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Abstract

Given a Takagi-Sugeno (TS) system, this paper proposes a novel methodology
to obtain the state feedback controller guaranteeing, asymptotically as a Polya-
related complexity parameter grows, the largest (membership-shape indepen-
dent) possible domain-of-attraction with contraction-rate performance A, based
on polyhedral A-contractive sets from constrained linear systems literature. The
resulting controller is valid for any realisation of the memberships, as usual in
most TS literature. For a finite complexity parameter, an inner estimate of such
largest set is obtained; the frontier of of such approximation can be understood
as the level set of a polyhedral control-Lyapunov function. Convergence of a
proposed iterative algorithm is asymptotically necessary and sufficient for TS
system stabilisation: for a high-enough value of the complexity parameter, any
conceivable shape-independent Lyapunov controller design procedure will yield
a proven domain of attraction smaller or equal to the algorithm’s output.

Keywords: Fuzzy control, Invariant sets, Takagi-Sugeno models, Contractive sets,
polyhedral Lyapunov functions

1. Introduction

A large class of nonlinear systems can be ezactly expressed, locally in a com-
pact region of interest (denoted as ) in the sequel), as a fuzzy Takagi-Sugeno
(TS) model, using the “sector nonlinearity” methodology [1, 2], embedding the
nonlinearity into a convex time-varying combination of “vertex” linear equa-
tions, where the convex combination’s coefficients, say u, are usually denoted
as membership functions.

Once these locally exact fuzzy models are available, model-based stability
analysis and control design for such systems can be handled via some conditions
on the vertex models; conditions which involve only the vertex models and dis-
regard the actual “shape” of the memberships are called shape-independent [3]:
they introduce some conservativeness, as shape-independent conditions refer to
the “family” of systems sharing the same vertices, instead of the single nonlinear
one which originated the TS model.

The most widespread approach to the above shape-independent stability and
control design problems for TS systems are the Linear Matrix Inequality (LMI)
results in literature [4, 5, 6, 7, §].
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If decay-rate performance is pursued, most of the above LMI results can be
understood as finding a Lyapunov function such that V(A= zy41) < V(xy,), for
a given value of the contraction rate A (or optimising it via, say, bisection).
The classes of controllers are called parallel distributed compensator (PDC) [1]
if the controller is chosen as a combination of vertex actions sharing the same
membership functions as the controlled plant; or non-PDC if other functions of
the memberships are used [5]. Past and future memberships may be involved in
the Lyapunov function and non-PDC controllers [9, 10, 11].

In most literature, once a feasible Lyapunov function is found, either quadratic
V(z) = 2T Pz [12] or nonquadratic [5], the control problems are considered
solved, and the proven stability domain is the largest level set {V(z) < V.}
inside the region Q. Actually, a slightly larger set is possible [13]; furthermore,
the LMI solution V' (x) may be non-unique: so, the actual domain of attraction
can be much larger than the Lyapunov level set. The developments in this pa-
per will be also compared to the above-cited options considering delayed/future
values of membership functions in nonquadratic Lyapunov functions.

Apart from state constraints arising from the local modelling region, con-
trol action saturation is also an important issue. LMI analysis of saturated
controllers needs additional restrictions forcing non-saturation on a particular
level set [1] or, for instance, iterative approaches [14]. Determining the largest
stabilisable domain of attraction in a given region 2 via LMI under constraints
remains basically unsolved: there are powerful results using polynomial-fuzzy
Lyapunov functions and multi-sum controllers, but changes of variable render
some steps conservative in controller synthesis and, also, maximum-volume for-
mulae do not exist for non-quadratic level sets.

In robust (polytopic) linear control, the above problem has been successfully
addressed based in set-invariance ideas, originating in the 70’s [15], with later
refinements [16, 17, 18, 19, 20]; extensions to switching/Markov setups appear
in [21] and references therein. The relationship between robust and fuzzy ap-
proaches lies in the fact that condition V (A~ ayy1) < V(x)) means that level
sets of the Lyapunov functions are A-contractive, in the sense introduced in [17].

The connection to fuzzy control systems hasn’t been, however, exploited in
literature to the author’s knowledge. A first work in such direction appears in
[22], and extending such results motivates the research presented in this paper.

The goal of this paper is studying stabilisation of discrete-time TS systems
based on geometric set invariance considerations under affine state and control
constraints, avoiding LMIs. Inspired on that idea, a prior paper [22] proposes us-
ing polytope-handling software to find the maximal (i.e., largest) A-contractive
set in 2, for a given open-loop or closed-loop (being the controller fixed, a pri-
ori) fuzzy system, using an asymptotically exact algorithm. It is shown in such
a paper that, by sheer definition, such a set will be larger than any level set ob-
tained with a shape-independent Lyapunov approach. Algorithms from earlier
polytopic system literature are adapted in the above-cited work to the multi-
ple summations arising in closed-loop PDC fuzzy systems, by combining those
results with the ones using Polya’s theorem [6]. The above paper does exploit
that information under state and input constraints but, however, considers only
stability analysis of a pre-existing PDC controller.

The objective of this work is to extend the results in [22] to (possibly non-
PDC) fuzzy controller synthesis, obtaining an estimate of the largest set inside
a polytopic region of interest {2 in which there exists an admissible (i.e., within



saturation limits) controller such that the set is made A-contractive in closed
loop. The paper improves on current shape-independent fuzzy LMI-based liter-
ature in several key aspects:

e A Lyapunov function is not needed (although a polyhedral one is obtained
as a by-product), as the argumentation is purely based on set-invariance
results.

e The algorithm is asymptotically exact, so given enough computing re-
sources it would equal or beat any shape-independent Lyapunov result,
by sheer definition of the maximal A-contractive set.

e The controller structure can also be expanded so that it may approach
any continuous non-PDC controller (using polynomials in memberships,
which are “universal function approximators” in the unit simplex [23]).

Of course, it also improves over earlier robust-linear polytopic controllers using
related approaches [16, 17], by the fact that the knowledge of the membership
functions is actually exploited in fuzzy control systems.

There are three issues left out of the scope of this work: (a) for brevity, only
a disturbance-free case is considered; extensions could be made in systems with
additive disturbances adapting [24]; (b) there are other shape-dependent results
[25, 26] whose output might be less conservative than the ones in this work; (c)
although the results in this work would overcome any shape-independent result
with enough computational resources, there may exist LMI results which obtain
acceptable controllers in practice with less computational resources than those
needed to match them via the proposals in this work.

The structure of the paper is as follows: Sections 2 and 3 state the goal of
the paper and discuss preliminary definitions and results. Section 4 precisely
defines shape-independent sets for fuzzy control systems. Section 5 details an
algorithm for the computation of polytopic A-contractive sets which can be
proved to asymptotically obtain the mazrimal shape-independent A-contractive
set. Section 6 presents two different procedures to compute the control action:
an online optimisation and an explicit offline solution. Further discussion and
comparative analysis with prior literature appears in Section 7. Finally, some
examples appear in Section 8, and a conclusion section closes the paper.

2. Problem statement
Consider a discrete-time nonlinear system:
Trr1 = [(Tr, ug) (1)

such that f has continuous partial derivatives and f(0,0) = 0, where z; € R™
represents the state vector and ug; € R™ stands for the control actions at time
instant k.

It is well known that such system can be equivalently expressed (locally in
a compact region X of the state-space [1] containing the origin in its interior),
as a TS fuzzy system with r rules or local models:

i1 = fulor),on,up) =Y pa(oy) (Asoy, + Biug) (2)

i=1



where A;, B; are the so-called consequent model matrices and p; : X — [0,1]
represent membership functions, grouped for convenience onto a vector of mem-
bership functions, u(z) := (u1(z) ... p.(z))T. Membership functions are de-
fined in such a way so that, for any x € X, u(x) belongs to the (r—1)-dimensional
standard simplex A C R", defined as:

A::{,u:(uh...,ur)ERWZ,uizl, i >0 i:1...r} (3)
i=1

Notation f(j,z,u) is a shorthand for future developments; note that that f is
linear in p and, (separately) in (zj,u). Also, when memberships in several
instants of time are involved, notation h; € A, h; := p(xky;) will be used.
The TS model of a nonlinear system is not unique, so different TS models
yield different performance values in subsequent steps; an initial approach to
optimal modelling appears in [2]; also, sector nonlinearity can be extended to a
polynomial case [27]. These issues, however, are out of the scope of this work.

