
Article

Constraint-aware learning of policies by
demonstration

The International Journal of

Robotics Research

2018, Vol. 37(13-14) 1673–1689

© The Author(s) 2018

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/0278364918784354

journals.sagepub.com/home/ijr

Leopoldo Armesto1, João Moura2,3, Vladimir Ivan3, Mustafa Suphi Erden2,
Antonio Sala4, and Sethu Vijayakumar3

Abstract

Many practical tasks in robotic systems, such as cleaning windows, writing, or grasping, are inherently constrained.

Learning policies subject to constraints is a challenging problem. In this paper, we propose a method of constraint-aware

learning that solves the policy learning problem using redundant robots that execute a policy that is acting in the null

space of a constraint. In particular, we are interested in generalizing learned null-space policies across constraints that

were not known during the training. We split the combined problem of learning constraints and policies into two: first

estimating the constraint, and then estimating a null-space policy using the remaining degrees of freedom. For a linear

parametrization, we provide a closed-form solution of the problem. We also define a metric for comparing the similarity of

estimated constraints, which is useful to pre-process the trajectories recorded in the demonstrations. We have validated our

method by learning a wiping task from human demonstration on flat surfaces and reproducing it on an unknown curved

surface using a force- or torque-based controller to achieve tool alignment. We show that, despite the differences between

the training and validation scenarios, we learn a policy that still provides the desired wiping motion.
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1. Introduction

When performing a given task in an unfamiliar environ-

ment, human beings easily adapt the skills or previously

learned motions to novel situations and environments. For

instance, the operator in Figure 1 wipes the front panels of

the train by employing a small set of motions and skills

that generalize to different train geometries and positioning

(Moura and Erden, 2017). However, current robotic sys-

tems often require computationally expensive replanning

and precise scans of the new environment to reproduce a

given task (Pastor et al., 2011; Shiller, 2015). In addition to

this, movement in complex, high degree of freedom manip-

ulation systems often contains a high level of redundancy.

The degrees of freedom available to perform a task are usu-

ally higher than what is necessary to execute that task. This

allows a certain flexibility in finding an appropriate solu-

tion, so that this redundancy may be resolved according to

some strategy that achieves a secondary objective, while

the primary task is not affected. Such approaches to redun-

dancy resolution are employed by human beings (Cruse and

Brüwer, 1987), as well as other redundant systems, such as

(humanoid) robots (D’Souza et al., 2001).

The redundancy resolution may also be interpreted as

a form of hierarchical task decomposition, in which the

complete space of available movement is split into a task-

space component and a null-space component. For instance,

one might consider a primary task, such as reaching or tra-

jectory tracking, and a lower-priority task as a secondary

goal, such as avoiding joint limits (Gienger et al., 2005),

self-collisions (Sugiura et al., 2006), or kinematic singular-

ities (Yoshikawa, 1985). This notion is particularly evident

when considering motions modulated by external or envi-

ronmental constraints. For instance, in the wiping task of

Figure 1, the tool is constrained by the window surface;

the primary task is to keep the tool aligned and in contact,
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Fig. 1. Manual cleaning of an electric train. Willesden depot,

London (2016).

and the secondary task is to provide surface coverage while

maintaining a comfortable arm position. Several variants of

this hierarchical approach to redundancy have been used in

robotics (Khatib et al., 2008). This core concept has been

applied to task sequencing (Mansard and Chaumette, 2007),

task prioritization (Baerlocher and Boulic, 2004), and hier-

archical quadratic programming (Escande et al., 2014; Her-

zog et al., 2015). These methods minimize a cost function

subject to known constraints. However, they suffer from

the curse of dimensionality and are typically unsuitable for

real-time applications in high dimensions.

To circumvent this problem, one might attempt to learn

a policy, a mapping from states to actions, that encodes

behavior consistent with the set of constraints, instead

of continuously calculating constraint-consistent actions.

This mapping can be learned from data captured during

demonstrations, consisting of human or robot motions.

This approach falls under the category of imitation learn-

ing or learning by demonstration (Argall et al., 2009).

One straightforward way to learn behaviors from this is

through direct policy learning (DPL) (Alissandrakis et al.,

2007; Calinon and Billard, 2007; Schaal et al., 2003). For

instance, Gams et al. (2014) proposes to use a modifica-

tion of dynamic movement primitives (Ijspeert et al., 2003)

so that limits are considered at velocity and acceleration

levels to tune the interaction forces of a robotic system

with an object. Although DPL is well known and widely

used, other approaches related to the problem of learning by

demonstration involve learning a “filtered” trajectory over

the demonstrations and combine operational and configu-

ration tasks within a probabilistic framework. In particular,

Calinon (2016) and Hussein et al. (2015) propose to use

a Gaussian mixture model or Gaussian mixture regression

to learn a parametrized trajectory with known tasks con-

straints, while Paraschos et al. (2017) propose that learning

the prioritization of tasks can also enable the estimation of

“soft” constraints and a prioritization between them.

In this paper, the problem of learning by demon-

stration will be understood as an action mapping in a

DPL context (Alissandrakis et al., 2007; Schaal et al.,

2003); however, it is well known that this method suf-

fers from poor generalization (Argall et al., 2009) under

varying unknown constraints. On the contrary, constraint-

aware learning, in which the task or constraint is learned

first and a null-space policy common to all tasks is

learned separately using conventional methods has been

shown to provide significant improvements (Armesto

et al., 2017a,b; Lin et al., 2015; Towell et al., 2010).

The idea behind constraint-aware methods is that the raw

input data can be projected onto the null space of the

task or constraint once it has been learned. We can then

use other learning methods for the unconstrained policy,

which is assumed to be the same across all demonstra-

tions (Lin et al., 2015). Such an approach falls under

the categorization of “hard” constraint methods (Paraschos

et al., 2017). Lin et al. (2015). Lin et al. (2015) present a

method for estimating the null-space projection matrix. The

main drawback of their approach is that the estimation is

performed by solving a non-convex optimization problem

using a spherical representation. This often leads to long

computation times and decreased performance (Armesto

et al., 2017a). In this paper, we present a closed-form

solution of this problem.

The results presented in this paper are, indeed, an exten-

sion of (Armesto et al., 2017b), in which we provide

a more detailed explanation and justification of the pro-

posed method. In particular, we consider a DPL problem,

which might be difficult to learn, by making a reasonable

separation into two subproblems: learning the constraint

and learning the null-space policy, where both subprob-

lems have closed-form solutions with linear parametriza-

tion. This improvement allows us to estimate null-space

projection matrixes from data of different tasks, which can

be used for learning a null-space policy by observing mul-

tiple projections of such a policy. Howard and Vijayakumar

(2007) later use this estimate to learn the null-space pol-

icy. One of the key differences between our approach and

that presented by Lin et al. (2015) is that in this paper we

propose learning the constraint equation by minimizing the

error in the task-space, while Lin et al. (2015) perform the

minimization on an error defined in the null space. Sec-

ondly, Lin et al. (2015) impose the assumption of having

access to the null space, while here we can deal with data

containing both task and null-space components. In addi-

tion to this, we split the raw observation into task and null-

space components in a more efficient way than the method

proposed by Towell et al. (2010). Lin et al. (2017) also effi-

ciently split the learning method into task and null-space

components, but for lower-dimensional systems, unlike our

method. To estimate the null-space policy, we propose to

use locally weighted models (Atkeson et al., 1997); how-

ever, the method used to model such a policy is not that

relevant and other well-known approaches in DPL might

also be used (Calinon, 2016; Hussein et al., 2015; Ijspeert

et al., 2003). We show that the learned policy can then be

executed online by using a force-sensor-based task to align

to an arbitrary surface.



Armesto et al. 1675

The contributions of this paper are:

1. We formulate the constrained learning problem as

a joint optimization over both constraint and policy

parameters. Since this is a difficult problem to solve

in practice, we then propose an alternate formulation,

which splits this optimization into two subproblems,

which we solve sequentially.

2. We formulate a closed-form solution of these sub-

problems by making them linear in their respective

parameters.

3. We extend the theoretical work of hierarchically con-

strained optimization presented by Escande et al. (2014)

and adapt it for the domain of constraint-aware learning

from demonstration.

4. We develop a metric for computing the similarity of

estimated constraints.

