

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/148186

Ramiro Sánchez, C.; Simarro, MA.; Gonzalez, A.; Vidal Maciá, AM. (2019). Parallel SUMIS
Soft Detector for Large MIMO Systems on Multicore and GPU. The Journal of
Supercomputing. 75(3):1256-1267. https://doi.org/10.1007/s11227-018-2403-9

https://doi.org/10.1007/s11227-018-2403-9

Springer-Verlag

Noname manuscript No.
(will be inserted by the editor)

Parallel SUMIS Soft Detector for Large MIMO
Systems on Multicore and GPU

Carla Ramiro · M. Ángeles Simarro · Alberto
Gonzalez · Antonio M. Vidal

Received: date / Accepted: date

Abstract The number of transmit and receive antennas is an important fac-
tor that affects the performance and complexity of a MIMO system. A MIMO
systems with very large number of antennas is a promising candidate technol-
ogy for next generations of wireless systems. However, the vast majority of the
methods proposed for conventional MIMO system are not suitable for large
dimensions. In this context, the use of High Performance Computing (HPC)
systems, such us multicore CPUs and Grapfhics Processing Units (GPUs)
has become attractive for efficient implementation of parallel signal process-
ing algorithms with high computational requirements. In the present work two
practical parallel approaches of the Subspace Marginalization with Interference
Suppression (SUMIS) detector for large MIMO systems have been proposed.
Both approaches have been evaluated and compared in terms of performance
and complexity with other detectors for different system parameters.

Keywords Large MIMO systems · SUMIS · high order constellation · GPU ·
low-complexity detection

Carla Ramiro
Institute on Robotics and Information and Communication Technologies, Universitat de
València
E-mail: cramiro@gmail.com

M. Ángeles Simarro
Institute of Telecommunications and Multimedia Applications, Universitat Politècnica de
València
E-mail: mdesiha@iteam.upv.es

Alberto Gonzalez
Institute of Telecommunications and Multimedia Applications, Universitat Politècnica de
València
E-mail: agonzal@dcom.upv.es
Antonio M. Vidal
Department of Information Systems and Computation, Universitat Politècnica de València
E-mail: avidal@dsic.upv.es

2 Carla Ramiro, M. Ángeles Simarro, Alberto Gonzalez, Antonio M. Vidal

1 Introduction

Multiple-Input Multiple-Output (MIMO) systems provide significant capacity
improvement using multiple antennas at both sides of digital communication
systems. This technology has become essential for wireless communications
and has been incorporated into many communication wireless standards. An
emerging research area are so-called Large MIMO systems, often referred to
as massive MIMO systems. It can be defined as those systems that use very
large number of antennas, e.g., one hundred ore more . The price to pay is
increased complexity and energy consumption at both ends. Particularly the
MIMO detection problem is generally computationally very expensive to deal
with. Thus, an adequate balance between efficiency and complexity is critical,
especially in large MIMO systems [1] and large sizes constellation.

The optimal detector, which solves the MIMO detection problem opti-
mally, computes the log-likelihood ratios (LLRs) values exactly and holds
prohibitively high computational complexity, which grows with the size of
the signal constellation and the number of antennas. In the above context,
several detectors and exhibit different trade-offs between complexity and per-
formance have been recently proposed. “Single Tree Search” (STS) [2] and
“Repeated Tree Search” (RTS) [3] algorithms are the most common detectors
which achieve the max-log approximation exactly. Sub-optimal max-log algo-
rithms reduce the complexity at the expense of a certain performance loss. On
the other hand, “Partial Marginalization” (PM) [4] and SUMIS [5] algorithms
represent an intermediate approach between the optimal detector and its max-
log approximation. The SUMIS algorithm offers a good trade-off between exact
and approximate computation of the LLR values and a given complexity. Even
so, SUMIS detector can be the bottleneck for the overall system performance
if large number of antennas or high order constellations are used.

