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Abstract 
 

In recent years the scientific community has significantly increased its use of 

virtual reality (VR) technologies in human behaviour research. In particular, the 

use of immersive VR has grown due to the introduction of affordable, high 

performance head mounted displays (HMDs). Among the fields that has strongly 

emerged in the last decade is affective computing, which combines 

psychophysiology, computer science, biomedical engineering and artificial 

intelligence in the development of systems that can automatically recognize 

emotions. The progress of affective computing is especially important in human 

behaviour research due to the central role that emotions play in many 

background processes, such as perception, decision-making, creativity, memory 

and social interaction. 

Several studies have tried to develop a reliable methodology to evoke and 

automatically identify emotional states using objective physiological measures 

and machine learning methods. However, the majority of previous studies used 

images, audio or video to elicit emotional statements; to the best of our 

knowledge, no previous research has developed an emotion recognition system 

using immersive VR. Although some previous studies analysed physiological 

responses in immersive VR, they did not use machine learning techniques for 

biosignal processing and classification. 

Moreover, a crucial concept when using VR for human behaviour research is 

validity: the capacity to evoke a response from the user in a simulated 

environment similar to the response that might be evoked in a physical 

environment. Although some previous studies have used psychological and 

cognitive dimensions to compare responses in real and virtual environments, few 

have extended this research to analyse physiological or behavioural responses. 

Moreover, to our knowledge, this is the first study to compare VR scenarios with 

their real-world equivalents using physiological measures coupled with machine 

learning algorithms, and to analyse the ability of VR to transfer and extrapolate 

insights obtained from VR environments to real environments.  



 

 

 

ii 

The main objective of this thesis is, using psycho-physiological and behavioural 

responses in combination with machine learning methods, and by performing a 

direct comparison between a real and virtual environment, to validate immersive 

VR as an emotion elicitation tool. To do so we develop an experimental protocol 

involving emotional 360º environments, an art exhibition in a real museum, and 

a highly-realistic 3D virtualization of the same art exhibition. 

The set of emotional 360º panoramas were four versions of the same virtual room, 

designed to elicit four possible arousal-valence combinations. In addition, a set 

of features was extracted from electroencephalography (EEG) and 

electrocardiography (ECG) signals, which were then input into a support vector 

machine classifier to recognize subjects’ arousal and valence perceptions. The 

model´s accuracy was 75.00% along the arousal dimension and 71.21% along the 

valence dimension. The findings validated the use of immersive 360º panoramas 

to elicit and automatically recognize different emotional states based on neural 

and cardiac dynamics; in addition, this represents the first emotion recognition 

system designed to operate in combination with an HMD. 

As to the museums, we analysed the psycho-physiological patterns evoked 

during a free exploration of an actual art exhibition and the same exhibition 

virtualized through a 3D immersive virtual environment. The majority of the 

stimuli did not present statistical differences in terms of emotional self-

assessment. In addition, an emotion recognition system was developed, using a 

support vector machine in combination with cardiovascular and linear and 

nonlinear brain dynamics, in both the real and the virtual museum. The 2-class 

(high/low) system accuracy was 71.52% and 77.08% along the arousal and 

valence dimensions, respectively, in the physical museum, and 75.00% and 

71.08% in the virtual museum. We also developed a real vs. virtual classifier, 

achieving an accuracy of 95.27%, using only EEG mean phase coherency features, 

which demonstrated the high involvement of brain synchronization in emotional 

virtual reality processes. These insights provide an important contribution at the 

methodological level and to scientific knowledge, which can guide future 

emotion elicitation and recognition systems using VR. 

Moreover, we compared the navigation patterns of the subjects in the real and 

virtual museums, as these can radically condition environmental perception and, 

therefore, alter the various evoked responses. The movement patterns in both 

museums were, in general, similar, but there were significant differences at the 

beginning of the exploration, that is, there were time-dependent differences in 

the patterns during the first 2 minutes of the tours. Subsequently, no significant 

differences were observed in the navigation patterns between the physical and 
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the virtual museum. These findings support the use, at navigation level, of 

immersive virtual environments as empirical tools in human behavioural 

research. 

This thesis provides novel contributions to the use of immersive VR in human 

behaviour research, particularly in relation to emotions. VR can help in the 

application of methodologies designed to present more realistic stimuli in the 

assessment of daily-life environments and situations, thus overcoming the 

current limitations of affective elicitation, which classically uses images, audio 

and video. Moreover, it analyses the validity of VR by performing a direct 

comparison using highly-realistic simulation. We believe that immersive VR will 

revolutionize laboratory-based emotion elicitation methods. Moreover, its 

synergy with physiological measurement and machine learning techniques will 

impact transversely in many other research areas, such as architecture, health, 

assessment, training, education, driving and marketing, and thus open new 

opportunities for the scientific community. The present dissertation aims to 

contribute to this progress. 
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Resumen 
 

El uso de la realidad virtual (RV) se ha incrementado notablemente en la 

comunidad científica para la investigación del comportamiento humano. En 

particular, la RV inmersiva ha crecido debido a la democratización de las gafas 

de realidad virtual o head mounted displays (HMD), que ofrecen un alto 

rendimiento con una inversión económica. Uno de los campos que ha emergido 

con fuerza en la última década es el Affective Computing, que combina 

psicofisiología, informática, ingeniería biomédica e inteligencia artificial, 

desarrollando sistemas que puedan reconocer emociones automáticamente. Su 

progreso es especialmente importante en el campo de la investigación del 

comportamiento humano, debido al papel fundamental que las emociones 

juegan en muchos procesos psicológicos como la percepción, la toma de 

decisiones, la creatividad, la memoria y la interacción social. 

Muchos estudios se han centrado en intentar obtener una metodología fiable para 

evocar y automáticamente identificar estados emocionales, usando medidas 

fisiológicas objetivas y métodos de aprendizaje automático. Sin embargo, la 

mayoría de los estudios previos utilizan imágenes, audios o vídeos para generar 

los estados emocionales y, hasta donde llega nuestro conocimiento, ninguno de 

ellos ha desarrollado un sistema de reconocimiento emocional usando RV 

inmersiva. Aunque algunos trabajos anteriores sí analizan las respuestas 

fisiológicas en RV inmersivas, estos no presentan modelos de aprendizaje 

automático para procesamiento y clasificación automática de bioseñales. 

Además, un concepto crucial cuando se usa la RV en investigación del 

comportamiento humano es la validez: la capacidad de evocar respuestas 

similares en un entorno virtual a las evocadas por el espacio físico. Aunque 

algunos estudios previos han usado dimensiones psicológicas y cognitivas para 

comparar respuestas entre entornos reales y virtuales, las investigaciones que 

analizan respuestas fisiológicas o comportamentales están mucho menos 

extendidas. Según nuestros conocimientos, este es el primer trabajo que compara 

entornos físicos con su réplica en RV, empleando respuestas fisiológicas y 

algoritmos de aprendizaje automático y analizando la capacidad de la RV de 

transferir y extrapolar las conclusiones obtenidas al entorno real que se está 

simulando. 
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El objetivo principal de la tesis es validar el uso de la RV inmersiva como una 

herramienta de estimulación emocional usando respuestas psicofisiológicas y 

comportamentales en combinación con algoritmos de aprendizaje automático, 

así como realizar una comparación directa entre un entorno real y virtual. Para 

ello, se ha desarrollado un protocolo experimental que incluye entornos 

emocionales 360º, un museo real y una virtualización 3D altamente realista del 

mismo museo.  

Con respecto al conjunto de entornos emocionales 360º, se diseñaron cuatro 

alternativas de una habitación virtual para generar las cuatro posibles 

combinaciones de arousal-valencia alto y bajo. Además, se obtuvieron un conjunto 

de variables de las señales de encefalograma (EEG) y electrocardiografía (ECG), 

que fueron procesadas junto con un clasificador Support Vector Machine para 

reconocer la percepción del sujeto en términos de arousal y valencia. Estos 

resultados validan el uso de los panoramas 360º inmersivos para generar y 

reconocer automáticamente diferentes estados emocionales utilizando las 

dinámicas cerebrales y cardiacas, y suponen el primer sistema de reconocimiento 

emocional utilizando un HMD. 

En lo que concierne al análisis del museo, fueron estudiados los patrones 

psicofisiológicos evocados durante la exploración libre de una exhibición de arte 

real y durante la virtualización de la misma mediante un escenario de RV 3D 

inmersivo. La mayoría de los estímulos no presentaron diferencias estadísticas 

en términos de la autoevaluación emocional de los sujetos. Además, un sistema 

de reconocimiento emocional fue desarrollado usando un Support Vector Machine 

en combinación con las dinámicas cerebrales y cardiovasculares en el museo real 

y virtual. La precisión del clasificador de dos clases (alto/bajo) fue de 71.52% y 

77.08% en las dimensiones de arousal y valencia respectivamente en el museo real, 

y de 75.00% y 71.08% en el museo virtual. Por otro lado, también se ha 

desarrollado un clasificador para discriminar entre los estímulos reales y los 

virtuales, que ha alcanzado una precisión del 95.27% utilizando solo variables de 

mean phase coherency del EEG, lo que demuestra la alta implicación de la sincronía 

cerebral en los procesos emocionales en RV. Estos resultados aportan una 

importante contribución a nivel metodológico y de conocimiento científico, 

guiando futuras estimulaciones emocionales y sistemas de reconociendo usando 

RV. 

Asimismo, se han analizado los patrones de navegación tanto en el museo real y 

como en el virtual, ya que estos pueden condicionar radicalmente la percepción 

del entorno y, por ello, alterar las respuestas evocadas. Los patrones en ambos 

museos presentan una alta similitud, mostrando diferencias significativas al 

principio de la exploración, en términos del área explorada y del tiempo 

dedicado a visitar la exposición. Los resultados muestran que estas existen 

durante los dos primeros minutos del recorrido y, a partir de ese momento, no 
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hay diferencias entre el museo real y el virtual en términos de navegación. Estos 

resultados apoyan el uso de la RV inmersiva como herramienta de investigación 

del comportamiento humano a nivel de navegación. 

La tesis presenta novedosas contribuciones del uso de la RV inmersiva en la 

investigación del comportamiento humano, en particular en lo relativo al estudio 

de las emociones. Esta ayudará a aplicar metodologías a estímulos más realistas 

para evaluar entornos y situaciones de la vida diaria, superando las actuales 

limitaciones de la estimulación emocional que clásicamente ha incluido 

imágenes, audios o vídeos. Además, en ella se analiza la validez de la RV 

realizando una comparación directa usando una simulación altamente realista. 

Creemos que la RV inmersiva va a revolucionar los métodos de estimulación 

emocional en entornos de laboratorio. Además, su sinergia junto a las medidas 

fisiológicas y las técnicas de aprendizaje automático, impactarán 

transversalmente en muchas áreas de investigación como la arquitectura, la 

salud, la evaluación psicológica, el entrenamiento, la educación, la conducción o 

el marketing, abriendo un nuevo horizonte de oportunidades para la comunidad 

científica. La presente tesis espera contribuir a caminar en esa senda.  
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Resum 
 

L'ús de la realitat virtual (RV) s'ha incrementat notablement en la comunitat 

científica per a la recerca del comportament humà. En particular, la RV 

immersiva ha crescut a causa de la democratització de les ulleres de realitat 

virtual o head mounted displays (HMD), que ofereixen un alt rendiment amb una 

reduïda inversió econòmica . Un dels camps que ha emergit amb força en l'última 

dècada és el Affective Computing, que combina psicofisiologia, informàtica, 

enginyeria biomèdica i intel·ligència artificial, desenvolupant sistemes que 

puguen reconéixer emocions automàticament. El seu progrés és especialment 

important en el camp de la recerca del comportament humà, a causa del paper 

fonamental que les emocions juguen en molts processos psicològics com la 

percepció, la presa de decisions, la creativitat, la memòria i la interacció social. 

Molts estudis s'han centrat en intentar obtenir una metodologia fiable per a 

evocar i automàticament identificar estats emocionals, utilitzant mesures 

fisiològiques objectives i mètodes d'aprenentatge automàtic. No obstant això, la 

major part dels estudis previs utilitzen imatges, àudios o vídeos per a generar els 

estats emocionals i, fins on arriba el nostre coneixement, cap d'ells ha 

desenvolupat un sistema de reconeixement emocional mitjançant l’ús de la RV 

immersiva. Encara que alguns treballs anteriors sí que analitzen les respostes 

fisiològiques en RV immersives, aquests no presenten models d'aprenentatge 

automàtic per a processament i classificació automàtica de biosenyals. 

A més, un concepte crucial quan s'utilitza la RV en la recerca del comportament 

humà és la validesa: la capacitat d'evocar respostes similars en un entorn virtual 

a les evocades per l'espai físic. Encara que alguns estudis previs han utilitzat 

dimensions psicològiques i cognitives per a comparar respostes entre entorns 

reals i virtuals, les recerques que analitzen respostes fisiològiques o 

comportamentals estan molt menys esteses. Segons els nostres coneixements, 

aquest és el primer treball que compara entorns físics amb la seua rèplica en RV, 

emprant respostes fisiològiques i algorismes d'aprenentatge automàtic i 

analitzant la capacitat de la RV de transferir i extrapolar les conclusions 

obtingudes a l'entorn real que s'està simulant. 
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L'objectiu principal de la tesi és validar l'ús de la RV immersiva com una eina 

d'estimulació emocional usant respostes psicofisiològiques i comportamentals en 

combinació amb algorismes d'aprenentatge automàtic, així com realitzar una 

comparació directa entre un entorn real i virtual. Per a això, s'ha desenvolupat 

un protocol experimental que inclou entorns emocionals 360º, un museu real i 

una virtualització 3D altament realista del mateix museu. 

Respecte al conjunt d'entorns emocionals 360º, es van dissenyar quatre 

alternatives d'una habitació virtual per a generar les quatre possibles 

combinacions d' arousal-valencia alt i baix. A més, es van obtenir un conjunt de 

variables dels senyals d'encefalograma (EEG) i electrocardiografia (ECG), que 

van ser processades conjuntament amb un classificador Support Vector Machine 

per a reconéixer la percepció del subjecte en termes d'arousal i valència. Aquests 

resultats validen l'ús dels panorames 360º immersius per a generar i reconéixer 

automàticament diferents estats emocionals mitjançant les dinàmiques cerebrals 

i cardíaques, i suposen el primer sistema de reconeixement emocional utilitzant 

un HMD. 

En el que pertoca a l'anàlisi del museu, van ser estudiats els patrons 

psicofisiològics evocats durant l'exploració lliure d'una exhibició d'art real i 

durant la virtualització de la mateixa mitjançant un escenari de RV 3D immersiu. 

La major part dels estímuls no van presentar diferències estadístiques en termes 

de l'autoavaluació emocional dels subjectes. A més, un sistema de reconeixement 

emocional va ser desenvolupat utilitzant un Support Vector Machine en 

combinació amb les dinàmiques cerebrals i cardiovasculars en el museu real i 

virtual. La precisió del classificador de dues classes (alt/baix) va ser de 71.52% i 

77.08% en les dimensions d'arousal i valencia respectivament en el museu real, i 

de 75.00% i 71.08% en el museu virtual. D'altra banda, també s'ha desenvolupat 

un classificador per a discriminar entre els estímuls reals i els virtuals, que ha 

aconseguit una precisió del 95.27% utilitzant només variables de mean phase 

coherency del EEG, la qual cosa demostra l'alta implicació de la sincronia cerebral 

en els processos emocionals en RV. Aquests resultats aporten una important 

contribució en l'àmbit metodològic i de coneixement científic, guiant futures 

estimulacions emocionals i sistemes de reconeixent usant RV. 

Així mateix, s'han analitzat els patrons de navegació tant en el museu real i com 

en el virtual, ja que aquests poden condicionar radicalment la percepció de 

l'entorn i, per això, alterar les respostes evocades. Els patrons en tots dos museus 

presenten una alta similitud, mostrant diferències significatives al principi de 

l'exploració, en termes de l'àrea explorada i del temps dedicat a visitar l'exposició. 

Els resultats mostren que aquestes existeixen durant els dos primers minuts del 

recorregut i, a partir d'aquest moment, no hi ha diferències entre el museu real i 

el virtual en termes de navegació. Aquests resultats donen suport a l'ús de la RV 
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immersiva com a eina de recerca del comportament humà en l'àmbit de 

navegació. 

La tesi presenta noves contribucions de l'ús de la RV immersiva en la recerca del 

comportament humà, en particular quant a l'estudi de les emocions. Aquesta 

ajudarà a aplicar metodologies a estímuls més realistes per a avaluar entorns i 

situacions de la vida diària, superant les actuals limitacions de l'estimulació 

emocional que clàssicament ha inclòs imatges, àudios o vídeos. A més, en ella 

s'analitza la validesa de la RV realitzant una comparació directa usant una 

simulació altament realista. Creiem que la RV immersiva revolucionarà els 

mètodes d'estimulació emocional en entorns de laboratori. A més, la seua 

sinergia al costat de les mesures fisiològiques i les tècniques d'aprenentatge 

automàtic, impactaran transversalment en moltes àrees de recerca com 

l'arquitectura, la salut, l'avaluació psicològica, l'entrenament, l'educació, la 

conducció o el màrqueting, obrint un nou horitzó d'oportunitats per a la 

comunitat científica. La present tesi espera contribuir a caminar en aquesta senda. 
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Chapter 1  

 

Introduction 
 

"The good thing about science is that it's true whether or not you believe in it." 

Neil deGrasse Tyson 

 

 

Motivation 

Virtual reality (VR) has experienced an increase in its popularity in recent years 

in scientific and commercial contexts (Cipresso et al., 2018). Its general 

applications include gaming, training, education, health, marketing, design and 

many apps that can be downloaded from company platforms, such as HTC Vive, 

Oculus or Sony PlayStation. This increase is based on the development of a new 

generation of low-cost headsets which has democratised global purchases of 

head mounted displays (HMDs) (Castelvecchi, 2016). 

Nonetheless, VR has been used in research since the 1990s (Slater & Usoh, 1994). 

The scientific interest in VR is due to the fact that it provides simulated 

experiences that create the sensation of being in the real world (Giglioli et al., 

2017). In particular, environmental simulations are representations of physical 

environments that allow researchers to analyse reactions to common concepts 

(Kwartler, 2005). They are especially important when what they depict cannot be 

physically represented. VR makes it possible to study these scenarios under 

controlled laboratory conditions (Vince, 2004). Moreover, VR allows the time and 

cost-effective isolation and modification of variables, unfeasible in real space 

(Alcañiz et al., 2003). 
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Virtual reality set-ups: formats, displays and interfaces 

The set-ups that display VR simulations have been progressively integrated into 

studies as the relevant technologies have evolved; These consist of a combination 

of three objective features, formats, display devices and user interfaces. 

The format describes the structure of the information displayed. The most 

common are 2D multimedia and 3D environments; the main difference between 

them is their levels of interactivity (Mengoni et al., 2011). 2D multimedia, 

including 360º panoramic images and videos, provide non-interactive visual 

representations. The validity of this format has been extensively explored 

(Stamps III, 1990). Moreover, the latest advances in computer-generated images 

simulate light, texture and atmospheric effects to such a degree of photorealism 

that it is possible to produce a virtual image that is indistinguishable, to the naked 

eye, from a photograph of a real world scene (Morinaga et al., 2018). This format 

allows scientists to test static computer-generated environments, with many 

variations, cheaply and quickly in a laboratory. On the other hand, 3D 

environments generate interactive representations which allow changes in the 

user’s point of view, navigation and even interaction with objects and persons 

(Siriaraya & Ang, 2019). Developing realistic 3D environments is more time 

consuming than developing 360º computer-generated photographs, and their 

level of realism is limited by the power of the hardware. However, the processing 

potency of GPUs (graphics processing units) is increasing every year, which will 

enhance the performance of 3D environments. Moreover, the interaction capacity 

of 3D environments, which facilitates the simulation of real-world tasks, is a key 

aspect in the application of virtual reality (Cipresso et al., 2018). 

The display devices are the technological equipment used to visualize the 

formats. They are classified according to the immersion they provide, that is, the 

sensorimotor contingencies that they support. These are related to the actions 

that experimental subjects carry out in the perception process, for example, when 

they bend down and shift the position of their heads, and their gaze direction, to 

see underneath an object. Therefore, the sensorimotor contingencies supported 

by a system define a set of valid actions (e.g. turning the head, bending forward) 

that carry meaning in terms of perception within the virtual environment (Slater, 

2009). Since immersion is objective, one system is more immersive than another 

if it is superior in at least one characteristic while the others are equal. 
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There are three categories of immersion system, non-immersive, semi-immersive 

and immersive (Cipresso et al., 2018). Non-immersive systems are simpler 

devices which use a single-screen, such as a desktop PC, to display environments 

(Kober et al., 2012). Semi-immersive systems, such as the cave automatic virtual 

environment (CAVE), or the powerwall screen, use large projections to display 

environments on walls, enveloping the viewer (Borrego et al., 2016; Clemente et 

al., 2014). These displays typically provide a stereo image of an environment, 

using a perspective projection linked to the position of the observer’s head. 

Immersive devices, such as HMDs, provide fully-immersive systems that isolate 

the user from external world stimuli (Borrego et al., 2018). These provide a 

complete simulated experience, including a stereoscopic view, which responds 

to the user’s head movements. During the last two decades VR has usually been 

displayed through desktop PCs or semi-immersive systems, such as CAVEs and 

powerwalls (Vecchiato et al., 2015). However, improvements in the performance, 

and availability, of the new generation of HMDs is boosting their use in research 

(Jensen & Konradsen, 2017). 

The user interfaces, which are exclusive to 3D environments which allow this 

level of interaction, are the functional connections between the user and the VR 

environment which allow him or her to interact with objects and navigate (Riecke 

et al., 2018). Regarding interaction with objects, manipulation tasks include 

selection, that is, acquiring or identifying an object or subset of objects; 

positioning, that is, changing an object’s 3D position; and rotation, that is, 

changing an object’s 3D orientation. In terms of the navigation metaphors in 3D 

environments, virtual locomotion has been thoroughly analysed (Templeman et 

al., 1999), and can be classified as physical or artificial. Regarding the physical, 

there are room-scale based metaphors, such as real-walking, which allow the user 

to walk freely inside a limited physical space. These are normally used with 

HMDs; position and orientation are determined by the user’s head. They are the 

most naturalistic of the metaphors, but are highly limited by the physical tracked 

area (E. Bozgeyikli, L. Bozgeyikli et al., 2016). In addition, there are motion-based 

metaphors, such as walking-in-place or redirected walking. Walking-in-place is 

a pseudo-naturalistic metaphor where the user performs a virtual locomotion to 

navigate, for example, by moving his/her hands as if (s)he was walking, or by 

performing footstep-like movements, while remaining stationary (Tregillus & 

Folmer, 2016). Redirected walking is a technique where the user perceives (s)he 

is walking freely but, in fact, is being unknowingly manipulated by the virtual 

display: this allows navigation in an environment larger than the actual tracked 

area (Nescher et al., 2014). Regarding the artificial, controller-based metaphors 

allow the user to control their movements directly through a joystick or a similar 
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device, such as a keyboard or a trackball (Nabiyouni et al., 2015). In addition, 

teleportation-based metaphors allow the user to point where (s)he wants to go 

and teleport him or her there with an instantaneous “jump” (Bozgeyikli, Raij, et 

al., 2016). Moreover, recent advancements in latest generation HMD devices have 

increased the performance of navigation metaphors. Point-and-click teleport 

metaphors have become mainstream technologies implemented in all low-cost 

devices. However, other techniques have also increased in performance: 

walking-in-place metaphors have become more user-friendly and robust; room-

scale based metaphors now have increased coverage areas, provided by low-cost 

tracking methods; and controller-based locomotion now addresses virtual 

sickness through effective, dynamic field-of-view adjustments (Boletsis, 2017). 

 

Navigation in Virtual Reality 

The high interactivity offered by 3D environments also causes an issue that must 

be considered; navigation can radically condition space perception and, 

therefore, alter evoked responses. Navigation has been divided into wayfinding 

and travel components (LaViola et al., 2017). Wayfinding is the cognitive process 

of establishing a route or path from an origin to a destination. It has been 

analysed in VR with topics where the wayfinding component is critical to task 

performance, such as firefighting training (Bliss et al., 1997). In addition, 

researchers have compared the wayfinding performance of users in physical and 

virtual environments and concluded that their performance in virtual 

environments is poorer (Richardson et al., 1999; van der Ham et al., 2015). 

However, other authors have claimed that the technical limitations of VR, which 

impact on user involvement, might be the cause of this lower performance 

(Lessels & Ruddle, 2005); thus, further research needs to be carried out using the 

latest generation HMDs, which are less technically limited than the previous 

generation. 

Second, the travel function is related to the task of moving from one point to 

another. It is very influenced by the navigation metaphor used to perform the 

navigation; many have been analysed, such as joysticks, walking-in-place and 

teleportation (Riecke et al., 2010; Tregillus et al., 2017; Wilson et al., 2014). 

