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Abstract 

A suitable tool for the design of intake and exhaust systems of internal combustion engines 
is provided by time-domain non-linear finite volume models. These models, however, are 
affected by overshoots at discontinuities and numerical dispersion unless some flux 
limiter is used. In this paper, the effect of the most relevant of such flux limiters on a non-
linear staggered-mesh finite-volume model is evaluated. Flux-Corrected-Transport (FCT) 
and Total Variation Diminishing (TVD) schemes, together with a Momentum Diffusion 
Term (MDT) are presented for such a model, and the performance of the resulting 
methods is checked in different problems representative of the influence of engine gas 
exchange flows on engine performance and intake and exhaust noise. First, two one-
dimensional cases are considered: the shock-tube problem, and the propagation of a finite 
amplitude pressure pulse. Secondly, a simple but representative three-dimensional 
geometry is studied. From the results obtained, it can be concluded that, even if none of 
the methods is able to handle properly the three problems considered, the FCT method 
provides the best overall performance. 

Keywords: Engine gas exchange, Gas dynamics, Flux limiter 

1. Introduction 

As a consequence of the need of reducing the development time and costs associated with 
the design of intake and exhaust system for reciprocating internal combustion engines, 
engine modelling has become an essential engineering tool. Trial-and-error-based design 
methodologies are still in use, but most of the tests previously performed on prototypes in 
the early design stages have currently been replaced by numerical computations, and only 
the most promising solutions are tested in order to fix the final product. 

Typically, suitable solutions for modelling both engine performance and intake and 
exhaust noise have been provided by one-dimensional time domain gas-dynamic codes 
[1]. The assumption of one-dimensional wave action is legitimate in most of the ducts used 
in engine intake and exhaust systems, at least in passenger car applications, where duct 
diameters are relatively small. However, certain elements, most notably duct junctions 
and intake and exhaust silencers, may exhibit noticeable three-dimensional effects, so that 
a one-dimensional flow representation would be insufficiently accurate unless a very 
rough description of such elements were acceptable in the problem under study. 

In the case of duct junctions [2] it is the occurrence of complex three-dimensional flow 
structures what sets the limits for the applicability of simple zero-dimensional 
                                                           
1 Corresponding author: atorreg@mot.upv.es 
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descriptions [3]. In the case of silencers, the one-dimensional assumption can only be 
applied to very simple geometries [4] but, even in simple cases such as expansion 
chambers and Herschel-Quincke tubes, the results are not in general acceptable for 
frequencies above the cut-on frequency of transversal modes [5]. This represents a serious 
drawback, especially in the case of the intake system, where underhood packaging 
necessities give rise to airbox and silencer geometries with low cut-on frequencies, thus 
impeding a proper assessment even of the low frequency intake noise. 

An obvious way to overcome these limitations is the use of computational fluid dynamics 
(CFD) models; however, the computation time required by their use in a complete intake 
or exhaust system is excessive. An alternative is provided by using a three-dimensional 
model only locally, precisely for those elements exhibiting significant three-dimensional 
effects. This can be achieved by coupling the one-dimensional and three-dimensional 
models [6], although the proper convergence of the coupling procedure may still imply a 
considerable computational cost [7].  

An attractive possibility arises from the use of Galerkin discontinuous finite element 
methods, which have been shown to provide good results when applied to one-
dimensional problems [8], and whose three-dimensional formulation could be used locally 
in a relatively straightforward manner. However, the computation time is much larger 
than that required by conventional finite differences techniques, even when suitable 
simplifications are included [9]. 

Finally, staggered-mesh finite volume models [10] provide a suitable compromise 
between the quality of the solution and the computational cost when addressing the 
prediction of wave dynamics in intake and exhaust systems of internal combustion 
engines and, in particular, of the effects produced by complex elements. These models 
have become standard in commercial codes, either as the core of the whole computation 
[11] [12], or used locally for complex elements exhibiting significant three-dimensional 
features [13].  