5. We show that our framework can employ generic mod-

els to represent the constraints and policies with no prior

knowledge. We then show how application-specific

knowledge can be exploited by using domain-specific

regressors with physical meaning.

6. We validate our method through experiments by learn-

ing a circular wiping policy from human demonstrations

on planar surfaces.

7. We define a surface alignment task using a force sensor,

allowing us to perform wiping on curved surfaces based

on the previously learned policy.

2. Preliminaries and problem statement

In many robotics applications, we can decompose the

motion policy into a hierarchy of sub-policies. For instance,

in such applications as welding, ironing, wiping, writing,

etc., we can split the overall policy into a primary task of

maintaining the contact with the working surface, and a

secondary task of tracing a specific trajectory along the sur-

face. Additionally, we might even specify a third task of

avoiding joint limits, or minimizing deviations from a com-

fortable pose. In this case, a task from a higher level in the

hierarchy acts as a constraint on the lower-level policies. In

learning from demonstration, we assume that we have been

given demonstrations of the kind of motion that we want to

describe by a mathematical model.

Let us assume a system with control input u(t) ∈ R
q,

which is subject to the following Pfaffian constraint

A(t) u(t) = b(t) (1)

where A(t) ∈ R
s×q is a full row-rank Pfaffian constraint

matrix and b(t) ∈ R
s is denoted as the primary-task pol-

icy. When s < q, there exists a null-space policy π (t) ∈ R
q,

such that the control action in equation (1) can be obtained

as

u(t) = A(t)† b(t) +N(t)π(t) (2)

where N(t) := I − A(t)† A(t) is a projection matrix of the

right null space of A(t) and † denotes the Moore–Penrose

pseudoinverse. The control action can be divided into task
tsu(t) and null-space components nsu(t)

tsu(t) : = A(t)† b(t) (3)
nsu(t) : = N(t)π (t) (4)

Note that, by definition, tsu(t) ⊥ns u(t), and the primary-

task (b(t)) and null-space (π(t)) policies form the full con-

trol action. Actually, as N(t) A(t)† = 0 and N(t)2 = N(t),

from equation (2) we can assert that

nsu(t) = N(t) u(t) (5)

In a DPL context, an action mapping involves searching

for optimal parameters wu (Schaal et al., 2003; Alissan-

drakis et al., 2007)

w∗
u := argmin

wu

‖u(t) −U( wu, t) ‖2 (6)

where the norm is defined, given α : [0, T] 7→ R
n, as

‖α(t) ‖ :=

√

1

T

∫ T

0

α>(t)α(t) dt

and U( wu, t) is a suitably parametrized function approxima-

tor, with wu the adjustable parameters, i.e. parameters from

a policy model U( wu, t), which could be solved using any

optimization procedure. In most cases, choosing a linear-in-

parameter approximator will allow computationally simpler

learning algorithms to be employed, as discussed later on.

Calinon and Billard (2007) proposed to solve this prob-

lem using a method they called DPL. This is a special case

of our formulation that ignores the task hierarchy, pursuing

a direct optimization of equation (6).

However, such a direct approach cannot “distinguish"

between the actions needed to achieve the primary task

(constraint satisfaction) and the actions needed to carry out

the secondary task (for instance, tracing a trajectory in the

constraint space). Furthermore, the primary task can often

be achieved using inverse kinematics or reactively using

force or visual feedback. This shifts the focus onto learn-

ing a policy that is aware of the acting constraint imposed

by the primary task. This idea is implicit in the separa-

tion into task-space and null-space components in equations

(3) and (4). The inability of DPL to separate such compo-

nents in the learning process motivates the main goal of this

paper: setting up a suitable parametrization and formulat-

ing an optimization problem such that the aforementioned

constraint-aware learning is possible.

In a generic scenario, the problem is solved using a train-

ing dataset with samples of states and controls. However,

the dataset might contain data coming from a mixture of

different constraints, tasks, and policies. Our problem state-

ment encompasses all these possible situations if the dataset

is extended by encoding the different constraints and tasks

onto pieces of time-varying information. This additional

information classifies the training dataset according to the
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relevant task or constraint information, to produce an esti-

mate of the null-space policy π (t) consistent with such

classification. Obviously, in a specific implementation, this

idea may require the data to be annotated using a set of

subindices referring to a specific constraint, task, or demon-

stration. However, with no loss of generality, we omit such

indexing to avoid cluttering the notation until it is required

for the implementation in the example sections. If such

training data classification is not known, it might be inferred

directly from the data, as shown in the last example of this

paper.

3. Constraint-aware policy learning

When learning the policy π (t) from constrained data, we

assume that matrixes A(t), b(t), and N(t) are not known.

However, they will be given or estimated from sensor data

when executing the learned policy, i.e. estimating surface

parameters using computer vision and aligning the end

effector with the surface. This is useful, because the learned

policy can be projected onto the estimated constraint.

Given this assumption, the aim is to learn a null-space

policy π (t) from constrained data for a given set of demon-

strations, so that they can be reproduced under different

constraints in real operation using sensor-based data. In that

sense, for a given u(t), we want to estimate the constraint

matrix A(t) and task b(t). Later on, by combining data from

all demonstrations, we will learn π (t).

Learning is usually carried out by parametrized approx-

imators, which are continuous functions. For instance, uni-

versal function approximators, such as the ones proposed

by Hornik et al. (1989) provide progressively more accurate

approximations as the number of parameters, neurons, etc.,

increases. Let us assume that the set of constraint matrix,

task, and null-space policy can be parametrized as

A(t) : = A( w, t) (7)

b(t) : = b( w, t) (8)

π (t) : = π( w, wπ , t) (9)

where we can consider the parameters of the DPL problem

in equation (6) to be wu :=( w, wπ ) in equations (7) to (9).

Note that the actual explicit expression of equations (7)

to (9) would depend on some problem-dependent infor-

mation available at time t. In most cases, this will be the

robot state, but there might also be other task or constraint-

dependent information, as discussed in the previous sec-

tion. For instance, from the robot’s forward kinematics,

expressed as f( x(t) , w, t) = 0, the Pfaffian constraint is

derived as

A(x(t) , w, t) :=
∂f

∂x(t)
(x(t) , w, t)

and

b(x(t) , w, t) :=
∂f

∂t
(x(t) , w, t)

with u(t) ≡ ẋ(t). If f is time-invariant (no explicit depen-

dence on t), then b(t) ≡ 0. This particular case is, indeed,

common in many situations, if we assume that the demon-

stration trajectories lie on a fixed “surface”.

From this task or null-space parametrization, given a

set of demonstrations, the DPL can be reformulated as

the “constraint-aware policy learning” (CAPL) problem of

minimizing equation (6) with the parametrization

U( wu, t):=A( w, t)† b(w, t) +N(w, t)π (w, wπ , t) (10)

i.e., minimizing

J ( wu) :=
∥

∥u(t) −A( w, t)† b( w, t) −N(w, t)π( w, wπ , t)
∥

∥

2
(11)

Of course, the DPL cost (equation (6)) may be directly

optimized with a suitable parametrization. However, the

assumption that the demonstrations are provided under the

previously discussed constraints suggests that equation (10)

might be a better parametrization than a generic “constraint-

unaware” parametrization of U . For instance, if we con-

sider a state-dependent policy, U( x, wu), a set of training

demonstrations might have different actions for the same

state under different constraints (data inconsistency); see

the example in Section 6.1, where intersecting circles in dif-

ferent orientations illustrate such a case. In this situation,

constraint-unaware DPL would try to “average” the actions

for a state, whereas the constraint-aware learning method

would involve correctly learning a different action for each

constraint; see the details in Section 6.1.

In practice, this problem is difficult to solve because,

even if the approximators (equation (7) to (9)) were lin-

ear in their parameters, the presence of pseudoinverses in

equation (11) introduces a complex relation with respect to

w. However, under mild assumptions, we can reasonably

approximate the original cost function by splitting it into

two simpler optimization problems. Indeed, we recall that,

for any orthogonal matrix �, we have ‖e‖ = ‖�e‖. This

will inspire an orthogonal change of coordinates, yielding a

factored expression of J ( wu) but keeping the same optimal

parameter values.