However, there is no consensus as to which is the standard navigation method 

(Lee et al., 2018). Moreover, there is a lack of research comparing the influence of 

different metaphors on the travel component, and comparing how similar is its 

operation in the virtual and physical scenarios, although this radically affects 

how subjects perceive environments. 
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Sense of presence 

In addition to the objective features of the set-up, the experience of users in 

virtual environments can be measured by the concept of presence, understood as 

the subjective feeling of "being-there" (Slater & Wilbur, 1997). A high degree of 

presence creates in the user the sensation of physical presence and the illusion of 

interacting and reacting as if (s)he was in the real world (Heeter, 1992). In the 

2000s, the strong illusion of being in a place, in spite of the sure knowledge that 

one is not actually there, was characterised as "place illusion" (PI), to avoid any 

confusion that might be caused by the use of multiple meanings of the word 

"presence". Moreover, just as PI relates to how the world is perceived, and the 

correlation of movements and concomitant changes in the images that form 

perceptions, "plausibility illusion" (PsI) relates to what is perceived, in a 

correlation of external events not directly caused by the participant (Slater, 2009). 

PsI is determined by the extent to which a system produces events that directly 

relate to the participant, and the overall credibility of the scenario being depicted 

in comparison with viewer expectations, for example, when an experimental 

participant is provoked into giving a quick, natural and automatic reply to a 

question posed by an avatar. 

Although presence plays a critical role in VR experiences, there is limited 

understanding of what factors affect presence in virtual environments. However, 

there is consensus that exteroception and interoception factors affect presence. It 

has been shown that exteroception factors, such as higher levels of interactivity 

and immersion, which are directly related to the experimental set-up, provoke 

increased presence, especially in virtual environments not designed to induce 

particular emotions (Baños et al., 2004; Slater et al., 1994; Usoh et al., 1999). As to 

the interoception factors, which are defined by the content displayed, 

participants will have higher presence ratings if they feel emotionally affected; 

for example, previous studies have found a strong correlation between arousal 

and presence (Diemer et al., 2015). Recent research has also analysed presence in 

specific contexts and suggested that, for example, in social environments, it is 

enhanced when the VR elicits genuine cognitive, emotional, and behavioural 

responses, and when participants create their own narratives about events. 

(Riches et al., 2019). On the other hand, presence decreases when users experience 

physical problems, such as cybersickness (Kiryu & So, 2007). 
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Virtual Reality in Human Behaviour Research 

VR is, thus, proposed as a powerful tool to simulate complex, real situations and 

environments, offering researchers unprecedented opportunities to investigate 

human behaviour in closely-controlled designs in controlled laboratory 

conditions (Diemer et al., 2015). There are now many researchers in the field, who 

have published many studies, so a strong, interdisciplinary community exists 

(Cipresso et al., 2018). 

Education and training is one field where VR has been much applied. Freina and 

Ott (2015) showed that VR can offer great educational advantages. It can solve 

time-travel problems; for example, students can experience different historical 

periods. It can address physical inaccessibility; for example, students can explore 

the solar system in the first person. It can circumnavigate ethical problems; 

students can “perform” serious surgery. Surgical training is now one of the most 

closely analysed research topics. Interventional surgery lacked satisfactory 

training methods before the advent of VR, except learning on real patients (Alaraj 

et al., 2011). Bhagat, Liou and Chang (2016) analysed improvements in military 

training. These authors suggested that cost-effective 3D VR significantly 

improved subjects learning motivation and outcomes, and provided a positive 

impact on their live firing achievement scores. In addition, besides enhancements 

in cost-effectivity, VR offers a safe training environment, as evidenced by the 

extensive research into driving and flight simulators (Dols et al., 2016; Yavrucuk 

et al., 2011). Moreover, de-Juan-Ripoll et al. (2018) proposed that VR is an 

invaluable tool to assess risk-taking profiles and to train in related skills, due to 

its transferability to real-world situations. 

Several researchers have also demonstrated the effectiveness of VR in therapeutic 

applications. It offers some distinct advantages over standard therapies, 

including precise control over the degree of exposure to the therapeutic scenario, 

the possibility of tailoring scenarios to individual patients’ needs, and even the 

capacity to provide therapies that might otherwise be impossible (Bohil et al., 

2011). Taking some examples, studies, using VR, have analysed the improvement 

in the training in social skills for persons with mental or behavioural disorders, 

such as phobias (Peperkorn et al., 2014), schizophrenia (Park et al., 2011) and 

autism (Didehbani et al., 2016). Lloréns, Noé, Colomer and Alcañiz (2015) 

showed that VR-based telerehabilitation interventions promoted the 

reacquisition of locomotor skills associated with balance, in the same way as in-

clinic interventions (both complemented with conventional therapy 

programmes). Moreover, it has been proposed as a key tool for the diagnosis of 

neurodevelopmental disorders (Alcañiz et al., 2019).  
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In addition, VR has been applied transversally to many fields, such as 

architecture and marketing. In architecture, VR has been used as a framework 

within which to test the overall validity of proposed plans and architectural 

designs, generate alternatives and conceptualize learning, instruction and the 

design process itself (Portman et al., 2015). In marketing it has been applied in 

the analysis of consumer behaviour in laboratory-controlled conditions (Bigné et 

al., 2015) and as a tool to develop emotionally engaging consumer experiences 

(Alcañiz et al., 2019). 

One of the most important topics in human behaviour research is human 

emotions, due to the central role that they play in many background processes, 

such as perception, decision-making, creativity, memory and social interaction 

(Picard, 2003). Given the presence that VR provokes in users, it has been 

suggested as a powerful means of evoking emotions in laboratory environments 

(Alcañiz et al., 2003). In one of the first confirmatory studies into the efficacy of 

immersive VR as an affective medium, Baños et al. (2004) showed that emotion 

has an impact on presence. Subsequently, many other similar studies showed 

that VR can evoke emotions, such as anxiety and relaxation (Riva et al., 2007), 

positive valence in obese children taking exercise (Guixeres et al., 2013), arousal 

in natural environments, such as parks (Felnhofer et al., 2015) and different 

moods in social environments featuring avatars (Lorenzo et al., 2016). 

 

Implicit measures and the neuroscience approach 

Traditionally, most theories of human behaviour research have been based on a 

model of the human mind that assumes that humans can think about and 

verbalize accurately their attitudes, emotions and behaviours (Brief, 1998). 

Therefore, classical psychological evaluations used self-assessment 

questionnaires and interviews to quantify subjects’ responses. However, these 

explicit measures have been demonstrated to be subjective, as stereotype-based 

expectations can lead to systematically biased behaviour, given that most 

individuals are motivated to be, or appear, nonbiased (Payne, 2001). The terms 

used in questionnaires can also be differentially interpreted by respondents; and 

the outcomes depend on the subjects possessing a wide knowledge of their 

dispositions, which is not always the case (Schmitt, 1994).  

Recent advances in neuroscience show that most of the brain processes that 

regulate our emotions, attitudes and behaviours are not conscious. In contrast to 

explicit processes, humans cannot verbalize these implicit processes (Barsade et 

al., 2009). In recent years, growing interest has developed in “looking” inside the 
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brain to seek solutions to problems that have not traditionally been addressed by 

neuroscience. In this sense, neuroscience offers techniques that can recognise 

implicit measurements not controlled by conscious processes (Lieberman, 2007). 

These developments have provoked the emergence in last decade of a new field 

called neuroeconomics, which blends psychology, neuroscience, and economics 

into models of decision-making, rewards, risks, and uncertainties (Camerer et al., 

2005). Neuroeconomics addresses human behaviour research, in particular the 

brain mechanisms involved in economic decision-making, from the point of view 

of cognitive neuroscience, using implicit measures.  

Several implicit measuring techniques have been proposed in recent years. Some 

examples of their applications in human behaviour research are: heart rate 

variability (HRV) has been correlated with arousal changes in vehicle drivers to 

detect critical points in a route (Riener et al., 2009); electrodermal activity (EDA) 

has been used to measure stress caused by cognitive load in the workplace (Setz 

et al., 2009); electroencephalogram (EEG) has been used to assess engagement in 

audio-visual content (Berka et al., 2007); functional magnetic resonance imaging 

(fMRI) has been used to record the brain activity of participants engaged in social 

vs. mechanical/analytic tasks (Jack et al., 2013); functional near-infrared 

spectroscopy (fNIRS) has been used as a direct measure of brain activity related 

to decision-making processes in approach-avoidance theories (Ernst et al., 2013); 

eye-tracking (ET) has been used to measure subconscious brain processes that 

show correlations with information processing in risky decisions (Glöckner & 

Herbold, 2011); facial expression analysis (FEA) has been applied to detect 

emotional responses in e-learning environments (Bahreini et al., 2016); and 

speech emotion recognition (SER) has been used to detect depressive disorders 

(Huang et al., 2018).   

 

Table 1.1 gives an overview of the implicit measuring techniques that have been 

used in human behaviour research. 

 

Implicit 

technique 

Biometric 

signal 

measured 

Sensor Features Psychological or 

behavioural construct 

inferred 

EDA 

(electro 

dermal 

activity) 

Changes in 

skin 

conductance 

Electrodes 

attached to 

fingers, palms or 

soles 

Skin 

conductance 

response, tonic 

activity and 

phasic activity 

Attention and arousal 

(Prokasy, 2012) 
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HRV  

(heart rate 

variability) 

Variability in 

heart 

contraction 

intervals 

Electrodes 

attached to chest 

or limbs or 

optical sensor 

attached to 

finger, toe or 

earlobe 

Time domain, 

frequency 

domain, non-

linear domain 

Stress, anxiety, arousal and 

valence 

(Kim et al., 2018; Kreibig, 

2010) 

EEG 

(electroencep

halogram) 

Changes in 

electrical 

activity of the 

brain 

Electrodes 

placed on scalp 

Frequency band 

power, 

functional 

connectivity, 

event-related 

potentials 

Attention, mental workload, 

drowsiness, fatigue, arousal 

and valence 

(Gruzelier, 2014; Lotte et al., 

2018) 

fMRI 

(functional 

magnetic 

resonance 

imaging) 

Concentrations 

of oxygenated 

vs. 

deoxygenated 

haemoglobin 

in the blood 

vessels of the 

brain 

Magnetic 

resonance signal 

blood-oxygen-

level dependent 

Motor execution, attention, 

memory, pain, anxiety, 

hunger, fear, arousal and 

valence 

(Thibault et al., 2018) 

fNIRS 

(functional 

near-infrared 

spectroscopy) 

Concentrations 

of oxygenated 

vs. 

deoxygenated 

haemoglobin 

in the blood 

Near-infrared 

light placed on 

scalp 

blood-oxygen-

level dependent 

Motor execution, cognitive 

task (mental arithmetic), 

decision-making and valence 

(Naseer & Hong, 2015) 

ET 

(eye tracking) 

Corneal 

reflection & 

pupil dilation 

Infrared 

cameras point 

towards eyes 

Eye movements 

(gaze, fixation, 

saccades), 

blinks, pupil 

dilation 

Visual attention, 

engagement, drowsiness and 

fatigue 

(Meißner & Oll, 2019) 

FEA 

(facial 

expression 

analysis) 

Activity of 

facial muscles 

Camera points 

towards face  

Position and 

orientation of 

head. Activation 

of action units 

Basic emotions, engagement, 

arousal and valence 

(Calvo & Nummenmaa, 

2016) 

SER 

(speech 

emotion 

recognition) 

Voice Microphone Prosodic and 

spectral features 

Stress, basic emotions, 

arousal and valence 

(Schuller, 2018) 

 
Table 1.1. Overview of the implicit techniques used in human behaviour research and their main 
applications 

In addition, recent researches have highlighted the potential of virtual reality 

environments for enhancing ecological validity in the clinical, affective, and 

social neurosciences; these studies have usually involved the use of simple and 

static stimuli which lack many of the potentially important aspects of real-world 

activities and interactions (Parsons, 2015). Therefore, VR could play an important 

role in the future of neuroeconomics by providing a more ecological framework 

within which to develop experimental studies with implicit measures. 
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Affective computing and emotion recognition systems 

Affective Computing, which analyses human responses using implicit measures, 

has developed into an important field of study in last decades. Introduced by 

Rosalind Picard in 1997, it proposed the automatic quantification and recognition 

of human emotions as an interdisciplinary field based on psychophysiology, 

computer science, biomedical engineering and artificial intelligence (Picard, 

1997). The automatic recognition of human emotion statements using implicit 

measures can be transversally applied to all human behaviour topics and 

complement classic explicit measures. In particular, it can be applied to 

neuroeconomics research as they share the same neuroscientific approach of 

using implicit measures, and due to the important relationship that has been 

found between emotions and decision-making (Camerer et al., 2005). 

Emotion recognition models can be divided into three: emotional modelling, 

emotion classification and emotion elicitation. 

The emotional modelling approach can be divided into discrete and dimensional. 

Discrete models characterize the emotion system as a set of basic emotions which 

includes anger, disgust, fear, joy, sadness and surprise, and the complex 

emotions that result from combining them (Ekman, 1999). On the other hand, 

dimensional models suggest that emotional responses can be modelled in a 

multidimensional space where each dimension represents a fundamental 

property common to all emotions. The most commonly-used theory is the 

circumplex model of affect, which proposes a two-dimensional space, consisting 

of valence, that is, the degree to which an emotion is perceived as positive or 

negative, and arousal, that is, the intensity of the emotion in terms of activation 

from low to high (Russell & Mehrabian, 1977).  

Affective computing uses biometric signals and machine learning algorithms to 

automatically classify emotions. Many signals have been used, such as voice, 

face, neuroimaging and physiological (Calvo & D’Mello, 2010). Notably, one of 

the main emotion classification topics uses variables associated with central 

nervous system (CNS) and autonomic nervous system (ANS) dynamics (Calvo 

& D’Mello, 2010). First, human emotional processing and perception involve 

cerebral cortex activity, which allows the automatic classification of emotions 

using the CNS. EEG is one of the techniques most used in this context (Valenza 

et al., 2016). Second, many emotion recognition studies have used the ANS to 

analyse changes in cardiovascular dynamics provoked by mood changes; HRV 

is one of the most used techniques (Valenza et al., 2012). The combination of 

physiological features with machine learning algorithms, such as in support 

vector machines, linear discriminant analysis, K-nearest neighbour and neural 
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networks, has achieved high levels of accuracy in inferring subjects’ emotional 

states (Zangeneh et al., 2018). 

Finally, emotion elicitation is the ability to reliably and ethically elicit affective 

states. This elicitation is a critical factor in the development of systems that can 

detect, interpret and adapt to human affect (Kory & D'Mello, 2015). The many 

methods that elicit emotions in laboratories can be mainly divided into two 

groups, active and passive. Active methods involve directly influencing subjects, 

including behavioural manipulation (Ekman, 2007), social interaction (Harmon-

Jones et al., 2007) and dyadic interaction (Roberts et al., 2007). Passive methods 

usually present external stimuli as images, sound or video. As to the use of 

images, the International Affective Picture System (IAPS) is among the databases 

most used as an elicitation tool in emotion recognition methodologies (Valenza 

et al., 2012). It includes over a thousand depictions of people, objects and events, 

standardized on the basis of valence and arousal (Kory & D'Mello, 2015). As to 

audio, the International Affective Digitalised Sound System (IADS) database is 

the most commonly applied in studies which use sound to elicit emotions 

(Nardelli et al., 2015). However, some studies directly use music or narrative to 

elicit emotion (Kim, 2007). With respect to audio-visual stimuli, many studies 

have used film to induce arousal and valence (Soleymani et al., 2015). As, to the 

best of our knowledge, the passive elicitation methods so far used in affective 

computing studies have not included immersive and interactive environments, 

they have significant limitations due to the importance of achieving high degrees 

of presence in the simulation of real-world experiences (Baños et al., 2004). Thus, 

by simulating real-word situations in laboratory environments, VR offers a new 

emotion elicitation approach for emotion recognition studies.  

 

Affective computing and Virtual Reality 

In recent years studies have applied implicit measures to analyse emotions using 

immersive VR. Table 1.2 provides a summary of studies correlating physiological 

signals with emotions using HMDs.  
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Year Signals Data analysis Emotion Participants VR Stimuli Stimuli comparison Reference 

2005 HRV, EDA T-test Arousal 67 healthy subjects 3D Training room vs pit room No (Meehan et al., 2005) 

2010 HRV, EDA ANOVA Anxiety 
10 healthy subjects and 20 
subjects with food disorders 

3D photo and real food catering VR vs photo vs real (Gorini et al., 2010) 

2013 HRV, EDA ANOVA Arousal 50 healthy subjects 3D high-mobility wheeled vehicle No (Parsons et al., 2013) 

2014 EDA ANOVA Fear 
48 healthy and 48 spider-
phobic subjects 

3D Virtual lab with time-varying threat (spiders 
and snakes) 

No (Peperkorn et al., 2014) 

2014 HRV ANOVA Anxiety 
30 high anxiety and 35 low 
anxiety subjects 

3D lecture hall  No (Felnhofer et al., 2014) 

2015 HRV, EDA 
Cross-
correlations 

Arousal 306 healthy subjects 
3D Room with time-varying threat (explosions, 
spiders, gunshots, etc.) 

No (McCall et al., 2015) 

2015 EDA ANOVA Arousal 120 healthy subjects 
3D Park with 5 variations (joy, sadness, boredom, 
anger and anxiety) 

No (Felnhofer et al., 2015) 

2015 HRV, EDA ANOVA Anxiety 
41 healthy and 42 spider-
phobic subjects 

3D virtual lab with spiders  No (Notzon et al., 2015) 

2016 HRV, EDA Regression Arousal 300 healthy subjects 
3D Room with time-varying threats (explosions, 
spiders, gunshots, etc.) 

No (Hildebrandt et al., 2016) 

2016 EDA 
Kruskall-Wallis 
Test and 
correlations 

Stress 12 healthy subjects 3D rooms (neutral, stress and calm) No (Higuera et al., 2016) 

2016 HRV Regression Arousal 36 healthy subjects 3D Flight simulator No (Bian et al., 2016) 

2016 HRV, EDA ANOVA Stress 45 healthy males 3D Trier Social Stress Test No (Shiban et al., 2016) 

2017 HRV, EDA ANOVA Stress 18 healthy subjects 360º Indoor vs natural panoramas No (Anderson et al., 2017) 

2017 HRV ANOVA Arousal 108 healthy subjects 3D cemetery and park No (Chittaro et al., 2017) 

2017 HRV, EDA 
Mann–Whitney 
U tests and 
correlations 

Pleasantness 100 healthy subjects 3D, 360º and real retail store 
3D VR vs 360º VR vs 
real 

(Higuera-Trujillo et al., 2017) 

2017 HRV, EDA ANOVA Anxiety 100 healthy subjects Mixed reality (3D VR with real world elements)  No (Biedermann et al., 2017) 

2018 HRV ANOVA Anxiety 30 healthy subjects 3D VR claustrophobic environments AR vs VR (Tsai et al., 2018) 
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2019 HRV 
t-test, 
correlations and 
regressions 

Arousal 30 healthy subjects 3D Exposure to a high height No (Kisker et al., 2019) 

2019 HRV, EDA ANOVA Fear 49 height-fearful subjects 3D Forest No (Gromer et al., 2019) 

2019 HRV ANOVA Stress 50 healthy subjects 3D Trier Social Stress Test 
Replication of a real 
study 

(Zimmer & Wu, 2019) 

2019 EDA Mann-Whitney U Stress 60 healthy subjects 3D indoor building on fire No (Lin et al., 2019) 

 

Table 1.2. Summary of studies including physiological signals, emotions and head-mounted displays
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In terms of implicit measures, these studies used the ANS (HRV and EDA), 

probably because it is easier to combine this system with HMDs to measure 

peripheral physiological responses than it is to combine the CNS with HMDs 

(Gromer et al., 2019). To the best of our knowledge, no previous study has 

analysed emotions using the CNS with HMDs. Other implicit techniques, such 

as fMRI and FEA, have not hitherto been applied, probably because of the 

difficulties of combining them with HMDs. 

Physiological signals have been mainly correlated with arousal, anxiety and 

stress (Anderson et al., 2017; Felnhofer et al., 2014; Kisker et al., 2019), and their 

main applications have been to phobia (Peperkorn et al., 2014) and risk 

perception research (McCall et al., 2015). Only one study has analysed the valence 

dimension itself, in particular the measurement of pleasantness (Higuera-Trujillo 

et al., 2017). However, while all these analysis included hypothesis testing and 

correlations, none inferred emotional statements using machine learning 

methods. Therefore, to the best of our knowledge, no affective computing 

research has hitherto used immersive virtual reality and applied machine 

learning algorithms to physiological responses. 

 

The validity of Virtual Reality in human behaviour research 

Finally, it is crucial to point out that the usefulness of simulation in human 

behaviour research has been analysed through the validity concept, that is, the 

capacity to evoke a response from the user in a simulated environment similar to 

one that might be evoked by a physical environment (Rohrmann & Bishop, 2002). 

To this extent, there is a need to perform direct comparisons between virtual and 

real environments. Some comparisons have studied the validity of virtual 

environments by assessing psychological responses (Bishop & Rohrmann, 2003) 

and cognitive performance (de Kort et al., 2003). However, there have been fewer 

analyses of physiological and behavioural responses (van der Ham et al., 2015; 

Yeom et al., 2017). Heydarian et al. (2015) analysed user performance in office-

related activities, for example, reading texts and identifying objects; 

Chamilothori, Wienold and Andersen (2018) compared subjective perceptions of 

daylit spaces; and Kimura et al. (2017) analysed orienteering task performance. 

Table 1.2 shows the direct comparisons between the virtual and real 

environments undertaken using HMDs, in emotional response terms. Higuera-

Trujillo, López-Tarruella and Llinares (2017) analysed psycho-physiological 

responses, through EDA, evoked by real-world scenarios and VR scenarios with 

different immersion levels; Gorini et al. (2010) analysed HRV and EDA responses 

(to food) of subjects with food disorders using VR, photos and in the real-world; 
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and Zimmer & Wu (2019) replicated a previous study correlating stress and EDA 

in VR. Thus, there has not hitherto been a thorough analysis of environmental 

simulations comparing real and virtual worlds in terms of emotional responses, 

in particular employing CNS and ANS dynamics and machine learning 

algorithms.  

In conclusion, the increase in VR use by the scientific community in human 

behaviour research, and the need for further validation of VR, in particular 

related to emotion elicitation and recognition using physiological signals and 

machine learning algorithms, is the main motivation to perform the present 

research. 

 

Objectives 

The main objective of this thesis is to analyse the use of immersive VR as an 

emotion elicitation tool in human behaviour research, in particular its use in 

emotion recognition systems. To do so we develop: a direct comparison between 

a real-world environment and its virtualization; and an emotion recognition 

system for immersive virtual environments, using physiological sensors and 

machine learning. The specific objectives are: 

SO1. To develop a set of immersive VR environments using computer-

generated 360º panoramas displayed through an HMD, and validate, 

through psychological self-assessment, that they are able to evoke a wide 

range of emotions. 

SO2. To develop a 3D VR realistic simulation of a real-world emotional 

environment, displayed through an HMD, and validate its capacity to 

evoke a high degree of presence and the same emotions as would be 

evoked in the real world, through a direct comparison using psychological 

self-assessment.  

SO3. To develop and validate a set of emotion recognition models using 

physiological signals and machine learning algorithms to automatically 

infer emotions in 360º panoramas displayed through an HMD, 3D VR 

simulation displayed through an HMD and a real-world environment. 

SO4. To analyse the capacity of a 3D VR simulation, displayed through an 

HMD, to evoke the same emotions and navigation pattern as would be 

evoked in the real world, through a direct comparison of physiological 

responses and the travel component of navigation.  
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Thesis structure 

The thesis document is structured as follows: 

Chapter 1 introduces and describes the motivation behind the thesis. In addition, 

it includes the objectives and thesis structure. 

Chapter 2 presents the paper “Affective computing in virtual reality: emotion 

recognition from brain and heartbeat dynamics using wearable sensors”, 

published in Scientific Reports (Q1, 4.01 JCR 2018). It describes the development 

of a set of four VR environments (360º panoramas) designed to elicit four possible 

arousal-valence combinations. In addition, it presents an emotion recognition 

model, using EEG and ECG, developed using sixty HMD-wearing participants 

in VR environments.  

Chapter 3 presents the paper “Real vs. immersive-virtual emotional experience: 

Exploiting psycho-physiological patterns in a free exploration of an art 

museum”, published in Plos One (Q2, 2.77 JCR 2018). This presents a direct 

comparison made between a real and virtual museum (3D environment) through 

psychological measures, such as self-assessment, and physiological measures 

through an emotion recognition system, using EEG and ECG. 

Chapter 4 presents the paper “Navigation comparison between a real and a 

virtual museum: time-dependent differences using a head mounted display”, 

published in Interacting with Computers (Q4, 0.86 JCR 2018). This analysed the 

direct comparison between a real a virtual museum (3D environment) in terms 

of navigation behaviour.  

Chapter 5 discusses the results and the major contributions of the thesis. 

Chapter 6 provides an overall conclusion and future research directions. 

Finally, the manuscript enumerates the publications and research stages derived 

from this thesis and provides a list of references.
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Chapter 2  
 

Affective computing in virtual reality: 

emotion recognition from brain and 

heartbeat dynamics using wearable 

sensors 
 

Marín-Morales, J., Higuera-Trujillo, J. L., Greco, A., Guixeres, J., Llinares, C., Scilingo, E. P., 

Alcañiz, M., & Valenza, G. (2018). Affective computing in virtual reality: emotion recognition from 

brain and heartbeat dynamics using wearable sensors. Scientific reports, 8(1), 13657. 