This paper aims to reduce the computational cost of the SUMIS method,
not only from a theoretical point of view, but through its scalable and ver-
satile implementation for efficient processing thereof e.g. multicore processors
and Graphic Processing Units (GPUs). This allows to guarantee the SUMIS
detection performance in large MIMO systems with higher throughput. In [6]
a parallel implementation based on multicore processors was proposed. In the
present paper a parallel version based on GPU is presented and more results
with respect to the implementation based on multicore processors are pro-
vided. Furthermore, the performance in terms of Bit Error Rate (BER) and
Mutual Information (MI) has been evaluated for large MIMO system.

The rest of the paper is organized as follows. The MIMO system model and
a brief review of the SUMIS detector are given in Section 2. The details of the
proposed parallel algorithms on multicore and GPU are described in Section
3. The performance evaluation and the implementation results are given in
Section 4. Finally, the conclusions are presented in Section 5.

Parallel SUMIS Soft Detector for Large MIMO Systems on Multicore and GPU 3

2 Background

2.1 System Model

Let us consider a complex-valued MIMO system model, using nT transmit and
nR receive antennas with nT ≤ nR. The information bits are encoded using
an error-correcting code and then interleaved and mapped to symbols. Each
symbol sj contains k = log2(M) encoded and interleaved bits and is taken
independently from the M -ary constellation Ω. The corresponding bits are
denoted by sj,b, where the indices refer to the bth bit associated with the jth
symbol. The relation between the received vector, yc ∈ CnR and the associated
transmitted symbol vector, sc ∈ CnT , can be expressed as yc = Hcsc + vc,
where Hc ∈ CnR×nT denotes a fading channel matrix with independent ele-
ments hj,i ∼ N (0, 1) and it is assumed to be perfectly known by the receiver.
Vector vc ∼ N (0, No2 I) denotes an additive Gaussian noise (AWGN). Since
separable complex-value constellation can be considered (M-QAM), we can
easily transform the (nR × nT)-dimensional complex model into an equiva-
lent (2nR × 2nT)-dimensional real-valued representation as described in [6].
Thereby, the real model can be described as

y = Hs + v. (1)

The real model is assumed throughout the rest of the paper. Let
√
M -PAM

with PM = {−
√
M + 1, · · · ,−1, 1, · · · ,

√
M − 1} be the real-valued represen-

tation of a M-QAM constellation where Ω = {a+ bj : a, b ∈ PM}.
At the receiver side, for each of the encoded and interleaved bit sj,b the

demodulator computes soft information in form of LLR values which expresses
how likely is the hypothesis that the sj,b bit is equal to 1 or 0. Assuming equal a
priori probabilities and using Bayes’ theorem, the LLR values can be rewritten
as

Lj,b = log

∑
sεχ1

j,b
exp(− 1

N0
‖y−Hs‖2)∑

sεχ0
j,b

exp(− 1
N0
‖y−Hs‖2)

, (2)

where χuj,b denotes the set of possible transmitted sequences for which sj,b
bit is equal to u. The computational cost of (2) increases exponentially with
nT and polynomially with M [5]. Thus, the exact MIMO detection scheme
becomes prohibitive. The most common approach to cope with this limitation
is the max-log approximation [7].

A new approach to compute (2) is proposed in other works [4][5] as an
alternative to max-log approximation. The main idea is to employ the following
partitioning model, which is based on (1),

y = Hs + v = [H H̃] [sT s̃T]T + v = Hs + H̃s̃ + v (3)

where H ∈ R2nR×ns , H̃ ∈ R2nR×(2nT−ns), s ∈ Ωns and s̃ ∈ Ω2nT−ns for fixed
ns ∈ 1, · · · , 2nT . The partitioned model carries out intrinsically an optimal
permutation of the columns of H that determines H and H̃ [5].