Lemma 1. If rows of A(w, t) are orthonormal, i.e., if

A(w, t) is a semi-orthogonal matrix,1 then we can express

equation (11) as

J (w, wπ ) = J1(w) +J2(w, wπ ) (12)

where

J1(w) := ‖A(w, t) u(t) −b(w, t) ‖2 (13)

J2(w, wπ ) := ‖N(w, t) (u(t) −π (w, wπ , t))‖2 (14)

The proof of this lemma can be found in Appendix A.
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3.1. Sequential optimization

We can approximately solve the constraint-parametrized

learning problem sequentially, first minimizing J1( w) by

searching for optimal parameters w∗ and then fixing these

parameters while minimizing J2( w∗, wπ ) over wπ . The

approximation comes from the fact that w and wπ are com-

puted in sequence, even though J2 also depends on w. Thus,

if the solution of the sequential minimization makes both J1

and J2 small (say, compared with‖u(t) ‖), then we have a

good solution for the original J . However, if the value of

J2 were large, a joint optimization of equation (11) might

obtain better results (albeit with the mentioned computa-

tional drawbacks). Nevertheless, this might also indicate

that richer functions approximations are needed; this would

certainly be the case if J1( w∗) were large as, evidently, the

optimal value of J will be always larger than J1( w∗), since

J2 ≥ 0.

The advantage of this approach is that J2( w∗, wπ ) can

be minimized using the standard least-squares method if

we use a linear parametrization of π( w, wπ ) with respect

to wπ . Additionally, regarding J1( w), parameters w∗ can

be computed in closed form using a generalized eigenvalue

method, as we will show now.

3.2. Closed-form constraint estimation

In this section, we define a method for solving the mini-

mization of equation (13). Hence, it will allow us to esti-

mate the constraint matrix and the associated null-space

projection matrix, which will be used to split the action

observations into task-space and null-space components.

Note that equation (13) only depends on parameters w.

We can compute these parameters from the demonstrated

data. If we express A( w, t) and b( w, t) as a linear combi-

nation of regressors,2 they could be defined, at any time,

as

A( w, t) := wA8A(t) (15)

b( w, t) := wb8b(t) (16)

where wA ∈ R
s×wA and wb ∈ R

s×wb are constant matrixes

composed of parameters to be learned, w :=( wA, wb).

8A(t) ∈ R
wA×n, and 8b(t) ∈ R

wb are some regressors that

can be evaluated from information of the demonstrated

motion at time t, e.g. the state x(t), the end-effector posi-

tion computed from this state, or any other arbitrary func-

tion. This information may, for instance, describe some task

information, as we discuss later.

Let us, for convenience, define

1( w, t) = A( w, t) u(t) −b( w, t)

= [wA wb]

[

8A(t) u(t)

−8b(t)

]

= wH(t) (17)

where H(t) comprises all the regressors (multiplied by the

control inputs in the case of those from A( w, t)) into a

single matrix.

We now want to compute the parameters w∗ that will

fit the regressors to the demonstrated data using a least-

squares technique. The solution can be computed via the

generalized eigenvalues and eigenvectors, as described in

Lemma 2.

Lemma 2. Consider the problem of minimizing J := θ>Rθ

subject to θ>Qθ = 1, with R and Q symmetric. The opti-

mal value of J is λ, where λ is the minimum generalized

eigenvalue of the linear matrix pencil λQ − R. The mini-

mizer θ must be a generalized eigenvector corresponding

to eigenvalue λ.

The proof of this lemma appears in Appendix B.

Now, recall that a “demonstration” will be a set of con-

trols at different time instants from, say t = 0 to t = T .

Thus, the (Euclidean) norm in J1( w) will actually be

expressed as

w

(∫ T

0

H(t)H>(t) dt

)

w> (18)

subject to

1 = w

[

8A(t)8A(t)> 0

0 0

]

w> ∀ t ∈ [0, T] (19)

However, depending on the chosen parametrization, this

constraint might be difficult to satisfy. Therefore, we pro-

pose to approximate J1( w) with an average unit-norm

constraint, i.e., enforcing

w

[

1
T

∫ T

0
8A(t)8A(t)> dt 0

0 0

]

w> = 1 (20)

Now, applying Lemma 2, we can obtain the optimal

values for w by minimizing equation (18) subject to the

constraint (equation (20)). To do this, we compute R =
∫ T

0
H(t)H>(t) dt from equation (18) and a rank-deficient Q

from equation (20).

Note that, in practice, these integrals would be evaluated

via a sum of the available data samples, i.e., if we have N

uniformly sampled data points, we can arrange the H matrix

as

H :=

[

8A( t1) u( t1) 8A( t2) u( t2) . . . 8A( tN ) u( tN )

8b( t1) 8b( t2) . . . 8b( tN )

]

(21)

where u( t1) , u( t2) , . . . , u( tN ) are the raw observations of

the action from the demonstration, with t1 = 0, tN = T .

Then, the integral in equation (18) would be evaluated

as 1
N

HH> and an analogous approach would be taken for

equation (20).

In theory, if several constraints are fulfilled with no error,

then the (generalized) eigenvalue zero would have a multi-

dimensional subspace of eigenvectors; thus, an orthogonal
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basis of such eigenvectors would form the rows of wA

and wb. However, in practice, such a situation might not

occur with noisy demonstrations so the smaller eigenval-

ues should be interpreted as being zero. This is a com-

mon practice in the “total-least-squares” and “principal-

components” techniques discussed in Zhang (2017), to

which this proposal is related.

Note that, in this noisy case, the overall result of this

first phase of the learning methodology is a matrix w∗

of parameters associated to low eigenvalues, which fulfills

A( x(t) , w∗, t) u(t) ≈ b( x(t) , w∗, t). Once the parameters

have been learned, we can compute a modified task vec-

tor b̃(t) := A( x, w∗, t) u(t) such that the Pfaffian constraint

is fulfilled exactly.

If b(t) = 0, it can be shown (details omitted for brevity)

that the problem reduces to removing the rows of H related

to8b in equation (21), and computing the smallest singular

values or vectors of ϒ−1H, where ϒ is a scaling matrix,

such that

ϒϒ> :=
1

T

∫ T

0

8A(t)8A(t)> dt

generalizing the work of Armesto et al. (2017b). Actually,

if the number of constraints is known in advance, it is easy

to discriminate between situations where there is an over-

or under-parametrization by computing the number of sig-

nificantly smaller eigenvalues. Thus, if the number of sig-

nificant eigenvalues is smaller than the expected number of

constraints, it implies that there is an under-parametrization

and more regressors should be added. On the contrary, if the

number of significantly smaller eigenvalues is greater than

the number of expected constraints, either the problem is

over-parametrized or the data fulfill more constraints than

originally assumed.

3.3. Learning the null-space policy

At this stage, once the minimization of J1( w) has been car-

ried out and w∗ is available, each data point in the dataset

can be split into its null-space and task-space components,

as

nsu( w∗, t) := N( w∗, t) u(t) (22)
tsu( w∗, t) := u(t) −nsu( w∗, t) (23)

This can be interpreted as an estimate of the “true” null-

space and task-space components (equations (3) and (4)),

if the relevant eigenvalues are close to zero. Note also that

A( w∗, t)ns u( w∗, t) = 0 and A( w∗, t)ts u( w∗, t) = b̃(t).

Now, we can estimate the optimal value of wπ from

equation (14) evaluated at w∗

J2( w∗, wπ ) =
∥

∥

nsu( w∗, t) −N( w∗, t)π ( w∗, wπ , t)
∥

∥

2
(24)

Since π ( w∗, wπ , t) is linear in parameters wπ , this

corresponds to a standard least-squares problem.

3.4. Learning with locally weighted models

There are several ways in which we can model the pol-

icy π( w∗, wπ , t). Let us consider a very generic state-

feedback policy π ( x(t) , wπ , t). This simple model has also

been adopted by Howard et al. (2009), Lin et al. (2015),

and Towell et al. (2010). Indeed, the robot configuration

x(t) will often encode essential features of the constraint.

For instance, if we assume that all demonstrations keep

a constant orientation of the end effector with respect to

the normal vector of the constraint surface, then the nor-

mal of the surface will be represented in some features

of the robot’s state (we exploit this particular constraint

later in this paper). We can implicitly replace dependence

on w∗ with the dependence on x(t) in applications where

closed-loop feedback in the primary task will ensure that

the position or orientation constraints are maintained during

real-time operation.