It is well known, however, that non-physical oscillations in the flow variables appear when 
those methods are used in their basic form, most notably at points where significant 
pressure gradients are present (as usual in the literature, such points will be referred to 
here as "discontinuities", even if the variations occur over a very small but finite spatial 
distance). In order to avoid such overshoots at discontinuities, different approaches have 
been proposed in the literature. The first solutions reported were based on the inclusion 
in the momentum equation of an additional term, which was an equivalent friction force in 
the first implementation of the method [14] or, in more recent developments, a 
momentum diffusion term [15]. An alternative to this solution, suggested by common 
practice when the flow equations are solved with finite differences schemes, was proposed 
in [16], where a Flux Corrected Transport (FCT) methodology was used that provided 
satisfactory results through the combination of dissipation via damping together with the 
phoenical form of the anti-diffusion term. These two approaches are formally equivalent, 
as any numerical scheme can be reformulated via Taylor-series expansion as a standard 
central finite difference scheme with an additional dissipative source term. 

However, it has long been known [17] that, under some circumstances, FCT methods can 
distort the finite-differences solution and produce large errors in mass conservation. 
Therefore, flux limiters based on the total variation diminishing (TVD) criterion [18] are 
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usually preferred in engine gas exchange applications [19], as they allow avoiding such 
problems and require computational efforts similar to those of the FCT approach [17]. 
TVD methods are still an active research topic (see e.g. [20]) and have been successfully 
applied even to extreme flow conditions, such as the propagation of weak shock waves 
along the exhaust system [21].  

The main objective of this paper is to provide a comprehensive evaluation, both in terms 
of the removal of flow oscillations and of the quality of the frequency domain behaviour of 
the solution, of the effects of using any of these flux limiters, comprising, as a reference 
solution, the inclusion of a momentum diffusion term. The structure of the paper is as 
follows: First, in section 2 the method is described, including the mesh definition and the 
discretization of the equations and the formulation of the TVD method. Then, in section 3 
the different flow limiters and their eventual adaptation to the staggered mesh method is 
discussed. Subsequently, the shock-tube problem is used in section 4 to test the stability 
and convergence of the method. In section 5, results of its application to the propagation of 
a finite amplitude pressure pulse in a duct are shown and discussed by comparison with 
experimental results in both the time and the frequency domains, while in section 6 a 
simple geometry exhibiting three-dimensional wave propagation is considered with 
special emphasis on its frequency domain behaviour. Finally, in section 7 the conclusions 
of the work are summarized. 

 
2. Baseline model 

The selected mesh and the basic equations were described by Torregrosa et al. [16], who 
used a staggered grid consisting of two types of basic elements: volumes and connectors. 
The former contain information about scalar magnitudes such as pressure, density or 
temperature, and of course the cell volume itself. The latter contain information on vector 
quantities (flow velocity or momentum, connector orientation in space), and a scalar 
quantity (the connector area). It is important to emphasize that a connector always 
connects two volumes, whereas a volume may be attached to as many connectors as 
required by the problem considered. In Figure 1, two volumes connected by a connector 
are shown schematically (volumes do not actually have any defined shape, in the same 
way as the connector is simply the flow area between the two volumes). 

 

Figure 1: Basic mesh elements, definition of velocity projections and notation of volumes 
and connectors. 
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The development of the method starts with the well-known 3D Euler conservation 
equations without source terms: 

𝜕𝜌 𝜕𝑡⁄ + ∇ · (𝜌𝐮) = 0 (1) 

𝜕(𝜌𝐮) 𝜕𝑡⁄ + ∇ · (𝜌𝐮𝐮) = −𝛻𝑝 (2) 

𝜕(𝜌𝑒0) 𝜕𝑡⁄ + ∇ · [(𝜌𝑒0 + 𝑝)𝐮] = 0 (3) 

This system of equations is closed with the equation of state of perfect gases. 