 

Abstract 

Affective Computing has emerged as an important field of study that aims to 

develop systems that can automatically recognize emotions. Up to the present, 

elicitation has been carried out with non-immersive stimuli. This study, on the 

other hand, aims to develop an emotion recognition system for affective states 

evoked through Immersive Virtual Environments. Four alternative virtual rooms 

were designed to elicit four possible arousal-valence combinations, as described 

in each quadrant of the Circumplex Model of Affects. An experiment involving 

the recording of the electroencephalography (EEG) and electrocardiography 

(ECG) of sixty participants was carried out. A set of features was extracted from 

these signals using various state-of-the-art metrics that quantify brain and 

cardiovascular linear and nonlinear dynamics, which were input into a Support 

Vector Machine classifier to predict the subject's arousal and valence perception. 

The model´s accuracy was 75.00% along the arousal dimension and 71.21% along 

the valence dimension. Our findings validate the use of Immersive Virtual 

Environments to elicit and automatically recognize different emotional states 

from neural and cardiac dynamics; this development could have novel 

applications in fields as diverse as Architecture, Health, Education and 

Videogames. 
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Introduction 

Affective Computing (AfC) has emerged as an important field of study in the 

development of systems that can automatically recognize, model and express 

emotions. Proposed by Rosalind Picard in 1997, it is an interdisciplinary field 

based on psychology, computer science and biomedical engineering (Picard, 

1997). Stimulated by the fact that emotions are involved in many background 

processes (Picard, 2003) (such as perception, decision-making, creativity, 

memory, and social interaction), several studies have focused on searching for a 

reliable methodology to identify the emotional state of a subject by using 

machine learning algorithms. 

Thus, AfC has emerged as an important research topic. It has been applied often 

in education, healthcare, marketing and entertainment (Gross & Levenson, 1995; 

Harms et al., 2010; Jerritta et al., 2011; Koolagudi & Rao, 2012), but its potential is 

still under development. Architecture is a field where AfC has been infrequently 

applied, despite its obvious potential; the physical-environment has on a great 

impact, on a daily basis, on human emotional states in general (Lindal & Hartig, 

2013), and on well-being in particular (Ulrich, 1984). AfC could contribute to 

improve building design to better satisfy human emotional demands 

(Fernández-Caballero et al., 2016). 

Irrespective of its application, Affective Computing involves both emotional 

classification and emotional elicitation. Regarding emotional classification, two 

approaches have commonly been proposed: discrete and dimensional models. 

On the one hand, the former posits the existence of a small set of basic emotions, 

on the basis that complex emotions result from a combination of these basic 

emotions. For example, Ekman proposed six basic emotions: anger, disgust, fear, 

joy, sadness and surprise (Ekman, 1999). Dimensional models, on the other hand, 

consider a multidimensional space where each dimension represents a 

fundamental property common to all emotions. For example, the “Circumplex 

Model of Affects” (CMA) (Posner et al., 2005) uses a Cartesian system of axes, 

with two dimensions, proposed by Russell and Mehrabian (Russell & Mehrabian, 

1977): valence, i.e., the degree to which an emotion is perceived as positive or 

negative; and arousal, i.e., how strongly the emotion is felt. 

In order to classify emotions automatically, correlates from, e.g., voice, face, 

posture, text, neuroimaging, and physiological signals are widely used (Calvo & 

D’Mello, 2010). In particular, several computational methods are based on 

variables associated with central nervous system (CNS) and autonomic nervous 

system (ANS) dynamics (Calvo & D’Mello, 2010). On the one hand, the use of 

CNS is justified by the fact that human emotions originate in the cerebral cortex, 

involving several areas in their regulation and feeling. In this sense, the 

electroencephalogram (EEG) is one of the techniques most used to measure CNS 

responses (Valenza et al., 2016) , also through the use of wearable devices. On the 
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other hand, a wider class of affective computing studies consider ANS changes 

elicited by specific emotional states. In this sense, experimental results over the 

last three decades show that Heart Rate Variability (HRV) analyses can provide 

unique and non-invasive assessments of autonomic functions on cardiovascular 

dynamics (Valenza et al., 2012; Valenza, Citi, et al., 2014). To this extent, there has 

been a great increase over the last decade in research and commercial interest in 

wearable systems for physiological monitoring. The key benefits of these systems 

are their small size, lightness, low-power consumption and, of course, their 

wearability (Valenza, Nardelli, et al., 2014). The state of the art (Kumari et al., 

2017; Piwek et al., 2016; Xu et al., 2017) on wearable systems for physiological 

monitoring highlight that: i) surveys predict that the demand for wearable 

devices will increase in the near future; ii) there will be a need for more 

multimodal fusion of physiological signals in the near future; and iii) machine 

learning algorithms can be merged with traditional approaches. Moreover, 

recent studies present promising results on the development of emotion 

recognition systems through using wearable sensors instead of classic lab 

sensors, through HRV (He et al., 2017) and EEG (Nakisa et al., 2018). 

Regarding emotional elicitation, the ability to reliably and ethically elicit affective 

states in the laboratory is a critical challenge in the process of the development of 

systems that can detect, interpret and adapt to human affect (Kory & D'Mello, 

2014). Many methods of eliciting emotions have been developed to evoke 

emotional responses. Based on the nature of the stimuli, two types of method are 

distinguished, the active and the passive. Active methods can involve 

behavioural manipulation (Ekman, 2007), social psychological methods with 

social interaction (Harmon-Jones et al., 2007) and dyadic interaction (Roberts et 

al., 2007). On the other hand, passive methods usually present images, sounds or 

films. With respect to images, one of the most prominent databases is the 

International Affective Picture System (IAPS), which includes over a thousand 

depictions of people, objects and events, standardized on the basis of valence and 

arousal (Kory & D'Mello, 2014). The IAPS has been used in many studies as an 

elicitation tool in emotion recognition methodologies (Valenza et al., 2012). With 

respect to sound, the most used database is the International Affective Digitalised 

Sound System (IADS) (Nardelli et al., 2015). Some researchers also use music or 

narrative to elicit emotions (Kim, 2007). Finally, audio-visual stimuli, such as 

films, are also used to induce different levels of valence and arousal (Soleymani 

et al., 2015).  

Even when, as far we know, elicitation has been carried out with a non-

immersive stimulus, it has been shown that these passive methods have 

significant limitations due to the importance of immersion for eliciting emotions 

through the simulation of real experiences (Baños et al., 2004). In the present, 

Virtual Reality (VR) represents a novel and powerful tool for behavioural 

research in psychological assessment. It provides simulated experiences that 
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create the sensation of being in the real world (Giglioli et al., 2017; Marín-Morales 

et al., 2017). Thus, VR makes it possible to simulate and evaluate spatial 

environments under controlled laboratory conditions (Marín-Morales et al., 2017; 

Vince, 2004), allowing the isolation and modification of variables in a cost and 

time effective manner, something which is unfeasible in real space (Alcañiz et al., 

2003). During the last two decades VR has usually been displayed using desktop 

PCs or semi-immersive systems such as CAVEs or Powerwalls (Vecchiato et al., 

2015). Today, the use of head-mounted displays (HMD) is increasing: these 

provide fully-immersive systems that isolate the user from external world 

stimuli. These provide a high degree of immersion, evoking a greater sense of 

presence, understood as the perceptual illusion of non-mediation and a sense of 

"being-there" (Slater & Wilbur, 1997). Moreover, the ability of VR to induce 

emotions has been analysed in studies which demonstrate that virtual 

environments do evoke emotions in the user (Alcañiz et al., 2003). Other works 

confirm that Immersive Virtual Environments (IVE) can be used as emotional 

induction tools to create states of relaxation or anxiety (Riva et al., 2007), basic 

emotions, (Baños et al., 2006; Baños et al., 2012) and to study the influence of the 

users cultural and technological background on emotional responses in VR 

(Gorini et al., 2009). In addition, some works show that emotional content 

increases sense of presence in an IVE (Gorini et al., 2011) and that, faced with the 

same content, self-reported intensity of emotion is significantly greater in 

immersive than in non-immersive environments (Chirico et al., 2017). Thus, IVEs, 

showing 360º panoramas or 3D scenarios through a HMD (Blascovich et al., 

2012), are powerful tools for psychological research, (Blascovich et al., 2012). 

Taking advantage of the IVE’s potentialities, in recent years some studies have 

used IVE and physiological responses, such as EEG, HRV and EDA, in different 

fields. Phobias (Hildebrandt et al., 2016; McCall et al., 2015; Notzon et al., 2015; 

Peperkorn et al., 2014), disorders (Amaral et al., 2017), driving and orientation 

(Eudave & Valencia, 2017; Sharma et al., 2017), videogames (Bian et al., 2016), 

quality of experience (Egan et al., 2016), presence (Meehan et al., 2005) and 

visualization technologies (Higuera-Trujillo et al., 2017), are some examples of 

these applications. Particularly in emotion research, arousal and relaxation have 

been analysed in outdoor (Anderson et al., 2017; Felnhofer et al., 2015) and indoor 

(Higuera et al., 2016) IVEs using EDA. Therefore, the state of the art presents the 

following limitations: (1) few studies analyse physiological responses in IVEs 

and, in particular, using an affective approach; (2) there are few validated 

emotional IVE sets which include stimuli with different levels of arousal and 

valence: and, (3) there is no affective computing research that tries to 

automatically recognize the user’s mood in an IVE through physiological signals 

and machine learning algorithms. 
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In this study, we propose a new AfC methodology capable of recognizing the 

emotional state of a subject in an IVE in terms of valence and arousal. Regarding 

stimuli, IVEs were designed to evoke different emotional states from an 

architectural point of view, by changing physical features such as illumination, 

colour and geometry. They were presented through a portable HMD. Regarding 

emotion recognition, a binary classifier will be presented, which uses effective 

features extracted from EEG and HRV data gathered from wearable sensors, and 

combined through nonlinear Support Vector Machine (SVM) (Valenza et al., 

2012) algorithms.  

 

Material and methods 

Experimental context 

This work is part of a larger research project that attempts to characterize the use 

of VR as an affective elicitation method and, consequently, develop emotion 

recognition systems that can be applied to 3D or real environments.  

An experimental protocol was designed to acquire the physiological responses 

of subjects in 4 different stimuli presentation cases: 2D desktop pictures, a 360º 

panorama IVE, a 3D scenario IVE and a physical environment. The experiment 

was conducted in two distinct phases that presented some differences. Both 

phases were divided into 3 stages; the results of the experiment are at Figure 2.1. 

Between each stage, signal acquisition was temporarily halted and the subjects 

rested for 3 minutes on a chair. Stage 1 consisted of emotion elicitation through a 

desktop PC displaying 110 IAPS pictures, using a methodology detailed in 

previous research (Valenza et al., 2012). Stage 2 consisted of emotion elicitation 

using an HMD based on a new IVE set with four 360º panoramas. Finally, stage 

3 consisted of the free exploration of a museum exhibition. 

 

Figure 2.1. Experimental phases of the research 

In the present paper we focus on an analysis of stage 2. The experimental protocol 

was approved by the ethics committee of the Polytechnic University of Valencia 

and informed consent was obtained from all participants. All methods and 

experimental protocols were performed in accordance with the guidelines and 
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regulations of the local ethics committee of the Polytechnic University of 

Valencia.  

 

Participants 

A group of 60 healthy volunteers, suffering neither from cardiovascular nor 

evident mental pathologies, was recruited to participate in the experiment. They 

were balanced in terms of age (28.9 ± 5.44) and gender (40% male, 60% female). 

Inclusion criteria were as follows: age between 20 and 40 years; Spanish 

nationality; having no formal education in art or fine art; having no previous 

experience of virtual reality; and not having previously visited the particular art 

exhibition. They were divided into 30 subjects for the first phase and 30 for the 

second. 

To ensure that the subjects constituted a homogeneous group, and that they were 

in a healthy mental state, they were screened by i) the Patient Health 

Questionnaire (PHQ-9) (Kroenke et al., 2001) and ii) the Self-Assessment Manikin 

(SAM) (Bradley & Lang, 1994).  

PHQ-9 is a standard psychometric test used to quantify levels of depression 

(Kroenke et al., 2001). Significant levels of depression would have affected the 

emotional responses. Only participants with a score lower than 5 were included 

in the study. The test was presented in the Spanish language as the subjects were 

native Spanish speakers. SAM tests were used to detect if any subject had an 

emotional response that could be considered as an outlier, with respect to a 

standard elicitation, in terms of valence and arousal. A set of 8 IAPS pictures 

(Lang et al., 1997) (see Table 2.1), representative of different degrees of arousal 

and valence perception, was scored by each subject after stage 1 of the 

experiment. The z-score of each subject's arousal and valence score was 

calculated using the mean and deviation of the IAPS’s published scores (Lang et 

al., 1997). Subjects that had one or more z-scores outside of the range -2.58 and 

2.58 (α=0.005) were excluded from further analyses. Therefore, we retained 

subjects whose emotional responses, caused by positive and negative pictures, in 

different degrees of arousal, belonged to 99% of the IAPS population. In addition, 

we rejected subjects if their signals presented issues, e.g., disconnection of the 

sensors during the elicitation or if artefacts affected the signals. Taking these 

exclusions into account, the number of valid subjects was 38 (age: 28.42 ± 4.99; 

gender: 39% male, 61% female). 

IAPS picture AROUSAL VALENCE 

7234 3.41 ± 2.29 4.01 ± 1.32 

5201 3.20 ± 2.50 7.76 ± 1.44 

9290 4.75 ± 2.20 2.71 ± 1.35 

1463 4.61 ± 2.56 8.17 ± 1.48 
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9181 6.20 ± 2.23 1.84 ± 1.25 

8380 5.84 ± 2.34 7.88 ± 1.37 

3102 6.92 ± 2.50 1.29 ± 0.79 

4652 7.24 ± 2.09 7.68 ± 1.64 
 
Table 2.1. Arousal and valence score of selected IAPS pictures 

 

Set of Physiological Signals and Instrumentation 

The physiological signals were acquired using the B-Alert x10 (Advanced Brain 

Monitoring, Inc., USA) (Figure 2.2). It provides an integrated approach for 

wireless wearable acquisition and recording of electroencephalographic (EEG) 

and electrocardiographic (ECG) signals, sampled at 256 Hz. EEG sensors were 

located in the frontal (Fz, F3 and F4), central (Cz, C3 and C4) and parietal (POz, 

P3, and P4) regions with electrode placements on the subjects’ scalps based on 

the international 10-20 electrode placement. A pair of electrodes placed below the 

mastoid was used as reference, and a test was performed to check the 

conductivity of the electrodes, aiming to keep the electrode impedance below 

20kΩ. The left ECG lead was located on the lowest rib and the right lead on the 

right collarbone. 

 

Figure 2.2. Exemplary experimental set-up 

 

Stimulus elicitation 

We developed an affective elicitation system by using architectural environments 

displayed by 360º panoramas implemented in a portable HMD (Samsung Gear 

VR). This combination of environments and display-format was selected due to 

its capacity for evoking affective states. The bidirectional influence between the 

architectural environment and the user's affective-behavioural response is 

widely accepted: even subtle variations in the space may generate different 

neurophysiological responses (Nanda et al., 2013). Furthermore, the 360º 

panorama-format provided by HMD devices is a valid set-up to evoke 
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psychological and physiological responses similar to those evoked by physical 

environments (Higuera-Trujillo et al., 2017). Thus, following the combination of 

the arousal and valence dimensions, which gives the four possibilities described 

in the CMA (Russell, 1980), four architectural environments were proposed as 

representative of four emotional states. 

The four architectural environments were designed based on Kazuyo Sejima´s 

“Villa in the forest” scenario (Sejima, 1996). This architectural work was 

considered by the research team as an appropriate base from which to make the 

modifications designed to generate the different affective states.  

The four base-scenario configurations were based on different modifications of 

the parameters of three design variables: illumination, colour, and geometry. 

Regarding illumination, the parameters "colour temperature", "intensity", and 

"position" were modified. The modification of the “colour temperature” was 

based on the fact that higher temperature may increase arousal, being registrable 

at the neurophysiological level (Noguchi & Sakaguchi, 1999; Ochiai et al., 2015). 

"Intensity" was also modified in the same way to try to increase or reduce arousal. 

The "position" of the light was direct, in order to try to increase arousal, and 

indirect to reduce it. The modifications of these last two parameters were based 

on the design experience of the research team. Regarding colour, the parameters 

"tone", "value", and "saturation" were modified. The modification of these 

parameters was performed jointly on the basis that warm colours increase 

arousal and cold ones reduce it, being registrable at the psychological (Küller et 

al., 2009) and neurophysiological levels (Hogg et al., 1979; Jacobs & Hustmyer, 

1974; Jalil et al., 2012; Jin et al., 2009; Yildirim et al., 2011). Regarding geometry, 

the parameters "curvature", "complexity", and "order" were modified. 

“Curvature” was modified on the basis that curved spaces generate a more 

positive valence than angular, being registrable at psychological and 

neurophysiological levels (Vartanian et al., 2013). The modification of the 

parameters "complexity" and "order" was performed jointly. This was based on 

three conditions registrable at the neurophysiological level: (1) high levels of 

geometric “complexity” may increase arousal and low levels may reduce arousal 

(Tsunetsugu et al., 2005); (2) high levels of “complexity” may generate a positive 

valence if they are submitted to “order”, and negative valence if presented 

disorderly (Stamps, 1999); and (3) content levels of arousal generated by 

geometry may generate a more positive valence (Berlyne, 1970). The four 

architectural environments were designed on this basis. Table 2.2 shows the 

configuration guidelines chosen to elicit the four affective states. 
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  High-Arousal 
& 

Negative-
Valence 
(Room 1) 

High-Arousal 
& 

Positive-
Valence 
(Room 2) 

Low-Arousal 
& 

Negative-
Valence 
(Room 3) 

Low-Arousal 
& 

Positive-
Valence 
(Room 4) 

Illumination 

Colour 
temperature 

7500K 7500K 3500K 3500K 

Intensity High High Low Low 

Position Mainly Direct Mainly Direct Mainly Indirect Mainly Indirect 

Colour 

Tone 

Warm colours Warm colours Cold colours Cold colours Value 

Saturation 

Geometry 

Curvature Rectilinear Curved Rectilinear Curved 

Complexity High Low-Medium Medium-High Low 

Order Low High Low-Medium High 

 
Table 2.2. Configuration guidelines chosen in each architectural environment configuration 

In a technical sense, the four architectural environments were developed in 

similar ways. The process consisted of modelling and rendering. Modelling was 

performed by using Rhinoceros v5.0 (www.rhino3d.com). The 3D-models used 

for the four architectural environments were 3446946, 3490491, 3487660, and 

3487687 polygons. On completion of this process, they were exported in .dwg 

format for later rendering. The rendering was performed using the VRay engine 

v3.00.08 (www.vray.com), operating with Autodesk 3ds Max v2015 

(www.autodesk.es). 15 textures were used for each of the four architectural 

environments. Configured as 360º panoramas, renders were exported in .jpg 

format with resolutions of 6000x3000 pixels at 300 dots per inch. These were 

implemented in the Samsung Gear VR HMD device. This device has a 

stereoscopic screen of 1280×1440 pixels per eye and a 96° field of view, supported 

by a Samsung Note 4 mobile telephone with a 2.7GHz quad-core processor and 

3GB of RAM. The reproduction of the architectural 360º panoramas was fluid and 

uninterrupted. 

Prior to the execution of the experimental protocol, a pre-test was performed in 

order to ensure that the architectural 360° panoramas would elicit the affective 

states for which they had been designed. It was a three-phased test: individual 

questionnaires, a focus-group session conducted with some respondents to the 

questionnaire and individual validation-questionnaires. The questionnaires 

asked the participants to evaluate the architectural 360° panoramas. A SAM 

questionnaire, embedded in the 360º panorama, was used, with evaluations 

ranging from -4 (totally disagree) to 4 (totally agree) for all the emotion 

dimensions. 15 participants (8 men and 7 women) completed the questionnaires. 

First, the participants freely viewed each architectural environment, then the 

SAM questionnaires were presented and the answers given orally. Figure 2.3 

shows an example of one of these questionnaires. After the questionnaire 

sessions had been completed, a focus group session, which was a carefully 

managed group discussion, was conducted (Krueger & Casey, 2000). Five of the 

participants (3 men and 2 women) with the most unfavourable evaluations in 
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phase 1 were selected as participants and one of the members of the research 

team, with previous focus-group experience, moderated. The majority of the 

changes were performed to Room 3, due to the discordances between the self-

assessment and their theoretical quadrant. Once the changes were implemented, 

a similar evaluation to phase 1 was performed. Table 2.3 shows the arousal and 

valence ratings of the four architectural 360° panoramas of this pre-test phase. 

After these phases, no new variations were considered necessary. This procedure 

allowed us to assume some initial reliability in the design of the architectural 

environments. Figure 2.4 shows these final configurations. High quality images 

of the stimuli are included in the supplementary material. 

 

Figure 2.3. Example of SAM questionnaire embedded in the room 1. Simulation developed using 
Rhinoceros v5.0, VRay engine v3.00.08 and Autodesk 3ds Max v2015 

 

 Arousal Valence 

High-Arousal & Negative-Valence 
(Room 1) 

2.23 ± 1.59 -2.08 ± 1.71 

High-Arousal & Positive-Valence 
(Room 2) 

1.25 ± 1.33 1.31 ± 1.38 

Low-Arousal & Negative-Valence 
(Room 3) 

-0.69 ± 1.65 -1.46 ± 1.33 

Low-Arousal & Positive-Valence 
(Room 4) 

-2.31 ± 1.30 1.92 ± 1.50 

 
Table 2.3. Arousal and Valence resulted in the pre-test with 15 participants. The scores are 
averaged using mean and standard deviation for a Likert scale between -4 to +4 
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Figure 2.4. 360º panoramas of the four IVEs. Simulations developed using Rhinoceros v5.0, VRay 
engine v3.00.08 and Autodesk 3ds Max v2015 

 

None of the pre-test participants was included in the main study. Regarding the 

experimental protocol, each room was presented for 1.5 minutes and the 

sequence of presentation was counter-balanced using the Latin Square method. 

After viewing the rooms, the users were asking to orally evaluate the emotional 

impact of each room using a SAM questionnaire embedded in the 360º photo. 

 

Signal processing  

Heart rate variability  

The ECG signals were processed to derive HRV series (Acharya et al., 2006). The 

artefacts were cleaned by the threshold base artefacts correction algorithm 

included in the Kubios software (Tarvainen et al., 2014). In order to extract the 

RR series, the well-known algorithm developed by Pan-Tompkins was used to 

detect the R-peaks (Pan & Tompkins, 1985). The individual trends components 

were removed using the smoothness prior detrending method (Tarvainen et al., 

2002). 

We carried out the analysis of the standard HRV parameters, which are defined 

in the time and frequency domains, as well as HRV measures quantifying 

heartbeat nonlinear and complex dynamics (Acharya et al., 2006). All features are 

listed in Table 2.4. 

Time domain Frequency domain Other 

Mean RR VLF peak Pointcaré SD1 

Std RR LF peak Pointcaré SD2 
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RMSSD HF peak 
Approximate Entropy 

(ApEn) 

pNN50 VLF power Sample Entropy (SampEn) 

RR triangular 
index 

VLF power % DFA α1 

TINN LF power DFA α2 

 LF power % Correlation dimension (D2) 

 LF power n.u.  

 HF power  
 HF power %  
 HF power n.u.  
 LF/HF power  
 Total power  

 
Table 2.4. List of used HRV features 

Time domain features include average (Mean RR) and standard deviation (Std 

RR) of the RR intervals, the root mean square of successive differences of 

intervals (RMSSD), and the ratio between the number of successive RR pairs 

having a difference of less than 50 ms and the total number of heartbeat analyses 

(pNN50). The triangular index was calculated as a triangular interpolation of the 

HRV histogram. Finally, TINN is the baseline width of the RR histogram, 

evaluated through triangular interpolation. 

In order to obtain the frequency domain features, a power spectrum density 

(PSD) estimate was calculated for the RR interval series by a Fast Fourier 

Transform based on Welch’s periodogram method. The analysis was carried out 

in three bands: very low frequency (VLF, <0.04 Hz), low frequency (LF, 0.04-0.15 

Hz) and high frequency (HF, 0.12-0.4 Hz). For each frequency band, the peak 

value was calculated, corresponding to the frequency with the maximum 

magnitude. The power of each frequency band was calculated in absolute and 

percentage terms. Moreover, for the LF and HF bands, the normalized power 

(n.u.) was calculated as the percentage of the signals subtracting the VLF to the 

total power. The LF/HF ratio was calculated in order to quantify sympatho-vagal 

balance and to reflect sympathetic modulations (Acharya et al., 2006). In addition, 

the total power was calculated. 

Regarding the HRV nonlinear analysis, many measures were extracted, as they 

are important quantifiers of cardiovascular control dynamics mediated by the 

ANS in affective computing (Acharya et al., 2006; Valenza et al., 2012, 2016; 

Valenza, Citi, et al., 2014). Pointcaré plot analysis is a quantitative-visual 

technique, whereby the shape of a plot is categorized into functional classes. The 

plot provides summary information as well as detailed beat-to-beat information 

on heart behaviour. SD1 is related to the fast beat-to-beat variability in the data, 

whereas SD2 describes the longer-term variability of R–R (Acharya et al., 2006). 
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Approximate Entropy (ApEn) and Sample Entropy (SampEn) are two entropy 

measures of HRV. ApEn detects the changes in underlying episodic behaviour 

not reflected in peak occurrences or amplitudes (Pincus & Viscarello, 1992), 

whereas SampEn statistics provide an improved evaluation of time-series 

regularity and provide a useful tool in studies of the dynamics of human 

cardiovascular physiology (Richman & Moorman, 2000). DFA correlations are 

divided into short-term and long-term fluctuations through the α1 and α2 

features. Whereas α1 represents the fluctuation in the range of 4-16 samples, α2 

refers to the range of 16-64 samples (Peng et al., 1995). Finally, the correlation 

dimension is another method for measuring the complexity or strangeness of the 

time series; it is explained by the D2 feature. It is expected to give information on 

the minimum number of dynamic variables needed to model the underlying 

system (Grassberger & Procaccia, 1983). 