Based on this idea, π ( x(t) , wπ , t) will be defined as a

weighted combination of M local models, as

π( x(t) , wπ , t) :=

∑M
m=1 ρm( x(t) )πm( x(t) , wπ ,m, t)

∑M
m=1 ρm( x(t))

(25)

where each local model m is parametrized by a correspond-

ing wπ ,m with wπ := (wπ ,1, . . . , wπ ,M ), and ρm( x(t)) :=

e− 1
2 (x(t)−cm)>D−1

m (x(t)−cm) is the importance weight of each state

observation according to the distance from a Gaussian

receptive field, with center cm and variance Dm (a diagonal

matrix). The centers and variances of the receptive fields

can be obtained from data, for instance, by running the

k-means algorithm presented by Kanungo et al. (2002).

For each local model, we use a regressor vector

9( x(t) , t) with linear parameters, as

πm( x(t) , wπ ,m, t) := 9( x(t) , t) wπ ,m (26)

where wπ ,m, for m = 1, . . . , M are the weight vectors to be

learned. If the receptive fields ρm( x(t) ) are dense enough

and the constraint is time-independent, the local regres-

sors 9( x(t) , t) may be chosen as simple linear functions

9( x(t) , t) := [x(t)> 1]. Indeed, the nonlinearity will be han-

dled by mixing local linear models, as studied by Atkeson

et al. (1997). The described regressor choice can now be

inserted into equation (24) to form the associated least-

squares problem. In a more general case, we would consider

a policy π ( x(t) , w, wπ , t) that depends on the parameters of

the primary task. The regressors may then also depend on

these parameters 9( x(t) , w∗, t).

Actually, note that the local-model structure can, too,

be used to form the regressors for A( x(t) , w, t) and

b( x(t) , w, t), which could model a nonlinear constraint in

the same way.

If we have prior information about the policy we are

attempting to learn, we can choose specific regressors if we

believe that they will represent the task better. This may

improve accuracy and reduce the number of parameters,
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Fig. 2. Robot performing constrained task on curved surface. The

robot uses a force sensor and a soft material (sponge) mounted

at the end effector as a tool. The interaction of the wiping tool

and the surface causes a friction force ff, a normal force fn, and

a contact torque mc, where the arrows indicate the direction in

which the values fx and fz are measured. The task is to align the

tool with the surface normal, by minimizing the contact torque mc,

and maintain contact by controlling the normal force fn.

compared with other options. For instance, a task involving

tracing end-effector trajectories may use the rows of the

end-effector Jacobian as regressors. The choice of suit-

able regressors is application-dependent. In our case study,

we discuss the selection of regressors suitable for learning

policies that are constrained to a planar surface.

4. Learning planar-constrained policies

Defining the appropriate set of regressors can be difficult

without prior knowledge about the application. In this sec-

tion, we propose to exploit the prior knowledge of the

application by using Jacobians of the end effector as the

main regressors for learning both the constraint and the

null-space policy. This will allow us to define exact mod-

els for tasks demonstrated on planar surfaces. However,

once the model has been trained, the policy can be exe-

cuted on non-planar surfaces as long as we can guarantee

that the end effector will stay aligned with the surface (e.g.

by using force feedback). This parametrization is useful for

applications where the robot is constrained by a surface on

which the task is being performed, such as wiping, dusting,

sweeping, scratching, or writing. In all these examples, a

constraint could be defined in terms of minimizing the

distance from the surface and the misalignment between

the surface normal and the orientation of the robot’s tool

(see Figure 2). The null space of this task would be any

motion of the robot’s tool on the surface, i.e., with speed of

movements tangential to the surface.

4.1. Learning the primary task and the constraint

Let us consider a robot with some tool at its end,

whose position in three-dimensional space will be denoted

pT( x(t) ), and a reference frame attached to the tool, denoted

Fig. 3. Two-dimensional illustration of a robot performing the

demonstrated motion on a flat surface. ρ is a point on the xT -xT

plane used as a center of the wiping motion performed in the null

space of the surface alignment task.

by the vectors xT, yT, and zT. We consider a training sce-

nario where the reference surface is flat and static, as shown

in Figure 3. The normal to the surface n does not change

with time and the primary-task error can be defined using

the distance of the tool from the surface and the tool’s

misalignment, as

e( x(t) ) :=





n>( tT( x(t) ) −p)

n>xT( x(t) )

n>yT( x(t) )



 (27)

where p is any arbitrarily chosen point on the surface.

In differential kinematics (Siciliano et al., 2009), the state

of a robot can be described by the joint velocity, ẋ(t), and its

relation with respect to the velocity vector (error) of a task,

ė( x(t) )

ė( x(t) ) = J( x(t) ) ẋ(t) (28)

where J( x(t) ) = ∂e( x(t) )/∂x(t) is the analytical Jacobian

of the task. We substitute A( x(t) ) ≡ J( x(t) ) and u(t) =

ẋ(t) in equation (1). If we assume that the demonstrator

crafts u(t) such that it pursues some surface approxima-

tion and alignment task, with a certain target “closed-loop

dynamics” if the initial error is not zero, i.e., ė( x(t) ) =

g( e( x(t) ) ), then the associated Pfaffian constraint would

be A( x(t) ) u(t) = g( e( x(t) ) ); hence, in this particular

problem, b( x) = g( e( x(t) ) ) becomes the dynamics of

the implicit alignment controller, ensuring that the error

converges to zero.

From equations (28) and (27), we can select the following

regressors

8A( x(t) ) := JT( x(t) ) ≡







∂pT(x(t))

∂x(t)
∂xT(x(t))

∂x(t)
∂yT(x(t))

∂x(t)






(29)

8b( x(t) ) :=
[

pT( x(t) )> xT( x(t) )> yT( x(t) )> 1
]

(30)

where the primary-task controller will attempt to achieve a

linear time-invariant stable closed loop, so the position and

alignment error converge to zero. as required by the primary
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task. Indeed, note that

J( x(t) ) =





n> 0 0

0 n> 0

0 0 n>



 JT( x(t) ) (31)

and thus the choice of 8A( x(t) ) is justified as, in an ideal

scenario, the ground truth A( x(t) ) can indeed be expressed

as the linear-in-parameter expression (equation (31)), as

long as the parameters wA are allowed to adjust elements of

the block-diagonal matrix in equation (31) containing the

normal vector.

In theory, the regressors for 8A( x(t) ) should be cor-

rect, as long as the demonstrations are always constrained

to the surface and the task is to minimize misalignment

error. However, the regressors 8b( x(t) ) might be insuffi-

cient because the human operator might not have used a

linear controller for alignment. Note also that measurement

noise and small varying distances from the surface during

the demonstration will, in general, make it impossible for

the approximator errors J1 and J2 in equations (13) and (14)

to become exactly zero. As earlier noted, from the analy-

sis of the singular values, since the dimension of e( x(t) )

is known, we can clearly identify situations where extra

parametrization is needed if the number of eigenvalues that

are significantly smaller than the other eigenvalues is less

than three.

Regarding regressors 8b( x(t) ), in realistic applications,

learning primary-task controllers is not usually of rele-

vance since ensuring contact and alignment with the sur-

face can be achieved via sensory feedback. This means

that the recommendation for practical applications would

be to provide demonstrations with an initial configura-

tion already on the surface (or trimming the prior samples

of the actual demonstration data) and assuming b( x(t) ) =

0. This assumption has computational benefits, reducing

the generalized eigenvalue computations to faster ordinary

eigenvalue computations, as discussed earlier.

4.2. Learning the null-space policy

We will now propose a specialized structure for the null-

space policy π (t), based on the Jacobian specific to the

planar-constrained task under consideration. As already

discussed, incorporating problem-dependent information

when building the regressors instead of generic universal-

approximator black-box regressors will allow us to improve

accuracy and decrease the number of parameters.

Recall that the primary task attempts to align the tool

orientation with the surface (constraining two degrees of

freedom) and maintain the contact (constraining one more

degree of freedom). This implies a task that constrains a

total of three of the degrees of freedom of the robot. We can

reasonably assume that any motion along the surface will be

part of the null space of the primary task, with the remain-

ing degrees of freedom available. We can now choose a

suitable parametrization of the null-space policy π( x(t) , t).