However, in the current context, the key issue is where and how those equations are 
solved. The mass equation is solved in the volumes, so that its discretized expression is: 

𝜌𝑛+1 = 𝜌𝑛 +
∆𝑡
𝑉
�𝜌𝑐𝑛𝑢𝑐𝑛𝐴𝑐

𝑁𝑐

𝑐=1

 (4) 

where 𝜌 is the density and 𝑢 is the flow velocity, superscript 𝑛 indicates the time step, ∆𝑡 
represents the time interval, 𝑉 the volume of the cell, 𝑁𝑐  the number of connectors and 
subscript 𝑐 indicates that the variable is taken at the connectors (otherwise the variable is 
taken at the volumes). 

A similar procedure is then used for the equation of energy, whose resulting discretized 
expression is: 

(𝜌𝑒0)𝑛+1 = (𝜌𝑒0)𝑛 +
∆𝑡
𝑉
�𝜌𝑐𝑛𝑒0𝑛𝑢𝑐𝑛𝐴𝑐

𝑁𝑐

𝑐=1

+
∆𝑡
𝑉
�𝑝𝑐𝑛𝑢𝑐𝑛𝐴𝑐

𝑁𝑐

𝑐=1

 (5) 

where 𝑝 is the pressure and 𝑒0 is the specific internal energy, which for a perfect gas is: 

𝑒0 = 𝑐𝑣𝑇 + 𝑢2 2⁄  (6) 

The momentum equation is solved at the connectors, and only in the direction orthogonal 
to the connector surface, by projecting the flow velocity in the connected volumes onto 
that direction, as depicted in Figure 1, where the velocity 𝑢𝑐 in the connector, and the 
projections of the volume flow velocity, 𝑢𝐿𝑛 and 𝑢𝑅𝑛, are shown. Based on this assumption, 
it follows that one can compute the momentum in the connector by solving a one-
dimensional momentum equation, whose discretization along the same lines as in the 
previous cases gives: 

(𝜌𝑐𝑢𝑐𝐴𝑐)𝑛+1 = (𝜌𝑐𝑢𝑐𝐴𝑐)𝑛 + (∆𝑡 ∆𝐿⁄ )[(𝜌𝑢𝑛2 + 𝑝)𝐿 + (𝜌𝑢𝑛2 + 𝑝)𝑅]𝐴𝑐 (7) 

Here, 𝑢𝑛 denotes the velocity projection onto the direction orthogonal to the connector 
surface and subscripts 𝑅 and 𝐿 refer to the volumes at the right and left of the connector, 
respectively. It is worth noticing that, with this simplification, a one-dimensional equation 
for each connector must be solved, instead of three coupled equations for each volume, 
which significantly reduces the computation time. This quantity is then used in the mass 
and energy conservation equations for the next time step. In the case of the energy and 
mass equations, some additional scalar terms from the connectors, such as density or 
pressure, are needed. These values are calculated by an upwind approach, so that they are 
taken from the right or left volumes, depending on the flow direction. 

Finally, the momentum associated with the volumes is calculated by distributing the 
connector momentum between the two adjacent volumes according to their relative sizes. 
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In uniform meshes, half the momentum of the connector is thus assigned to each volume. 
As the orientation of the connectors is also known, the momentum vector of each volume 
is obtained from the vector sum: 

(𝜌𝑐𝐮𝑉)𝑣𝑛+1 =
1
2
�(𝜌𝐮𝑐𝐴𝑐∆𝐿)𝑐𝑛+1
𝑁𝑐

𝑐=1

 (8) 

With the previous prescription, the method turns out to be a second-order accuracy 
method based on an explicit scheme with a staggered grid, as shown in Figure 2. 

 

Figure 2: Scheme of the staggered mesh and the associated time marching. 

 

3. Flux limiters 

As pointed out in section 1, the method described above does not satisfy the stability 
requirement, since nonphysical oscillations may appear, especially in cases where 
pressure gradients are significant. This is a very common situation when simulating flows 
associated with engine gas exchange due to their pulsating nature. Since simulations with 
unsteady mean flow or high amplitude pressure perturbations are one of the main goals of 
the method, a stabilization technique must be developed and applied to avoid spurious 
oscillations. Most of the stabilization methods available in the literature are based on the 
correction of the flux terms present in the equations, and have been developed for finite 
differences schemes, such as the Lax-Wendroff method [22]. In the method used here, the 
solution of the momentum equation in the connectors is used to compute the fluxes 
required for the mass and energy equations in the volumes, whence the stabilization 
method should only be applied to the momentum equation. This fact will be taken into 
account when adapting a stabilization method previously developed for a finite difference 
method scheme.  