Electroencephalographic signals 

In order to process the EEG signals, the open source toolbox EEGLAB (Delorme 

& Makeig, 2004) was used. The complete processing scheme is shown at Figure 

2.5. 

 

Figure 2.5. Block scheme of the EEG signal processing steps 

Firstly, data from each electrode were analysed in order to identify corrupted 

channels. These were identified by computing the fourth standardized moment 

(kurtosis) along the signal of each electrode (Colomer et al., 2016). In addition, if 

the signal was flatter than 10% of the total duration of the experiment, the channel 

was classified as corrupted. If one of the nine channels was considered as 

corrupted, it could be interpolated from neighbouring electrodes. If more than 

one channel was corrupted, the subject would be rejected. Only one channel 

among all of the subjects was interpolated. 

The baseline of EEG traces was removed by mean subtraction and a band pass 

filter between 0.5 and 40 Hz was applied. The signal was divided into epochs of 

one second and the intra-channel kurtosis level of each epoch was computed in 

order to reject the epochs highly damaged by noise (Colomer et al., 2016). In 
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addition, automatic artefact detection was applied, which rejects the epoch when 

more than 2 channels have samples exceeding an absolute threshold of >100.00 

µV and a gradient of 70.00 µV between samples (Kober et al., 2012). 

The Independent Component Analysis (ICA) (Hyvärinen & Oja, 2000) was then 

carried out using infomax algorithm to detect and remove components due to 

eye movements, blinks and muscular artefacts. Nine source signals were 

obtained (one per electrode). A trained expert manually analysed all the 

components, rejecting those related to artefacts. The subjects who had more than 

33% of their signals affected by artefacts were rejected. 

After the pre-processing, spectral and functional connectivity analyses were 

performed.  

EEG spectral analysis, using Welch’s method (Welch, 1967), was performed to 

estimate the power spectra in each epoch, with 50% overlapping, within the 

classical frequency bandwidth θ (4-8 Hz), α (8-12 Hz), β (13-25 Hz), γ (25-40 Hz). 

Frequency band δ (less than 4Hz) was not taken into account in this study 

because it relates to deeper stages of sleep. In total, 36 features were obtained 

from the nine channels and 4 bands.  

A functional connectivity analysis was performed using Mean Phase Coherence 

(Mormann et al., 2000), for each pair of channels: 

𝑅2 = 𝐸[cos(∆𝜙)]2 + 𝐸[𝑠𝑖𝑛(Δ𝜙)]2 (1) 
 

Where 𝑅 is the MPC, ∆𝜙 represents the relative phase diference between two 

channels derived from the instantaneous difference of the analytics signals from 

the Hilbert transform, and 𝐸 is the expectation operator. By definition, MPC 

values ranged between 0 and 1. In the case of strong phase synchronization 

between two channels, the MPC is close to 1. If the two channels are not 

synchronized, the MPC remains low. 36 features were derived from each possible 

combination of a pair of 9 channels in one specific band. In total, 144 features 

were created using the 4 bands analysed. 

 

Feature reduction and machine learning 

Each room was presented for 1.5 minutes and was considered as an independent 

stimulus. In order to characterize each room, all HRV features were calculated 

using this time window. In the case of EEG, in both the frequency band power 

and mean phase connectivity analyses, we considered the mean of all the epochs 

of each stimulus as the representative value of the stimulus time window. 

Altogether, 209 features described each stimulus for each subject. Due to the 

high-dimensional feature space obtained, a feature reduction strategy was 

adopted for decreasing this dimension. We implemented the well-known 
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Principal Component Analysis method (PCA) (Jolliffe, 2002). This mathematical 

method is based on the linear transformation of the different variables in the 

principal components, which can be assembled in clusters. We select the features 

that explain 95% of the variability of the dataset. The PCA was applied three 

times: (1) in the HRV set, reducing the features from 29 to 3; (2) in the frequency 

band power analysis of the EEG, reducing the features from 36 to 4; and (3) in the 

mean phase coherency analysis of the EEG, reducing the features from 144 to 12. 

Hence, the feature reduction strategy reduces our features to a total of 19. 

The machine learning strategy could be summarized as follows:  

(1) To divide the dataset into training and test sets  

(2) The development of the model (parameter tuning and feature selection) using 

cross-validation in the training set 

(3) To validate the model using the test set  

Firstly, the dataset was sliced randomly into 15% for the test set (5 subjects) and 

85% for the training set (33 subjects). In order to calibrate the model, the Leave-

One-Subject-Out (LOSO) cross-validation procedure was applied to the training 

set using Support Vector Machine (SVM)-based pattern recognition (Schöllkopf 

et al., 2000). Within the LOSO scheme, the training set was normalized by 

subtracting the median value and dividing this by the median absolute deviation 

over each dimension. In each of the 36 iterations, the validation set consisted of 

one specific subject and he/she was normalized using the median and deviation 

of the training set.  

Regarding the algorithm, we used a C-SVM optimized using a sigmoid kernel 

function, changing the parameters of cost and gamma using a vector with 15 

parameters logarithmically spaced between 0.1 and 1000. Additionally, in order 

to explore the relative importance of all the features in the classification problem 

we used a support vector machine recursive feature elimination (SVM-RFE) 

procedure in a wrapper approach (RFE was performed on the training set of each 

fold and we computed the median rank for each feature over all folds). We 

specifically chose a recently developed, nonlinear SVM-RFE, which includes a 

correlation bias reduction strategy in the feature elimination procedure (Yan & 

Zhang, 2015). After the cross-validation, using the parameters and feature set 

obtained, the model was applied to the test set that had not previously been used. 

The self-assessment of each subject was used as the output of the arousal and 

valence model. The evaluation was bipolarized in positive/high (>0) and 

negative/low (<=0). All the algorithms were implemented by using Matlab© 

R2016a, endowed with an additional toolbox for pattern recognition, i.e., 

LIBSVM (Chang & Lin, 2011). A general overview of the analysis is shown in 

Figure 2.6. 
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Figure 2.6. Overview of the feature reduction and classification chain 

 

Data availability 

The datasets generated during and/or analysed during the current study are 

available from the corresponding authors on reasonable request. 

 

Results 

Subjects' self-assessment 

Figure 2.7 shows the self-assessment of the subjects for each IVE averaged using 

mean and standard deviation in terms of arousal (Room 1: 1.17 ± 1.81, Room 2: 

2.10 ± 1.59, Room 3: 0.05 ± 2.01, Room 4: -0.60 ± 2.11) and valence (Room 1: -1.12 

± 1.95, Room 2: 1.45 ± 1.93, Room 3: -0.40 ± 2.14, Room 4: 2.57 ± 1.42). The 

representation follows the CMA space. All rooms are located in the theoretical 

emotion quadrant for which they were designed, except for Room 3 that evokes 

more arousal than hypothesized. Due to the non-Gaussianity of data (p < 0.05 

from the Shapiro-Wilk test with null hypothesis of having a Gaussian sample), 

Wilcoxon signed-rank tests were applied.  

Table 2.5 presents the result of multiple comparisons using Tukey’s Honestly 

Significant Difference Procedure. Significant differences were found in the 

valence dimension between the negative-valence rooms (1 and 3) and the 

positive-valence rooms (2 and 4). Significant differences were found in the 

arousal dimension between the high-arousal rooms (1 and 2) and the low-arousal 

rooms (3 and 4), but not for pairs 1 and 3. Therefore, the IVEs statistically achieve 

all the desired self-assessments except for arousal perception in Room 3, which 

is higher than we hypothesized. After the bipolarization of scores (positive/high 

>0), they are balanced (61.36% high arousal and 56.06% positive valence). 



Affective computing in virtual reality 

 

 

33 

 

Figure 2.7. Self-assessment score in the IVEs using SAM and a Likert scale between -4 and +4. 
Blue dots represent the mean whereas horizontal and vertical lines represent standard deviation 

 

 p-value 

IVE Arousal Valence 

1 2 0.052 10-6 (***) 

1 3 0.195 0.152 

1 4 0.007 (**) 10-9 (***) 

2 3 10-5 (***) 0.015 (*) 

2 4 10-8 (***) 0.068 

3 4 0.606 10-7 (***) 
 
Table 2.5. Signification test of the self-assessment of the emotional rooms 

 

Arousal classification 

 

Table 2.6 shows the confusion matrix of cross validation and the total average 

accuracy (75.00%), distinguishing two levels of arousal using the first 15 features 

selected by the nonlinear SVM-RFE algorithm. The F-Score of arousal 

classification is 0.75. The changes in accuracy depending on number of features 

are shown in Figure 2.8, and  
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Table 2.7 presents the list of features used.  

Table 2.8 shows the confusion matrix of the test set and the total average accuracy 

(70.00%) using the parameters and the feature set defined in the cross-validation 

phase. The F-score of arousal classification is 0.72 in the test set. 

 

Arousal High Low 

High 82.72 17.28 

Low 37.25 62.75 
 
Table 2.6. Confusion matrix of cross-validation using SVM classifier for arousal level. Values are 
expressed as percentages. Total Accuracy: 75.00% 

 

Figure 2.8. Recognition accuracy of arousal in cross-validation as a function of the feature rank 
estimated through the SVM-RFE procedure 

 

Rank Feature 

1 EEG MPC PCA 8 

2 EEG MPC PCA 9 

3 EEG MPC PCA 11 

4 EEG MPC PCA 10 

5 EEG MPC PCA 7 

6 EEG MPC PCA 12 

7 EEG Band Power PCA 3 

8 EEG Band Power PCA 1 

9 HRV PCA 1 
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10 EEG Band Power PCA 4 

11 EEG Band Power PCA 2 

12 HRV PCA 3 

13 EEG MPC PCA 4 

14 HRV PCA 2 

15 EEG MPC PCA 5 
 
Table 2.7. Selected features ordered by their median rank over every fold computed during the 
LOSO procedure for arousal classification 

 

Arousal High Low 

High 75.00 25.00 

Low 33.33 66.67 
 
Table 2.8. Confusion matrix of test set using SVM classifier for arousal level. Values are 
expressed as percentages. Total Accuracy: 70.00%  
 

Valence classification 

 

Table 2.9 shows the confusion matrix of the cross validation and total average 

accuracy (71.21%), distinguishing two levels of valence using the first 10 features 

selected by the nonlinear SVM-RFE algorithm. The F-Score of the valence 

classification is 0.71. The changes in accuracy depending on the number of 

features are shown in Figure 2.9, and  

Table 2.10 presents the list of features used.  

Table 2.11 shows the confusion matrix of the test set and total average accuracy 

(70.00%), using the parameters and the feature set defined in the cross-validation 

phase. The F-score of the valence classification was 0.70 in the test set. 

 

Valence Positive Negative 

Positive 71.62 28.38 

Negative 29.31 70.69 
 
Table 2.9. Confusion matrix of cross-validation using SVM classifier for valence level. Values are 
expressed as percentages. Total Accuracy: 71.21% 
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Figure 2.9. Recognition accuracy of valence in cross-validation as a function of the feature rank 
estimated through the SVM-RFE procedure 

 

Rank Feature 

1 EEG MPC PCA 8 

2 EEG MPC PCA 6 

3 EEG MPC PCA 11 

4 EEG MPC PCA 7 

5 EEG MPC PCA 10 

6 EEG MPC PCA 12 

7 EEG MPC PCA 9 

8 EEG Band Power PCA 3 

9 EEG Band Power PCA 4 

10 EEG MPC PCA 2 
 
Table 2.10. Selected features ordered by their median rank over every fold computed during the 
LOSO procedure for valence classification 

 

Valence Positive Negative 

Positive 75.00 25.00 

Negative 37.50 62.50 
 
Table 2.11. Confusion matrix of test set using SVM classifier for valence level. Values are 
expressed as percentages. Total Accuracy: 70.00% 
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Discussion 

The purpose of this study is to develop an emotion recognition system able to 

automatically discern affective states evoked through an IVE. This is part of a 

larger research project that seeks to analyse the use of VR as an affective 

elicitation method, in order to develop emotion recognition systems that can be 

applied to 3D or real environments. The results can be discussed on four levels: 

(1) the ability of IVEs to evoke emotions; (2) the ability of IVEs to evoke the same 

emotions as real environments; (3) the developed emotion recognition model; 

and (4), the findings and applications of the methodology. 

Regarding the ability of the IVEs to evoke emotions, four versions of the same 

basic room design were used to elicit the four main arousal-valence combinations 

related to the CMA. This was achieved by changing different architectural 

parameters, such as illumination, colour and geometry. As shown in Figure 2.7 

and  

Table 2.5, proper elicitation was achieved for Room 1 (high arousal and negative 

valence), Room 2 (high arousal and positive valence) and Room 4 (low arousal 

and positive valence), but it overlapped somewhat with the arousal-valence 

representation in Room 3: despite the satisfactory pre-test, in the event it evoked 

higher arousal and valence than expected. This is due to the difficulties we 

experienced in designing a room to evoke negative emotion with low arousal. It 

should be noted that IAPS developers may also have experienced this problem 

because only 18.75% of the pics are situated in this quadrant (Lang et al., 1997). 

Other works based on processing valence and arousal using words show that a 

U-model exists in which arousal increases in agreement with valence intensity 

regardless of whether it is positive or negative (Lewis et al., 2007). Hence, for 

future works, Room 3 will be redesigned to decrease its arousal and valence and 

a self-assessment with a larger sample will be performed, by questionnaire, to 

robustly assess the IVE. Nonetheless, after thresholding the individual self-

assessment scores to discern 2 classes (high/low), the IVE set was balanced in 

arousal and valence. Therefore, we could conclude that the proposed room set 

can satisfactorily evoke the four emotions represented by each quadrant of the 

CMA.  

To this extent, although previous studies have presented IVEs capable of evoking 

emotional states in a controlled way (McCall et al., 2016), to the best of our 

knowledge we have presented the first IVE suite capable of evoking a variety of 

levels of arousal and valence based on CMA. Moreover, the suite was tested 

through a low-cost portable HMD, the Samsung Gear, therefore increasing the 

possible applications of the methodology. High quality images of the stimuli are 

included in the supplementary material. This represents a new tool that can 

contribute in the field of psychology, in general, and in the affective computing 
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field, in particular, fostering the development of novel immersive affective 

elicitation using IVEs.  

There are still some topics that need to be researched, relating to the capacity of 

the IVE display formats, to ensure that they evoke the same emotions as real 

environments. Studies comparing display formats show that the 360º IVEs offer 

results closer to reality, according to the participants' psychological responses, 

and 3D IVEs do so according to their physiological responses (Higuera-Trujillo 

et al., 2017). Moreover, it is quite possible that IVEs will offer the best solutions 

at both psychological and physiological levels as they become even more 

realistic, providing a real improvement not only at the visual and auditory levels 

but also at the haptic (Blake & Gurocak, 2009). In addition, 3D IVEs allow users 

to navigate and interact with the environment. Hence, there are reasons to think 

that they could be powerful tools for developing applications for affective 

computing, but studies comparing human responses in real and simulated IVE 

are scarce (Heydarian et al., 2015; Kuliga et al., 2015; Yeom et al., 2017), especially 

regarding emotional responses; these studies are required. Moreover, every year 

the resolution of Head Mounted Displays is upgraded, which brings them closer 

to eye resolution. Thus, it is possible that in some years the advances in Virtual 

Reality hardware will make the present methodology more powerful. In 

addition, works comparing VR devices with different levels of immersion are 

needed in order to give researchers the best set-ups to achieve their aims. In 

future works, we need to consider all these topics to improve the methodology. 

Regarding the emotion recognition system, we present the first study that 

develops an emotion recognition system using a set of IVEs as a stimulus 

elicitation and proper analyses of physiological dynamics. The accuracy of the 

model was 75.00% along the arousal dimension and 71.21% along the valence 

dimension in the phase of cross-validation, with average of 70.00% along both 

dimensions in the test set. They all present a balanced confusion matrix. The 

accuracies are considerably higher than the chance level, which is 58% in brain 

signal classification and statistical assessment (n=152, 2-classes, p=0.05) 

(Combrisson & Jerbi, 2015). Although the accuracy is lower than other studies of 

emotion recognition in images (Valenza et al., 2012) and sounds (Nardelli et al., 

2015), our results present a first proof of concept that suggests that it is possible 

to recognize the emotion of a subject elicited through an IVE. The research was 

developed with a sample of 60 subjects, who were carefully screened to 

demonstrate agreement with a "standard" population reported in the literature46. 

It should be noted that the possible overfitting of the model was controlled using: 

(1) a feature reduction strategy with a PCA; (2) a feature selection strategy using 

a SVM-RFE; (3) a first validation of the model using LOSO cross-validation; and 

(4) a test validation using 5 randomly chosen subjects (15%), who had not been 

used before to train or perform the cross-validation of the model. In the arousal 

model, features derived from three-signal analyses were selected: 3/3 of HRV, 
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4/4 of EEG BandPower and 8/12 of EEG MPC. However, in the valence model 

only the EEG analysis was used: 0/3 of HRV, 2/4 of EEG BandPower and 8/12 

EEG MPC. Moreover, in both models, the first six features selected by RFE-SVM 

were derived from an EEG MPC analysis. This suggests that cortical functional 

connectivity provides effective correlates of emotions in an IVE. Furthermore, 

according to recent evidence (He et al., 2017; Nakisa et al., 2018), the reliability of 

emotion recognition outside of the laboratory environment is improved by 

wearables. In future experiments, these results could be optimized using further, 

maybe multivariate signal analyses and alternative machine learning algorithms 

(Colomer et al., 2016). In addition, the design of new, controlled IVEs that can 

increase the number of stimuli per subject, using more combinations of 

architectural parameters (colour, illumination and geometry), should also 

improve the accuracy and robustness of the model. In future studies, we will 

improve the set of stimuli presented including new IVEs in order to develop a 

large set of validate IVE stimuli to be used in emotion research.  

The findings presented here mark a new step in the field of affective computing 

and its applications. Firstly, the methodology involved in itself a novel trial to 

overcome the limitations of passive methods of affective elicitation, in order to 

recreate more realistic stimuli using 360º IVEs. Nevertheless, the long-term 

objective is to develop a robust pre-calibrate model that could be applied in two 

ways: (1) in 3D environments that would allow the study of emotional responses 

to "real" situations in a laboratory environment through VR simulation using 

HMD devices and (2) in physical spaces. We hypothesize in both cases that the 

emotion recognition models developed through controlled 360º IVEs will work 

better than the models calibrated by non-immersive stimuli, such as IAPS. This 

approach will be discussed in future studies using stage 3 of the experimental 

protocol. 

Regarding the implications for architecture, the methodology could be applied 

in two main contexts, research and commercial. On the one hand, researchers 

could analyse and measure the impact of different design parameters on the 

emotional responses of potential users. This is especially important due to the 

impossibility of developing researches in real or laboratory environments (e.g. 

analysing arousal changes caused by the pavement width on a street). The 

synergy of affective computing and virtual reality allows us to isolate a 

parameter design and measure the emotional changes provoked by making 

changes to it, while keeping the rest of the environment identical. This could 

improve the knowledge of the emotional impact that might be made by different 

design parameters and, consequently, facilitate the development of better 

practices and relevant regulations. On the other hand, this methodology could 

help architects and engineers in their decision-making processes for the design 

of built environments before construction, aiding their evaluations and the 

selection of the options that might maximize the mood that they want to evoke: 
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for example, positive valence in a hotel room or a park, low arousal in a 

schoolroom or in a hospital waiting room and high arousal in a shop or shopping 

centre. Nevertheless, these findings could be applied to any other field that needs 

to quantify the emotional effects of spatial stimuli displayed by Immersive 

Virtual Environments. Health, psychology, driving, videogames and education 

might all benefit from this methodology.
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Real vs. immersive-virtual emotional 

experience: Exploiting psycho-

physiological patterns in a free 

exploration of an art museum 
 

Marín-Morales, J., Higuera-Trujillo, J. L., Greco, A., Guixeres, J., Llinares, C., Scilingo, E. P., 

Alcañiz, M. & Valenza, G. (2019). Real vs. immersive-virtual emotional experience: Analysis of 

psycho-physiological patterns in a free exploration of an art museum. PloS one, 14(10). 

 

Abstract 

Virtual reality is a powerful tool in human behaviour research. However, few 

studies compare its capacity to evoke the same emotional responses as in real 

scenarios. This study investigates psycho-physiological patterns evoked during 

the free exploration of an art museum and the museum virtualized through a 3D 

immersive virtual environment (IVE). An experiment involving 60 participants 

was performed, recording electroencephalographic and electrocardiographic 

signals using wearable devices. The real vs. virtual psychological comparison 

was performed using self-assessment emotional response tests, whereas the 

physiological comparison was performed through Support Vector Machine 

algorithms, endowed with an effective feature selection procedure for a set of 

state-of-the-art metrics quantifying cardiovascular and brain linear and 

nonlinear dynamics. We included an initial calibration phase, using standardized 

2D and 360° emotional stimuli, to increase the accuracy of the model. The self-

assessments of the physical and virtual museum support the use of IVEs in 

emotion research. The 2-class (high/low) system accuracy was 71.52% and 

77.08% along the arousal and valence dimension, respectively, in the physical 
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museum, and 75.00% and 71.08% in the virtual museum. The previously 

presented 360º stimuli contributed to increasing the accuracy in the virtual 

museum. Also, the real vs. virtual classifier accuracy was 95.27%, using only EEG 

mean phase coherency features, which demonstrates the high involvement of 

brain synchronization in emotional virtual reality processes. These findings 

provide an important contribution at a methodological level and to scientific 

knowledge, which will effectively guide future emotion elicitation and 

recognition systems using virtual reality. 

 

Introduction 

The automatic quantification and recognition of human emotions is a research 

area known as "Affective Computing", which combines knowledge in the fields 

of psychophysiology, computer science, biomedical engineering and artificial 

intelligence (Picard, 1997). Due to the central role that emotions play in many 

background processes, such as perception, decision-making, creativity, memory 

and social interaction, several studies have focused on trying to obtain a reliable 

methodology to evoke and automatically identify emotional states from objective 

psychometric measures (Picard, 2003). Major exploitations of computational 

machines with affective intelligence focus on healthcare, education, marketing 

and entertainment (Harms et al., 2010; Jerritta et al., 2011), as well as on 

environmental psychology, i.e. the study of the effect of the environment on 

humans (Lindal & Hartig, 2013).  

Irrespective of the application, two approaches have commonly been proposed 

to model emotions: discrete and dimensional models. The former proposes that 

there is a small set of basic emotions, assuming that complex emotions result 

from a combination of these basics, including anger, disgust, fear, joy, sadness 

and surprise (Ekman, 1999). Although discrete models are more easily 

understood by the non-expert, they are strongly criticized for lacking consistency 

and objective correlates (e.g. psychobiological and psychophysiological specific 

correlates) (Barrett, 2017). Dimensional models propose a multidimensional 

space where each dimension represents a fundamental property common to all 

emotions. The “Circumplex Model of Affect” (CMA) is one of the most used 

model, and refers to a Cartesian system of axes with two dimensions (Russell & 

Mehrabian, 1977): valence, i.e. how much an emotion is perceived as positive or 

negative; arousal, i.e. the intensity of the emotion in terms of activation from low 

to high. 

To automatically classify emotions, correlates from, e.g. voice, face, posture, text, 

neuroimaging and physiological signals are widely employed (Calvo & D’Mello, 

2010). In particular, several computational methods are based on variables 

associated with Central Nervous System (CNS) and Autonomic Nervous System 
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(ANS) dynamics (Calvo & D’Mello, 2010). On the one hand, the use of the CNS 

to automatically classify emotion is justified by the fact that human emotional 

processing and perception involve activity of the cerebral cortex. In this regard, 

the electroencephalogram (EEG) is one of the techniques most used to measure 

CNS responses (Valenza et al., 2016). On the other hand, a wider class of affective 

computing studies exploits ANS changes on cardiovascular dynamics as elicited 

by specific emotional states, especially through Heart Rate Variability (HRV) 

analyses (Valenza et al., 2012). To this extent, recently proposed emotion 

recognition systems exploit wearable systems (Valenza, Nardelli, et al., 2014), 

allowing physiological monitoring in physical real-world environments through 

both HRV (He et al., 2017) and EEG (Nakisa et al., 2018). 

Concerning the experimental emotional manipulation, the ability to reliably and 

ethically elicit affective states has proven to be a challenging task (Kory & 

D'Mello, 2015). Based on the nature of the stimuli used to evoke emotional 

responses, two types are distinguished: active and passive. Active methods may 

involve behavioural manipulation (Ekman, 2007), social psychological methods 

with social interaction (Harmon-Jones et al., 2007), or dyadic interaction (Roberts 

et al., 2007). On the other hand, passive methods can fundamentally present 

images, sounds or films. Of note, regarding the images, the International 

Affective Picture System (IAPS) is one of the most prominent databases. It 

includes over a thousand depictions of people, objects and events standardized 

on the basis of valence and arousal (Kory & D'Mello, 2015). IAPS has been used 

in many researches as an elicitation tool in emotion recognition methodologies 

(Valenza et al., 2012).  