The problem this paper aims to solve is the determination of a fuzzy con-
trol law which stabilizes the TS system (2) in the largest possible subset of a
polytopic region €2, with  C X. Such controller design procedure must be un-
derstood as finding a set of valid initial conditions C* and a feedback law u(z, )
which ensures that z;, € Q for all £ > 0, and limy_,0 zx = 0 if 29 € C*, while
fulfilling control constraints u(z, u(x)) € U for all x € Q, for all possible shapes
of the membership p(x) as long as u(x) € A (shape-independent stabilisation).
Coefficient A will be related to a “contraction-rate” performance measure. The
formal meaning of shape-independent stabilisation with contraction rate A will
be made clear later in Section 4.

By assumption, modelling region X and input constraint set U will be com-
pact, convex, polytopes, containing the origin. So, they can be defined by affine
constraints, expressed as vector inequalities:

X={zeR" | Rx <} (4)
U={ueR"|Su<s} (5)

being R, S matrices and [, s vectors with compatible dimensions, with vector
inequalities to be understood as element-wise; abusing the notation, a scalar at
the right-hand side of an inequality should be understood as affecting each of
the rows at the left-hand side.

Actually, in most cases of practical interest Q will be intentionally set to
be equal to the modelling region X, but the developments in this work do not
necessarily require so from a theoretical point of view.

3. Preliminary definitions and results

Given an arbitrary set €2, notation AQ2 will denote the linear scaling of the
set Q by A > 0. If Q is defined as Q := {x € R" : M (z) < 0}, for an arbitrary
vector of constraint functions M (-), the scaled set is AQ := {z : M(A~1x) < 0}.

Definition 1 ([17]) A4 set Q@ C X is control A-contractive (given 0 < X\ < 1)
for the system (1) if and only if, for any x in  there exists an admissible input
such that the successor state lies in X2, i.e., if t € Q= Ju € U: f(x,u) € AQ.



Obviously, u above might be non-unique, and, too, the set of feasible u
depends on z, denoted as Uq(z) := {u € U| f(x,u) € Q}. If U is a polytope,
and f(x,u) is affine in control, i.e., f(z,u) = f(z) + g(x)u, then Ug(z) is
a polytope, too. Trivially, a contracting state-feedback controller u(z) can be
implemented by any arbitrary selection from the set-valued map Ugq (x); however,
additional hypothesis are needed on U, €2 and f so that there exists a continuous
selection u(x) [28]. The scalar A will be denoted as geometric contraction rate.
Decay-rate stability requires contraction at all future time, requiring suitable
Lyapunov functions:

Definition 2 A convez function V(z) such that V(0) = 0 is a (local) control
Lyapunov function (CLF) ensuring geometric contraction rate X for system (1)
if there exists a convex set ) C X including the origin in which, for all x € Q ~
{0}, V(x) > 0 and there ezists u € U such that V(A7 f(z,u)) <V (z) .

The above definition is an adaptation to the discrete-time and contraction-
rate setting of well-known concepts defined in, for instance, [29] for continuous-
time stabilization. The motivation of the definition is the fact that V is a
Lyapunov function as, by convexity, V (f(z,u)) < AV AL f(x,u)) < AV (z) and
the level sets are control A-contractive, as a level set  := {V(z) < v} scaled
would be M2 = {V(A™1z) < v}, so if z € Q, next state f(z,u) will lie in AQ
for some w. If f(z,u) were linear, condition in Definition 2 could be stated as
V(f(z,u)) < V(Az), because V(f(x,u)) = V(A" f(Az, Mu)) < V(Az); this fact
will be latter used in Lemma 4.

In many common cases, V(z) is a homogeneous degree-¢ polynomial in z,
then V(A\~1z) = A=9V (z); standard discrete decay-rate formulas V(A" 254 1) <
V(xy) arise with, for instance, ¢ = 2. In the homogeneous case, we have

VA ) = AF Dy (A ) < AmFDay () = VAT F Vg )

so, by induction, we can easily prove V()\_kxk) < V(xg) or, equivalently, by
multiplication by A\ we get V (x1,) < V (\xg).

Definition 3 (Maximal control A-contractive Set) A set, to be denoted as
C2.(9Q), is the maximal control A-contractive set contained in a region € for
the system zp11 = f(zr,ur) if and only if C2 () is control \-contractive and
contains all the control A-contractive sets contained in 2.

The following result is evident from the sheer definition of maximality and
the above discussion.

Corollary 1 Any level set of a local CLF in X ensuring contration rate \ is a
subset of the maximal control \-contractive set in X.

Proof: Evident, because of the above-mentioned fact that the referred level
sets are control A-contractive and all such sets are subsets of the maximal one. m

In the particular case of A = 1, a control A-contractive set is also denoted in
literature [17] as control invariant set, and the maximal control A-contractive set
is denoted as the mazimal control invariant set Coo(€2). Generalisations of these
invariance concepts to nonlinear disturbed systems have also been proposed, but
they may require conservative BMI manipulations, see [30].



Definition 4 Given an arbitrary target set ), the one-step set Q(S2) is the set
of states x in X from which the next state of system (1) can be driven to Q with
an admissible u € U, i.e.,

O :={z eX|ZueU: f(z,u) € Q}

Note that z € Q(Q) iff Ug(x) # 0. Also, Definition 1 could be rewritten
saying that € is control A-contractive iff Q C Q(AQ).

Definition 5 ([16]) The so-called i-step set C(Q) is recursively defined, start-
ing with C3'(Q) := Q as C}1(Q) := Q (ACMQ)) N, fori > 0.

If there exists a finite i such that C},(Q) = C}(€2), it can be proved [17]
that C}(€2) is the maximal one in Definition 3. Such set will be denoted as
C2,(€2). Also, in case such finite i does not exist, but there exists C2,, for any
1 > \* > ), there exist a finite 4* such that C} is control A*-contractive for all
i > 4*, albeit possibly non-maximal [31, Theorem 3.2].

Efficient computational characterisation of the one-step set Q in Definition
4 can only be easily carried out for special cases of f; for instance, the linear
case [17]. Actually, extending the idea to the TS case is the main motivation of
this work.

In order to do that, we recall Polya’s theorem, which is a key tool for the
results presented in the Takagi-Sugeno controller synthesis in later sections.

Theorem 1 (Polya) [32] If a real homogeneous polynomial F(u1, ..., p.), F:

A — R, is (strictly) positive in the simplex A, then there exists a sufficiently
large d > 0 such that all the coefficients of the polynomial (py+- - -+ ) F (py, .. ., )
are positive.

4. Shape-Independent one-step and A-contractive sets for fuzzy con-
trol systems

In order to obtain the i-step sets in Definition 5, iterative computation of
the one-step set in Definition 4 is needed. For a TS system, such set is:

Q) ={zreX|Tuel: iul(x)(/lzx + Biu) € Q} (6)

i=1

The shape of Q(Q2) may be very hard to compute, due to the nonlinearities in
the membership functions p;(x). Indeed, determining if a particular x belongs
to Q(Q), for convex , is computationally simple as f(u(x),x,u) is, actually,
an affine function' of u; however, the difficulty lies in determining an explicit
expression for the boundary of Q(€2) needed for the iterations in Definition 5.

A reasonable approach, in order to deal with this drawback, is disregarding
the information about the actual value of the membership functions, dealing
with the Takagi-Sugeno model for any possible value of p; —assumed known to
the controller, as done in most TS literature (i.e., a shape-independent analysis
[3])-. Hence, the one-step set in Definition 4 should be replaced by the one
below:

1For instance, for fixed =, u(z), if Q is a polytope, the problem is a linear programming
feasibility one.