Since the tool’s orientation is constrained by the primary

task, only the position trajectory pT( x(t) ) is relevant for the

null-space policy. We choose an arbitrary reference frame

(ξ x( n), ξ y( n)) on the surface orthogonal to the normal n,

and we define a modified tool Jacobian

Jn( x(t) ) =

[

ξ x( n)> 0 0

ξ y( n)> 0 0

]

JT( x(t) ) (32)

which computes the tool’s speed relative to this reference

frame. The estimated parameters wA will not, in general,

coincide with the block-diagonal expression arising from

equation (31); nonetheless, if the orientation error during

the demonstration is reasonably small, the surface normal

would be close to the actual tool’s zT( x(t) ) vector. So we

will neglect this error and propose the parametrization

Jz( x(t) ) =

[

ξ x( zT( x(t) ) )> 0 0

ξ y( zT( x(t) ) )> 0 0

]

JT( x(t) ) (33)

which will, basically, be coincident with equation (32)

unless heavy misalignment has occurred during the demon-

stration. With this assumption, we will define the tool speed

in the coordinate system of the plane as

κ̃(t) := Jz( x(t) ) u(t) (34)

Note that these tool Jacobians consider only the tool’s posi-

tion and not its orientation. Additionally, κ̃(t) does not

depend on the parameters of the policy, which means that

it can be computed directly from the demonstrated data.

If the robot has five degrees of freedom, this choice of

κ̃(t) (two degrees of freedom) and 8A( x(t) ) (three degrees

of freedom) will ensure that the solution for u(t) is unique.

However, if the robot has more than five degrees of freedom,

there will be remaining redundant degrees of freedom that

κ̃(t) will not model.

To account for this redundancy, we complement the sec-

ondary task description Jz( x(t) ), with additional indepen-

dent rows describing the Jacobians of quantities η( x(t) , t)

related to the application by setting γ̃ (t) := η̇( x(t) , t) =

Jη( x(t) ) u(t). Ideally, these additional quantities would have

a physical meaning, such as tool or elbow speeds, or other

posture-related velocities that a human expert can identify

as relevant to the task. Given this parametrization of the

policy, let us consider the expression

Q( x(t) , w∗, t) u(t) :=





A( x(t) , w∗, t)

Jz( x(t) )

Jη( x(t) )



u(t)=





b̃(t)

κ̃(t)

γ̃ (t)



 (35)

where matrix T( x(t) , w∗, t) is square and invertible.

Let us denote T−1( x(t) , w∗, t) ≡ [Eb Eκ Eγ ], suitably

partitioning the columns of T−1( x(t) , w∗, t) compatible

with the dimensions of b̃(t), κ̃(t), γ̃ (t). Let us also con-

sider suitable function approximators, where κ( w∗, wκ , t)

is a parametrized approximator of κ̃(t) and, similarly,

γ ( w∗, wγ , t) is a parametrized approximator of γ̃ (t).
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Lemma 3. The minimization of J2 in equation (24) is

equivalent to solving the following least-squares problem

w∗
π := arg min

wκ ,wγ

∥

∥

∥

∥

(

EκEγ
)

(

κ(w∗, wκ , t)

γ (w∗, wγ , t)

)

−Nu(t) +( Eb − A†) b̃(t)
∥

∥

∥

2

(36)

such that once the optimal values of w∗
π :=(w∗

κ , w∗
γ ) have

been obtained, the null-space policy is defined as

π (w∗, w∗
π , t) :=( Eb − A†) b(w∗, t)

+ Eκκ(w∗, w∗
κ , t) +Eγ γ (w∗, w∗

γ , t) (37)

The proof of this lemma appears in Appendix C.

Note that, in the case where b(t) can be assumed to be

zero, the actual expression for π( w∗, w∗
π , t) is

π( w∗, w∗
π , t) := Eκκ( w∗, w∗

κ , t) +Eγ γ ( w∗, w∗
γ , t) (38)

If we choose to parametrize the regressors

κ( w∗, wκ , t) := 8κ ( w∗, t) wκ and γ ( w∗, wγ , t) :=

8γ ( w∗, t) wγ linearly, the solution to equation (36)

can be solved using the standard linear least-squares

method. These regressors may, too, be used to set up locally

weighted models, as discussed earlier, and the learning

problem will still remain a least-squares one. Recall that,

in most cases, the actual parametrizations will incorporate

state-dependent terms in the regressors. Let us now propose

such parametrizations.

4.2.1. Suitable regressors for κκκ . Recall that the compo-

nents of κ( w∗, wκ , t) have the interpretation of speeds over

the constraint plane. Thus, if we know beforehand that

the demonstrated curves are the result of some differen-

tial equations, this knowledge can be used to construct

state-dependent regressors κ( x(t) , w∗, wκ , t) .

For instance, let us assume that the robot is tracking a

curve f ( ν) = 0, where ν :=( νx, νy) are the two-dimensional

coordinates of the end effector on the constraint plane. The

policy will encode a motion along the curve (perpendicu-

lar to the gradient of f ( ν)) and a motion toward the curve

(proportional to the gradient of f ( ν)), as

ν̇ =

(

− ∂f

∂νy
∂f

∂νx

)

wt −

(

∂f

∂νx
∂f

∂νy

)

f ( ν) wr (39)

with, say, constant tangential speed wt and feedback propor-

tional gain wr. Then the explicit representation for f and its

gradient will suggest some regressors for which there exist

a “ground-truth” value for the coefficients (if the demon-

stration actually tracked such a curve). These regressors can

be seen as a type of dynamic motion primitives for curves

(Ijspeert et al., 2003).

As an example, if f ( ν) were a circle ( νx − cx)2 +( νy −

cy)2 −r2 = 0, the expression for ν̇ would be a third poly-

nomial in νx and νy. We therefore place the respective

monomials appearing in equation (39) in the regressors for

κ( x(t) , w∗, wκ , t).

4.2.2. Suitable regressors for γγγ . The quantities

γ ( w∗, wγ , t) represent redundant degrees of freedom.

We will assume that there is a “comfortable” pose ηref, such

that a controller η̇ = Kη( η
ref − η( x(t) ) ) is approximately

used in the demonstrations. We then define the regressors

as the affine expression

γ ( x(t) , w∗, wγ , t) =
[

−Kη Kη ηref
]

(

η( x(t) )

1

)

so that the matrix
[

−Kη Kη ηref
]

would be the “ground-

truth” parameter wγ that we intend to learn from demon-

stration.

Additionally, we can exploit the locally weighted models

on top of each of these regressors to model more complex

policies. We have used these models in our experiments to

demonstrate that they are suitable for the modeling wiping

task.

5. Task generalization using force sensor

We show the utility of learning surface-constrained policies

through generalization to a novel task. In many scenarios,

such as in the train-cleaning application (Figure 1), it might

be hard to obtain a precise model of the surface, owing to

outdoor lighting conditions, different surface materials, and

the surface dimensions. Thus, in practical applications, the

constraint surface might not be known. Therefore, we aim

to redefine the surface alignment task using, for instance, a

force or torque sensor.

To guarantee the alignment between the robot end

effector and the curved surface, the robot must exert some

contact force on the surface and adjust the end-effector ori-

entation to be perpendicular to that surface. As shown in

Figure 2, this alignment corresponds to having the end-

effector local z axis collinear with the surface normal and

the end-effector local x and y axes tangent to the surface. As

illustrated in Figure 2, this alignment corresponds to having

minimal torque around the local x and y axes at the contact

point, and having the contact force applied along the local z

axis. Therefore, we can define an alignment task error as

eF( x(t) ) :=





fc − fz
−mx

−my



 (40)

where fz is the z component of the contact force, fc is the

desired contact force, and mx and mz are the x and y com-

ponents of the contact torque relative to the tool axis. By

attaching a force or torque sensor at the tip of the end effec-

tor, we can measure the contact wrench (force and torque);

by minimizing eF , the robot end effector will align with the

contact surface.

In this scenario, the Jacobian of this error with respect to

the tool frame is defined as JF( x) ∈ R
3×7

JF( x(t) ) =







z>T 0>

0> x>
T

0> y>
T






J̄T( x(t) ) (41)
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where J̄T( x(t) ) ∈ R
6×7 represents a standard geometric

robot Jacobian.