Although many computational models have been successfully developed in lab 

environments using controlled stimuli, the influence of the level of immersion of 

the set-up (i.e. the objective description referring to the physical extent of the 

sensory information) has often been underestimated, thus eliciting emotional 

experiences not similar to real-world scenarios (Baños et al., 2004). To overcome 

these limitations, researchers propose environmental-simulation technologies to 

replicate the experience of physical environments (Lange, 2001).  

At present, Virtual Reality (VR) is one of the most powerful technologies that 

simulate experiences and provide the sensation of being in real situations (Baños 

et al., 2006). In fact, 3D immersive virtual environments (IVE) have successfully 

been applied to phobias (Peperkorn et al., 2014), presence (Meehan et al., 2005), 

visualization technologies (Higuera-Trujillo et al., 2017), quality of experience 

(Egan et al., 2016) and videogames (Bian et al., 2016). Specifically, the main 

advantages of this technology are that: i) it allows us to isolate and modify 

variables in an efficient and low-cost way, something which is very difficult, or 

even impossible, in real environments (Alcañiz et al., 2003); and ii) it allows us to 

analyse an environment before its construction or environments far distant from 
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the lab. Of note, VR can profitably be used to evoke emotions (Alcañiz et al., 2003; 

Baños et al., 2012) and states of relaxation or anxiety (Riva et al., 2007). Many VR 

researches have been performed using desktop or semi-immersive systems such 

as Powerwalls or caves (Vecchiato et al., 2015). Nowadays, the use of head-

mounted displays (HMD) is growing due to their improved performance and 

decreased price. They are fully immersive devices that isolate the user from the 

external world. These devices, in fact, provoke a high sense of presence, 

understood as the illusion of "being-there" (Slater & Wilbur, 1997). Note that 

HMDs have two main formats for displaying IVEs: 360º panoramas and 3D VR 

environments. 360º panoramas offer results closer to reality in terms of the 

participants' psychological responses, while 3D VR in terms of their physiological 

responses (Higuera-Trujillo et al., 2017). In addition, 3D VR allows the user to 

freely interact with the environment.  

The comparison between the responses evoked by physical environments and 

their virtual simulations has been studied to some degree through the assessment 

of psychological responses (Bishop & Rohrmann, 2003), cognitive performance 

(de Kort et al., 2003) and - to a much lesser extent – physiological and behavioural 

responses (Yeom et al., 2017; van der Ham et al., 2015). Although differences have 

been found, environmental simulations achieve a considerable level of general 

validity (Villa & Labayrade, 2012). However, in the variety of studies undertaken, 

simulations have not yet been comprehensively compared with the real world in 

the analysis of emotional experiences, especially by employing a thorough 

analysis of CNS and ANS dynamics.  

To this end, the main aim of the present study is to perform an exploratory 

research to comparatively and quantitatively investigate the psychological and 

physiological patterns evoked during, first, free exploration of a real art museum 

and, second, where they visualize a virtualization of the museum through a 3D 

IVE.  

Three specific hypotheses are proposed in the present study: 

H1. Psychological self-assessments do not show significant differences between 

the real and the virtual museums. 

H2. Physiological signals allow prediction of the self-assessment in both cases. 

H3. Undertaking an initial calibration phase, using standardized 2D and 360° 

emotional stimuli, increases the accuracy of the emotion recognition models in 

real-world environments and their simulations using VR. 

To this extent, firstly, we undertake a psychological comparison, using self-

assessment tests, for both real and virtual environments. Secondly, we perform a 

comprehensive physiological comparison using brain and cardiovascular linear 

and nonlinear dynamics to build arousal and valence-specific classifiers. Thirdly, 
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we analyse the inclusion of 2D (i.e. IAPS images) and 360° standardized 

emotional stimuli as a part of the calibration phase of the classifier. Moreover, at 

an exploratory level, we also investigate differences and similarities in 

psychophysiological responses elicited by real and virtual environments. To this 

end, we develop emotion recognition models for real vs. immersive-virtual 

scenario comparison to determine if the subject is experiencing a virtual or real 

emotional experience. Classification accuracies are gathered from nonlinear 

Support Vector Machine algorithms and a set of EEG and HRV features extracted 

using various state-of-the-art metrics. Methodological details, the experimental 

results, and the discussion and conclusion follow below. 

 

Materials and Methods 

Experimental design 

An experiment was conducted in two different phases, including two prior stages 

using controlled stimuli. Each stage was presented consequently (Figure 3.1), 

with signal acquisition independently recorded. Between each stage, the subjects 

rested for 3 minutes, sitting on a chair. Stage 1 consisted of showing the subjects 

2D pictures based on IAPS. Stage 2 consisted of a 360º panorama emotion IVE 

presented in an HMD. Finally, the last stage in both phases consisted of the free 

exploration of a museum exhibition. However, in Stage 3.1, the subjects explored 

a real museum exhibition and in Stage 3.2 the subjects explored the 3D virtual 

reality simulation of the same exhibition. Each subject was randomly assigned to 

undergo either Stage 3.1 or Stage 3.2. 

The ethics committee of the Polytechnic University of Valencia approved the 

experimental protocol. All methods and experimental protocols were performed 

in accordance with the guidelines and regulations of the local ethics committee 

of the Polytechnic University of Valencia. Written informed consent was 

obtained from all participants involved in the experiment. In particular, the 

individual in this manuscript has given written informed consent (as outlined in 

the PLOS consent form) to publish these case details. 
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Figure 3.1. Experimental phases of the research. n represents the number of subjects involved in 
each stage 

 

Stimulus Elicitation 

Previous Controlled Stimuli  

In Stage 1 we developed an affective elicitation using standardized 2D pictures. 

This was achieved by projecting a set of images onto a monitor (Dell E198FPb, 

LCD, 19-inch, 1280x1024 @ 75Hz). At first, the users were asked to rest for 4 

minutes while looking at a blank image (B), in order to start the experiment from 

a relaxed status. This period was divided into: one open eye minute; one closed 

eye minute; one open eye minute; and one closed eye minute. Thereafter, the 

affective elicitation began. We took inspiration from the elicitation 

methodologies reported in previous works (Valenza et al., 2016; Valenza et al., 

2012), with minor changes. Briefly, the slideshow comprised of 9 image sessions, 

alternating neutral sessions (from N1 to N5) and arousal sessions (from A1 to 

A4). The order of presentation of the images was random. One-minute resting-

state sessions (from R1 to R8) were placed between each neutral/arousal session. 

Each arousal session was divided into 3 blocks of valence (from V1 to V3). Thus, 

1 block of neutral pictures and 12 blocks of non-neutral pictures were displayed. 

Further details are reported in the Supplementary Material. The overall protocol 

used 110 images. Each image was presented for 10 seconds for the whole 

duration of the experiment, 18 minutes and 20 seconds.  

In Stage 2, we developed an affective elicitation using architectural environments 

displayed by 360º panoramas implemented in a portable HMD. The stimuli had 

been analysed and validated in previous research (Marín-Morales et al., 2018). 

This type of environment was chosen as the influence of architectural 

environments on affective-behavioural responses is widely accepted (Eberhard, 

2009). Previous research shows that subtle variations in the space may generate 

different neurophysiological responses (Nanda et al., 2013). In addition, previous 

works show that the 360º panorama-format using HMD devices is a valid set-up 

for evoking psychological and physiological responses similar to those that 
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physical environments evoke (Higuera-Trujillo et al., 2017). Hence, four 

architectural environments were proposed as representative of four emotional 

states (Figure 3.2), following the CMA (Russell, 1980). The emotional rooms were 

designed based on different variations of the same base-scenario, “Villa in the 

forest”, by Kazuyo Sejima (Sejima, 1996). The research team, which included 

architects, considered this an appropriate base from which to make modifications 

to generate different moods. The architectural parameters used to modify the 

base-scenario were illumination, colour and geometry. 

 

Figure 3.2. 360º panoramas used in stage 2 

 

Technically, the process of developing the four architectural environments 

consisted of modelling and rendering. Modelling was performed by using 

Rhinoceros v5.0 (www.rhino3d.com) and rendering was performed using the 

VRay engine v3.00.08 (www.vray.com), operating from Autodesk 3ds Max v2015 

(www.autodesk.es). Renders were exported in .jpg format with resolutions of 

6000x3000 pixels at 300 dots per inch. The 360º panoramas were implemented in 

Samsung Gear VR HMDs and the reproduction was fluid and uninterrupted. The 

Samsung HMD has a stereoscopic screen of 1280×1440 pixels per eye and a 96° 

field of view, supported by a Samsung Note 4 mobile telephone with a 2.7GHz 

quad-core processor and 3GB of RAM. Figure 3.3 shows an example of 

experimental set-up of Stages 1 and 2. 
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Figure 3.3. Example of experimental set-up of stage 1 and 2 

 

Regarding the protocol, each room was presented for 1.5 minutes and the 

sequence was counter-balanced using the Latin Square method. After viewing 

each room, the users were asked to orally self-assess the emotional state evoked 

by each room using a SAM questionnaire embedded in the 360º photo, ranging 

from -4 to 4, for arousal and valence dimensions.  

Physical Museum Exhibition 

In Stage 3.1, we performed an affective elicitation using a physical environment. 

An art exhibition was chosen in order to evoke an intense emotional experience. 

The Institut Valencià d'Art Modern (IVAM) offered us their facilities to 

undertake our study. We selected the art-exhibition “Départ-Arrivée”, by 

Christian Boltanski, because it had a very emotional topic, the Nazi holocaust. 

The exhibition had 5 rooms and an area of approximately 750 m2 (Figure 3.4). 

 

Figure 3.4. Plan of the art-exhibition with the 5 rooms and 3 pieces of art 

 

The subjects were asked to explore freely the first four rooms. When they entered 

the fifth room, they had also to explore it freely, but they were, in addition, 

required to stop and study the three pieces of art in detail. The researcher waited 
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for the subject at the exit door, allowing the subject to freely explore the 

exhibition. 

In order to track the position of the subjects, therefore being sure that she/he 

visited all rooms, we used a GoPro camera, that subjects carried attached to their 

chests by means of a suitable harness. The physiological signals were recording 

on a laptop that the subject carried in a backpack. Figure 3.5 shows an exemplary 

experimental set-up of Stage 3.1. 

 

Figure 3.5. Example of experimental set-up of Stage 3.1 

 

After the museum exploration, the subjects were asked to complete two 

questionnaires. In the first, they evaluated the emotional impact of each of the 

five rooms and the three pieces of art, using a SAM questionnaire and a photo of 

each room. In the second, we presented two questions to evaluate the subjective 

impact of the sensors: (1) “During the test, did you feel annoyed by the sensors?”; 

(2) “During the test, was there ever a time when you forgot that you were 

sensorized?”. The subjects who reported feeling “moderately” or “a lot” annoyed 

were excluded from further analyses. 

Virtual Museum Exhibition 

In Stage 3.2, an affective elicitation was performed through the 3D VR 

representation of the museum exhibition visited in phase 1. The Unity 5.1 game 

engine (www.unity3d.com) was used. A three-dimensional representation of the 

museum exhibition was provided by Rhinoceros v5.0. Textures partially 

extracted from the physical environment were imported to achieve maximum 

realism. This involved exhaustively and methodologically drawing and 

photographing the entire exhibition. Exemplary photographs of the real 

environment and screenshots of the virtual environment are shown in Figure 3.6. 

Further examples are in the Supplementary Materials. Regarding the 3D VR 
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simulation, the developed scenario was compiled for HTC Vive 

(www.vive.com). This system allows visual and displacement simulations. On 

the one hand, visualization is performed using an HMD with 2160x1200 pixels 

(1080×1200 per eye) and a field of view of 110 degrees working at 90Hz refresh 

rate. On the other hand, displacements are performed using tracking technology, 

two controllers and two base stations that, together, allow the subject to interact 

with their environment and physically move within an area of a 2x2 metres. 

Specifically, the teleport navigation metaphor included in the HTC Vive 

developed tools was used, with a 2.5 metres from the subject maximum 

teleportation radio. It was chosen in order to achieve pseudo-naturalistic 

navigation, allowing the subjects to take large steps. The entire system was 

connected to the research PC (Predator G6, www.acer.com) via DisplayPort 1.2 

and USB 3.0, running smoothly and without interruptions. Figure 3.7 shows an 

exemplary experimental set-up of Stage 3.2. 

 

Figure 3.6. Comparison between the physical museum (left) and the virtual museum (right). The 
photos represent Room 1 and Room 5 

 

http://www.acer.com/
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Figure 3.7. Exemplary experimental setup of Stage 3.2 

 

Before starting this stage of the experiment, the subjects were placed in a neutral 

scenario, which displayed only a floor, without any texture. A screenshot of this 

scenario is included in the Supplementary Material. They were asked to 

undertake a period of training in this place. They could take all the time that they 

needed inside this scenario, until they considered their adaptation to VR and the 

navigation metaphor complete. After this, the instructions for the virtual 

museum exhibition were exactly the same as for the physical exhibition. The 

subject´s navigation was also displayed in real time on a desktop and the 

researcher used this to note when the subject arrived at the exit, in order to stop 

the recording and remove the HMD. 

Following the exploration of the virtual museum, the subjects were asked to 

answer the same two questionnaires as for Stage 3.1: (1) affective self-assessment 

evaluation of the rooms and pieces of art; (2) impact of the sensors in the 

behaviour of the subjects. In addition, in this phase the subjects had to answer a 

questionnaire about presence in the virtual museum. We used the well-known 

“SUS questionnaire” (Slater et al., 1994). Its current version consists of six items, 

rated on 1-to-7 Likert scale, measuring three aspects of the subject’s senses: the 

experience of being inside the simulation; the consideration of the simulation as 

the dominant reality; and the memory of the simulation as a place. 

 

Participants’ Eligibility and Group Homogeneity 

A homogeneous population of 60 healthy subjects (age 28.9 ± 5.44, 40% male, 60% 

female), suffering neither from cardiovascular nor obvious mental pathologies, 

was recruited to participate in the experiment. They were divided into 30 subjects 

for the first phase and 30 for the second. The following were the criteria to 
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participate in the study: age between 20 and 40 years; Spanish nationality; not 

having formal education in art or a fine-art background; not having any previous 

virtual reality experience; and not having previously visited this particular art 

exhibition.  

Two questionnaires were included to ensure that the subjects were in a healthy 

mental state and constituted a homogeneous group. In the first, all participants 

were screened by a Patient Health Questionnaire (PHQ) (Kroenke et al., 2001). 

Only participants with a score lower than 5 were included in the study to avoid 

the presence of either middling or severe personality disorders. In the second, a 

self-assessment, based on a selection of IAPS pictures (Lang et al., 1997) using the 

Self-Assessment Manikin (SAM) (Bradley & Lang, 1994), was administered. The 

presented set consisted of different degrees of arousal and valence perception 

(arousal from 3.41 to 7.24; valence from 1.29 to 8.17; pictures selected: 7234, 5201, 

9290, 1463, 9181, 8380, 3102, 4652).  

The self-assessment values were used to analyse if any subject had an emotional 

response that could be considered as an outlier with respect to standard 

elicitations. To this end, the arousal and valence of each subject were 

standardized through a z-score using the mean and deviation of the IAPS 

published scores (Lang et al., 1997). Standardized evaluations outside of the 

range -2.58 to 2.58 (i.e., α=0.01) were designated as outliers (Cousineau & 

Chartier, 2010). Subjects with outliers were excluded from further analyses, while 

we retained the emotional responses that belong statistically to 99% of the 

population as published in the IAPS. In addition, the subjects whose signal 

recording experienced errors were rejected, e.g. because of disconnection of the 

sensors during the elicitation. The participants had successfully to complete all 

the stages. 

 

Physiological Signals and Instrumentation Set 

The electroencephalographic (EEG) and electro-cardiographic (ECG) signals 

were acquired using B-Alert x10 (Advanced Brain Monitoring, Inc. USA). This 

provides an integrated approach for wireless wearable acquisition, sampled at 

256 Hz. Regarding the EEG, the location of the sensors was in the frontal (Fz, F3 

and F4), central (Cz, C3 and C4) and parietal (POz, P3, and P4) regions based on 

international 10-20 electrode placement. A pair of electrodes placed below the 

mastoid was used as a reference. A test was performed to check that the 

impedances of the electrodes were below 20kΩ. In order to check the proper 

conductivity of the electrodes, a test was performed. Concerning the ECG, the 

left lead was located on the lowest rib and the right lead on the right collarbone. 

Data from 15 subjects out of 60 were rejected due to poor quality. 
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Signal Processing 

Firstly, the signals were synchronized and segmented for each stage. The 

methodology used is detailed in the Supplementary Materials. Then, HRV and 

EEG signal processing methods were applied to extract features to characterize 

the physiological responses to the stimuli. 

Heart Rate Variability 

To obtain the RR series from the ECG, we implemented the Pan-Tompkins’s 

algorithm for QRS complex detection. The individual trends components were 

removed using the smoothness prior detrending method (Tarvainen et al., 2002). 

Artefacts and ectopic beats were corrected through the use of Kubios HRV 

software (Tarvainen et al., 2014). From the RR series, we performed the analysis 

of the standard HRV parameters in the time and frequency domains. In addition, 

we included other HRV measures quantifying heartbeat nonlinear and complex 

dynamics (Acharya et al., 2006). Table 3.1 presents a list of features included. 

The time domain analysis includes the following features: average and standard 

deviation of the RR intervals, the root mean square of successive differences of 

intervals (RMSSD), the number of successive differences of intervals which differ 

by more than 50 ms (pNN50), the triangular interpolation of the HRV histogram 

and the baseline width of the RR histogram evaluated through triangular 

interpolation (TINN). The features of the frequency domain were calculated 

using a power spectrum density (PSD), applying Fast Fourier Transform. The 

analysis was performed in three bands: VLF (very low frequency, <0.04 Hz), LF 

(low frequency, 0.04-0.15 Hz) and HF (high frequency, 0.12-0.4 Hz). 

Time domain Frequency domain Other 

Mean RR VLF peak Poincaré SD1 

Std RR LF peak Poincaré SD2 

RMSSD HF peak Approximate Entropy (ApEn) 

pNN50 VLF power Sample Entropy (SampEn) 

RR triangular index VLF power % DFA α1 

TINN LF power DFA α2 

 LF power % Correlation dimension (D2) 

 LF power n.u.  

 HF power  

 HF power %  

 HF power n.u.  

 LF/HF power  

 Total power  
 
Table 3.1. List of HRV features used 
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For each of the three frequency bands we calculated the peak value 

(corresponding to the frequency having maximum magnitude) and the power of 

each frequency band in absolute and percentage terms. Normalized power (n.u.) 

was calculated for the LF and HF bands as the percentage of total power, 

subtracting previously the power of VLF to the total power. The LF/HF ratio was 

calculated to quantify sympatho-vagal balance and to reflect sympathetic 

modulations (Acharya et al., 2006). Moreover, the total power was calculated. 

Finally, many features were extracted using nonlinear analysis, as they were 

shown to be important quantifiers of cardiovascular control dynamics mediated 

by the ANS in affective computing (Valenza et al., 2012). Firstly, Poincaré plot 

analysis was applied. It is a quantitative-visual technique, whereby the shape of 

a plot is categorized into functional classes, providing summary information of 

the behaviour of the heart. SD1 is associated with fast beat-to-beat variability and 

SD2 analyses the longer-term variability of R–R (Acharya et al., 2006). An entropy 

analysis was included, using Sample Entropy (SampEn) and Approximate 

Entropy (ApEn). SampEn provides an evaluation of time-series regularity 

(Richman & Moorman, 2000) and ApEn detects changes in underlying episodic 

behaviour not reflected in peak occurrences or amplitudes (Pincus & Viscarello, 

1992). DFA correlations analyse short-term and long-term fluctuations through 

the α1 and α2 features, where α1 represents the fluctuation in range of 4-16 

samples and α2 refers to the range of 16-64 samples (Peng et al., 1995). Finally, 

the D2 feature measures the complexity or strangeness of the time series. This is 

expected to provide information on the minimum number of dynamic variables 

needed to model the underlying system (Grassberger & Procaccia, 1983). 

Electroencephalographic Signals 

Figure 3.8 shows the complete EEG processing scheme, which is performed using 

the open source toolbox EEGLAB (Delorme & Makeig, 2004). 
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Figure 3.8. Block scheme of the EEG signal processing steps 

 

Firstly, the data from each channel was analysed to identify corrupted channels 

using the fourth standardized moment (kurtosis) along the signal of each 

electrode (Colomer et al., 2016). Moreover, the channel was also classified as 

corrupted if the signal was flatter than 10% of the total stage duration. If a channel 

was considered as corrupted, it could be interpolated from its neighbouring 

electrodes. The subject would be rejected if more than one channel was 

corrupted. Among all of the subjects, only one channel was interpolated. 

The EEG baseline was removed by mean subtraction and a band pass filter 

between 0.5 and 40 Hz. The signal was segmented in epochs of one-second 

duration. Moreover, an automatic artefact detection was applied, rejecting 

epochs when more than 2 channels contained samples which exceeded an 

absolute threshold of 100.00 µV and a gradient of 70.00 µV between samples 

(Kober et al., 2012). The Independent Component Analysis (ICA) (Hyvärinen & 

Oja, 2000) with an infomax algorithm was performed to identify and remove 

components due to blinks, eye movements and muscular artefacts. The 

components were analyzed by a trained expert to identify and reject those related 

to artefacts. The effectiveness of the algorithms used to detect and remove 

artefacts was carefully checked by visual inspection. The subjects who had more 

than one third of their signals affected by artefacts were rejected. Spectral and 

functional connectivity analyses were performed after the pre-processing. 

An EEG spectral analysis was performed to estimate the power spectra in each 

epoch, within the frequency bandwidth: θ (4-8 Hz), α (8-12 Hz), β (13-25 Hz), γ 

(25-40 Hz). Frequency band δ (< 4Hz) was not taken into account in this study. It 

was performed using Welch’s method with 50% overlapping. 36 features were 

obtained from the 9 channels and 4 bands. The functional connectivity analysis 
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was performed using Mean Phase Coherence (Mormann et al., 2000). It was 

performed for each pair of channels in each band: 

𝑅2 = 𝐸[cos(∆𝜙)]2 + 𝐸[𝑠𝑖𝑛(Δ𝜙)]2 (1) 

Where 𝑅 is the MPC, ∆𝜙 is the relative phase difference between two channels 

derived by the instantaneous difference of the analytics signals from the Hilbert 

transform, and 𝐸 is the expectation operator. MPC values can oscillate between 0 

and 1. The MPC is close to 1 when a strong phase synchronization exists between 

two channels. Alternatively, MPC is close to 0 if the two channels are not 

synchronized. From each combination of a pair of 9 channels in one specific band, 

36 features were extracted. Consequently, 144 features were developed from the 

4 bands analysed. 

 

Data Fusion and Pattern Recognition 

An overview of the emotion recognition classification scheme is shown at Figure 

3.9. For each stimulus, HRV features were calculated using the time windows 

defined in the segmentation methods. Concerning EEG, we considered the mean 

of the time-windows of the stimuli as the representative value in both analyses. 

Therefore, each stimulus (pictures, emotional rooms and museum rooms/pieces 

of art) was described by 209 features. 
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Figure 3.9. Overview of the data analysis and emotional pattern recognition 

 

Four classification models were independently developed: arousal level in the 

physical museum, valence level in the physical museum, arousal level in the 

virtual museum, and valence level in the virtual museum.  

For each model, the datasets of stimuli were created using three analytical cases: 

(1) using only the museum data, (2) including IAPS data and (3) also including 

the 360º data. The different cases were performed to test the following analyses.  

Case 1: Physical or Virtual Museum. The features of stimuli from Stage 3.1 were 

used in order to analyse emotion recognition in the physical museum. In 

addition, the features of the stimuli from Stage 3.2 were independently used to 

analyse emotion recognition in the virtual museum. 

Case 2: Physical or Virtual Museum + IAPS. In order to analyse the influence of 

including standardized 2D image responses in the emotional models, the features 
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of Stage 1 stimuli were concatenated with the physical museum feature stimuli 

(Stage 3.1) or virtual museum feature stimuli (Stage 3.2). 

Case 3: Physical or Virtual Museum + Emotional Rooms. In order to analyse the 

influence of including 360º IVE responses in the models, the features of Stage 2 

stimuli were concatenated with the physical museum feature stimuli (Stage 3.1) 

or virtual museum feature stimuli (Stage 3.2). 

In each emotional model, the class label was bipolarized into high/positive (>0) 

and low/negative (<=0) for both arousal/valence. 

Finally, a 2-class pattern recognition algorithm discerning between real vs. 

virtual museum exploration was developed, i.e. a classifier that aims to recognize 

if the emotional experience is elicited from a virtual or real scenario. 

In all the classification models, including the emotional and real vs. virtual 

classifier, a feature reduction strategy was adopted to decrease the dimension of 

the dataset due to the high-dimensional feature space obtained. We implemented 

the Principal Component Analysis method (PCA) (Jolliffe, 2002), which is based 

on the linear transformation of the different variables in the principal 

components. We included the features that explained 95% of the variability of the 

dataset. The PCA was independently applied in the three analyses. In order to 

validate the machine learning models, the Leave-One-Subject-Out (LOSO) cross-

validation procedure was applied, using Support Vector Machine (SVM)-based 

pattern recognition (Schöllkopf et al., 2000). For the LOSO scheme, the training 

set was normalized by subtracting the median value and dividing by the median 

absolute deviation over each dimension.  