Definition 6 The shape-independent one-step set of a TS system (2) is

Qui(Q) :={r eX|Vu e AJueU: > u(Aix+ Biu) € Q} (7)

=1

The definition ensures that for each (x, u) € Qs (2) x A there exists a non-
empty set of fuzzy (i.e., membership-dependent) control actions defined as:

Ua(z, p) == {’U,EU|']?(M,.’L',U) EQ} (8)

If © is polyhedral, the set Uq(z,p) is itself a polytope, for fixed = and u;
optimisation problems on Ugq(x, u) will be discussed in Section 6. Unfortunately,
exact computation of Qg; is still cumbersome, due to the nonlinearities involving
products of p; with z and u.

Let us show that Q;(2) C Q(Q). Indeed,

Q() ={z eX|for u=plx)IueU: i“i (A;x + Biu) € Q} D Q4(Q) (9)

i=1

as the conditions in the left-hand side of (9) involve only the single point p(x),
instead of the whole simplex in (7).

Any function u(z, p), u : Qs () X A — U, so that u(z, u) € Ug(z, u) would
be a valid fuzzy state-feedback control law to steer any state in Qg (€2) to Q2
in one step applying u(z, u(x)), valid for any actual shape of p(z). Although
there might be many options, the referred controller u(z, ) can be selected to
be continuous, which will be important for later developments:

Lemma 1 Let us assume Q) is described by Q := {x : g(z) < 0} with g being a
vector of affine functions (polytopic Q). Then, there exists a continuous function
u: Qu(Q) X A U, such that f(u,z,u(x,pn)) € Q.

Proof: The proof follows an argumentation analogous to the linear case in
33, Proposition 3.2]. In this case, Uq(z, 1) = {u € U| g(f (1, x,u)) < 0} can be
understood as a set-valued map. Convexity of U, plus go f being affine in u (for
fixed p and ), ensure Uq(z, ) is a closed convex set for all (z, 1) € Qq(Q) x A.
Also, it is a set-valued map which can be proved to be continuous (because,
again, go f is continuous). The classical Michael’s conver selection theorem [28,

Theorem 3.2] implies that a continuous selection u : Q4 () x A — U exists. =

A shape-independent definition of A-contractiveness for TS systems is now
presented:

Definition 7 Given 0 < A < 1, a set  C X is shape-independent control
A-contractive for the system (2) if and only if, for any (x,p) in Q x A there
exists an admissible (possible non-unique) input u € U such that f(u,x,u) €
AQ; equivalently, iff Q@ C Qu(AQ). Given a region X, a shape-independent
control A-contractive set () is maximal if any other shape-independent control
A-contractive set in X is contained in €.

As Qs:(AQ) C Q(AQ), any shape-independent A-contractive sets are also
A-contractive sets for the system (1) from which the TS model came from, as
Q C Qsi(AQ) C Q(AN). So, studying shape-independent control A-contractive



sets is a way to guarantee similar contraction properties for nonlinear systems;
of course this is, actually, the leitmotif of most TS fuzzy control developments.

Basically, the generic goal of shape-independent fuzzy controllers (designed
with a contraction performance objective in mind) should be approaching the
above maximal shape-independent set: indeed, no algorithm can prove a larger
set by definition. The results in this paper will present a constructive procedure
to generate a family of A-contractive sets wich approach the maximal one with
increasing accuracy.

Proposition 1 If Q is shape-independent control A-contractive for the TS sys-
tem (2), so it is its convex hull Co(Q2). Thus, the maximal shape-independent
control \-contractive set is convex.

Pgoof: Consider any x1, 2 in €, such that u; and us make f(,u@l,ul)
and f(p, 22, uz) belong to AQ for any p € A, respectively. Then ax; + (1 —

a)ry € Co(Q) and, subsequently, f(u,ax; + (1 — a)za, quy + (1 — a)ug) =
af(p,z1,ur) + (1 — a)f(p, T2, u2) € ACo(Q). n

Proposition 2 If Q) is shape-independent control \-contractive for the TS sys-
tem (2), then any linear scaling ¥§), with 0 < v < 1, is shape-independent
control A-contractive, too.

Proof: Considering z € /{2, with any arbitrary v < 1. Then, as v C €,
for any (z,p) € ¥ x A there exists u such that f(u,y 'z, u) € AQ, because
~~lz € . Linearity of f in 2nd and 3rd arguments allows to state that:

JF(M,V%%U) = Wflf(u,x,vu) €\

hence, f(u,z,yu) € A(¥Q). So, the control yu € U drives # € vQ to A(72). m

Hence, as shape-independent control A-contractive sets are control A-contractive,
the following well-known result and Proposition 2 can be joined to induce a
control Lyapunov function, if a shape-independent control A-contractive set is
found:

Proposition 3 ([19]) Consider ! = {x € R"|maxi<;<n, Hix < 1}. If vQ is
control A-contractive, for the TS system (2), for all 0 < ~ such that vQ € X
then

V(z) :== max (H;z) (10)

1<i<ny,

is a control Lyapunov function ensuring contraction rate \.

The nesting of contractive sets in Proposition 2 allows, too, the following
corollary to be stated (proof omitted for brevity):

Corollary 2 A set Q is shape-independent control \-contractive for a TS sys-
tem, if and only if, for any xg € Q, for any membership sequence (hg, b1, ..., hi_1) €
AF | there exists a control law u(z, i), with u = hy, at time k, such that xj =
f(hk,l,xk,l, u(zp_1, hi_1)) € A*Q, i.e., any initial state in it converges to the
origin with a geometric contraction rate \.



Modifying the iterations in Definition 5, the following result can be stated:

Lemma 2 For A < 1, the maximal shape-independent control \-contractive set
in a region 2 C X would be obtained if the iteration

Ch1(Q) = Qui (ACM)) N,

initialised with CJ(Q) = Q, converges in a finite number of steps, i.e., CA(Q) =
CA1(Q) = CMQ) for some finite i. The set C}(2) will be denoted as i-step
shape-independent set.

Proof: The proof comprises three steps:

1. First, the fact that C; is shape-independent control A-contractive if C3* =
@{\H. Indeed, for any i, if there exists a state = € C* and a membership
€ A such that f(u,z,u) cannot be steered to AC}* with an admissible v,
then such state will not belong to éi)‘+1~ Hence, convergence will not occur
until such x does not exist.

2. Second, let us prove that no point x € Q, = & C? can be steered to AC2,
for all p: if there existed o which could be steered to A\C? such point would
belong to C\ ;; again, convergence cannot happen until no such  exists.

3. Finally, as A\C2, contains the origin, and A < 1, any stabilising trajectory
should eventually enter AC2, (Corollary 2). However, the above second
assertion states that for states outside Coo there exists at least one value
of membership for which entering AC2, is impossible. Hence, no larger
shape-independent control A-contractive set exists. u

Given a nonlinear system, the set C2 obtained from a TS model of it is a
subset of the “true” C2, discussed in Section 3, due to the inherent conservatism
of shape-independent TS analysis [3].

5. Inner approximation of shape-independent control A-contractive
sets for TS systems

The above shape-independent sets need choosing a particular controller parametri-
sation u(z, 1) in order to be computable whith available computational geometry
software such as Multi-Parametric Toolbox (MPT) [34]. This is the topic of this
section.

The simplest approximation is choosing w not depending on memberships.
Indeed, let us consider:

Q) ={reX|uecU: Ax+BuecQ Vi=1...r} (11)

The above expression comes from plugging a membership-independent u(z, ) :=
u(z) into (7) and considering that >\, pi(A;x + Bju) € Q if and only if
A;z + Biu €  for all i. Obviously, Q% (Q) C Q(Q).

In fact, the set Q%,(Q) is the robust one-step set in uncertain polytopic
systems literature [35]: its main drawback is its conservativeness coming from
the fact that, for a given state, the control action should be the same for any
value of the membership functions.