Remark 1. We intentionally used a “different” Jacobian

(equation (40)) for real-time operation (based on sensor

information). This Jacobian replaces the purely geometric

choice (equation (27)) during learning in order to show the

generalization capabilities to a new primary constraint or

control law. Additionally, this allows us to re-project the

learned planar path κ( w∗, w∗
κ , t) onto the constraint defined

around the normal zT, even if it is not constant.

Our task is derived from a controller trying to achieve the

closed-loop dynamics ėF( x(t) ) = −KPeF( x(t) ), which can

be expressed as the primary-task constraint Jf ( x(t) ) u(t) =

−KPeF( x(t) ).

It is important to remark that the error vector (equation

(40)) used in wiping a non-flat surface with force feed-

back is different from the error used during the demonstra-

tion on the flat surfaces (equation (27)). Despite this, the

learned policy π( w∗, w∗
π , t), and also the low-dimensional

policies κ( w∗, w∗
κ , t) and γ ( w∗, w∗

γ , t), can be projected

using the new projection matrix, without affecting the pri-

mary sensor-based task. The basic idea is that we can

transfer the policy to a new set of constraints Ao( x(t) , t),

bo( x(t) , t) at run-time. By substituting these sensor-based

constraints into equation (35) we get

To( x(t) , t) u(t) :=





bo( x(t) , t)

κ( x(t) , w∗, w∗
κ , t)

γ ( x(t) , w∗, w∗
κ , t)



 (42)

with To( x(t) , t) :=





Ao( x(t) , t)

Jz( x(t) )

Jη( x(t) )





In real-time operation, To( x(t) , t) is known; therefore,

the state-feedback controller will be given by

u( x(t) , t) = T−1
o ( x(t) , t)





bo( x(t) , t)

κ( x(t) , w∗, w∗
κ , t)

γ ( x(t) , w∗, w∗
κ , t)



 (43)

In this particular case of force-sensor feedback, we use the

following regressors

Ao( x(t) , t) := JF( x(t) )

bo( x(t) , t) := −KPeF( x(t) ) (44)

6. Examples

6.1. Learning a circular policy of a particle in the

Cartesian space

We first introduce a simple example that contrasts our

CAPL with a DPL, illustrating the problems arising from

data inconsistency.

Consider a particle moving in a three-dimensional Carte-

sian space at constant speed—the norm of the velocity

Fig. 4. Two circular trajectories of a three-dimensional particle

moving in two different planes. Plot of the training data and the

result of policy execution learned through DPL and CAPL, start-

ing at the same initial position x0 and subject to the same planar

constraints. The training circles are centered at the origin with an

inclination of ±60◦ with respect to the y axis.

vector—and at constant distance of 1 m from the origin.

When restricting the motion of this particle to a plane inter-

secting the origin, the resulting trajectory is a circumfer-

ence centered at the origin. Our aim is to learn this circular

motion for any plane intersecting the origin, provided a set

of trajectories of the particle constrained to different planes.

We captured two demonstration trajectories of this particle

when constrained to move in two planes with an inclination

of ±60◦ with the y axis, as shown in Figure 4.

For this problem, we define the state x(t) ∈ R
3 as the vec-

tor of the Cartesian position of the particle and the action

u(t) ∈ R
3 as the particle velocity. Each sub-dataset has 500

data points that correspond to a full revolution with a dura-

tion of 5 s—in Figure 4, we plot the trajectories using one

fifth of the total number of training samples.

6.1.1. CAPL. Given that the constraint is independent of

the state space, we define the regressors for the constraint

matrix A(t) as a constant matrix 8A(t) = I3×3 ∈ R
3×3,

where I3×3 is the identity matrix. Moreover, in each demon-

stration, the particle never leaves the constraint plane b(t) =

0, corresponding to the case where there is only a null-space

component of the actions and no task component. Given the

noiseless training data, the estimated constraint parameters

wA1
=
[

0.0 −0.866 0.5
]

and wA2
=
[

0.0 0.866 0.5
]

exactly match the normals of the planes used in the gener-

ation of the training data. Having estimated the constraint

matrix A(t), we can compute the estimated null-space pro-

jection matrix N(t) and then compute the null-space com-

ponent of the training actions using equation (5) for each

constraint. For the unconstrained policy, we used a linear



Armesto et al. 1683

policy suited for this particular problem

π ( x) :=





x> 0 0

0 x> 0

0 0 x>



 · wπ (45)

6.1.2. DPL. For this method, we first used the same policy

function (equation (45)).

Let us now compare the performance of both approaches.

The DPL is biased because of the inconsistent data at

intersection points. For this particular example, different

actions u =
[

0 0.5 0.855
]>

for the first constraint and

u =
[

0 0.5 −0.855
]>

for the second constraint at point

x =
[

1 0 0
]>

appear in the training data. With a single

regressor, the biased DPL affects all state space, produc-

ing incorrect trajectories even when trying to replicate the

trained demonstrations (not shown in Figure 4, to avoid

cluttering). To improve the fit at training data, we tuned

20 locally weighted regressors distributed across the train-

ing set via the k-means algorithm (Kanungo et al., 2002).

However, the DPL fundamental problem at the intersec-

tion points cannot be overcome (see Figure 4, showing

policy execution). Conversely, our CAPL produces the cor-

rect actions at intersection points, once projected over the

constraint.

6.2. Learning a wiping policy

We have reproduced conditions outlined in Armesto et al.

(2017a) to simulate a kinematic seven-degrees-of-freedom

Kuka LBR IIWA R800 robot. We have generated a circular

wiping motion together with a joint limit avoidance policy

affecting the first, third, and seventh joints of the robot, as

described in Armesto et al. (2017a). Both these ground-

truth policies have an influence on the motion in the null

space of the primary task that aligns the tool with the wiping

of a planar surface. A single trajectory of a wiping motion

with a duration of 1.5 s sampled at 0.01 s intervals has been

collected with a randomly oriented planar surface placed

to be perpendicular to the tool of the robot. The robot’s

end effector is therefore initially aligned with the surface

and in contact with the surface. This ensures that align-

ment errors are initially close to zero. We can therefore use

the singular-value decomposition approach to estimate the

constraint parameters. During the data generation, we have

artificially added Gaussian noise with a standard deviation

of 5% of the joint’s physical range on each joint’s veloc-

ity, to emulate collection of noisy (non-perfect) data from a

human operator.

The proposed method provides an estimate of A( w∗, t),

which generates a value of J1 = 0.32 × 10−3 and J2 =

2.83 × 10−2, while replacing the learned policy in the orig-

inal DPL-like cost index (equation (6)) provides a cost of

J = 2.85 × 10−2.

Figure 5 shows the (simulated) measured velocities in

the tool’s plane κ̃(t) compared with the execution of a

Fig. 5. Planar wiping policy estimation. Estimated planar wip-

ing policy κ( x(t) , w∗, w∗
κ , t) (continuous lines) and ground-truth

planar wiping trajectory κ̃(t) (dots). κ̃(t) is noisy (to emulate non-

perfect data from a human operator) and is not available during

training.

Fig. 6. Joint limit avoidance policy estimation. Estimated joint

limit avoidance policy γ ( x(t) , w∗, w∗
γ , t) (continuous lines) and

ground-truth joint limit avoidance trajectory γ̃ (t) (dots). γ̃ (t) is

noisy (to emulate non-perfect data from a human operator) and is

not available during training.

parametrized version of κ( w∗, w∗
κ , t), which exploits our

proposed polynomial regressors for the circular trajecto-

ries. In Figure 6, we show the equivalent result used for

the joint limit avoidance for the redundant joints (γ̃ versus

γ ). In addition to this, in Figure 7, we depict the simulated

ground-truth policy (unknown to the learner, of course) and

we overlay the trajectories computed using the estimated

policy. In all cases, we can see that both the ground-truth

values and measured values contain a noise as a conse-

quence of a noisy wiping motion, while the reproduced

estimated policies provide a filtered version of the correct

values.
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Fig. 7. Unconstrained policy estimation. Estimated unconstrained

policy π ( x(t) , w∗, w∗
π , (t) (continuous lines) and ground-truth

unconstrained trajectory π̃ (t) (dots). π(t) is noisy because κ̃(t)

and γ̃ (t) were noisy too and is not available during training. Poli-

cies corresponding to joints 2, 3, and 7 are not shown, to avoid

cluttering.