In each iteration, the validation set consisted of the stimuli of the physical or 

virtual museums of one specific subject; it was normalized using the median and 

deviation of the training set. Regarding the learning model, a C-SVM with 

sigmoid kernel function was used. The parameters of cost and gamma were 

optimized using a vector with 15 parameters logarithmically spaced between 0.1 

and 1000. Moreover, we performed a feature selection strategy to explore the 

relative importance of each feature. A support vector machine recursive feature 

elimination (SVM-RFE) procedure, in a wrapper approach, was included. It was 

performed on the training set of each fold and we computed the median rank for 

each feature over all folds. 

We specifically chose a recently developed nonlinear SVM-RFE which includes a 

correlation bias reduction strategy in the feature elimination procedure (Yan & 

Zhang, 2015). The model was optimized to achieve best accuracy whenever it has 

a balanced confusion matrix. We consider a model balanced when its confusion 

matrix has a true positive and a true negative over 60%. The algorithms were 

implemented using Matlab© R2016a and LIBSVM toolbox (Chang & Lin, 2011). 
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Results 

Subjects’ Self-assessment 

No subjects showed depressive symptoms according to their PHQ-9 scores. The 

mean and standard deviations of the PHQ-9 questionnaires were 3.31 ± 2.57. 

Considering the IAPS self-assessment, a total of 8 subjects were considered 

outliers with respect to standard emotion elicitations. 

Regarding the Stage 2, the evaluation of the subjects for each IVE averaged using 

mean and standard deviation in terms of arousal were (Room 1: 1.17 ± 1.81, Room 

2: 2.10 ± 1.59, Room 3: 0.05 ± 2.01, Room 4: -0.60 ± 2.11) and valence (Room 1: -

1.12 ± 1.95, Room 2: 1.45 ± 1.93, Room 3: -0.40 ± 2.14, Room 4: 2.57 ± 1.42), 

achieving the emotion statement for which they were designed, except in the case 

of arousal in Room 3.  

Concerning Stages 3.1 and 3.2, Figure 3.10 shows the self-assessment of the 

subjects for the museum stimuli (rooms and pieces of art), using mean and 

standard deviations in terms of arousal and valence. Due to the non-Gaussianity 

of data (p < 0.05 from the Shapiro-Wilk test with null hypothesis of having a 

Gaussian sample), the Mann-Whitney U test was applied (α<0.05). Along the 

arousal dimension, no significant differences were found. Regarding valence, 

only room 1 showed a significant difference (p-value=0.006). In addition, we 

analyse the stimuli considering a second alpha threshold (α<0.1) in order to 

decrease the probability of perform a type II error. In this case, room 1 (p-

value=0.084) and room 4 (p-value=0.053) show higher arousal in virtual 

condition, and room 1 (p-value=0.006) and room 3 (p-value=0.051) present higher 

valence in virtual condition. After the bipolarization of scores (positive/high >0), 

the physical museum presents 59.72% of high arousal and 40.97% of positive 

valence values; and the virtual museum presents 71.71% of high arousal and 

61.84% of positive valence values. 
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Figure 3.10. Self-assessment scores in physical and virtual museums using SAM and a Likert 
scale between -4 and +4. Bars represent the means, vertical lines represent the standard deviation 
of the means, blue represents arousal, and red valence. (* indicates significant differences with p 
< 0.05, ¶ indicates significant differences with p < 0.1)  
 

Emotion Recognition Classification 

Table 3.2 shows an overview of the results of the four emotion recognition 

models in three analysis cases. Regarding arousal recognition in the physical 

museum, not including IAPS or emotional rooms data, the accuracy is 68.05%. In 

the case where IAPS and emotional rooms data were included, the accuracy 

increases by 3.47%, reaching 71.52% in both cases. In all cases the model used 

features of the three analyses and the confusion matrices were balanced. 

 

Analysis 

cases Feature 

Accu

racy 

F-

Score 

ΔAcc

uracy 

Confusion matrix Featured used 

True 

high/pos 

False 

high/pos 

False 

low/neg 

True 

low/neg 

Total HR

V 

EEG 

Ban

d 

EEG 

MP

C 

(1) Physical 

museum 
Arousal 

68.05 

% 
0.68 - 70.93 29.06 36.2 63.79 9/14 1/3 1/1 7/10 

(2) Physical 

museum + 

IAPS 

Arousal 
71.52 

% 
0.72 

+3.47 

% 
75.58 24.41 34.48 65.5 10/18 1/2 1/4 8/12 

(3) Physical 

museum + 

Em. Rooms 

Arousal 
71.52 

% 
0.72 

+3.47 

% 
79.06 20.93 39.65 60.34 16/18 3/3 3/3 

10/1

2 

(1) Physical 

museum 
Valence 

74.30 

% 
0.74 - 74.57 25.42 25.88 74.11 9/14 1/3 1/1 7/10 

(2) Physical 

museum + 

IAPS 

Valence 
77.08 

% 
0.76 

+2.78 

% 
72.88 27.11 20 80 10/18 2/2 1/4 7/12 

(3) Physical 

museum + 

Em. Rooms 

Valence 
76.38 

% 
0.74 

+2.08 

% 
69.49 30.5 18.82 81.17 3/18 0/3 0/3 3/12 
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(1) Virtual 

museum 
Arousal 

(TN<

60) 
- - 88.07 11.92 44.18 55.81 - - - - 

(2) Virtual 

museum + 

IAPS 

Arousal 
71.05 

% 
0.70 - 75.22 24.77 39.53 60.46 4/22 0/2 0/3 4/17 

(3) Virtual 

museum + 

Em. Rooms 

Arousal 
75.00 

% 
0.75 - 76.14 23.85 27.9 72.09 1/25 0/4 0/3 1/18 

(1) Virtual 

museum 
Valence 

67.10 

% 
0.68 - 71.27 28.72 39.65 60.34 4/26 0/3 0/5 4/18 

(2) Virtual 

museum + 

IAPS 

Valence 
67.10 

% 
0.68 

+0.00 

% 
71.27 28.72 39.65 60.34 3/22 0/2 0/3 3/17 

(3) Virtual 

museum + 

Em. Rooms 

Valence 
71.05 

% 
0.71 

+3.95 

% 
74.46 25.53 34.48 65.51 3/25 0/4 0/3 3/18 

 
Table 3.2. Level of emotion recognition  
 

Level of recognition of arousal and valence in physical/virtual museum 

exhibition using (1) only physical/virtual museum dataset (2) including IAPS 

dataset and (3) also including emotional rooms dataset. Average of accuracy in 

percentage, F-score, increment of accuracy when IAPS and Rooms datasets were 

included in each case, confusion matrix and features used in each analysis. Bold 

indicates cases with the highest accuracy. 

Concerning the valence recognition in the physical museum, not including IAPS 

or the emotional rooms data, the accuracy is 74.30%. The best accuracy is 

obtained by including IAPS data, achieving 77.08%. The confusion matrix is 

balanced in all cases and features of all analyses were included. 

Regarding arousal in the virtual museum, it was not possible to develop a 

balanced model without including IAPS or emotional room data, because the 

true negative was below 60%. Including the IAPS data, the accuracy was 71.05%. 

However, the best accuracy is obtained by including the emotional rooms, 

achieving 75.00%. Moreover, this model presents a more balance confusion 

matrix. Both cases only use EEG MPC features. 

Concerning valence in the virtual museum, not including IAPS or the emotional 

rooms, the accuracy is 67.10%. The model including IAPS data presents the same 

results. The best accuracy includes emotional room data, achieving 71.05% of 

accuracy. All cases used only EEG MPC features. 

 

Real vs. Virtual Classification 

Table 3.3 shows the level of recognition of the nature of the stimuli in the 

museum, classifying if the stimuli are real or virtual. The accuracy is 95.27% and 

the confusion matrix is balanced. The model uses only one feature of EEG MPC, 

the first component of the PCA, to achieve this level of recognition. 
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Analysis cases Feature Accuracy 

F-

Score 

Confusion matrix Featured used 

True 

high 

False 

high 

False 

low 

True 

low 

Total HRV EEG 

Band 

EEG 

MPC 

Real vs. Virtual Nature 95.27 % 0.95 94.07 5.92 3.47 96.52 1/17 0/3 0/2 1/12 

 
Table 3.3. Level of recognition of nature of stimuli  
 

Level of recognition of nature of stimuli (real or virtual), including average of 

accuracy in percentage, F-score, confusion matrix and features used from each 

analysis 

 

Discussion and Conclusion 

The purpose of this novel and exploratory research was to quantitatively 

compare psychological and physiological patterns during an emotional 

experience in a physical environment and their virtualization through a 3D IVE, 

guiding future emotion elicitation and recognition systems using VR. With this 

aim in mind, we developed a realistic 3D IVE simulation of an art museum and 

performed a comparative study involving 60 subjects in a real art museum and 

its simulation, while they were performing a free exploration of an exhibition. In 

addition, we included two prior phases including controlled stimuli using 2D 

pictures and 360º IVEs, in order to study the influence of this data on the accuracy 

and robustness of the emotional models. The results can be discussed on four 

levels: i) a comparison of the psychometric scores, ii) a comparison of the 

physiological patterns, iii) a comparison of the level of emotion recognition and 

the influence of previously (standardized) controlled stimuli, iv) a comparison of 

emotional subjective and psychophysiological correlates in VR and real scenarios 

and its meaning in the framework of the different theories and models of emotion 

and iv) a methodological assessment. 

Self-assessment results were used to compare the psychometric patterns. The 

virtual museum presents slightly more arousal and valence levels than the 

physical museum. This slight bias could be due to the subjects having no 

previous VR experience, and the novelty could increase arousal and valence. This 

should be taken account of in future experiments with these types of subjects. 

However, only Room 1 presents significant differences in valence considering the 

usual alpha threshold (α=0.05). Moreover, considering that this conservative 

threshold is focused to avoid type I error, we analyse a second threshold (α=0.1) 

to decrease the probabilities to perform a type II error and claim incorrectly the 

null hypothesis of equal means. The vast majority of the stimuli (93.75%) do not 

present statistically significant differences in self-assessment considering the first 

alpha threshold (α=0.05). However, two rooms (1 and 4) present higher arousal, 

and two rooms (1 and 3) show higher valence in virtual condition considering 

the second alpha threshold (α=0.1) (Howell, 2009). Room 1 presents the biggest 
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differences in the evoked emotion and it could be provoked by a ‘wow’ effect 

derived also by the novelty and the lack of previous experience in VR. This effect 

will need to be consider in future research. The results suggest that 3D IVEs are 

powerful tools for emotional elicitation, since the majority of stimuli do not 

present significant differences in affective statements reported by the subjects in 

comparison to those evoked by physical environments, and are appropriate for 

emotion research, thus supporting H1. The results also support the use of VR to 

elicit emotion and are in accordance with previous research (Baños et al., 2004; 

Riva et al., 2007; Gorini et al., 2011), but more confirmatory research is needed in 

the future, especially considering the new VR devices. 

Regarding the physiological pattern comparison, the automatic feature selection 

of the SVM-RFE algorithm was used. The influence of the features of each 

analysis on the models could be analysed as the PCA was applied independently 

for HRV, EEG Band Power and EEG MPC. In emotion recognition of the physical 

museum, all the models (except for the valence with Emotional Room data) used 

features of all the analyses to predict mood. Thus, all analyses contributed with 

information about emotional status. However, the emotion recognition models 

developed for the virtual museum used only few EEG MPC features. Moreover, 

the real vs virtual classification model used only the first component of the EEG 

MPC PCA to discriminate between the real and virtual museum stimuli. These 

results reveal the important role that brain synchronization plays in the neuro-

physiological processes involved in VR, as they can discriminate between virtual 

and real environments with a level of recognition of over 95% accuracy. In 

addition, the use of EEG MPC features to recognize emotions in VR suggests that 

brain synchronization is deeply involved in emotional processes in VR 

environments. The measures of nonlinear interdependency in EEG have become 

in the last years an emerging field and they have been applied to analyse 

perceptual processes, cognitive tasks and disorders (Glass, 2001; Stam, 2005). 

Even when these have been applied in virtual reality studies (Baumgartner et al., 

2006; Kober et al., 2012; Zhao et al., 2009), to our knowledge we present the first 

evidence of their influence in immersive virtual emotional experiences. In future 

studies, the correlations between emotions in VR and the synchronization of each 

brain region should be analysed in depth, since in this exploratory study we use 

PCA as a feature reduction method in order to perform classification models to 

test the hypotheses. 

The study has some limitations that might affect the physiological responses. We 

use wearable sensors which allow us to undertake research in real-world, but 

they have a limited number of sources. In addition, the recording could be 

affected by artefacts, especially those caused by movement. Although many 

researches use EEG data gathered in combination with HMDs (Zhang et al., 

2017), or wearables in real-world (Debener et al., 2012), these set-ups need to be 

further examined and improved for use in future research. In addition, the real 
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and the virtual environments have intrinsic differences in unavoidable physical 

features such as light, colour and complexity, and these may affect physiological 

responses. Furthermore, the time of the exploration of each room/piece of art 

need to be considered since it can radically condition space perception and 

therefore alter the emotion evoked. The navigation behaviour will be analysed in 

future research. 

Concerning the level of emotion recognition, we present the first study that 

develops an emotion recognition system in a 3D IVE, comparing results with the 

physical environment model. Firstly, we presented the results of the models in 

the physical and virtual museum without the IAPS or Emotional Rooms dataset, 

using features extracted from EEG and HRV series gathered from wearable 

sensors, and properly combined through nonlinear SVM algorithms. The models 

were validated using LOSO cross-validation, which has been extensively 

performed in emotion recognition research to validate models. The accuracies of 

the model in the physical museum without IAPS or Emotional Rooms datasets 

achieve 68.05% in arousal and 74.30% in valence, both balanced in confusion 

matrix. These results are considerably higher than the level of chance, which is 

58% in statistical assessment classification with brain signals (p=0.05, n>100, 2-

classes) (Kim & André, 2008; Koelstra et al., 2012; Lin et al., 2010). The accuracy 

of the model in the virtual museum, without including IAPS or Emotional Rooms 

datasets, is 67.10% in valence and is balanced. However, the model of arousal in 

the virtual museum does not exceed the balance threshold (>60% of true high 

and true low), invalidating its accuracy. Therefore, the 3D IVEs show an initial 

limitation for use in evoking stimuli in emotion recognition systems, especially 

in arousal recognition.  

The emotion stimuli habitually applied in the methodologies of affective 

computing studies, such as IAPS, include a large number of stimuli to elicit a 

wide range of emotions with different levels of intensity. This wide range of 

moods allows the emotion recognition systems to improve their accuracy. 

However, real-world environment (physical or simulated) stimuli are not created 

to evoke different ranges of valence and arousal and cannot cover different mood 

intensity. Thus, the responses to a set of controlled emotional stimuli are included 

in the emotion models to test if they improve the accuracy of the models. Thus, 

we analyse the addition of datasets of pre-performed controlled, standardized 

stimuli which are designed to evoke a range of arousal and valence, including 2D 

pictures (IAPS) and 360º IVEs (Emotional Rooms).  

As can be seen in Table 3.2, accuracy improves in all models when using IAPS or 

Emotional Rooms information, supporting H3. Regarding the physical museum, 

the IAPS and Emotional Rooms datasets provide better accuracy in terms of 

arousal (71.52%), increasing the accuracy by 3.47% in both cases. The inclusion of 

IAPS datasets maximizes recognition in terms of valence, achieving 77.08%. 
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Therefore, the inclusion of IAPS works slightly better than the Emotional Rooms 

phase in physical environments. Regarding the virtual museum, the Emotional 

Rooms dataset provides better accuracy in terms of arousal (75.00%). In this case, 

the Emotional Rooms provide 4 points of accuracy more than IAPS and the 

museum dataset doesn´t achieve a balanced result. The Emotional Rooms dataset 

also provides better accuracy in terms of valence in the virtual museum (71.05%). 

The good performance related to the inclusion of the Emotional Rooms dataset 

in the virtual museum could be because the 360º IVEs provide important 

information for the recognition of arousal in 3D environments, because both use 

an HMD. Moreover, the initial accuracy limitation of the model with no previous 

data is exceeded with the inclusion of the Emotional Room dataset. Thus, a prior 

phase with 360º IVE controlled stimuli is shown as a powerful methodology to 

develop emotion recognition models in 3D IVEs. Therefore, the results support 

H2, since the physiological signals allow us to predict the self-assessment in both 

cases. In future experiments, these results could be optimized using alternative 

machine learning algorithms and multivariate signal analyses (Colomer et al., 

2016) and a confirmatory analysis need to be performed to corroborate the 

hypotheses stated. 

Although the arousal and valence self-evaluations were to some extent similar in 

the virtual and real museums, the two conditions appear to be different in terms 

of psychophysiological parameters. Moreover, the psychophysiological-based 

emotional classifiers, virtual and real environments, although they had similar 

performances with high accuracy, used different features and were affected 

differently by the introduction of features acquired in stage 1 and 2. Interestingly, 

the classifier for the virtual environment needs less features than the classifier for 

the real museum, which suggests that the psychophysiological reaction in the 

latter was more complex than the former. Our data, therefore, highlights a 

possible limitation of the application of the circumplex model of emotions to 

psychophysiological data, since similar subjective experiences (in terms of 

arousal and valence) did not show unique psychophysiological patterns. For 

instance, the model does not take in account where the emotion takes place: a VR 

environment is necessarily unfamiliar and the degree of familiarity does not 

follow a linear relationship with the similarity to reality (for instance, see (de 

Borst & de Gelder, 2015) for a detailed review of the uncanny valley phenomenon 

and related issues). Understanding reality in its context is analysed by the Theory 

of Mind (ToM) and several models suggest that the ToM may modulate 

emotional perception (Mitchell & Phillips, 2015): even for phobias and their 

treatment, patients tend to prefer VR because they are cognitively aware that the 

phobic stimulation is similar but not identical to the real scenario (Powers & 

Emmelkamp, 2008). Recently, an uncanny-valley of the mind reaction was 

theorized to describe a scenario where VR agents performed in a very similar 

(but not identical) emphatic way (Stein & Ohler, 2017). Similarly, it is possible 
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that being in an environment which is very similar (but not identical) to a real 

environment will elicit a sense of eeriness. Such a sense of eeriness may interact 

with psychophysiological responses, but to a lesser extent with the arousal-

valence subjective evaluation. It is possible to imagine that, by introducing 

further dimensions, such as emotional embodiment (Critchley, 2009; Niedenthal, 

2007) or emotional presence, to the circumplex model of emotion may overcome 

the current limitations of the model. Regarding emotional presence there are 

several pieces of evidence that suggest how vividness of emotional experience 

can affect arousal and valence. For instance, patients with Post Traumatic Stress 

Disorder (PTSD) report very vivid traumatic emotional memories with high 

arousal and negative valence. On the contrary, techniques designed to reduce the 

vividness of such memories also reduce arousal and valence (Leer et al., 2014). 

Finally, our results may also be explained by reference to constructed emotion 

theory (Barrett, 2017). According to this theory, emotions are predictive and not 

reactive systems, therefore they depend on what the brain/mind considers the 

most probable outcome in terms of previous knowledge and sensorial input. 

Emotional labelling, as we know it, is just an approximation to something similar 

we have experienced in the past and therefore is not particularly reliable. It is not, 

therefore, unexpected that VR and real museum experiences are subjectively 

similar, but different in terms of psychophysiological correlates. Future studies 

might test the fit of constructed emotion theory to VR data. In this sense, a switch 

of paradigm may be needed. For instance, as proposed for the 

psychophysiological correlates of mental disorders (Gentili, 2017), we might 

adopt a data driven approach, based on unsupervised learning algorithms, to 

identify hidden similarities in psychophysiological reactivity to emotional states. 

At a methodological level, the proposed signal processing and machine learning 

techniques using data from healthcare wearables provide satisfactory levels of 

recognition, achieving accuracies over 70%. They are presented as a powerful 

software and hardware equipment to extend the applications of emotion 

recognition systems including physical real-world environments, and they are in 

accordance with recent studies using HRV (Jo et al., 2017) and EEG (Hassib et al., 

2017). However, concerning signal recordings, even when the physical 

environments allow the analysis of the real impact of one specific environment, 

these also present the following limitations: i) it is difficult to keep ambient 

features constant; ii) it is difficult, or even impossible in some cases, to change 

some environmental features in order to analyse their impact; iii) the extra-cost 

of developing studies of environments situated far distant and; iv) it is impossible 

to analyze the impact of an environment before it is constructed. On the other 

hand, the capacity of virtual simulation to evoke the same emotions as physical 

environments could be essential in the near future, taking into account the rise of 

virtuality and the central role that emotion plays in many background processes. 
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Moreover, the capacity of IVEs to be used as stimuli could significantly improve 

the application of emotion recognition in simulated real-world tasks. 

Some possible caveats should be mentioned. This exploratory study aimed at 

investigating human psycho-physiological patterns of emotions during a free 

exploration of virtual and real art museums. We used wearable sensors allowing 

to translate our research to real scenarios, although such sensors a limited 

number of physiological sensors. In addition, the biosignals could be affected by 

artefacts especially caused by head movement in the case of virtual museum, and 

by walking in the case of real museum where we recorded biosignals “in the 

wild”, i.e. outside of the highly constrained and tightly controlled laboratory 

paradigms. This is especially true for the EEG series, although many researches 

have successfully employed such data in combination with HMDs or other 

wearable devices in naturalistic conditions (Debener et al., 2012; Marín-Morales 

et al., 2018; Zhang et al., 2017). Nonetheless, our results point to the significance 

of brain synchronization for the emotion recognition in both real and virtual 

museum scenarios. The psychological self-assessment was performed using 

retrospective reports, leading to possible bias such as recency, primacy and 

memory, although our experimental paradigm replicates a real scenario. Note 

also that the user's emotional perception could be biased by stopping the real or 

virtual museum exploration. The real and the virtual environments have intrinsic 

differences in unavoidable physical features such as light, colour and complexity, 

and these may affect physiological responses. Furthermore, the time of the 

exploration for each room/piece of art would need to be considered as a 

confounding/critical factor in future studies because of its possible role in 

evoking emotions. In particular, it could affect the real vs virtual museum 

discrimination in case of differences in the time of exploration. In this regards, 

we recently found that Room 1 and Room 2 of the virtual museum are associated 

with lower time of visit than the real exhibition (Marín-Morales et al., 2019). On 

the other hand, the other 6 stimuli do not show differences in terms of exploration 

time between real and virtual museums. 

This study marks new steps in the discipline of affective computing and its 

application to environmental physiology and other fields, providing evidence 

through psychological and physiological comparisons during an emotional 

experience in real and virtual environments. This exploratory study tries to 

contribute to overcome passive methods’ limitations of affective elicitation 

classically used in emotion recognition models, such as pictures, sounds or 

videos, supporting the use of VR in emotion elicitation. The methodology has 

implications at commercial and research levels in many disciplines as health, 

architectural design, urban planning and aesthetics. It could be applied to study 

the emotional responses of subjects in many specific environments, such as 

hospitals, schools and factories, where the emotional responses of users play a 

critical role in daily wellbeing. More specifically, new emotion recognition 
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models will strongly contribute to the development of ambient assisted living, 

smart environments that change depending on human responses. On the other 

hand, the new VR set-up allows the analysis of the influence of one parameter, 

changing it while maintaining the remainder of the environment in a steady state. 

This will help to develop many studies, impossible to undertake in real 

environments for physical reasons (e.g. architectural modification of spaces) or 

security reasons (e.g. phobias therapy). Moreover, it will allow the analysis of 

environments before their construction, helping in the decision-making process 

of creating new environments oriented to wellbeing. 

 

Supporting information 

IAPS experimental protocol 

Table 3.4 shows the rating of the images used in each session of the experimental 

protocol of Stage 1. 

Arousal 

level 
Valence level N pics. 

Valence 

rating 

Valence 

range 

Arousal 

rating 

Arousal 

range 

N N 6 4.99 ± 0.14 4.82 ÷ 5.21 2.80 ± 0.26 2.35 ÷ 3.03 

A1 V1 7 4.26 ± 0.33 3.71 ÷ 4.75 3.59 ± 0.22 3.31 ÷ 3.88 

A1 V2 6 5.41 ± 1.07 4.38 ÷ 6.50 3.67 ± 0.17 3.53 ÷ 3.95 

A1 V3 7 7.56 ± 0.51 6.81 ÷ 8.11 3.58 ± 0.28 3.20 ÷ 3.92 

A2 V1 7 3.06 ± 0.71 2.09 ÷ 4.02 4.71 ± 0.22 4.28 ÷ 4.97 

A2 V2 6 5.21 ± 1.20 4.09 ÷ 6.40 4.62 ± 0.31 4.20 ÷ 4.94 

A2 V3 7 7.70 ± 0.70 6.45 ÷ 8.30 4.45 ± 0.22 4.07 ÷ 4.62 

A3 V1 7 2.34 ± 0.58 1.84 ÷ 3.17 5.94 ± 0.22 5.65 ÷ 6.20 

A3 V2 6 4.80 ± 1.52 3.27 ÷ 6.31 5.54 ± 0.19 5.35 ÷ 5.90 

A3 V3 7 7.57 ± 0.60 6.53 ÷ 8.06 5.69 ± 0.26 5.27 ÷ 5.96 

A4 V1 7 2.01 ± 0.55 1.29 ÷ 2.70 6.61 ± 0.26 6.29 ÷ 6.94 

A4 V2 6 4.90 ± 1.71 2.96 ÷ 6.62 6.78 ± 0.16 6.55 ÷ 6.99 

A4 V3 7 7.44 ± 0.33 6.87 ÷ 7.88 6.81 ± 0.53 6.23 ÷ 7.39 

 
Table 3.4. Rating of IAPS images used in Stage 1 

 

Physiological signal segmentation and synchronization 

Previous controlled stimuli 

In Stage 1, the IAPS images and the physiological signal recorded were 

synchronized using the software iMotions (iMotions A/S, Denmark). The 

segmentation of IAPS is explained in the protocol. In order to use the same 

number of blocks as in the emotional rooms, we used, for the classification model, 

only the four outermost blocks, combining low arousal (A1), high arousal (A4), 

negative valence (V1) and positive valence (V3). Each block was considered as an 

independent stimulus and had a duration of 70 seconds. 
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Regarding Stage 2, the software allowed the insertion of live markers in the 

physiological signal recording. The researcher inserted a live marker when each 

room began to display in the Samsung Gear HMD, so each room (stimuli) was 

associated with a specific live marker. Then, each time window of each stimulus 

was segmented using these markers. In conclusion, in the IAPS and Emotional 

room stages, a subject had four stimuli and each was theoretically situated in one 

quadrant of the CMA, providing a controlled stimulus set that included all 

arousal and valence combinations. 

