster than MySQL and a bit
slower tonetflow-tools Simple queries are executed in PostgreSQL and My&¥ast asetflow-tools
We should remember that MySQL only requires halfaje space than PostgreSQL, it would be a good
option in case we can not afford a large capatitsage system or one enough fast but we can waiéso
time for queries to be finished. At the same timgIQL is the fastest for data insertion and willthe
best option again in situations where time-to-stemore important than time-to-query.

The use of transactions on insertion demonstrdiat it greatly increases performance when
using indexes and that only helps slightly whenusihg them. Database server optimizations have bee
left for future work and will allow databases to tearly as fast as flow-tools, specially in Posi§peé.

All tests clearly show great improvements when gisiieger fields for time stamps and IP Addresses
and the uselessness of using and creating indexesai-time, leaving the creation of them if really
needed to a later time in batch mode.

Database systems can perform similar to flow-ta@olsome queries providing a more powerful
data query language but in other queries still doperform so good. More research should be done to
know the edge between simple-complex queries dlttae right decision. Other table structures can
also help on this by using database normalizatt@hexternal tables to store Autonomous System extra
data, port names, network aliases or DNS names.

In addition, future work can be directed towardspiaving our best solution with small
improvements like bulk insertions with prepared SQleries or big improvements like database
compression, partitioning or the use of a clusegrethding on storage or processor needs, but glsg tr
different database systems for example some bashtkmrchical data.
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