5.1. Fuzzy controllers (single-sum,)

Given that p;(xg) are actually known, a clear improvement is defining a
so-called parallel distributed control parametrisation in the form:

u(r) = ZM(%)W () (12)

which defines a different “vertex controller” u;(x) for each model. This well-
known formula is, of course, the key idea behind “fuzzy” controllers since the
1990s, building a “complicated” nonlinear controller from “simpler” components
uj(x); in particular, later results in Section 6 will provide design methods for
vertex controllers based on convex optimisation, either numerical (once x and
1 are measured) or as piecewise affine state-feedback laws.

The closed-loop system with the parametrisation (12) can be written as

erer = Y wilen)p () (Aiwy + B (ar)) (13)

i=1 j=1
Let us introduce the augmented notation

up ()
ﬂ(m) = y Ej = [OmeOme---Imxm---omxm] (14)

up ()

being E; an m x (mr) matrix with an identity matrix in the j-th block position,
for 1 < j < r. In this way, we have u;(zx) = E;u(z), so the closed-loop system
can be written as the augmented-input one:

T

Tipr = )y iz () (Agzy + BiEju(ay,)) (15)

i=1 j=1

where the new input is a vector of length r x m. In this case, disregarding again
the fact that memberships depend on state, the shape-independent one-step set
of system (15), to be denoted as QL (Q), is readily expressed as:

QL) :={zeX|FeU,Y > wp;(Aw+ BiE;u) €Q Yue Ay (16)
i=1 j=1

where u is understood as a length-r vector whose elements belong to U; such
elements must be the same for all membership values but might be different for
different states; in an analogous way to (8), a set Ug(z) could be suitably defined,
and a continuous u(z) : QL (Q) — U" can be proven to exist?, thus justifying the
chosen parametrisation (12), obtained from u(x) by reverting back the vertical
stacking to a fuzzy summation.

Now, Q% () C 9,(22) C Qi () because forcing all u; to be equal converts
(16) into the particular case (11) and, on the other hand, the parametrisation

2The proof in this case would be analogous to Lemma, 1, adding the fact that the infinite
intersection of closed convex sets is itself also closed and convex; details omitted for brevity.
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of the underlying u(z, ) in (7) is generic, not restricted to being linear as (12)
postulates. Notation Q! is used to emphasise that the candidate controller is a
polynomial of degree 1 in the memberships. More general controller parametri-
sations will be discussed in Section 5.3.

5.2. Asymptotically exact polytopic inner approzimation of QL,(Q)
On the sequel, we will assume that €2 is a polytope defined as

O :={z|Rar < la} (17)
for some matrices R and vector lo. As Y0, p; = 1, QL,(Q2) can be expressed

as QL () ={zeX|JucU, ZZMW (Ra(Aiz + B;Eju) —lg) <0 VYue A
i=1 j=1
(18)

The main issue regarding Q! (Q) in (16) is the fact that a double-fuzzy
summation [36] appears in its expressions, so necessary and sufficient conditions
for computing (18) cannot be stated in a convex form. So, relaxations of the
double sum are needed. This kind of problems have been widely studied in the
field of copositive programming and LMI control for TS systems [36, 37].

The goal of this section is adapting the procedures in the referred works,
based on Polya’s theorem (here recalled as Theorem 1), to the problem of
computing approximations to QL (). In order to do that, the notation for
d-dimensional indices in [6, 36, 22] will be used:

i=(i1,i2,...00), Ta={1,...,7}% TF={iclylis <isy1, s=1,...,d—1}

SO H;r indexes all the different monomials p; of an homogeneous degree-d polyno-
mial (taking into account commutativity). For instance, for d = 3 and r = 2 we
can define I = {111, 112,122,222} — with some abuse of notation shorthanding
(1,1,1) as 111, etc.

Notation n; will denote the number of elements of perm(i), being perm(i) the
set of permutations of an element of ]I; in Iz. In the above case n111 = ngge = 1,
n112 = nga1 = 3 (because perm(111) = {111}, perm(112) = {112,121,211},

Denoting as (4 := f4i, fi, - - - fhiy, the following identities are straightforward:

s I T r d
SO iy iy = (Zm) => =Y mm=1 (19

i1=liz=1  ig=1 icly iert

because p; = p; if j € perm(i). The reader is referred to [6, 36, 22] for further
details on the multiindex notation and relevant properties.
Continuing with the example with d = 3 and r = 2, we have

2 2 2
1= o gy — 3 3 2 3 2 3 _ .
2_12::“;1;#11#12% pi o+ 3 pipe+ 3 s+ oy =Y mip

P
H111 112 g0 122 g9y H222 iely

)di2 = 1 for any d, we rewrite

In order to apply Theorem 1, as (3., p1;
equation (15), denoting u(xy) with shorthand g, as

11



r d—2 r r
Tht1 = (Z Mz‘) Z ZMz‘Mj(AiCCk + B, Ejui) =
i=1

i=1 j=1
i1=112=1 ig=1

Denoting Gy, = [A;, Bi, Fi,], and reordering the terms of the summation
(20) we get

s r r
Tk Tk
Tpy1 = Z Z Z iy iy - - - iy Giyis { ik ] = ZMiGm‘Q [ i

11=112=1 iqg=1 icly
Tk ~ Tk
=Y m| Y. G [ an ] =Y mnGi { an ] (21)
ielt je€perm(i) ier?

being éi the average values of G;,;, over all permutations of a particular ordered
multidimensional index, i.e.;

~ 1
G = e : § : Gjljz (22)
! jeperm(i)

For instance, in the above case d = 3, 7 = 2, we would get:
~ ~ 1
G111 =G, Gre = 5(011 + G2+ Ga1),
- 1 -
G = g(Gm + Go1 +G22), Gazo =G (23)

With the new equivalent expression (21) of the system dynamics, the one
step set (of course, identical to that in (16), as (21) is a mere rewriting of (15)
in the new notation for any d > 2), can be written as

1 _ - T G |
QL(0) = xeXHuEU.anu,Gl[a]eQVueA (24)

R
16Hd

Now, if Q were a polytope (17), from (19) we can cast the evident equivalence:

Rq Zniuiéi { g } <lao & Rqo Z i Gs [ g ] < Z nip; | lo

iel} ier) ier)
(25)
Now, the right-hand side inequality is actually equivalent to:

S ni (Rgéi [ 2 ] —ZQ) <0 (26)

ielr}

so, as nju; are all non-negative, we can assert that existence of u such that

RoG; { g } <lg (27)
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is a sufficient condition for € Q,(Q2). So, it becomes clear that a sufficient
condition for a given point to belong to Q1. () is that it belongs to the polytopic
complexity-d subset arising from the inequality in (27), denoted as:

é;m)::{xexuuewzéi{ﬂeQ Vieﬂg} (28)

because, indeed, the above argumentation ensures QL(Q) ¢ Q1 (Q).

It can be proved, following the asymptotic exactness results derived from
Polya argumentations [32], that the polytopic set QL(€) will tend to QL (Q2) as
the complexity parameter d tends to infinity. This is done in the lemma below:

Lemma 3 If z belongs to the interior of QL (), for a polytopic Q2 expressed as
(17), there exists a finite d such that x € QL(2).

Proof: Indeed, for z in the interior of Q!,(2), using the original definition
(15), i.e., d = 2, there exists v < 0 such that

Z Ny (Rgéi1i2 [ 2 } — lg) <v<0 (29)

ielf

So standard Polya-argumentations [32, 36] show that there is a finite d such
that, expanding (29) in the same way as done in (21), i.e.,

S ni (Rﬂéi [ i } - IQ> =" i (Rgéiliz [ 2 } - IQ> (30)

ier} iely

results in a d-th degree homogeneous polynomial in p; at the left-hand side
of the equation such that the polynomial coefficients will be all non-positive.
Requiring non-positiveness of all such coefficients is, actually, what (28) states
once matrices Rgq, lg defining the shape of € are plugged in. m

5.8. Extension to multiple-parametrization controllers.

A more flexible controller parametrisation can be set up as a c-dimensional
fuzzy summation, being ¢ > 1 an arbitrarily chosen integer, as suggested in, for
instance, [6]:

u(w) = u(w, 1) == > nipti(@)hiyiy i (7) (31)
ierd
For each state, this fuzzy control parametrisation is a degree-c homogeneous
polynomial in the memberships.