Physical museum exhibition 

The physiological signals were recorded using iMotions software (iMotions A/S, 

Denmark), running in the laptop carried by the subjects. In order to record the 

positions of the subjects, we used a GoPro camera Figure 3.11. To synchronize 

the video with the physiological signals, we needed a synchronization point. 

When the signal and video recording started, the camera was focused onto the 

laptop and the researcher inserted a live marker software. By using this marker 

in the signals, and the frame of the video where the researcher inserted it, we 

could synchronize the video and the physiological signals. 

 

Figure 3.11. Additional environment comparison between the physical museum (left) and the 
virtual museum (right). The photos represent Room 2 and Room 3  
 

To obtain the data about the navigation of the subjects from the video, we 

designed a tool using Microsoft Virtual Studio in C++ language. The software 

simultaneously showed two items: a video of the recorded exploration of the 
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exhibition and a plan of the exhibition. The device includes two buttons to 

advance and rewind the video with 1-second jumps. In addition, it allows us to 

enter the position of the subjects in each frame of the plan through "clicks", using 

the video as a reference. The researcher watched the videos and positioned the 

subjects in the plan at one second intervals. Finally, the navigation was saved in 

a file with the route sampled every second. The timeline of the video was 

synchronized with the physiological signal timeline using the previously 

inserted live marker. 

8 stimuli were defined, 5 when the subjects visited each room and 3 when they 

viewed the pieces of art. A visit to an area starts when a subject enters the area 

and finishes when the subject leaves the area. The area of each room was defined 

by its walls and the area of each piece of art was defined by an area of influence, 

shown at Figure 3.12. If an area has only one visit, the stimuli are defined by the 

time taken to visit the area. If the subject makes more than one visit to an area 

and the time between the visits is less than 15 seconds, the visits were merged 

and considered as a single visit. After this pre-process, if there were more than 

one visit to the same room/stopping point, the stimuli were defined by the 

longest visit. In addition, a visit needed to have a duration of at least 40 seconds 

to be considered as a valid stimulus.  

 

Figure 3.12. Screenshot of the training environment  
 

Virtual museum exhibition 

  The physiological signals were recorded using iMotions software. A script 

in Unity was developed and inserted into the scenario with 2 tasks: (1) recording 

the position of the subject in each frame of the virtual environment and exporting 

it in a csv; (2) sending a live marker automatically to the iMotions software when 

the scenario and the recording of the position started, allowing synchronization 

between the navigation and the physical signal. 
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The navigation recording was resampled to the same frequency as the physical 

environment navigation (1 Hz). Following this, applying the same methodology, 

we defined the stimuli in exactly the same way as for the real museum.  

Real vs. Virtual Classification 

Regarding the real-virtual classification, a dataset was created concatenating the 

features of the stimuli in the physical museum (Stage 3.1) and the virtual museum 

(Stage 3.2), mixing virtual and physical stimuli in the same dataset. The output 

of this dataset is the nature of the stimulus (real or virtual). Thus, the pattern 

recognition classifier algorithm tries to recognize if the stimuli are virtual or real, 

by seeking to analyse which features enable the classifier to determine the nature 

of the stimuli. 
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Abstract 

The validity of environmental simulations depends on their capacity to replicate 

responses produced in physical environments. However, very few studies 

validate navigation differences in immersive virtual environments, even though 

these can radically condition space perception and therefore alter the various 

evoked responses. The objective of this paper is to validate environmental 

simulations using 3D environments and head-mounted display devices, at 

behavioural level through navigation. A comparison is undertaken between the 

free exploration of an art exhibition in a physical museum and a simulation of 

the same experience. As a first perception validation, the virtual museum shows 

a high degree of presence. Movement patterns in both “museums” show close 

similarities, and present significant differences at the beginning of the 

exploration in terms of the percentage of area explored and the time taken to 

undertake the tours. Therefore, the results show there are significant time-

dependent differences in navigation patterns during the first 2 minutes of the 

tours. Subsequently, there are no significant differences in navigation in physical 

and virtual museums. These findings support the use of immersive virtual 
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environments as empirical tools in human behavioural research at navigation 

level.

 

Introduction 

Environmental simulations are representations of physical environments that 

allow researchers to compare reactions to common concepts (Kwartler, 2005). 

They are particularly important when what they depict cannot be physically 

represented. Therefore, they are widely employed in different areas related to 

human behaviour. Similarly, the emergence of virtual reality has generated a 

wide range of possibilities, both at the scientific and the commercial level. 

Virtual reality allows the development of environmental simulations in which 

users can perform as if they are in the real world (Alcañiz et al., 2004). These 

simulations have a great variety of set-ups, involving a combination of formats 

and supports (Mengoni et al., 2011). They have been progressively integrated into 

studies as the relevant technologies have evolved. On the one hand, among the 

formats - understood as the codification standard - photography and 3D 

environments are highlighted. Photographs, including panoramic images, 

provide us with non-interactive visual representations, whereas 3D 

environments can generate interactive representations. On the other hand, 

display devices - the technological devices used to visualize the formats - can be 

classified according to their capacity to isolate the user from physical reality 

(Rangaraju & Terk, 2001), also known as immersion. Immersion is defined as the 

objective level of fidelity that a virtual reality system provides and, while it is 

related to human perception, it is inherent in each technology (Slater, 2003). Thus, 

virtual reality can be displayed by: non-immersive systems, usually single-

screen, such as desktop PCs; semi-immersive, surround-screen systems, such as 

the cave automatic virtual environment (CAVE); and fully-immersive systems, 

such as the head-mounted display (HMD). 

The environments displayed through immersive devices are called immersive 

virtual environments (IVE) (Blascovich et al., 2002). Today, the tendency is to use 

virtual reality environments through immersive displays. Their synergy offers a 

higher sense of presence (Sanchez-Vives & Slater, 2005), understood as the 

illusion of ‘being there’ (Steuer, 1992). While these set-ups were, in the past, 

difficult to implement, they are now much more accessible (Parsons, 2015) and 

have improved performance. Furthermore, the progress in virtual reality set-ups 

has led researchers to involve the human body in simulation experiences: 

introducing full embodiment in a virtual environment, understood as the sense 

of using our body coherently as we do in the real world (Dourish, 1999), enhances 

sense of presence by the incorporation of natural interactions. 
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Virtual reality is being increasingly used in the area of natural phenomena and 

social interaction simulation, due to its ability to activate brain mechanisms that 

are similar to those in real life (Alcañiz et al., 2009). Since VR allows the 

measurement of performance in real-time, it has become an important 

investigative tool in the field of human behaviour research. Specifically, VR is 

widely employed in psychological assessment (Freeman et al., 2017), medical 

treatment (Dascal et al., 2017), education (Jensen & Konradsen, 2017; Babu et al., 

2018), emotion recognition (Marín-Morales et al., 2018) and architecture 

(Portman et al., 2015), among other areas. 

The usefulness of simulation for human behaviour research has been analysed 

through the concept of validity: the capacity to evoke a response from the user in 

a simulated environment similar to one that might be evoked by a physical 

environment (Rohrmann & Bishop, 2002). Comparisons between physical spaces 

and their simulations through 3D IVEs have been made at different levels. At a 

physiological level it is found that 3D IVEs evoke responses more similar to those 

elicited by physical environments than formats with lower interactivity, although 

at the psychological level the validity decreases when compared to other formats, 

due to its lower realism (Higuera-Trujillo et al., 2017). In addition, measured by 

psychological response, a relation is found between sense of presence and the 

immersive capacity of HMDs (Baños et al., 2004) and the navigation metaphor 

(Usoh et al., 1999). Other studies have carried out comparisons between real and 

virtual spaces, analysing user performance in sets of everyday office-related 

activities (e.g. reading texts and identifying objects in an office environment) 

(Heydarian et al., 2015), physiological responses in different thermal conditions 

(Yeom et al., 2017), subjective perception of daylit spaces (Chamilothori et al., 

2018) and orienteering tasks (Kimura et al., 2017).  

Navigation encompasses travel and wayfinding components (LaViola et al., 

2017). On the one hand, the travel function is related to the task of moving from 

one point to another and, therefore, to the metaphors employed for executing 

displacements. On the other hand, wayfinding is the cognitive process of 

establishing a route or path from an origin to a destination.  

Regarding the travel component, interaction and navigation techniques are 

especially important aspects. They may, even, influence sense of presence (Slater 

& Usoh, 1994; Usoh et al., 1999). Different metaphors are discussed in terms of 

their efficiency in navigation. The benefits of full free-physical motion are 

frequently emphasized, although there is no consensus as to which is the 

standard method of navigation (Lee et al., 2018). However, it is suggested that 

performing only body rotations might be useful: users adopt other strategies to 

increase the surface that they cover (Riecke et al., 2010). Other metaphors, such 

as those based on head motions to indicate forward movements, have also been 

studied with relative success (Tregillus et al., 2017). In addition, there seems to 
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be consensus that the exclusive use of joysticks is not the most efficient navigation 

metaphor (Wilson et al., 2014), despite its familiarity. However, in terms of their 

ability to generate a user navigation experience similar to that of a physical space, 

no research intensively compares different metaphors and navigation devices in 

a controlled environment. 

The wayfinding component is fundamental to the user’s performance. This 

applies equally to virtual and physical environments, as the knowledge acquired 

in both has a similar structure (Ruddle et al., 1997). Hence, for example, 

wayfinding component analysis has been used successfully for firefighting 

training (Bliss et al., 1997). Several studies compare virtual and physical 

environments, generally concluding that the virtual offers worse performance 

than the physical (Richardson et al., 1999; van der Ham et al., 2015). Some authors 

claim that these differences can be attributed to a lack of user involvement caused 

by technical limitations (Lessels & Ruddle, 2005), fundamentally of the display 

(as field of view, or photorealism) and navigation (as metaphors, or degrees of 

freedom) systems. These studies focus on non-immersive or semi-immersive 

systems. However, very few studies compare physical space and its 

virtualization displayed through immersive systems. Taking into account the 

growing use of IVEs, and the fact that HMDs offer better performance - in terms 

of speed of navigation - than desktop screens (Ruddle et al., 1999), there is a clear 

need to make this comparison using the most modern HMDs. 

The present work addresses these limitations. Specifically, the objective is to 

validate environmental simulations by means of 3D IVEs at a navigation level. 

The research question to be answered is: are there differences between navigation 

in a physical space and its virtualization using a 3D IVE and a latest generation 

HMD? A comparative study was conducted of a free exploration of an art 

exhibition in an actual museum and a virtual museum simulated by means of an 

HTC Vive. The results may be of interest to researchers and content developers 

and are applicable to different fields. 

 

Material and methods 

Participants 

A homogeneous group of 60 healthy subjects (age 28.9 ± 5.44, 40% men, 60% 

women) were recruited. They all received financial compensation. The criteria 

were as follows: 

(i) Age between 20 and 40 
(ii) Spanish nationality 

(iii) Not having formal, or informal, training in fine arts 
(iv) Not having previous experience of HMDs 
(v) Not having previously visited this particular exhibition 
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(vi) Having normal vision, or corrected to normal with contact lenses 
 

Two questionnaires were included to ensure that the subjects had healthy mental 

conditions and homogeneous emotional responses. First, the subjects were 

analysed by the Patient Health Questionnaire (PHQ) (Kroenke et al., 2001). Only 

subjects with a value inferior to 5 were included to avoid including individuals 

in states of depression. Second, a selection of IAPS images (Lang et al., 1997) were 

evaluated by the participants using the Self-Assessment Manikin (SAM) (Bradley 

& Lang, 1994). The images had a range of 3.41 to 7.24 in arousal and of 1.29 to 

8.17 in valence (selected images: 7234, 5201, 9290, 1463, 9181, 8380, 3102, 4652). 

The participants’ self-assessments were normalized by means of a z-score using 

the means and deviation published in the IAPS. Participants with evaluations 

outside of the range -2.58 and 2.58 (α=0.005) were excluded since they were 

considered outliers. 

 

Physical museum 

During the first phase of the study, 30 subjects visited an actual museum to 

perform the test. The Institut Valencià d'Art Modern (IVAM) offered its facilities 

for the study. 

The exhibition “Départ-Arrivée” by Christian Boltanski was selected due to its 

high emotional content, since its setting is the Nazi holocaust and because it was 

spacious enough to allow users to freely navigate. It consisted of five rooms with 

an approximate total floor surface area of 750 m2 (Figure 4.1). Each room is 

considered to be a single piece of art. In addition, the last room contained three 

art pieces that could be analysed independently. Furthermore, the rooms 

presented information boards with the artist’s notes on the works. Finally, in 

Room 3 there was a path laid out from which subjects could not deviate.  

 

Figure 4.1. Plan of the art exhibition. Circles with an ‘“i” represent the artwork information 
boards. In room 3, the dashed line represents a limit that could not be crossed by the subjects 

 

The subjects were told, before starting the experiment, that they could freely 

explore the first four rooms. In the last room, while they also could explore it 
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freely, they had also to view, in detail, the three pieces of art in the room. The 

researcher waited for the subject at the exhibition exit, allowing the subjects to 

explore the space without any external influence.  

A GoPro camera was used to record the subjects’ navigation. The subjects carried 

this attached to their chests by means of a harness (Figure 4.2).  

 

Figure 4.2. Example of a subject in the physical museum 

 

Virtual museum 

During the second phase of the study the museum was virtualized using a 3D 

scenario. For this we used the Unity 5.1 game engine (www.unity3d.com). In 

order to achieve a scenario with maximum realism, we imported a three-

dimensional copy of the exhibition created by Rhinoceros v5.0 and textures 

partially derived from the physical environment. This process required the 

exhaustive and methodical drawing and photographing of the whole exhibition. 

A team of architects visited the physical exhibition and carried out a validation 

of virtualization at a general level, and of the level of lighting and texturing. 

Virtualization was considered complete after the appropriate changes. Figure 4.3 

shows photographs and screenshots of the virtual environment.  
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Figure 4.3. Comparison between a photograph of the physical museum (left) and a screenshot of 
the virtual museum (right). From top to bottom, Room 1, Room 2, Room 3 and Room 5 

 

For the simulation of the 3D VR, we compiled the scenario for HTC Vive 

(www.vive.com), which enabled us to carry out visual and displacement 

simulations. Visualization was conducted by means of an HMD with 2160x1200 
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pixels (1080×1200 per eye), and a field of view of 110 degrees working at 90Hz 

refresh rate. On the other hand, we conducted the displacements by means of a 

tracking technology made up of two controllers and two base stations that, 

together, enabled the subject to interact with the environment and physically 

move within an area of a 2x2 metres. Specifically, the metaphor used was the 

teleport navigation metaphor incorporated into the HTC Vive with a maximum 

teleportation radio of 2.5 metres from the subject. This was selected because we 

hypothesize that it will allow us to achieve pseudo-naturalistic navigation. The 

equipment was connected to the research computer (Predator G6, 

www.acer.com) by means of a DisplayPort 1.2 and USB 3.0 and ran smoothly and 

without interruption.  

After the environmental simulation of the art museum had been created, the 

study was replicated using the 3D IVE with the second group of 30 subjects in a 

lab environment. Figure 4.4 shows a subject exploring the virtual museum. 

 

Figure 4.4. Example of a subject viewing the virtual museum 

 

Before starting the experiment, the subjects carried out several tasks to adapt 

themselves to the HMD device and to the navigation metaphors, in a neutral 

scenario, without textures. The researcher ensured that the subject adapted 

correctly and navigated fluently. The subjects could stay in this scenario for as 

long as they wanted, until they considered that they could use the device without 

difficulty. During this period, the researcher addressed any doubts raised by the 

subjects about the HMD device, given that they had no previous HMD 

experience. Figure 4.5 shows a screenshot of a training environment.  
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Figure 4.5. Screenshot of the training environment 

 

After the training, the researcher gave the subjects the same instructions as were 

given to the subjects who had visited the physical museum. During the virtual 

experiment, the researcher remained in an adjoining room. Finally, the researcher 

was able to note through the monitor when the subject arrived at the exit of the 

"museum" and then removed the HMD device. Following the test, the subject 

had to answer a presence questionnaire, the “SUS questionnaire” (Usoh et al., 

2000). This consists of six items assessed from 1 to 7 using a Likert scale to 

measure three aspects of presence: 

(i) The experience of being inside the simulation. 
(ii) The consideration of the simulation as the dominant reality. 
(iii) The memory of the simulation as a place. 
 

Signal synchronization 

Regarding navigation in the physical museum, software was developed using 

the “Microsoft Virtual Studio” in C++ language to synchronize the data. The 

software simultaneously shows two items: a video recording of the subjects’ 

exploration of the exhibition and a plan of the exhibition. It includes two buttons 

that can advance and rewind the video with 1-second jumps. In addition, it 

allows the position of the subjects to be manually entered into the plan, using the 

video as a reference. The researcher reviewed all the videos, positioning the 

subjects in the plans at 1-second intervals. Finally, the navigation path was saved 

to a file with the route sampled every second.  

Regarding navigation in the virtual museum, a script in Unity was developed 

which recorded the subjects’ positions at a frequency of 7Hz while they were 

exploring the scenario and exported them to a csv file at the end of the test. 
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Finally, the recorded navigation path was resampled to the same frequency as 

the path generated in the physical space (1 Hz). 

 

Spatial segmentation and analysis 

The analysis of the subjects’ navigation was based on the framework developed 

by Marín-Morales et al. (Marín-Morales et al., 2017). This proposes the 

segmentation of space into Areas of Interest (AOIs) on which several indicators 

are calculated to characterize navigation. The exhibition is comprised of twenty-

three AOIs. The first five AOIs are defined by the area of the five rooms. 

Moreover, each room was divided into several internal AOIs. Rooms 1, 2 and 4 

are divided into four symmetrical AOIs. Room 3 is divided into three AOIs 

covering the walking area. Room 5 is divided into three AOIs, each of them 

including a specific piece of art. The analysis was carried out based on three 

items: the heatmaps, the percentage of area explored and the length of time of the 

visits.  

Heatmaps were created using every point of the subjects’ trajectories at 1 Hz. 

Subsequently, a radius of 0.75 m was applied to each position, defining that each 

subject’s presence spans a circle of 1.5m in diameter. Considering that heatmaps 

are usually relative to themselves, i.e. they adapt the colours to the maximum 

and minimum values that they represent in each case, both heatmaps were 

constructed according to the same linear representation scale, allowing them to 

be comparable between themselves. The highest valued 5% of the pixels were 

dismissed and were saturated in red to increase the sensitivity of the heatmap. 

On the other hand, we calculated the percentage of area explored in each AOI by 

each user, considering that the area explored is calculated with the centroids of 

the subject’s navigation points with a radius of 0.75 metres. 

Regarding the length of the visits, a visit is defined as the period of time from 

when a subject enters an AOI to the moment he or she leaves it. In particular, the 

variable being analysed is the length of time of the main visit to each of the AOIs, 

defined as that visit with the longest duration in the case that an AOI was visited 

more than once by the same subject. Processing assured that the variable 

included the main visit to the room or piece of art: if there were less than 15 

seconds between two visits to the same AOI, the visits were put together and 

considered as just one visit. 

 

Results 

Self-assessment: presence and cybersickness 

Table 4.1 shows the results of presence provided by the SUS questionnaire. Two 

items are between 6 and 7: “I had a sense of ‘being there’ in the museum space” 
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and “During the experience I often thought that I was really in the museum 

space”. Another two items are between 5.50 and 6: “There were times during the 

experience when the museum space was the reality for me" and "During the 

experience you felt you were in the museum space”. Finally, the two remaining 

items are below 5. The total average of the set of items is 5.47 out of 7 so the level 

of presence of the simulation is high. The subjects did not report any level of 

cybersickness. 

 

Question Score 

1. I had a sense of ‘‘being there’’ in the 
museum space 

6.17 (0.95) 

2. There were times during the experience 
when the museum space was the reality for 
me 

5.86 (0.95) 

3. The museum space seems to me to be 
like somewhere that I visited before 

4.87 (1.91) 

4. During the experience you felt you were 
in the museum space 

5.87 (1.17) 

5. I think of the museum space as a place 
similar to other places that I’ve been today 

3.93 (2.26) 

6. During the experience I often thought 
that I was really in the museum space 

6.13 (0.94) 

 

Table 4.1. Results of presence (SUS Questionnaire). The results are presented using the mean 
and the standard deviation 

 

Heatmaps 

Figure 4.6 shows the heatmaps of the trajectories in the physical and virtual 

museums. Carrying out a descriptive analysis room by room, it is observed that: 

(i) In Room 1, the exploration is more dispersed in the physical museum. In 
addition, the participants are very focused on the information board in the 
physical museum. 

(ii) In Room 2, the trajectories are similar. However, taking into account that 
the natural path is that presented in the physical museum, the subjects´ 
trajectories deviated slightly from these natural paths in the virtual 
museum, being a bit more dispersed. Similarly, the information board was 
scarcely visited in the virtual museum. 

(iii) In Room 3, the trajectories are very similar and there are no differences, 
except that some subjects ignored to a small extent the limitations set by 
the exhibition organizers. 

(iv) In Room 4, there are no differences among the trajectories, except for the 
same effect mentioned for Room 2. 

(v) In Room 5, there are no differences, except for the trajectory relevant to 
piece of art 3, where the subjects notably stopped at the information board 
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in the physical museum, whereas the trajectories were much more 
dispersed in the virtual museum. It is noteworthy that, both in the physical 
and the virtual museum, a light spot can be seen in the middle of the room, 
caused by the subjects who visualised the room from its central point. 

 

 

Figure 4.6. Heatmaps of the physical museum (top) and the virtual museum (bottom). They 
include the names and positions of the AOIs, and the positions of the information boards, 
indicated by an “i”. Below the name of the AOI, v* indicates significant differences in visit time 
and e* significant differences in percentage of area explored with p < 0.05 in each AOI. The 
indicators are included in the heatmap condition with major value in each case 

 

Length of visit time and percentage of area explored 

Figure 4.7 shows the length of time of the main visits and the percentage of area 

explored in each room in the physical and virtual museums, using mean and 

standard deviations. Due to the Gaussianity of data (p > 0.05 from Shapiro-Wilk 

test with null hypothesis of having a Gaussian sample), a T-Test was applied. 

Regarding the visit times, only in Room 1 (p-value=0.00) and Room 2 (p-

value=0.03) were there significant differences, subjects staying less time in the 

virtual museum. The percentage of area explored is higher in the physical 

museum for all rooms, significant differences being observed in Room 1 (p-

value=0.00) and Room 3 (p-value=0.00). 
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Figure 4.7. Representation of timings for the main visit and the percentage of area explored for 
each AOI. The bars represent the average and the lines represent the standard deviation. (* 
indicates significant differences with p<0.05, ** indicates significant differences with p < 0.01 
and *** indicates significant differences with p < 0.001) 

 

Table 4.2 shows the visit time and the percentage of the area explored of each 

internal AOI and the difference between both conditions. Due to the Gaussianity 

of data (p > 0.05 from Shapiro-Wilk test with null hypothesis of having a 

Gaussian sample), a T-Test was applied. Considering the visit time, the main 

differences were found in Room 1 (R1 NW and R1 SE) and Room 2 (R2 SW and 

R2 SE). The percentages of area explored were different in Room 1 (R1 NW, R1 

SW and R1 SE), Room 2 (R2 SE), Room 3 (R3 W and R3 S) and Room 5 (R5 PoA 

1). 