7. Experimental setup

7.1. Testing with real data and a force sensor

In our experiments, we use the seven-degrees-of-freedom

Kuka LWR3 robot with an ATI industrial automation

Gamma force and torque sensor attached at the end effec-

tor, as shown in Figure 8. The force sensor retrieves a six-

dimensional wrench vector expressed in the sensor frame.

Therefore, we compute the torque at the contact point by

transforming the wrench through a distance dS toward the

contact area. We estimated this distance empirically by

pressing the tool against surfaces at different angles. The

robot is velocity controlled and, therefore, the minimiza-

tion of the force-based main task error (equation (40)) is

achieved by admittance control. This means that the robot

compensates for the end-effector position and orientation

according to the wrench feedback. To accommodate this

motion when in contact with a rigid surface, we intro-

duce a compliant material at the end-effector tip (such as a

sponge). This added compliance introduces some dynamic

behavior to the system, such as vibrations, which are suit-

ably damped by adding a derivative component to the

proportional controller suggested in the previous section.

We recorded a dataset of wiping trajectories demon-

strated by a human being, as shown in Figure 9. The dataset

contains 12 trajectories, each on a surface at a different

orientation (four of which are shown in Figure 10). Each

demonstration involved several circles with the tool of the

robot, giving approximately 2000 data points3 (using a sam-

pling rate of 100 Hz). The demonstrated data were only

minimally cropped to ensure that data contained only poses

where the tool was in contact with the surface and moving

along the demonstrated trajectory.

Fig. 8. Kuka LWR 3 robotic arm, equipped with a force and

torque sensor, wiping a curved surface.

Fig. 9. Demonstration of a circular wiping trajectory on a flat sur-

face. The demonstration was repeated on 12 surfaces of different

orientations.

Fig. 10. Learning by demonstration. Four of the twelve wiping

trajectories from human demonstration (green), and closed-loop

policy validation using the respective flat surface orientation and

initial position (blue).
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Table 1. Costs, J , J1, and J2, for the four experimental demon-

strations shown in Figure 10.

Demonstration J J1 J2

1 0.0206 0.81 × 10−6 0.0199

2 0.0445 2.36 × 10−6 0.0431

4 0.0319 2.39 × 10−6 0.0302

7 0.0199 4.43 × 10−6 0.0175

We used this dataset to first learn the different constraint

matrixes, by parametrizing them as a linear combination of

regressors and functions of state, and by applying the esti-

mation method described in Section 3.2. The regressors for

each constraint matrix are these from equation (29). For the

policy π , we used 25 locally weighted models with the same

regressors used by Armesto et al. (2017b). The resulting

policy was then stored and used, in a closed loop, together

with the force-based surface alignment task described in the

previous section.

Figure 10 shows the robot’s end-effector trajectory, cor-

responding to the execution of the estimated null-space

policy for the same constraint (surface inclination) of the

demonstrations, as well as the respective end-effector posi-

tion corresponding to the data. Table 1 shows the result

of computing the costs J , J1, and J2, according to equa-

tions (11), (13), and (14), respectively. The figure shows

that the locally weighted model has learned that there is

a “common" circular wiping motion across the different

demonstrations.

Furthermore, we have also validated the learned policy

on a non-flat surface, as shown in Figure 8, demonstrat-

ing that the policy, trained from human demonstrations on

flat surfaces, generalizes to both flat and curved surfaces.

The resulting wiping motion is depicted in Figure 11. Note

that we have demonstrated the wiping motion exclusively

on flat surfaces; therefore, this shows two aspects of gen-

eralization: (I) from a surface alignment task to a force

alignment task and (II) from flat surfaces to a curved sur-

face. See Armesto et al. (2017c) for video recordings of the

policy generalization to a curved surface. In many practi-

cal cases, training with flat surfaces will be easier for the

demonstrator (for instance, to align the tool properly with

the surface), resulting in a dataset with demonstrations in

which A( x) u ≈ 0, and consequently reducing the amount

of error in the task policy.

7.2. Constraint similarity analysis

In all experiments so far, we have assumed that the demon-

strator provides a set of sub-datasets {X1,X2, . . . ,Xν}, each

of which contains samples of pairs of raw observations,

which encapsulate a sufficiently diverge set of tasks and

constraints, allowing us to uncover the underlying policy

Fig. 11. A wiping policy has been trained from human demonstra-

tions on flat surfaces (without using the force sensor); the policy

generalizes to non-flat surfaces using a force-sensor-based task to

align the tool dynamically.

common to all demonstrations that, therefore, can be gen-

eralized to different constraints. To estimate the uncon-

strained policy, we need demonstrations from different

constraints (Howard and Vijayakumar, 2007). As a con-

sequence, a typical dataset will contain a sequence of

demonstrations, which will be classified as sub-datasets.

The aim now is to analyse how similar or distinct these

sub-datasets are from one another, regarding the estimated

underlying constraint, by using the same cost metric pro-

posed for the constraint estimation. Moreover, we consider

this analysis for the case of a single full dataset contain-

ing data originating from different constraints, to help us

in identifying the transition regions. The experiments in

this section are meant to provide an additional analysis of

the training data, highlighting the difference between data

obtained for an unconstrained motion or a motion subject

to the same constraint and data collected under different

constraints.

To compare the sub-datasets, we simply compute the

cost J1 from equation (13) for the sub-dataset l using the

parameters ŵk estimated with the sub-dataset k, as

J1,k,l =
∥

∥A( ŵk , tl) u( tl) −b( ŵk , tl)
∥

∥

2
(46)

where we index the time tl to emphasize that the data

is coming from dataset l. The value of J1,k,l will be low

for k = l and high otherwise, according to the assumption

that each sub-dataset was subjected to different constraints.

When different constraints intersect in some region of the

space, i.e., the underlying constraints are similar to one

another, this cost should be low, reflecting this constraint

similarity.

For the experimental data used in the previous subsec-

tion, we manually selected the ν sub-datasets. This pre-

processing step separates the full dataset into the sub-

datasets. Figure 12 shows the Cartesian positions of the
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Fig. 12. Kuka lightweight robotic arm end effector. Cartesian

positions for a full unseparated dataset (blue), subject to differ-

ent constraints in the form of flat surface inclinations. Overlapping

are the manually separated sub-datasets, showing that a full unpro-

cessed dataset contains transition regions with data points that are

discarded before the learning process.

Kuka’s end effector for the full dataset (blue) and, over-

lapping, the corresponding manually separated sub-datasets

(red).

This manual separation was achieved by visually inspect-

ing the data and selecting the initial and final indices of the

data points for each sub-dataset. However, for larger full

datasets this figure might become cluttered, making it diffi-

cult even to verify that some demonstrations correspond to

very similar constraints. This suggests that we could use J1

to split the sub-datasets.

Given an unprocessed dataset, we must conduct a similar-

ity analysis for groups of data points, regardless of whether

they correspond to the same constraint or not. One approach

is to select a set of consecutive data points that represent

a window within the full dataset. We then compute the

parameters for that window k. We shift window k across

the dataset by some increment smaller then the size of the

window, creating a window k+1 (the size refers to the num-

ber of consecutive data points). If the parameters estimated

in this new window produce a small J1, then this suggests

that the data covered by these two windows is subjected to

the same constraint.

By repeating this process for the full dataset, we then

obtain a matrix such as the one shown in Figure 13. This

matrix corresponds to the data shown in Figure 12. We have

empirically chosen a window size of 400 samples (corre-

sponding to 8 s for a sampling frequency of 50 Hz) and

increments of 50 samples (1 s). In Figure 13, we also over-

lap boxes showing the manual separation provided by the

expert. There are at least two groups of windows (around

indices 120 and 150) that could be confused with demon-

strations, given that they produce squares of small J1 in

the matrix. Even though these two groups of samples are

not true demonstrations, the cost J1 indicates that the data

Fig. 13. Normalized J1,k,l cost for window l using estimated

parameters from window k. Each window contains 400 consec-

utive data points from the full unseparated dataset, differing from

the preceding window by 50 data points.

belonging to those two groups are consistent with some

constraint, which is sufficiently well modeled by the chosen

combination of regressors. For instance, if those samples

correspond to a moment in time where the robot was static

while changing the flat table orientation between demon-

strations, then it makes sense to say that those data points

are consistent with the same constraint, e.g. the same con-

figuration of the robot. This metric can be further combined

with other application specific metrics. Data points where

the robot is static may be removed using pre-processing if

necessary. Alternatively, a tactile sensor could be used to

detect when the end tool is in contact with the surface, etc.