4 Carla Ramiro, M. Ángeles Simarro, Alberto Gonzalez, Antonio M. Vidal

2.2 SUMIS algorithm review

SUMIS [5] algorithm is composed by two main stages and employs the parti-
tioning model (3). This partition uses a permutation based on HTH. Here we
give a brief revision of SUMIS algorithm.

Stage I: The algorithm begins with the partitioned model (3) denoting
the new model as

y = Hs + e (4)

where e = H̃s̃ + v is a Gaussian stochastic vector e ∼ N (0,Q) with Q =
H̃H̃T + No

2 I. We compute the approximate λj,b LLR using the next operator
‖x‖2

Q ,xTQ−1x, as

λj,b = log

∑
sεχ0

j,b
exp(− 1

2‖y−Hs‖2
Q)∑

sεχ1
j,b

exp(− 1
2‖y−Hs‖2

Q)
. (5)

Stage I is performed for all bits b = 1, · · · , k in all symbols j = 1, · · · , nT .
Stage II: In the second stage, the LLR values are computed again over a new
model given by

y′ , y− H̃E{s̃|y} ≈ Hs + n′, (6)
where E{s̃|y} is the conditional expected value of vector s̃, and n′ v N (0,Q′)
with Q′ , H̃Υ̃H̃T + No

2 I, being Υ̃ the conditional covariance matrix of s̃.
Hence, the refined LLR values can be computed as

Lj,b ≈ log

∑
sεχ0

j,b
exp(− 1

2‖y
′ −Hs‖2

Q′)∑
sεχ1

j,b
exp(− 1

2‖y′ −Hs‖2
Q′)

. (7)

Note that the processing per bit can be performed in parallel.

3 Proposed Parallelization

The use of the last generation of High Performance Computing (HPC) sys-
tems such as multi-core CPUs and Graphics Processing Units (GPUs) has
become attractive for the efficient implementation of parallel signal processing
algorithms with high computational requirements [8][9]. The implementation
of advanced algorithms able to use both architectures is crucial in MIMO re-
search, since it allows to fully exploit the capabilities of the modern computer
architectures and to reduce the response time of computationally expensive
problems.

The SUMIS algorithm computes the λj,b and Lj,b values using (5) and (7)
respectively, where the number of elements in the two summations over s is
Mns . Therefore, SUMIS algorithm has to calculate the expression exp(− 1

2‖y−
Hs‖2

Q) a number of times Mns to achieve the total λj,b or Lj,b values in each

Parallel SUMIS Soft Detector for Large MIMO Systems on Multicore and GPU 5

stage. For this reason almost the 98% of the total signal detection time is
consumed to compute these terms. Therefore, the parallelization is focused on
reducing the computational cost of the exp(− 1

2‖y −Hs‖2
Q) terms in (5) and

(7).
In [5], Appendix A, an optimization of the SUMIS algorithm is explained.

Following this approach the next expression can be derived by simple matrix
manipulations:

‖y−Hs‖2
Q = (Ay− s)TB(Ay− s) + δ1 − δ2, (8)

By renaming: C = Q−1H, D = HTQ−1, B = DH, A = B−1D, δ1 =
yTQ−1y and δ2 = yTCAy.
The terms δ1 and δ2 in (8) do not depend on s. Equation (8) can be computed
using the Linear Algebra PACKage (LAPACK) [10].

For the multicore implementation we are using the Intel Math Kernel Li-
brary (MKL) [11], which is composed of several optimized math routines and
it is optimized specifically for Intel processors. For the GPU implementation
we use the cuBLAS Library [12], which is a GPU-accelerated version of the
complete standard BLAS library.

3.1 Multi-threaded implementation

During the last years, the main microprocessors manufacturers such as Intel or
AMD have been focused on developing faster and smarter chips. Their purpose
is to get maximum performance with minimal consumption by integrating
multiple processing units (called cores) onto a single processor. Thus, these
cores can process simultaneously multiple tasks although at a lower clock rate.