Lemma 1 ensures that, for a fixed x, there exists a control function which is
continuous in the memberships (in fact, so it will be in the state, too, but this will
not be needed for the moment) fulfilling the required constraints on successor
states. Any arbitrary continuous controller parametrization, in the compact
region A can be approximated to any desired accuracy by a polynomial in p,
as (31) proposes (polynomials are universal function approximators [23]); the
idea will be later used to prove asymptotic exactness of some algorithms, via
increasing the degree c.

13



With the above general parametrization (31), consider conforming @ ver-
tically stacking all w;;,. ;. (z) and suitably defining matrices F; ;,. ;. so that
Wiyia.. i, () = Eiyiy.. 5. 4(x) in the same way as it was done in (14). For instance,
for ¢ = 2 in a system with 2 rules, % would be defined as @ = (u}} ul, ul,)T, as
well as suitable E11 = ([ 0 0), E12 = E21 = (0 1 O) and E22 = (O 0 I) Then,
for d = 3, the closed loop would be

T = > pilar) (Ag zy + By, Eigigul(wy)) (32)
iel

With the extra decision variables in u, a larger polytopic approximation @3,
d > c of the “ideal” shape-independent one-step set Qg; will be defined below,
where superscript ¢ denotes the degree of the controller parametrisation, and
subscript d denotes the total Polya complexity parameter. The definition of
such QF will be analogous to (28) but with different sizes of @ and i:

Q5(Q) := {xEX | 3u € U?, p = card(LF) : G [ 2 } e Vieuj} (33)

where, actually, the expression of G; in (21) should be reworked in order to fit
the higher dimensionality. For illustration, in the above example (32), in order

to define O2(Q) we would need Gy = (A4; B;Ej;;) and, subsequently:

~ . 1
Gii1 = G, Giie = 1(G111 + Gii2 + G121 + Ga11),
~ 1
G122 = E(sz + G212 + Ga21 + Ga22),

~ 1 ~
Gii22 = 6(G112 + Gi21 + Ga11 + Goo1 + Ga12 + Gi22),  Gazee = Gago

For brevity, details on the construction of u and G; in other cases are left to
the reader. The above definition (33) generalises the cases of controller degrees
¢ = 0, implicitly assumed in (11), and ¢ = 1, explicitly defined in (12) and used
in (28). It can be proved that @fi C Q% when ¢ >cand d > d (details omitted
for brevity).

5.4. Polytopic inner approximation of the maximal shape-independent control
A-contractive set

As the actual Qg; used in Lemma 2 is out of reach with finite computa-

tional resources, we will modify it by substituting Q; by the polytopic shape-

independent approzimation Q. The result is Algorithm 1. Once restricted to

polytopic sets, the computational geometry tools in the MPT toolbox [34] allow

implementing the above algorithm to find C?‘ in a few lines of MATLAB® code.

Proposition 4 For any positive c,d,i, we have: CAZ-)‘ C CMR); hence, if the
corresponding iterations converge CX, C Cx () (inner approzimation). Also,
the converged C2, is shape-independent \-contractive for the TS model (2).

Proof: The first statement arises from the fact that @3 C Qg; so each it-
eration yields a progressively smaller set. The second statement is proved from

14



Algorithm 1 Computation of the A-contractive set cX

Inputs: ¢, d, Q, A
1. Make i = 0, C} = Q
2. Repeat :
(a) i=i+1
(b) & =5 (Ax,) nQ
Until é;)‘ = CAZ.);l;
3. Set CX = C}; END.
the fact that CX = (Q5(ACX) N Q) C Qu(ACY). .

The above proposition states that the algorithm may have obtained a non-
maximal A-contractive set. However, the asymptotic exactness of the Polya
result allows to state the following result extending Lemma 3, using int(S) to
denote the interior of a set S:

Theorem 2 Given any integer i > 0, for every v € int(C}(R)), there eists
a pair of finite ¢, d such that, when Algorithm 1 is run with such complezity
parameters, then x € int(C}).

Proof:  Considering any arbitrary ¢, let us assume the polytopic S is
expressed as S = {R;x < [;} for some R;, l;. Then, if x belongs to the interior
of Q4i(S) there exists v > 0 and there exists a continuous u(z, ) such that
Rif(,u,x,u(:r,u)) —1l; < v <0forall p € A, by Lemma 1 and the fact that
being = an interior point, inequalities defining the set must be strictly fulfilled.

Now, universal approximation of polynomials enables us to ensure that there
exists a degree-¢ polynomial in g in the form (31), say u®(x, ) which, for
fixed x, approximates the continuous function u(x,u) in the compact set A
up to a precision ||u(x,u) — u®(x, n)|| < e with € as small as needed so that
Rif(p, @, u(z, p) — u(z, 1)) < /2. This allows us to assert that there exists a
finite ¢ such that:

Rif(uya,u(z,p) — i <v/2<0

Now, the left-hand side of the above expression can be trivially converted to
an homogeneous polynomial of degree ¢ 4+ 1 on the simplex A. Hence, asymp-
totic exactness of Polya theorem (Theorem 1) ensures that there exists a finite
complexity parameter d such that all coefficients of the degree d expansion of
R;f — 1; are strictly negative. Hence, x € int(@ﬁl(AS)), by definition of ég.

Now, an induction argumentation is needed. Starting from Cj = (j’;’\ = Q,
if #; € int(C;) then there exist c;,d; such that z; € mt(égll () NnQ). if
Ty € int(C2), then there exists u, depending on x5 and g, in U such that x; =
f(u, x2,u) € int(C7) so the above ¢;,d; ensure f(u,za,u) € mt(éflll (Q)NQ):
hence, 7o € Qsi(Nzll (Q) N Q). Now, letting S = @le (2) NQ we can assert that
there exist ¢y, ds such that x € mt(@jﬁ(@fﬁl (Q) N Q)N Q). The argumentation
can follow on for any i: if z € int(C})) there exist a sequence d, . ..,d;, c1,...,¢;
such that x belongs to @‘)\' The required ¢ and d in the theorem statement will
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be the maximum ¢ and d of the respective sequences. L]

6. Controller computation from A-contractive sets

The obtained polytopic A-contractive sets, after Algorithm 1 convergence in
a finite number of iterations, induce a control Lyapunov function and associated
controllers, to be discussed in this section. R

Let us assume that the converged set C2, is defined as a polytope C =
{z| maxi<i<n, Hixz < 1} for some row vectors H;. Then, Proposition 3 im-
mediately allows defining a control Lyapunov function (10). However, the only
problem addressed up to this point is the ezistence of a continuous control law
(Lemma 1), but not any constructive procedure to find it; notwithstanding, it
is well known that, once a control Lyapunov function is available, computation
of a controller is possible [38].

As the set of valid control actions U,z (x,u) defined in (8), is polyhedral
for known z and p (actually, 4 would be the measured p(x)), optimisation of a
convex cost index over U, (7, u(x)) can be efficiently solved via convex pro-
gramming. Such optimisati(;on is a widely used choice to constructively compute
the above-referred control action in the polyhedral-robust control literature re-
ferred to in the introduction; details and adaptation to the fuzzy case will be
presented next. Let us discuss two possible options: on-line and off-line opti-
misation.

6.1. On-line optimisation

In on-line operation, state and membership values are known at the time of
computing the control action, so the model xg11 = A(u(xy))xr + B(u(ag))uk,
affine in the control action wuy, renders:

Tp1 = My + Nyug, My, = A(p(zr))xr,  Ni = B(p(xr))

and M, and Nj are matrices known at time k once x; has been measured. A
reasonable course of action would be proposing a cost index depending only
on the current control action wuy, choosing a suitable one in the convex set
User (@r, p(zr)) = {u € U| max; H; (M}, + Npu) < A}. In this way, there would
be 10 need to actually build up a “fuzzy” controller (12), as u; can be directly
optimised.