In this section, the formulation of the three different flux limiters considered is described. 
In the case of the FCT and the TVD techniques, methods developed for finite difference 
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schemes are adapted so that they can be used in conjunction with the staggered grid finite-
volume method described above. 

3.1 Momentum diffusion term 

The basic concept is adding a diffusion term to the momentum equation so that the mass 
flux computed at the corresponding connector is conveniently limited. With this purpose, 
the momentum flux density tensor used in the momentum equation (2) is modified, in a 
way similar to that used for incorporating viscosity effects, as follows: 

𝜕(𝜌𝐮) 𝜕𝑡⁄ + ∇ · (𝜌𝐮𝐮 + 𝐃) = −∇𝑝 (9) 

where tensor D is assumed to depend linearly on the local momentum gradients, i.e.: 

𝐃 = 𝜖∇(𝜌𝐮) (10) 

Here, the scalar quantity 𝜖 has the dimensions of a kinematic viscosity and can thus be 
interpreted as a momentum diffusion coefficient. With this prescription, the contribution 
of the diffusion term ∇ · 𝐃 will only be relevant if significant gradients exist, and any 
resulting spurious oscillations will be damped. 

Projection of equation (10) onto the direction of a connector and subsequent 
discretization in the same way as for equation (7) gives 

(𝜌𝑐𝑢𝑐𝐴𝑐)𝑛+1 = (𝜌𝑐𝑢𝑐𝐴𝑐)𝑛 + �
∆𝑡
∆𝐿
� �[(𝜌𝑢𝑛2 + 𝑝)𝐿 + (𝜌𝑢𝑛2 + 𝑝)𝑅]𝐴𝑐 + �𝐷�𝐿𝑛 − 𝐷�𝑅𝑛�� (11) 

where 𝐷�𝐿 and 𝐷�𝑅 are the projections onto the connector direction of tensor 𝐃� = 𝜖∇(𝜌𝐮𝐴) 
computed in the two adjacent volumes. Following [15], the momentum diffusion 
coefficient is evaluated by considering the mesh size and the time step in relation with the 
local flow velocity at the volume, as 

ϵ =
|𝐮|
2

(∆𝐿 − |𝐮|∆𝑡) (12) 

and the gradient of mass flow rate ∇(𝜌𝐮𝐴) is computed from the projections of the mass 
flow rates of the adjacent connectors onto each direction. 

3.2 Flux-Corrected-Transport formulation and scheme 

When applied to a finite difference scheme, FCT consists of three stages [23]: a transport 
stage based on the scheme considered, a diffusion stage for reducing the numerical 
dispersion introduced in the transport stage, and an anti-diffusion stage to restore the 
accuracy of the scheme at cells with a smooth solution while preserving the diffusion 
operator accuracy in the vicinity of discontinuities. The diffusion operator is defined as: 

𝐷𝑖(𝑊) = 𝜃�𝑊𝑖+1/2� − 𝜃�𝑊𝑖−1/2� (13) 

with 

𝜃�𝑊𝑖+1/2� = (𝑊𝑖+1 −𝑊𝑖)𝜗 4⁄  (14) 

Here, 𝑊𝑖 is the variable computed at cell 𝑖 in the transport stage, and subscripts 𝑖 ± 1/2 
indicate that the variable is evaluated at the midpoint between cells 𝑖 and 𝑖 ± 1. The factor 
𝜗 is a positive real number taken to be 𝜗 ≥ 1/2 so that instabilities are avoided. According 
to [16] it is preferable to apply diffusion via damping in order to compute the guessed 
value 𝑊�𝑖 of variable 𝑊𝑖, so that: 
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𝑊�𝑖𝑛+1 = 𝑊𝑖
𝑛+1 + 𝐷𝑖(𝑊𝑛) (15) 