For the parallelization of the SUMIS algorithm we assume a MIMD com-
puter (i.e. multiple instruction, multiple data) with shared memory. This sys-
tem has p processors which share a common central memory. The MKL multi-
threaded version uses the OpenMP application programming interface [13] to
distribute the computation among the different cores. We can parallelize each
MKL function by selecting the desired number of threads before calling the
function. However, the performance of these functions greatly depends on the
size of the channel matrix. Even though we are considering channel matrix
sizes larger than usual used in MIMO communication systems, they are still
too small to fully exploit the MKL performance. Previous results show how
increasing the number of threads barely manage to accelerate the sequential
version. For this reason we have chosen to parallelize at a higher level. To
clarify how it has been carried out the distribution of tasks, we have presented
in Algorithm 1 the complete pseudo-code related to the SUMIS detector. The
OpenMP pragma omp parallel for in line 7 distributes the for loop itera-
tions among the threads and therefore the SUMIS processing is performed per
jth-symbol in parallel.

6 Carla Ramiro, M. Ángeles Simarro, Alberto Gonzalez, Antonio M. Vidal

Input : H, y, ns ∈ {1, . . . , nT }
Output: Log Likelihood Ratios (L)

1 Calculate HTH
2 /* Stage I */
3 for j = 1, . . . , nT do
4 Decide upon a partitioning in (3) H = [H H̃] based on HTH
5 end
6 Set Υ̃ = I
7 #pragma omp parallel for
8 for j = 1, . . . , nT do
9 Variance matrix Q = H̃Υ̃H̃T + No

2 I
10 for p = 1, . . . ,Mns do
11 ω[j]p = exp(− 1

2‖y−Hs:,p‖2
Q) such as (8)

12 end
13 for b = 1, . . . , k do

14 λj,b = log

∑
p:s:,pεχ0

j,b

w[j]p∑
p:s:,pεχ1

j,b

w[j]p

15 end
16 end
17 /* Stage II */
18 for j = 1, . . . , nT do
19 E{sj |y} ,

∑
s∈Ω s

∏k

b=1
1

1+e(−2sj,b+1)λj,b

20 Suppress the interfering vector y′ , y− H̃E{̃s|y}
21 Calculate Υ̃ = E{diag(̃s)2|y} − E{diag(̃s)|y}2

22 end
23 Repeat steps 7 to 15 with [y′, Q′, Lj,b] instead of [y, Q, λj,b]

Algorithm 1: SUMIS pseudo-code OpenMP implementation.

3.2 CUDA implementation

Compute Unified Device Architecture (CUDA) [14] is a software program-
ming model that exploits the massive computation potential offered by GPUs.
A GPU can have multiple stream multiprocessors (SM) with a certain num-
ber of pipelined cores each. In contrast to the multicores, the GPUs follow
a single-instruction multiple-threads (SIMT) programming model, that is, a
single set of instructions is executed on different data sets. In this model, the
programmer defines the kernel function that contains a set of common oper-
ations. At runtime, the kernel is called from the main central processing unit
(CPU) and spawns a large number of threads blocks, which is called grid.
Each thread block contains multiple threads, usually up to 1024, and all the
blocks within a grid must share the same size. Blocks and grids can be one-
dimensional, two-dimensional or tri-dimensional but they must not exceed a
certain size stated in the GPU’s specifications. Each thread can select a set of
data using its own unique ID and executes independently the kernel function
on the selected set of data. Threads of the same block can share data between
them by using the shared memory. However, threads of different blocks are

Parallel SUMIS Soft Detector for Large MIMO Systems on Multicore and GPU 7

independent and should use global memory to share data once all threads
have finished running the full kernel. At is said above, the exp(− 1

2‖y−Hs‖2
Q)

terms have been parallelized for the LLR calculation as in equation (8) using
the equivalent cuBLAS [12] functions.