  Visit time Percentage of area explored 

Room AOI 

Physical 

museum 

Virtual 

museum Difference pvalue 

Physical 

museum 

Virtual 

museum Difference pvalue 

Room 

1 

R1 NW 51.93 (56.71) 20.51 (18.89) +31.43 
0.007 

(**) 
31.83% (4.51) 27.24% (4.27) +4.59% 

0.000 

(***) 

R1 SW 25.10 (37.29) 22.42 (29.15) +2.68 0.562 32.12% (19.03) 13.64% (11.81) +18.48% 
0.000 

(***) 

R1 NE 32.17 (54.53) 17.84 (18.12) +14.33 0.906 31.28% (18.78) 24.62% (14.89) +6.66% 0.147 

R1 SE 45.63 (56.76) 8.74 (20.17) +36.90 
0.000 

(***) 
39.23% (21.95) 14.09% (13.46) +25.14% 

0.000 

(***) 

Room 

2 

R2 NW 54.23 (49.73) 37.80 (55.63) +16.44 0.077 32.81% (15.22) 26.37% (20.32) +6.44% 0.185 

R2 SW 69.17 (67.84) 30.20 (39.86) +38.97 
0.011 

(*) 
35.98% (14.59) 33.80% (20.52) +2.17% 0.650 

R2 NE 25.57 (29.10) 33.07 (50.15) -7.51 0.691 33.63% (14.25) 30.35% (13.90) +3.27% 0.107 

R2 SE 71.07 (55.00) 27.65 (38.33) +43.42 
0.001 

(***) 
39.34% (12.19) 31.94% (13.37) +7.40% 0.035 (*) 

Room 

3 

R3 W 62.13 (51.61) 43.07 (48.41) +19.06 0.118 81.70% (5.53) 74.15% (10.08) +7.55% 
0.001 

(***) 

R3 S 13.40 (7.86) 14.60 (11.54) -1.20 0.644 78.63% (4.70) 74.55% (8.65) +4.08% 0.032 (*) 

R3 E 13.57 (6.44) 17.19 (7.19) -3.62 0.052 71.41% (9.07) 69.27% (8.42) +2.14% 0.365 

Room 

4 

R4 NW 15.07 (18.88) 12.25 (20.00) +2.82 0.229 24.55% (17.07) 19.08% (15.17) +5.47% 0.210 

R4 SW 27.00 (30.51) 17.68 (14.70) +9.32 0.674 33.95% (16.55) 29.31% (15.29) +4.64% 0.281 
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R4 NE 14.60 (18.04) 16.34 (14.10) -1.74 0.686 24.19% (16.91) 25.80% (15.46) -1.61% 0.952 

R4 SE 26.60 (26.41) 37.39 (87.28) -10.79 0.416 30.36% (12.99) 25.44% (9.62) +4.91% 0.114 

Room 

5 

R5 PoA 

1 
76.13 (32.89) 78.44 (51.58) -2.31 0.839 99.98% (0.06) 94.87% (18.55) +5.10% 

0.007 

(**) 

R5 PoA 

2 
48.57 (44.62) 71.93 (96.36) -23.36 0.840 63.03% (12.10) 57.40% (11.20) +5.63% 0.076 

R5 PoA 

3 
112.90 (62.77) 115.73 (95.35) -2.83 0.894 43.53% (11.47) 40.64% (13.23) +2.90% 0.386 

 

Table 4.2. Results of the visit time and percentage of area explored in each internal AOI. The 
results are presented using the mean and the standard deviation, the difference between both 
conditions and the p-value of the T-Test 

 

Discussion 

The aim of this study is to validate environmental simulations made by means of 

3D IVEs and a latest generation HMD, at presence and navigation levels. The 

results can be discussed on four levels: i) level of presence and cybersickness, ii) 

differences in navigation, iii) methodological analysis and iv) comparison with 

previous works. 

Regarding sense of presence, an overall average of 5.47 (out of 7) was shown by 

the SUS questionnaire. It reached more than 6 for the questions “I had a sense of 

‘‘being there’’ in the museum space” and “During the experience I often thought 

that I was really in the museum space”. The results are considered to be high, 

taking into account the previous results reported by studies using similar 

technologies (Sas & O’Hare, 2003). In addition, since no subject reported any 

cybersickness, the self-assessment supports the use of the present set-up at a 

perception level.  

With regard to navigation, we analysed trajectories and the lengths of visits to 

AOIs. The heatmaps show similar navigation patterns in the physical and the 

virtual museums. Room 1 shows the biggest differences between the exploration 

and the heatmaps, with 15.40% more area being explored in the physical 

environment. The heatmaps do not show the same pattern. Moreover, AOIs R1 

NW, R1 SW and R1 SE present significant differences. These differences may be 

because, in the first room, the subject is still adapting to the IVE. The second room 

shows no significant differences at either the exploration level or with the path 

patterns in the heatmap, except for AOI R2SE. This room has a central object that 

tends to be avoided (Figures 1 and 3). In the physical museum, the subjects walk 

around this object, forming a clear rectangle in their trajectories. In the virtual 

museum, they tend to do the same, but not so markedly. There are subtle 

differences in patterns when the subjects try to avoid obstacles. Room 3 shows a 

similar pattern. Nevertheless, there are significant differences in the percentages 
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of areas explored, in both the general room and in the internal AOIs (R3 W and 

R3 S). These differences could be due to the navigation metaphor used. The 

teleport metaphor, which allows the user to perform “jumps” of a maximum of 

2.5 metres, decreases the percentage of area explored when the subjects walk 

along a narrow aisle. This suggests that the navigation is less naturalistic in 

narrow environments. There are no significant differences among the patterns in 

Room 4, not even in the area explored percentage. No significant differences were 

observed in the last room in the heatmap patterns at the exploration or trajectory 

levels. Moreover, it was noted that the same pattern is seen in Figure 5 for the 

pieces of art, in the central point of the room and at the exit from the exhibition. 

For piece of art 1 (R5 PoA 1), we find significant differences, although, in both 

conditions, the percentage of area explored is more than 90%, so this does not 

represent a substantial difference. Moreover, this effect is similar to that observed 

in Room 3, where the percentage of area explored decreased, being in a narrow 

aisle, as the piece of art is a labyrinth. For piece of art 2, there are no differences. 

For piece of art 3, there are no significant differences in the exploration, but a 

more dispersed pattern is detected in the heatmap. Therefore, in terms of 

exploration, the major difference is observed in Room 1. In addition, differences 

were found for all the information boards. Current HMD technologies are limited 

for reading medium or small texts. This problem might be resolved by an increase 

in the resolution of the HMD systems.  

With regard to the lengths of the visits, there were significant differences only in 

Room 1 (p-value=0.00) and Room 2 (p-value=0.03), including in both cases two 

internal AOIs (R1 NW, R1 SE, R2 SW and R2 SE). Visits to both rooms in the 

virtual museum were considerably shorter than for the physical museum. The 

rest of the rooms do not present significant differences. Thus, taking the visual 

analysis patterns of the heatmaps, the percentage of area explored and the length 

of the visits, if we exclude the effect of the narrow aisle in Room 3 and R5 PoA1, 

the environment shows time-dependent differences. Consequently, and despite 

the implementation of a training phase which used a different scenario, it is 

necessary to allow a period of adaptation in the actual museum scenario until 

navigation behaviours do not show significant differences to those in the space 

that it simulates. In this study, the adaptation period was approximately 2 

minutes, which is the sum of the average length of visits to Room 1 and Room 2 

as shown in Figure 7. This might be explained by the fact that the training room 

is a non-realistic environment, since it presents abstract objects without textures 

(Figure 5). When the subject enters the virtual museum (Figure 3), he/she is 

affected by the “wow” effect caused by the realism of the VR, and thus needs 

some time to start to behave without displaying significant differences to the real 

museum. In future research, we suggest that more realistic training rooms, with 

textures and lighting similar to the simulated environment, should be used, to 

try to avoid the “wow” effect. However, it must be borne in mind that these 
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results come from subjects with no prior experience of HMDs. In the future, when 

more of the population have wider exposure to these devices, this adaptation 

period will probably be reduced or even be unnecessary. 

At a methodological level, we make a comparison using a HTC Vive, which gives 

good performance in terms of working area, accuracy and jitter in a room-sized 

environment for serious games, rehabilitation and health-related applications 

(Borrego et al., 2018). The role that recently developed low-cost VR devices can 

play in scientific research is thoroughly analysed by Cipresso et al. (2018), who 

argue that they may be the next significant stepping stones in technological 

innovation. Therefore, as it is likely that these devices will be widely used in next 

years, there is an urgent need to validate them. Regarding the metaphor, some 

recent reviews analyse the role of the classic navigation metaphors in the new era 

of VR (Boletsis, 2017; Nilsson et al., 2018), dividing them into three main 

categories: repositioning systems, locomotion based on proxy gestures and 

redirected walking. There is consensus that redirected walking is the most 

natural way to simulate walking. However, there is also consensus that travel 

techniques must be developed to mimic better the actual experience of walking 

without requiring a physical space the same size as the virtual environment; this 

is the weakest point of redirect walking, as it requires large physical spaces. In 

the present work we suggest the use of repositioning systems, in particular 

teleport metaphors with a limit of 2.5 metres radius and a movement area of 2x2 

metres, to provide pseudo-naturalistic walking. This set-up provides a low cost 

framework that requires only a small room with two base stations, which are 

included in the basic HTC Vive pack. The results support the use of this set-up, 

but future researches should compare this with other navigation metaphors, and 

also analyse which value of radius teleport limitation better simulates walking. 

In particular, the reduction of the teleport radius might provide more realistic 

walking by reducing the large “jumps”, but it might also reduce travel 

performance. Some research uses a teleport without restriction to enhance task 

performance and usability (LaViola et al., 2017), but this probably reduces the 

similarities with natural walking. The environment used in the research is chosen 

to analyse the travel component of the navigation, thus excluding the wayfinding 

component. Thus, we use a large environment (750 m2), which allows the 

performance of very different types of travel, but at the same time imposes an 

obligatory sequence for the room visits, from 1 to 5, thereby excluding the 

possible influence of subjects taking different routes on the travel component 

results. The analysis of the wayfinding process using the present set-up should 

in the future be undertaken in other environments which allow different routes 

to be taken from origin to destination. 

Much previous research compares navigation between real-world and virtual 

reality using non-immersive and semi-immersive devices. Richardson et al. 

(1999) perform a navigation-performance task on a large screen; van der Ham et 
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al. (2015) analyse a route memory task on a computer screen; and Claessen et al. 

(2016) analyse the wayfinding of chronic stroke patients using videos on a screen. 

Moreover, the vast majority of the comparisons are focused on the wayfinding 

component of the navigation, not the travel component. The few researches that 

use HMDs analyse navigation tasks in small spaces from an orientation and task-

goal perspective. Kimura et al. (2017) perform a comparison of orientation-tasks 

using a HMD, and demonstrate that participants in a VR room show less facility 

with spatial geometry. Lessels & Ruddle (2005) analyse a searching-task 

performance using an HMD and suggest that visually photorealistic 

environments allow navigation to take place almost as efficiently as in a real-

world setting. Therefore, previous comparisons between real and virtual 

environments have the following limitations: i) they do not analyse the new 

generation of HMDs, ii) they focus on the wayfinding component of navigation, 

and iii) they use the goal-task approach. This present work aims to contribute to 

the knowledge in the field by addressing these limitations, using the new 

generation of HMDs, which can change the paradigm of the use of VR in 

research, and by analysing the travel component in a free exploration of a real-

world environment and task, visiting a museum. 

 

Conclusions 

The virtual museum shows a high degree of sense of presence. This outcome 

supports the use of 3D IVEs with devices, such as HTC Vive, at the perception 

level and, particularly, in environments with a high emotional content, such as 

museums. In terms of navigation, the physical museum was explored more, 

although there are significant differences only in Room 1. The trajectory patterns 

shown by the heatmaps are very similar, although there were differences with 

the information boards since their medium and small sized lettering is still not 

easily read in HMDs. Regarding the length of the visits, the first 2 rooms show 

significant differences. There are significant time-dependent differences in the 

navigation during the first 2 minutes of the experiment, even though there was a 

training room. We advise that future studies using the current set-up with 

subjects with no experience of HMDs should include an initial adaptation period 

and use realistic training environments. These conclusions support the use of 

environmental simulations by means of 3D IVEs and HMDs as empirical tools to 

study human behaviour at navigation level and raise interesting questions for 

future commercial and research studies.



  

 

 

 

 



 

 

 

91 

 

 

 

Chapter 5  

 

Discussion 
 

“Nothing in life is to be feared. It is only to be understood.” 

Marie Curie 

 

 

In this chapter we discuss the major implications of the work. We consider the 

use of immersive virtual reality in human behaviour research, focussing on the 

role that VR might play in the next years as an emotion elicitation tool. We have 

analysed VR’s synergy with emotion recognition systems using psychological 

signals and machine learning; and its validity by performing a direct comparison 

between a real museum and its virtualization in a 3D environment. 

 

Immersive VR as an emotion elicitation methodology 

The objective of the thesis is to validate the use of immersive VR as an emotion 

elicitation tool in human behaviour research. Given the performance 

improvements in the latest generation of HMDs, we fixed on the use of HMDs as 

display devices. They mark a new step in terms of resolution, field of view, level 

of immersion and price, democratising the purchase of HMDs around the world 

(Castelvecchi, 2016) and boosting their research applications (Jensen & 

Konradsen, 2017). To explore different types of immersive stimuli, we analysed 

them in combination with the two most used immersive formats, 360º panoramas 

and 3D environments (Mengoni et al., 2011), as they offer pros and cons 

depending on the research case. In Chapter 2 we used a portable HMD (Samsung 

Gear VR) combined with 360º panoramas. This offers, with a high degree of 

realism, a portable solution for analysing static environments, using computer-

generated images (Higuera-Trujillo et al., 2017). This set-up is very effective for 
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updating classic affective computing methodologies; it presents users with a 

series of non-interactive stimuli, such as IAPS (Valenza et al., 2012) and IADS 

(Greco et al., 2016), and increasing degrees of presence, due to immersion (Baños 

et al., 2004). In chapters 3 and 4 we used a high-performance HMD (HTC Vive) 

combined with a 3D environment. This set-up has higher hardware requirements 

and it is not portable, but it offers a highly-interactive environment which can 

simulate real-world activities, such as visiting a museum. Previous studies used 

3D scenarios (McCall et al., 2016) as their interactivity levels can be very useful 

in more applied research, they display more naturalistic and interactive 

environments, and facilitate research into decision-making. Thus, in this thesis 

we cover the two main approaches, realistic 360º and interactive 3D, to analyse 

immersive VR as an emotion elicitation method in human behaviour research. 

 

New affective computing methods using 360º immersive 

VR 

In Chapter 2 we developed a new set of emotional immersive VR environments 

using computed-generated 360º panoramas. Previous studies analysed 

correlations between HRV and EDA and stress using indoor and outdoor 360º 

real-world photographs (Anderson et al., 2017), and pleasantness in a retail store 

(Higuera-Trujillo et al., 2017). In contrast, we developed a new methodology 

based on a classic affective computing approach, using images, audio and video 

as emotion elicitation methods (Zangeneh et al., 2018), and added an immersive 

perspective. Normally, this research uses validated stimuli with the aim of 

covering a wide range of emotions, that is, stimuli balanced in terms of arousal 

and valence, IAPS being the set most used (Valenza et al., 2012). However, there 

is a need to develop new validated sets that can be used in immersive devices, 

such as HMDs, to enhance users’ sense of presence in laboratory environments 

(Slater & Wilbur, 1997). To the best of our knowledge, this is the first study to 

validate a set of emotional 360º panoramas in a controlled way, that is, by 

changing specific parameters of the scenario to elicit emotions using aspects of 

environmental psychology, such as colours, geometry and illumination. The set 

presented a wide range of valence-arousal measures through psychological self-

assessment. We hope that this set will be a first step in the development of large 

sets of validated 360º emotional images that can be used in the future by the 

scientific community. Moreover, as far as we know, we have developed the first 

emotion recognition model using physiological signals with immersive VR. In 

particular, EEG and ECG signals, combined with SVM algorithms, have been 

demonstrated to be good indicators of users’ emotional statements, achieving 



Discussion 

 

 

93 

75.00% accuracy along the arousal dimension and 71.21% along the valence 

dimension. It is important to note that some studies have combined affective 

computing with virtual reality (Wu et al., 2010), but all used non-immersive 

scenarios. Our approach represents represents a new step in the affective 

computing state-of-the-art, both in terms of its methodological contribution and 

in terms of the scientific insights it provides to the physiological dynamics of VR.  

 

The power of 3D real-world simulations for evoking 

emotions 

In chapters 3 and 4 we developed a realistic simulation of an art exhibition, 

chosen for the analysis as it is a very emotional environment. The VR scenario 

was created, following strict procedures, to replicate the real environment. 

Moreover, we performed a direct comparison between the real and the virtual 

environments, which is a novel contribution to VR research as there is still a 

scarcity of research comparing real-world scenarios with their simulations in 

laboratory settings (Yeom et al., 2017). Previous studies have analysed emotional 

responses to food (Gorini et al., 2010) and perception in daylit spaces 

(Chamilothori et al., 2018). However, more experimental research is needed into 

immersive VR, so that its capacity to evoke the same moods as real environments 

can be validated. We validated a 3D VR simulation using psychological self-

assessment, and showed that the vast majority of rooms in the exhibition do not 

present significant differences in terms of arousal and valence. In addition, the 

simulation achieved a high degree of presence. These results support the capacity 

of VR to recreate real-world environments. We have been able to draw a very 

strong and effective comparison due to the complexity of the real-world/virtual 

environments used, the naturalistic and non-guided task analysed, the ecological 

method, and the level of realism achieved. However, since the 3D scenario used 

was an art exhibition, more research is needed to analyse activities in more 

commonplace environments, such as houses, offices, hospitals, schools, stores, 

etc. Moreover, the present thesis does not consider the influence of social stimuli, 

that is, we did not analyse the emotional responses to avatars in VR. As in real 

life we are very influenced by our social environment, and VR has been shown 

to be a powerful tool for recreating plausible illusions of social stimuli, the 

affective computing field in future could take new steps by applying emotion 

recognition models to virtual social environments.  
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Using psychological signals and machine learning in 3D 

VR 

In addition to psychological assessments, we developed an emotion recognition 

system able to automatically infer emotions in real-world emotional 

environments and their simulations. Previous studies have explored the 

correlations between physiological responses and fear (Gromer et al., 2019), 

anxiety (Tsai et al., 2018), arousal (Kisker et al., 2019), stress (Zimmer & Wu, 2019) 

and pleasantness (Higuera-Trujillo et al., 2017). We used EEG and ECG signals 

gathered from subjects using wearable sensors, combining them with SVM 

algorithms. In addition, we analysed the inclusion of previous responses to 

emotional stimuli in two formats (2D images and 360º panoramas), and showed 

that these data improved the emotion recognition models in both cases. The 

emotion recognition systems achieved an accuracy of 71.52% for arousal and 

77.08% for valence in the physical museum, and 75.00% for arousal and 71.05% 

for valence in the virtual museum. The results also showed some differences in 

the physiological responses in both environments. The emotion recognition 

models in the real museum used HRV and EEG features, but in the virtual 

museum they used only EEG MPC features. Moreover, these results revealed the 

important role that brain synchronization features play in the neuro-

physiological processes involved in VR, as they allow us to identify whether 

subjects are in virtual or real environments to over 95% accuracy. This is in 

accordance with previous research where measures of nonlinear 

interdependency in EEG have been applied to analyse perceptual processes, 

cognitive tasks and disorders (Glass, 2001; Stam, 2005). We used wearable 

sensors, which allowed us to undertake research in the real-world, but the limited 

number of sources (only 9 electrodes were used in the EEG) needs to be taken 

into account. This research presents a new methodological framework for 

assessing the application of emotion recognition systems in 3D environments and 

in the real world. It is of note that this thesis presents, to the best of our 

knowledge, the first emotion recognition system which uses immersive 3D VR in 

elicitation, and one of the most complex applications of affective computing to 

the real-world, using EEG and ECG. It represents a new step on the long research 

road to develop emotion recognition models using physiological signals that can 

be applied to real-world tasks, especially in their laboratory simulations, using 

VR.  
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The influence of navigation in 3D environments 

Navigation can condition the perception of a space. To analyse the validity of the 

VR we compared the navigation patterns in the real and virtual museums. 

Navigation encompasses travel and wayfinding components. The travel 

component is related to the task of moving from one point to another, and the 

wayfinding component is related to the cognitive process of establishing a path 

from an origin to a destination (LaViola et al., 2017). Several previous studies 

have compared the wayfinding component in virtual and physical environments, 

generally concluding that the virtual offers poorer performance than the physical 

(Richardson et al., 1999; van der Ham et al., 2015). However, no research has 

compared the navigation experience between a real and virtual environment in 

terms of the travel component. Thus, in Chapter 4 we analyse the travel 

component of the navigation experience by performing a direct comparison 

between the virtual and the real museum. The museum chosen allowed us to 

analyse the travel component as the exhibition is composed of 5 consecutive 

rooms, so there is only one possible route to follow and, thus, the wayfinding 

component is excluded. The results showed that there are time-dependent 

differences in the first 2 minutes, probably due to the ‘wow’ effect of the VR. 

Subsequently, the navigation patterns were very similar. As previous studies 

used screens and most focused on the wayfinding component, taking goal-task 

approaches (Claessen et al., 2016; van der Ham et al., 2015), we present, to the 

best of our knowledge, the first direct comparison of free navigation in a real-

world environment and its simulation using immersive VR. The results support 

the use of 3D VR as an emotion elicitation method in human behaviour research, 

and present some guidelines for consideration for use in future research. 

However, the present research analysed only the teleport metaphor, and the 

metaphor used can have a strong influence on navigation patterns (Lee et al., 

2018). Thus, further research is needed to analyse results in other environments, 

adding new behavioural responses, and taking into account the influence of 

wayfinding in the travel component. 
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Chapter 6  

 

Conclusion 
 

 

 

The thesis presents a novel approach to the use of VR in human behaviour 

research, in particular in relation to emotion elicitation. The framework 

developed includes 360º panoramas and 3D environments as display formats, 

and has implications for affective computing research itself, in that it can improve 

the methodologies applied in laboratory environments. It can help classic 

methodologies develop more realistic stimuli to assess daily-life environments 

and situations, thereby overcoming the current limitations of passive methods of 

affective elicitation, which traditionally include images, audio and/or video. 

HRV and EEG responses to affective VR stimuli, in combination with supervised 

machine learning methods, successfully recognized the mood of users in a suite 

of 360º affective stimuli, a real museum and its 3D virtualization. Therefore, brain 

and heart dynamics have been proven to be powerful for analysing emotions in 

VR, and this result increases our knowledge of the physiological responses 

related to emotion processes, in particular of measures of EEG nonlinear 

synchronization. The VR stimuli were displayed using HMDs, a new step in the 

combination of affective computing and immersive VR. Moreover, the museum 

was validated in a direct comparison, in terms of psychological patterns using 

self-assessment and navigation responses, which showed that, in both cases, the 

majority of stimuli did not show statistical differences. The results will help 

researchers to analyse and measure the impact of different parameters of the 

emotional responses of potential users, as they can facilitate the use of more 

ecological stimuli in VR. This is especially important where it is physically very 

difficult or impossible to carry out research in actual environments; for example, 

by analysing the arousal responses provoked by changes in ceiling height; in 
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dangerous situations, for example firefighting training and phobia therapies; 

and, for example, in the decision-making process for new buildings, where 

designs can be tested prior to construction. In addition, the capacity of VR to 

isolate individual environmental parameters, while keeping the rest of the 

environment identical, provides high synergy in their application with affective 

computing. 

The insights presented can help explain the psycho-physiological responses of 

human beings to many different stimuli, and facilitate the development of better 

practices in many fields. For example, in architecture they could help in the 

design of public and private buildings to optimize, before construction, emotions 

that designers wish to evoke (e.g. relaxation in a library or positive valence in a 

hospital). They could help also to develop ambient-assisting living, that is, 

environments that change depending on the demands of their users. They also 

offer many health and psychology applications, from assistance in therapies (e.g. 

phobia recovery by modulating exposure to stimuli based on the emotional 

responses of the patients), to diagnosis (e.g. evaluating children with autistic 

spectrum disorders by analysing their emotional responses to social stimuli). In 

assessments the methodology can help classify different types of personality 

through subjects’ emotional responses (e.g. leadership assessment during a team-

work task or public speaking). In the training field, it can offer safe and adaptive 

environments (e.g. modulating the difficulty of a military training exercise based 

on the trainees’ stress levels). In education, it could help explain which 

environments and techniques optimize the emotional engagement of students 

(e.g. by evaluating students’ arousal based on student numbers in classrooms). 

In driving, it could help to evaluate stress in drivers (e.g. detecting the stressful 

points in the geometry of a road before its construction). In marketing, it could 

help to optimize the customer experience while shopping (e.g. optimizing store 

layouts to minimize frustration). However, more research is needed to achieve 

models of emotion recognition in VR that might be extrapolated to other 

environments. This opens a new sub-field in affective computing; further 

research is needed to address the current limitations. Future studies should 

analyse new emotion recognition models in other environments, using larger 

datasets of emotional immersive stimuli and higher numbers of participants. 

Moreover, the use of EEG devices with large numbers of electrodes, in 

combination with HMDs, remains an under-analysed topic which needs further 

investigation. The inclusion of other physiological signals, such as EDA and 

fNIRs, needs to be addressed, as do other implicit techniques, such as eye-

tracking, body posture and voice analysis. In addition, the physiological response 

differences between VR and real environments need further analysis to improve 
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the understanding of the validity of immersive VR. Finally, the inclusion of social 

stimuli, such as avatars, is a strong point of immersive VR due to the presence 

levels they provide in comparison to classic methods; future studies also need to 

address the development of emotion recognition models in social contexts.  

In conclusion, emotions play a critical role in our daily lives, so an understanding 

and recognition of emotional responses is crucial for human research. We believe 

that VR will revolutionize emotion elicitation methods in laboratory 

environments. Moreover, its synergy with physiological measurements and 

machine learning techniques will impact transversely in many areas of research, 

opening new opportunities for the scientist community. We hope that the present 

work marks a new step in that direction. 
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