8. Conclusion

This paper presents a new method for learning, from

demonstration, policies that lie in the null space of a pri-

mary task, i.e. subject to some constraint. We introduce

the term “constraint-aware policy learning” as a reformula-

tion of the direct policy learning method, where the policy

appropriately parametrizes the constraint. Additionally, we

discuss the conditions for which this “constraint-aware

policy learning” can be split into two optimization prob-

lems: constraint estimation preceded by null-space policy

estimation.

The main advantage of this approach, compared with

classic direct policy learning, is its ability to learn a policy

consistent with the constraint. To demonstrate this point,

we used different tasks and constraints in our experimental

demonstration with the real Kuka lightweight arm. In this

case, while recording the training data, the human demon-

strator provides the task, whereas in the validation stage

we use a force-based task to adapt and align the tool to an

unknown surface.

While the null-space policy can be parametrized with

locally weighted models, as discussed in this paper, or any

other more generic functions, in the example of learning a
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wiping motion we choose to take advantage of our knowl-

edge of this specific task by incorporating more specialized

regressors. This decreases the number of parameters that

the algorithm must learn, decreasing the required number

of demonstrations. Certainly, a clever choice of regres-

sors can—as in our case—greatly improve the results or

even turn the learning exercise into a trivial problem. How-

ever, what this framework provides is a way of encapsulat-

ing all the specifics and domain knowledge in the chosen

regressors, and not in the learning algorithm itself.

Moreover, we consider the case of a null-space policy

that, instead of having the full dimension of the system

actions, can be decomposed, by assumption, into a set

of lower-dimensional policies. For this case, we propose

an alternative reformulation for estimating these lower-

dimensional policies, provided the respective regressors are

supplied.

However, to learn a generalizable null-space policy, we

must somehow guarantee that the training datasets pro-

vide enough variability of constraints. We provide a means

of comparing the datasets, regarding their underlying con-

straint, by using the same metric used in the constraint

estimation. This involves building a similarity matrix by

computing the estimation residual of a sub-dataset, using

the estimated parameters from the other sub-datasets. Fur-

thermore, besides allowing us to identify similar constraints

between different sub-datasets, this similarity matrix allows

us to identify different constraints within the same dataset,

by running the same metric but over different windows of

data. This can be a valuable tool for helping to identify the

beginning and end of a demonstration.

In our future work, we intend to exploit more challeng-

ing application domains, as well as learning constrained

tasks for dynamic systems. We would also like to integrate

the constraint-aware learning framework with other policy

learning methods to guarantee some desired properties for

the null-space policy.
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Notes

1. As the constraint A( w, t) u(t) = b( w, t) can be equivalently

expressed as R>( w, t) A( w, t) u(t) = R>( w, t) b( w, t) for any

invertible matrix R( w, t), there is no loss of generality in

assuming that the Pfaffian constraint (equation (1)) in the

problem statement involves matrix A( w, t) having orthonor-

mal rows. In a particular case, R( w, t) can be obtained

from the (economy size) QR decomposition of A( w, t)>:

A( w, t)>= Q( w, t) R( w, t), with Q( w, t) orthogonal, results

in R( w, t)>A( w, t) = Q( w, t)>.

2. With the appropriate regressors, any complex function can

be expressed as a linear combination of parameters, such as

recursive best first searches, neural networks (Haykin, 1998),

or locally weighted linear models (Schaal and Atkeson, 1998).

3. The data included the joint state x(t) and the joint commands

u(t), obtained by differentiating the joint states.
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Appendix A Proof of Lemma 1

Let us define the the transformation matrix

�( w, t) :=
[

A(w,t)

null[A(w,t)]>

]

This matrix is orthogonal because the matrix null[A( w, t) ]>

is an orthogonal basis of the left null space of A( w, t)>.

i.e., the set of row vectors NA( w, t) := {ψ ∈ R
1×q :

ψA( w, t)>= 0}.

Indeed, by orthogonality A( w, t)† = A( w, t)>, so

A( w, t) A( w, t)>b( w, t) = b( w, t), yielding J1( w). Also,

A( w, t) N( w, t) = 0 because N( w) projects on the right null

space of A( w, t). Finally, J2( w, wπ ) is the norm of a col-

umn vector belonging to the right null space of A( w, t) (and

this null space is actually the transpose of NA( w, t)). This

norm is equal to the sum of the squares of its coordinates in

an orthogonal basis, and these coordinates are what the left

multiplication by null[A( w, t) ]> does.

Appendix B Proof of Lemma 2

To prove Lemma 2, we introduce a Lagrange multiplier λ

and construct the following augmented cost function

L = θ>Rθ + λ( θ>Qθ − 1) (47)

which we differentiate to get

0 =
∂L

∂θ
= 2Rθ − 2λQθ ⇒ Rθ = λQθ (48)
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Thus, λ must be a generalized eigenvalue and θ a gen-

eralized eigenvector of the matrix pencil λQ − R, i.e., λ

is a solution of det( R − λQ) = 0, and θ is a vector in

null( R − λQ).

The resulting eigenvectors for different eigenvalues are

Q-orthogonal: if Rx = λQx and Ry = µQy, we have

λ( Qx)>y = λx>Qy = x>Ry = µx>Qy (49)

Thus, ( λ − µ) x>Qy = 0 so, if λ 6= µ, also implies

x>Qy = 0. Of course, if an eigenvalue gives rise to a multi-

dimensional subspace of eigenvectors, we can always build

a Q-orthogonal basis of it.

Appendix C Proof of Lemma 3

From equation (35), control actions can be expressed as

u(t) = Ebb̃(t) +Eκ κ̃(t) +Eγ γ̃ (t) (50)

Now, we can express the estimated null-space component

(equation (22)) as

nsu( w∗, t) = u(t) −A†b̃(t)

=(Eb − A†) b̃(t) +Eκ κ̃(t) +Eγ γ̃ (t) (51)

Indeed, we can prove that the right-hand side of equa-

tion (51) lies in the null space of the primary-task matrix

A( x(t) , w∗, t), i.e., that the following identity is verified

A
(

(Eb − A†) b̃(t) +Eκ κ̃(t) +Eγ γ̃ (t)
)

= 0 (52)

because AT−1 =
[

I 0 0
]

, JzT−1 =
[

0 I 0
]

and

JγT−1 =
[

0 0 I
]

; hence, we can assert that AEb = I

and therefore A(Eb − A†) = 0, AEκ = 0, and AEγ = 0.

Thus, to build the null-space terms in equation (24),

inspired in equation (51), we can define the parameters

wπ :=( wκ , wγ ) and set up the expression

π ( w∗, wπ , t) :=(Eb − A†) b̃(t)

+ Eκκ( w∗, wκ , t) +Eγ γ ( w∗, wγ , t) (53)

Note that b̃(t) is used to ensure that equation

(1) is satisfied with equality. Indeed, note that

N( x(t) , w∗, t)π ( w∗, wπ , t) = π( w∗, wπ , t). Thus, we

have proven that minimizing J2 in equation (24) is equiv-

alent to solving the following equation in a least-squares

sense

0 =

Nu(t) −
(

Eκ Eγ
)

(

κ( w∗, wκ , t)

γ ( w∗, wγ , t)

)

−(Eb − A†) b̃(t) (54)

Once the optimal values for w∗
κ and w∗

γ have been

obtained, incorporating the parameters w∗ of the identified

constraints from J1, we can express U( w∗
u) as in equa-

tion (10) from the identity arising from the matrix inver-

sion, analogous to equation (50) but using the estimated

parameter values

U( w∗
u, t) =

Ebb( w∗, t) + Eκκ( w∗, w∗
κ , t) +Eγ γ ( w∗, w∗

γ , t) (55)

with w∗
u =( w∗, w∗

κ , w∗
γ ) and defining the estimated null-

space policy as

π ( w∗, w∗
π , t) := (Eb − A†) b( w∗, t)

+ Eκκ( w∗, w∗
κ , t) +Eγ γ ( w∗, w∗

γ , t) (56)