Batched functions are intended to be used for matrices of small sizes where
the launch overhead is a significant factor. For small sizes, this kind of functions
improves significantly the performance compared to making calls to its corre-
sponding cublas<t>name routine. However, matrix-vector and vector-vector
functions are not yet available for batched computation. For this reason we
have implemented three functions in CUDA. These functions explained bellow.

– cudaDgemvBatched: The kernel performs the matrix-vector multiplications
of an array of matrices and vectors z[n] = A[n]∗y[n] for n = 0, ..., n batch−
1. Each A variable is a (nrows × ncols) matrix, z is a (1 × nrows) vector
and y is a (ncols × 1) vector. Each thread determines the element to pro-
cess by using its unique ID using: its block index (blockIdx.x), its thread
index (threadIdx.x) and the number of threads per block (blockDim.x).
A bidimensional grid configuration with NBx = NB , NBy = NB blocks
per dimension has been considered for kernels. The number of blocks NB
depends on the number of threads per dimension, which are denoted by
Ntx and Nty, respectively. Then the value of NB is obtained as

NB =
⌈√

nth
Ntx ×Nty

⌉
(9)

where nth is the number of CUDA threads, in this case nth = n batch = nT .
Each thread calculates its unique identifier (n) and executes the kernel on
the selected set of data independently.

– cudaDgevmvBatched: The kernel performs the vector-matrix-vector mul-
tiplications of an array of matrices and vectors δ[n] = z[n] ∗A[n] ∗ y[n] for
n = 0, ..., n batch − 1. Each A variable is a (nrows × ncols) matrix, z is a
(1 × nrows) vector, y is a (ncols × 1) vector and delta is a (1 × n batch)
vector. This function is used to compute δ1 and δ2 values in (8). In this
case the number of threads is nth = n batch = nT .

– cudaDgevmvBatched v2: This function is similar to the previous cudaDgevmv-
Batched kernel. In these case the number of threads is nth = nT ×Mns

since we need to compute (Ay− s)TB(Ay− s) for each s ∈ Ωns . All vec-
tors v = Ay − s are previously computed. This function performs the
vector-matrix-vector multiplications of an array of matrices and vectors
ω[n]p = exp(− 1

2 (v[n]′:,p ∗B[n] ∗ v[n]:,p + δ1[n]− δ2[n])) for n = 0, ..., nT − 1
and p = 0, ...,Mns − 1.

Other operations in (5) and (7) show low complexity compared to the
previous terms and does not have a parallel pattern (see lines 13-15 Alg.1).
Moreover, the so-called warp divergence [14] plays an important role in the
performance. In CUDA, threads are executed in warps of 32 threads, with all
threads in the warp executing the same instruction at the same time. However,

8 Carla Ramiro, M. Ángeles Simarro, Alberto Gonzalez, Antonio M. Vidal

in this part different threads in a warp need to cope with different tasks. The
GPU hardware is not capable of executing if and else statements at the same
time. CUDA serializes the different execution paths to generate correct code.
For this reason, these operations have not been parallelized.

4 Results

In the following sub-sections, we compare the performance of the proposed
multicore and GPU implementation of the SUMIS soft-output detector (with
ns = 3) in terms of bit error rate, mutual information, computational com-
plexity and speedup. The transmitted symbols are assumed to be independent
and uniformly distributed. The transmitted bits are encoded using a 1/2 LDPC
code of codeword size 648 bits, which is available from http://www.csl.cornell.edu
/vstuder/software ldpc.html and implements a LDCPC code from the IEEE
802.11n wireless LAN standard and the sum-product algorithm option has
been chosen as the decoding option. A machine with one Nvidia Tesla K40C
GPUs and two multicore Intel processors has been employed. Each multicore
is an Intel Xeon CPU E5-2697 at 2.70 GHz with 12 cores per CPU. The most
relevant features and specifications of the GPU are listed in Table 4.