Of course, decrescence of the piecewise-linear Lyapunov function (10) and
admissibility of ug (i.e, ux € U) need to be introduced as optimisation con-
straints, irrespective of the chosen cost index.

Several optimisation criteria may be chosen, for instance:

1. Achieving the fastest decay, by minimising the predicted next value of the
polyhedral Lyapunov function (10), i.e., given xy, selecting uy equal to
the optimal solution below

= inV = i H;(M + N 34
e 3= arg gV () = are iy g, MM M) (34

which is a standard linear minimax problem, which can be cast as a linear
programming (LP) one,
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U = arg min, §
subject to:  w €U, H;(Mp + Nyu) <46 Vi (35)

Note that, for zj € CX (), the minimal § will be lower than A because,

by construction, CX (€2) is a set in which constraints (35) are feasible for
6 = A. If the optimal LP solution were not unique, any arbitrary choice
in the set of minimisers would be acceptable.

2. Minimising the “control effort” subject to the contraction condition V (zy41) =
max; H;(Mj, 4+ Nyuy) < V(Axg) which forces the Lyapunov function to be
decreasing. If the control effort is measured in 1-norm (sum of absolute
value of elements) or co-norm (elementwise maximum) then the problem
is also an LP one; it it is measured in 2-norm, then it is a QP one. Again,
feasibility is guaranteed for zj, € C2 ().

Note that, even if the controller to be found on-line does not appear to
be a “fuzzy” controller, it does indeed depend on the membership values, as
My, = A(u(xy)) and N, = B(u(zx)). Note, too, that the above on-line LP/QP
problems may be feasible even outside the guaranteed (but conservative, shape-
independent) set CA;\O computed by Algorithm 1; however, such feasibility cannot
be guaranteed by the shape-independent analysis in earlier sections.

6.2. Off-line optimisation

Although the above on-line optimisation solution is, actually a one-step op-
timisation (hence with low computational complexity as the number of decision
variables is the number of inputs), an off-line computation of a controller solu-
tion can be obtained if so wished.

Indeed, analogously to [39], an explicit piecewise fuzzy controller can be
designed under the setup in this work, as an off-line version of (35). Indeed,
consider the augmented input @(z) defined in (14), either from (12) or, with
higher-dimensional controllers (31), composed of vertically stacking u;, . ;. (z),
j € It in a vector of length p = card(IT). Replacing in (35) the closed-loop fuzzy
model (21) —or the higher-complexity versions implicitly considered in (33)-, we
have an optimisation problem:

w*(z) ;= argming d
. ~ |z .
subiect 105 5,5, € Us e Syery nita(0G |1 ) < Sy mghd v (30
which, as written, cannot yet be solved off-line because memberships are unkown

at design time. To overcome such issue, for the controller (31), the proposal is
choosing the optimal decision variables given by the solution of

w*(z) = argming §
subject to:  wuy,. 4, €U, Hiéj [ﬂ < ViVvje Hj (37)
because, following analogous argumentations to those leading from (24) to (28),
all feasible solutions of problem (37) are feasible, too, in (36). Actually, the

developments in previous section prove that problem (37) is feasible in the set
C2, resulting from Algorithm 1 (details omitted for brevity).
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Ezxplicit solution. As (37) is a linear programming problem once « is fixed (when
actually measured), the optimal state-dependent solution @*(x) has an explicit
expression, piecewise-affine in x, which can be obtained via multi-parametric
linear programming, considering z as a parameter, in the form @*(z) = F(z)z +
o(x) with F(z) and 7(x) being a piecewise constant (mp) x n matrix and a
(mp) x 1 vector, respectively; for details on how such solutions can be obtained
with suitable software, the reader is referred to [34].

Now, reverting the vertical stacking in @*(x) to the originating multidimen-
sional fuzzy summation, i.e., writing the controller as in (12) or (31), the optimal
controller arising from (37), can be expressed as

ut(z) =Y migu(@) (Fi(@)z + oi(x)) (38)

iert

where Fi(z) and o;(z) are piecewise constant m X n matrices and m x 1 vectors,
respectively, suitably extracted from F(z) and &(z).

This formula (piecewise-affine multi-sum PDC controller) gives interesting
theoretical insights and, as above discussed, does not require on-line optimiza-
tion. The other proposed optimisation setups (control effort in 1, 2 or co norm)
would also give rise to piecewise fuzzy-controllers (details, almost identical, are
omitted for brevity). Anyway, the drawback is that, even if likely faster in
runtime execution, performance with off-line optimisation will be inferior to
that with on-line one (34), due to the explicit use of the measured value of the
membership in (34), instead of the setting in (37) where memberships do not
appear. Nevertheless, proven worst-case performance bounds are identical in
both alternatives.

7. Discussion and comparison with existing approaches

This section will compare the result with other approaches in set-invariance
and Lyapunov/LMI literature, including the fuzzy control and fuzzy Lyapunov
functions.

Set-invariance prior literature. Let us first remind how this work generalises
existing set-invariance control approaches: Contractiveness concepts are used in
[17] to obtain necessary and sufficient constrained robust stability and stabilisa-
tion conditions for systems with polytopic uncertainty. The work [22] generalises
the idea to asymptotically shape-independent necessary and sufficient stability
analysis conditions for T'S systems, and the proposal here presented covers the
asymptotically shape-independent necessary and sufficient stabilisation condi-
tions for constrained TS systems.

Other Lyapunov/LMI approaches. Omitting detail, results from Section 6 in
[22], dealing with generic Lyapunov functions, can be adapted to the stabilisa-
tion case here, with minor modifications (changing to control Lyapunov func-
tions), so the following can be stated:

Lemma 4 If a convezx function V(z) and a controller u(x), conformed as in

(33) for some controller complezity c, have been proved to exist (with whatever
method) such that V(0) =0, V(z) >0 for x #0, and

18



V(G; { fL }) <V(yz) Vielgq (39)
then, Algorithm 1 with complexity parameters ¢, d converges in a finite number
of iterations for v < X\ and the resulting A-contractive set is larger than the
Lyapunov level sets.

Proof:  Omitted, as it is analogous to Propositions 1, 2 and Corollary
2 (computing an explicit bound on the number of needed iterations) in [22],
adapting argumentations dating to [31, 17]. L]

Theorem 2, combined with the above Lemma, discussing the relationship
with any conceivable methods to find convex Lyapunov functions are the key
ones in this work: the ideal shape-independent i-step sets cannot be computed,
but Polya relaxations allow running the iterations in Algorithm 1 with an ap-
proximation to C* which can be made as precise as wished. Then, the obtained
sets with Algorithm 1 beat Lyapunov level sets in the sense of Lemma 4. In fact,
by maximality and convexity argumentations, they beat the union of all feasible
solutions of any Lyapunov inequality (39), see Figure 2 in a later example.

Hence, the result closes (in theory) the shape-independent control design for
constrained TS systems with non-fuzzy Lyapunov functions: first, there is no
loss in generality when only considering convex Lyapunov functions (Proposition
1); second, say, if any method can find a Lyapunov function proving geometric
contraction v = 0.8 —in the sense of the above lemma—, our algorithm will,
suceed, too, for any A > 0.8. Note, however, that as the number of decision
variables in 4 and the summation dimension d increases, the computational
complexity of the resulting problem grows heavily so only reasonably small
values of ¢ and d in Qf can actually be sought for in practice. Comparison
with fuzzy Lyapunov functions V(u,2) will be addressed in Section 7.1 below,
with analogous results outperforming a wide class of literature proposals.

Generic controller parametrizations. Note that the proposed piecewise multiple-
sum fuzzy affine controller structure in (38) is more general than many non-
piecewise fuzzy controller choices in literature and, importantly, it is a result
(asymptotically exact) of the proposed optimal control, whereas most literature
proposes a particular control structure (or a fixed piecewise partition [40, 41])
a priori. Importantly, the proposal here allows seamless incorporation of non-
symmetric constraint sets, whereas other LMI-based approaches might have
difficulties in doing it.