For the case of a staggered-mesh finite-volume method, since a connector always connects 
two volumes, the obvious adaptation procedure would be to consider that the FCT cells 
correspond to the connectors, and to use the projection of the variables corresponding to 
the volumes connected by connector 𝑖 at the intermediate steps  𝑖 ± 1/2. Then, the 
momentum equation with diffusion via damping would be as follows: 

(𝜌𝑢𝑐𝐴𝑐��������)𝑖𝑛+1 = (𝜌𝑢𝑐𝐴𝑐)𝑖𝑛+1 + 𝐷𝑖(𝜌𝑢𝑐𝐴𝑐)𝑖𝑛 (16) 

and thus the diffusive term becomes: 

𝐷𝑖(𝜌𝑢𝑐𝐴𝑐)𝑖𝑛 = 𝜃(𝜌𝑢𝑛𝐴𝑐)𝑖+1/2
𝑛 − 𝜃(𝜌𝑢𝑛𝐴𝑐)𝑖−1/2

𝑛  (17) 

where 

𝜃(𝜌𝑢𝑐𝐴𝑐)𝑖+1/2
𝑛 = [(𝜌𝑢𝑛𝐴𝑐)𝑖+1𝑛 − (𝜌𝑢𝑛𝐴𝑐)𝑖𝑛]𝜗/4 (18) 

Finally, the non-linear anti-diffusion operator 𝐴𝑖  is defined as: 

𝐴𝑖(𝑊) = 𝛹�𝑊𝑖−1/2� − 𝛹�𝑊𝑖+1/2� (19) 

Making use of the anti-diffusive limited flow defined in [24] gives: 

𝛹�𝑊𝑖+1/2� = 𝑠max�0, min�(5/8)𝑠 ∆𝑊𝑖−1/2, (1/8)�∆𝑊𝑖+1/2�, (5/8)𝑠 ∆𝑊𝑖+3/2�� (20) 

Here, s = sign�∆𝑊𝑖+1/2�, ∆𝑊𝑖−1/2 = 𝑊𝑖 −𝑊𝑖−1, ∆𝑊𝑖+1/2 = 𝑊𝑖+1 −𝑊𝑖 and ∆𝑊𝑖+3/2 =
𝑊𝑖+2 −𝑊𝑖+1. Then, according to [16], the phoenical form should be used, so that: 

𝑊�𝑖𝑛+1 = 𝑊�𝑖𝑛+1 + 𝐴𝑖(𝑊𝑛+1) (21) 

As they have been defined, flux correction techniques are conservative at the interior 
mesh points, since all the corrections are cancelled out along the duct except at the ends. 
In this last instance, the anti-diffusion operator can be defined by evaluating the 
differences present in each case, i.e.: 

𝛹�𝑊𝑖+1/2� = 𝑠max�0, min�(5/8)𝑠 ∆𝑊𝑖−1/2, (1/8)�∆𝑊𝑖+1/2�, �� (22) 

at the right end, and 

𝛹�𝑊𝑖−1/2� = 𝑠max�0, min�(1/8)�∆𝑊𝑖−1/2� , (5/8)𝑠∆𝑊𝑖+1/2, �� (23) 

at the left end. 

Equations (19) to (23) for the anti-diffusion stage can be adapted to the staggered-mesh 
finite-volume method in a way similar to that used for the diffusion stage. 

3.3 Total-Variation-Diminishing formulation and scheme 

Again, first the formulation of the method for finite differences schemes will be outlined, 
and then its adaptation to a staggered-mesh method will be described. 