Number of stream multiprocessors 15
Number of cores 2880
Clock Rate 0.75GHz
Global Memory 12 GB
Memory Clock Speed 6GHz

Table 1 Nvidia Tesla K40c especifications

4.1 BER performance, Mutual Information and Complexity

In this paper, we evaluate the performance and complexity of SUMIS for
higher number of antennas and constellation order. The use of exact and max-
log algorithms, such as RTS or STS, become prohibitive for this number of
antennas. On the other hand, the “ Fully Parallel Fixed-complexity Sphere
decoding” (FPFSD) [15] for moderate number of antennas achieves almost
max-log behavior at reasonable computing cost, for this reason it has been
chosen for comparison. A linear detector with reduced complexity such as Soft
“Minimum Mean Square Error” (MMSE) has also been chosen.

BER performance is represented for SUMIS, Soft MMSE and FPFSD al-
gorithms in Fig. 1. The curves show clearly that the SUMIS detector performs
much better than the other algorithms for 64-QAM and 256-QAM constella-
tions. It is noteworthy that SUMIS algorithm exhibits an improvement up to
5 dB in SNR with respect to the FPFSD.

In addition, we also provide a detector comparison in terms of mutual
information [16]. In Fig. 2 the minimum SNR required to achieve a given MI

Parallel SUMIS Soft Detector for Large MIMO Systems on Multicore and GPU 9

5 10 15 20 25 30 35 40
10

−4

10
−3

10
−2

10
−1

10
0

C
o
d
e
d
 B

E
R

SNR(dB)

SUMIS

FPFSD
Soft MMSE

Fig. 1 BER as a function of SNR for the NT = NR = 200 in (1 with the LDPC code of
rate 1/2. The dashed curves show the performance for a 64-QAM constellation and the solid
curves show the performance for a 256-QAM constellation.

is referred as the “minimum SNR” for that MI. This Figure represents that
minimum depending on the number of antennas. The results in Fig. 2 clearly
show that the SUMIS detector achieves a MI equal to 1 at lower SNR. It’s
worth noting that the “minimum SNR” scales more linearly with the increase
in overall antennas for the SUMIS algorithm than for the other algorithms.
The behavior is the same for higher constellation orders.

0 20 40 60 80 100 120 140 160 180 200
14

16

18

20

22

24

26

28

30

32

Transmitter and receiver antennas

S
N

R
 o

p
e
ra

ti
n
g
 p

o
in

t
fo

r
M

=
1

SUMIS
FPFSD
Soft MMSE

Fig. 2 Minimum SNR required to achieve a value of 1 in the Mutual Information parameter.
The Mutual Information is calculated between the LLR values obtained after decoding and
the transmitted coded bits. The simulation have been carried out for a 16-QAM constellation
and the LDPC code of rate 1/2.

The performance for the three different algorithms has been illustrated by
Figs. 1-2. On the other hand, the computational cost is represented in Fig. 3
in terms of FLOPS. Fig. 3 curves represent the number of FLOPS depending
on the number of antennas for a 256-QAM system. The bottleneck of the

10 Carla Ramiro, M. Ángeles Simarro, Alberto Gonzalez, Antonio M. Vidal

computational cost in the three analyzed algorithms is due to the number of
antennas of the system (O(N3

T) for the three algorithms). A variation in the
constellation order affects only slightly the results. Fig. 3 illustrates that the
computational cost of SUMIS shows the same order of magnitude as a linear
method for Large MIMO systems.

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18
x 10

10

F
L
O

P
S

Transmitter and receiver antennas

FPFSD

Soft MMSE

SUMIS

Fig. 3 FLOPS as a function of the number of antennas with the LDPC code of rate 1/2
and a 256-QAM constellation.