7.1. Relation with Fuzzy Lyapunov functions

Some approaches in literature propose fuzzy Lyapunov functions [42, 5, 43]
so its level sets are V,, := {a : V(pu(x),z) < ~}. Of course, such sets are shape-
dependent, as they are defined in terms of u(z). Clearly, the largest set that
can be certified to belong to V,, without knowing the specific shape of p(x) is:

Viipy i= ﬂA{x V() <vp={x: max V(p,x) <7} (40)

Of course, the proposal in this paper can only be compared to level sets in
the above form V; .
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Future/delayed fuzzy Lyapunov approaches. More powerful Lyapunov function
and controller parametrisations with “future” memberships values have been
proposed in the a-samples approach [10], and, also, with “past” memberships
ones [9]. Combinations including both past and future memberships appear in
[44, 11]. The conditions in the cited references are shape-independent, in the
sense that they consider neither the relationship between the memberships in
different times nor the one between memberships and states.

The remainder of the section discusses specific details about the relationship
between these proposals and the set-invariance one here proposed.

In order to encompass the different fuzzy (delayed/future) Lyapunov func-
tion approaches in other literature with an unified notation, generic fuzzy Lya-
punov functions will be considered in the form V(Y,x), where T is a delay-line
set of membership vectors

1= {p@rrs)s o pl@ngn)s plan), pl@p—n), - pl(@r)} (41)

for some chosen values of look-ahead horizon s and delay [ parameters.

In order to add causality constraints (control cannot depend on future mem-
bership values), the operator F'(-) will extract the future (non-causal) elements,
ie, F(Y) = {u(zrts), .-, w(xgr1)}, and P(-) will contain past ones,i.e., P(T) :=
{p(zp—1),...,u(xr—1)}. So, under this setting causal fuzzy controllers must be
in the form u(pu(z), P(Y),z). As f is linear, geometric A-contractive conditions
amount to

V(Y Az) = V(T f(p(@), 2, u(p(z), P(T),2))) >0 VeeQ~{0} (42)

where Y denotes the vector of memberships evaluated one step forward in
time, i.e., from look-ahead s + 1 until delay [ — 1.

The above expression is shape-dependent, but we can assert the following
general shape-independent stabilization conditions replacing the elements of T
and Y by arbitrary vectors (respectively denoted as Y,; and Y, ) lying in
the unit simplex:

Lemma 5 The closed-loop fuzzy system xx1 = f(u(xr), 2, u(p(xr), P(Y), 21))
is locally stable with contraction rate X\ if there exist a controller u(u, P(Ys;), )
and a Lyapunov function V(L x) such that

V(Tsia )\.Z‘) - V(T[Jr,si] ) f(/‘a €T, u(:uv P(Tsi)v l‘))) >0 (43)

b@ZTLg Ty = {hs, sy hla,ufvh—la o ‘h—l}; T[-i—,si] = {h(s+1)7 B '7h17,u7h—17 . '7h—l+1}7
holds for all x € Q, © # 0, for all hgy1,...,h_;, p in A.

In the above assertion, with a slight abuse of notation, P(Y,;) should be
understood as the operator extracting “past” elements {h_1,...,h_;}. On the
following, shorthand notation Yg; € A should, too, be understood as each ele-
ment of Yy; belonging to A.

Proof: Direct because (43) implies (42) (it is a particular choice of mem-
berships). m

Conditions (43) are a contraction-rate version analogous to the ones proved

in LMI settings such as, for instance, [9, 11]. The relationship of such conditions
with the geometric setting in this work is proven in the theorem below:
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Theorem 3 If condition (43) holds for all Y, Y1 5 € A, then the level sets
in Q of:
Vii(z) =  min max V(YTsi,x) (44)
P(Tsi)€EA F(Ysi)EA,neA

are shape-independent control \-contractive.

Proof: As (43) hold for any possible value of Y, they do for the particular
values of {hsi1,...,h1} = {h;ﬁrl, ...,h]} given by

{hirs o b} =arg | max  V(To, Fusw,ulp, P(Ys), )  (45)
+,s1

So, we can assert
0<V(ht,...,hf,u, P(Ys), \2)

- V(h;:-l? (RS ﬁi‘ra 1y P(T[+,Si])7 f(/’(ﬂ z, ’LL(,U/, P(Tsi)7 .'L'))) (46)
Then, denoting

{hs,...,h1,h} = arg ppnax V(hsy ... hi,h, P(Yg), Ax) (47)

for any P(Y ) in A, we have:

0< V(ZLS, ey iLl, iL, P(Tsz), )\x)
- V(}_L;:»l? B }_L-li_a ey P(T[-i-,si])a fl(pﬁ xz, U(ILL, P(TSZ)v l’))) (48>
Denote now:

{h_q,...,h_;} =arg P('II'riI)lGA (V(ﬁs, oy h1, hy P(Yy), /\x)) (49)

s0, as the above (48) holds for any P(Yy;) in A, it does for {h_1,...h_;} =
{ﬁ—la e 7@_1}, i.e.,

0<V(hg,....;h1,h,h_4,....;h_;,Ax)—
V(B;;l,...,Bf,,u,ﬁ,l,...,Q,Hl,f(u,:c,u(u,ﬁfl,...,Q,l,x))) (50)
and, at last, denoting
{h+,hf,...,htl+1} =

; nt 5 £
arg h,hl,..:.r{}llfll+1€AV(hs+l"..7h17 a"'7h—l+17f(:ua'r7u(:u7h_17"'ah—lax)))

we have, for all € A:

0<V(hg,....;h1,h,h_4,....;h_;,Ax)—
V(Ej+1v MR Ef»h_'_»htl? s 7ﬁtl+17 f(u?xﬂu(li?hfl? e 7ﬁ7l7m))) (52)
In the last inequality, the only still “free” variable ranging in the unit simplex

is the membership at the current instant. All other past of future ones have been
replaced by suitable maximisers or minimisers. In particular,

Vii(Az) = V(Ysi,A\t) = V(hg,...,hi,h,h_4,...,h_;\x)

(53)

min max
P(Ts)EA F(Y)EALEA
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and, using the resulting controller u(p, h _4,...,h_;,x) in (52), such that x5 =

f(/j/)x?u(:uﬂﬁfl? e ;hfla'r))a we have:
‘/Si(‘rk-i-l) = V(}_L:_+17 . '7}_L-1i_ah+aht17 s 7htl+1a f(lu’vxvu(ﬂah—lv e 7&-17‘1’)))

(54)
Hence, expression (52), proves that there exists a control action such that
‘/Sz<)\.%’) — ‘/si(l‘k:+1) > 0. ]

Theorem 3 extends the concept of shape-independent level sets (40) to the
case of past and future memberships (indeed, (40) is a particular case of level
sets of (44)). The importance of the theorem is twofold:

1. by asymptotical exactness, if any proposal in literature proves a sufficient
condition for (43), then, any point in the interior of the level sets? of V;(z)
in X will be found by the proposed algorithm with a high-enough value of
the complexity parameters.

2. Vg is a “standard” Lyapunov function: intuition is “reconciled” with the
results, in the sense that Lyapunov functions involving past and future
memberships are transformed to standard ones depending only on the
current state (at least in the shape-independent case). Also, even if past
memberships appear in the controller in (42), the controller actually used
to prove contractiveness in the above proof is independent of the past
“measured” memberships (as required by the A-contractiveness definition):
the arguments h _4, ..., h_; in the controller u(u,h _4,...,h_;, ) are

actually a function of z, as (49) shows.