4.2 Speedup

We measure the execution time of the detection, with different number of
antennas and constellation sizes to evaluate the SUMIS efficiency of the pro-
posed parallel prototypes. The speedup (SP) has been computed as the ratio
between the time execution of the “reference SUMIS algorithm” (TS), and
the execution time of the OpenMP and the GPU versions (TP). The MKL
implementation with the -mkl=sequential compiler option was selected for the
“reference SUMIS algorithm”.

Tables 2 and 3 illustrate the execution time and speedup of the differ-
ent configurations. It can be observed that, generally, the higher system sizes
achieve the higher speedup for the OpenMP version. The soft detection can
be accelerated up to 9 times.

The experimental GPU measurements in Tab. 3 show how CUDA version
fails to accelerate the sequential version when the number of antennas and
the constellation order is small. This is due to the lower complexity of the
detector with these parameters. This problem gradually disappears when the
complexity of the detection stage increases, for example when the number of
transmitter antennas nT is 200 and M is 1024. In this scenario, where very
large MIMO arrays are considered, the CUDA detector is up to 4 times faster
than the sequential version.

Parallel SUMIS Soft Detector for Large MIMO Systems on Multicore and GPU 11

TP
SP M=16 M=64 M=256 M=1024

nT = 8 0.04 1.50 0.08 1.50 0.21 2.67 1.35 3.19

nT = 24 0.18 1.33 0.25 1.52 0.63 2.70 2.67 4.92

nT = 48 0.67 1.85 1.06 1.47 1.79 2.35 5.57 4.88

nT = 100 2.19 5.85 3.06 4.36 4.24 4.55 13.08 5.13

nT = 200 17.00 9.33 18.80 8.53 21.86 7.53 33.26 7.83

Table 2 Multicore Execution Times in milliseconds (TP) and Speedup (SP) for the
OpenMP SUMIS algorithm with different number of antennas and different QAM con-
stellation.

It is interesting to note how both parallel versions allow to boost the per-
formance of the system with a speed comparable to a low-complexity linear
detector such as MMSE. For example, with nT = 200 and 256-QAM, the com-
plexity of SUMIS (≈ 16 · 1010) is 4 times higher than the MMSE detector
(≈ 4 · 1010) (see Fig. 3). However, by using the parallel implementations, the
complexity of the SUMIS detector is reduced to ≈ 2 · 1010 for the OpenMP
version and ≈ 4 · 1010 for the GPU version. Thus, we can detect signals with
a similar and even higher throughput than the MMSE detector with much
better BER.

TP
Sp M=16 M=64 M=256 M=1024

nT = 8 0.27 0.22 0.25 0.48 0.51 1.10 1.52 2.82

nT = 24 0.18 1.33 0.46 0.82 0.63 2.70 1.52 8.64

nT = 48 1.29 0.96 1.49 1.05 2.36 1.77 3.50 7.76

nT = 100 5.85 2.19 6.26 2.13 7.30 2.64 21.10 3.18

nT = 200 39.30 4.04 40.30 3.97 42.31 3.89 70.80 3.68

Table 3 GPU Execution Times in milliseconds (TP) and Speedup (SP) for the CUDA
SUMIS algorithm with different number of antennas and different QAM constellation.

5 Conclusion

In this paper, we have proposed and analyzed two parallel SUMIS Soft Detec-
tor implementations. Furthermore, the SUMIS algorithm has been compared
with the FPFSD and MMSE detectors, considering very large MIMO systems
reaching up to 200 transmitter/receiver antennas and up to 1024-QAM con-
stellations. This comparison shows the robust, versatile and scalable behavior
of the SUMIS algorithm. This detector behaves much better than the other de-
tectors in terms of BER, achieving up to 5 dB improvement in SNR compared
to FPFSD.

Currently, we are still far from reaching the speeds required by the IEEE
802.11n wireless LAN standard, which makes the implementation unfeasible

12 Carla Ramiro, M. Ángeles Simarro, Alberto Gonzalez, Antonio M. Vidal

for on line use. However, these approaches allow to reduce considerably the
complexity of the simulation of large MIMO systems with scalable quasi op-
timal soft detector, opening the door to foresee new technology performance
faster than by conventional simulation.

Acknowledgment

This work has been partially supported by the Spanish MINECO Grant RACHEL
TEC2013-47141-C4-4-R, the PROMETEO FASE II 2014/003 project and FPU
AP-2012/71274.

References

1. F. Rusek, D. Persson, B.K. Lau, E. G. Larsson, T.L. Marzetta, O. Edfors, and F. Tufves-
son. Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE
Signal Proc. Magazine, 30(1):40–60, Jan. 2013.

2. C. Studer, A. Burg, and H. Bölcskei. Soft-output sphere decoding: algorithms and VLSI
implementation. IEEE J. Sel. Areas Commun., 26(2):290–300, 2008.

3. Renqiu Wang and Georgios B Giannakis. Approaching MIMO channel capacity with
reduced-complexity soft sphere decoding. Wireless Communications and Networking
Conference, 2004. WCNC. 2004 IEEE, 3:1620–1625, 2004.

4. D. Persson and E. G. Larsson. Partial Marginalization soft MIMO detection with higher
order constellations. IEEE Trans. on Signal Proccesing, 59(1):453–458, Jan. 2011.

5. M. Ĉırkić and E. G. Larsson. SUMIS: Near-optimal soft-in soft-out MIMO detection
with low and fixed complexity. Signal Processing, IEEE Transactions on, 62(12):3084–
3097, June 2014.

6. Alberto Gonzalez C. Ramiro, M. Ángeles Simarro and Antonio M. Vidal. Parallel
SUMIS Soft Detector for MIMO systems on Multicore. Proceedings of the 17th In-
ternationa Conference on Computational and Mathematical Methods in Science and
Engineering, V:1729–1736, 2017.

7. B.M. Hochwald and S. ten Brink. Achieving Near-Capacity on a Multiple-Antenna
Channel. IEEE Trans. Commun., 51:389–399, 2003.

8. Kaipeng Li, Bei Yin, Michael Wu, Joseph R Cavallaro, and Christoph Studer. Acceler-
ating massive MIMO uplink detection on GPU for SDR systems. Circuits and Systems
Conference (DCAS), 2015 IEEE Dallas, pages 1–4, 2015.

9. Di Wu, Johan Eilert, and Dake Liu. Implementation of a high-speed MIMO soft-
output symbol detector for software defined radio. Journal of Signal Processing Systems,
63(1):27–37, 2011.

10. Edward Anderson, Zhaojun Bai, Christian Bischof, Susan Blackford, Jack Dongarra,
Jeremy Du Croz, Anne Greenbaum, Sven Hammarling, A McKenney, and D Sorensen.
LAPACK users’ guide. 9, 1999.

11. online at: https://software.intel.com/en-us/articles/mkl-reference-manual. In-
tel MKL Reference Manual (2015) [Online].

12. online at: http://docs.nvidia.com/cuda/cublas. cuBLAS Documentation (2015) [On-
line].

13. Leonardo Dagum and Rameshm Enon. OpenMP: an industry standard API for shared-
memory programming. Computational Science & Engineering, IEEE, 5(1):46–55, 1998.

14. online at: https://developer.nvidia.com/cuda-toolkit. CUDA Toolkit Documenta-
tion, Version 7.5 (2015) [Online].

15. Sandra Roger, Carla Ramiro, Alberto Gonzalez, Vicenc Almenar, and Antonio M Vidal.
Fully parallel GPU implementation of a fixed-complexity soft-output MIMO detector.
IEEE Transactions on Vehicular Technology, 61(8):3796–3800, 2012.

16. Martin Senst, Gerd Ascheid, and Helge Lüders. Performance evaluation of the markov
chain monte carlo MIMO detector based on mutual information. Communications
(ICC), 2010 IEEE International Conference on, pages 1–6, 2010.