Comparison with shape-dependent options. Note that supposedly “future” val-
ues of p and z are, in fact, predictions based on current x, p(z). As stability
conditions hold for any future memberships, the following shape-dependent Lya-
punov function is, too, proven if (43) holds from any LMI literature result?:
Vea(xy) := min V(h—iy. oo hoq, plr), m(@gs1), - o (@its), zk)  (55)
h_1,..,h_EA
Obviously, given some scalar v, the level sets Viq = {Via(z) <~} will be larger
than those Vi; 4 = {Vii(z) < v} with V; from (44), as Viq(z) < Vi, (x). Note,
however, if comparing the largest level sets, say Vsa,; and V; 4+, in a given
modelling region €2, that forcefully 73 > 77, as Vi; 4r C Via4:. So, the proven
domain of attraction with Lyapunov functions (55) or (44) will be “different”:
there might be some states proven to contract to the origin by Vyq but not Vj;
and vice-versa (with no clear inclusion in either sense).

8. Examples

Consider a TS system xpy1 = Z?:l wi(A;z + Bjuy) with model matrices:
0.95 0.3 0.1 0.7
A= ( 0.7 1.1 ) Az = ( 02 0.4 ) (56)

3 Actually, in the convex hull of such level sets, if V' were non-convex, by Proposition 1, so
a convex Lyapunov function can be built.

4 As “past” is irrelevant for stability, minimisation on past memberships can be carried out
for larger level sets, details omitted for brevity. Such minimisation appears, then, in (55).

22



n=(os) 2=(%) @

Subject to the constraints in inputs and states:
—10 < uy < 10, -10< 2, <10 (58)

For the sake of illustration, even if results are valid for any membership shape,
some system trajectories will be later simulated using as membership functions:

() = (10 - (1 0)2)/20,  pola) =1 - pu(a) (59)

8.1. Comparison with fuzzy-delayed Lyapunov function

With the above plant, a comparative study with LMIs in [44, Corollary 1]
will be made first.

LMI settings. The cited proposal uses a delayed Lyapunov function and a non-
PDC controller, respectively given by:

V(zg, xh_1) = xf (Z ui(xkl)R) Tk (60)

i=1

-1
T T

up = ZZMi(xk—l)Mj(xk)Fi‘ Zzﬂi(mk_l)uj(xk)Hi' z,  (61)

i=1 j=1 i=1 j=1

As discussed in Section 7.1, even if the above Lyapunov function is a “fuzzy”
one, the (non-fuzzy) Lyapunov function (44) particularised for (60), i.e.,

r -1
i=1

is also proved and, evidently, the level sets V, 5, |, = {@k : V(ag, zr—1) < v} for
whichever value of y;(x,—1) will be smaller than those in the form V; , = {x :
Vsi(z) < v} for the same level. In fact, the latter level set is the convex hull of
the union of the ellipsoids & := {x : 2T P 'z < v}, see [42].

In order for the comparison to be fair, apart from the LMIs in [44, Cor. 1],
also appearing in [11], extra LMIs have been added to to force that the level
set for v = 1 of each of the ellipsoid lies inside the constraint region X, and to
account for the control saturation. Details are omitted for brevity as they follow
standard S-procedure argumentations (and use of [44, Property 2]). In order to
obtain a “large” domain of attraction exploiting the non-quadratic and convex-
hull ideas, ellipsoids & were forced to contain the point v - (cos ¢;,sin ¢;)7 for
¢1 = /4 and ¢o = 37/4, respectively, and the scalar v > 0 was maximised. In
this way, ellipsoids were expanded in orthogonal directions.

Set-invariance settings. In the A-contractiveness approach presented here, we
set A = 0.9999 (mere stabilisation), and we test a non-fuzzy controller (¢ = 0,
d = 1), and a PDC control parametrisation (¢ = 1) with a Polya complexity
parameter d = 6.
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Results. As a result, Figure 1 is obtained. The figure depicts the convex hull
of the two ellipsoids arising from the LMI solution(curved line), the maximal
set with the non-fuzzy controller (blue region) and the inner approximation to
the maximal controllable set with single-sum controllers (union of blue and red
region). Increasing d didn’t visually appear to generate more stabilisable points.
The blue line represents the simulation of the proposed optimal maximum-decay
controller, which steers the state to the origin in two samples. The set proposed
by our algorithm is larger than the proposed solution in the compared work.

10

-10
-10 -5 0 5 10

X

Figure 1: Comparative analysis with delayed-membership non-PDC control (single solution).

Computation time. The LMI solution from [44] in Figure 1, using YALMIP
3.2010.0611 and SEDUMI 1.3, took 1.56 seconds; with MPT Toolbox 2.6.3 [34],
obtaining the blue robust-polytopic region with the algorithms in [17] took 16
iterations and 2.03 seconds; the Polya-6 red region in the above figure took
4 iterations and 0.222 seconds; the used computer was an Intel I5 2.56GHz
computer with 6 Gb of RAM with Matlab 2010. The more general controller
parametrisation allows to prove stability with less iterations (optimal controllers
are faster): surprisingly, the more complex setting took less time to compute.

Union of all possible LMI solutions. As the solution of [44, Cor. 1] might
be not unique®, several solutions were crafted by forcing one of the ellipsoids
&; (i randomly chosen) to contain the largest possible ellipsoid in the form
& = {z : 1002% + 23 < v} rotating &} repeated times, in order to explore
whether there exists a solution of the LMIs “stretching out” as much as possible
in every direction.

Figure 2 presents the multitude of solutions for different runs of the LMIs®,
with the union emphasised in blue color. All of the solutions lie inside the con-
verged invariant set produced by our algorithm. So, there exists a controller with

5In our approach, on-line controllers might be non-unique, but the maximal set is indeed
unique (such fact can be proved by convexity argumentations).

6Importantly, note that the LMIs in the compared work provide only one solution, as in
Figure 1: computing the union of all feasible LMI solutions requires a theoretically infinite
number of LMIs with the settings in prior literature, whereas our proposal takes 0.2 seconds
to compute a set which is larger than such union.
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Figure 2: Comparative analysis with delayed-membership non-PDC control (all feasible solu-
tions); the cyan line depicts the union of all such solutions.

piecewise-PDC structure which outperforms (larger domain of attraction) those
in [44, Cor. 1], not only individually but also outperforming the union of all
feasible solutions (which might involve a different controller each, so a controller
for such union set is not found in the cited work) with a single controller.

8.2. Off-line piecewise controller

In this subsection, a contraction rate A = 0.98 has been chosen as the speci-
fication for speed of convergence, so the obtained sets are slightly smaller. The
piecewise-PDC fuzzy controller (linear in memberships and affine in the state)
in (38) has been computed for complexity parameters ¢ = 1, d = 6, searching for
the fastest decay. As previously discussed, this aims to achieve a faster on-line
execution in exchange for a larger computation time in the design phase.

The optimal control problem (37) in the single polytope given by the maxi-
mal contractive set has a piecewise solution with a tessellation of 90 polytopic
regions’, depicted in Figure 3. In this example, the computation of the explicit
piecewise-PDC-affine optimal feedback law took 2.35 seconds, instead of the
0.222 that took computing “only the set in which a controller exists”.

Two trajectories are simulated with the piecewise controller. As guaranteed
by the algorithms, feasible sequences of control and states can be obtained
without violating any constraints.

9. Conclusions

This paper presents an extension of the control A-contractive set compu-
tations in robust control literature to fuzzy Takagi-Sugeno models under state
and input constraints (possibly non-symmetric). Based on Polya’s asymptoti-
cally exact theorems, the obtained closed-loop controllable sets will approach

"Note that the resulting regions were not known a priori, contrarily to other piecewise
results, say [40], in which regions are fixed at start.
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Figure 3: Piecewise state-space tesellation and trajectories for different simulations of the
piecewise-affine controller (38).

the maximal shape-independent control A-contractive set: if some complexity
parameters are high enough, the obtained sets and controllers improve over
any conceivable (shape-independent) Lyapunov-based controller design tech-
nique for TS systems. An implementation requiring on-line one-step optimi-
sation is proposed; as an alternative, by using explicit multi-parametric soft-
ware tools, a shape-independent piecewise-affine-multidimensional-PDC con-
troller exists whose explicit expression can be obtained off-line, achieving the
same worst-case performance. Comparative analysis with delayed-fuzzy Lya-
punov functions show that all their shape-independent solutions lie inside the
sets produced by the new algorithm for the same complexity parameter values.
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