Following Harten [18], consider an explicit finite difference scheme in conservation form, 
denoted in operator form as 

𝑤𝑛+1 = 𝐿 · 𝑤𝑛 (24) 

Then, the finite difference scheme is total variation diminishing (TVD) if for all 𝑤 with 
bounded total variation one has 
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𝑇𝑉(𝑤𝑛+1) = 𝑇𝑉(𝐿 · 𝑤𝑛) ≤ 𝑇𝑉(𝑤𝑛) (25) 

where the total variation is defined, for a discrete function 𝑤, as 

 𝑇𝑉(𝑤) = sup�|𝑤𝑖+1 − 𝑤𝑖|
𝑖

 (26) 

Harten [18] proved that TVD schemes are intrinsically free from spurious oscillations. 

Several TVD schemes have been developed for finite difference schemes, most notably by 
Harten [18], Sweby [25] and Davis [26]. A comparison of these methods was performed by 
Arnau [27] on a finite differences scheme, showing that all of them brought in a noticeable 
improvement with respect to the Lax-Wendroff scheme, most notably when the schemes 
proposed by Davis and Harten were used. However, while the Davis TVD flux limiter 
needed only about twice the time than the original Lax-Wendroff scheme, the Harten TVD 
flux correction method increased the computation time by around fifteen times the 
original, due to the computation of the Jacobian matrix. The Davis TVD flux limiter method 
was thus selected for its adaptation to the staggered grid. 

The method proposed by Davis [26] results in the addition of the term 

[�̅�+(𝑟𝑖+) + �̅�−(𝑟𝑖+1− )]∆𝑾𝑖+1/2
𝑛 − [�̅�+(𝑟𝑖−1+ ) + �̅�−(𝑟𝑖−)]∆𝑾𝑖−1/2

𝑛  (27) 

to the second step of either a two-step Lax-Wendroff scheme or of a MacCormack scheme. 
The function �̅�± in equation (27) is defined as 

�̅�±�𝑟𝑖
±� = 𝜉𝐶(𝜈)�1− 𝜓�𝑟𝑖

±�� (28) 

where 𝜉 = 0.5 and 𝐶(𝜈) is a function of the Courant number given by 

𝐶(𝜈) = �𝜈(1 − 𝜈)      𝜈 ≤ 0.5
0.25              𝜈 > 0.5

� (29) 

and finally 

𝑟𝑖+ =
�∆𝑾𝑖−1/2

𝑛 ,∆𝑾𝑖+1/2
𝑛 �

�∆𝑾𝑖+1/2
𝑛 ,∆𝑾𝑖+1/2

𝑛 �
,        𝑟𝑖− =

�∆𝑾𝑖−1/2
𝑛 ,∆𝑾𝑖+1/2

𝑛 �
�∆𝑾𝑖−1/2

𝑛 ,∆𝑾𝑖−1/2
𝑛 �

 (30) 

Here, [ . , . ] denotes the inner product of two vectors, and ∆𝑾𝑖+1/2
𝑛 = 𝑾𝑖+1/2

𝑛 − ∆𝑾𝑖
𝑛. 

Regarding the limiter used in equation (28), Davis proposed the following expression 

𝜓(𝑟) = min(2|𝑟|, 1) (31) 

which admits Courant numbers of up to 0.95. 

As in the two previous cases, the flux limiter should only be added to the momentum 
equation, using the required variables from the neighbour connectors. The momentum in 
the connectors is then modified by adding the term: 

(𝑊� )𝑛+1 = (𝑊)𝑛+1 + [�̅�+(𝑟𝑖+) + �̅�−(𝑟𝑖+1− )]∆𝑊𝑖+1/2
𝑛 − [�̅�+(𝑟𝑖−1+ ) + �̅�−(𝑟𝑖−)]∆𝑊𝑖−1/2

𝑛  (32) 

where 𝑊 = 𝜌𝑐𝑢𝑐𝐴𝑐 is the momentum calculated with equation (7). The rest of the terms 
are calculated as described by Davis in equations (28) to (31), most notably the 𝑟± 
expressions (30), where there is an inner product of two vectors formed by the 
conservative variables: 
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∆𝑾𝑖+1/2
𝑛 = �

∆𝜌𝑐𝑛
∆(𝜌𝑐𝑢𝑐𝐴𝑐)𝑛
∆(𝜌𝑐𝑒0,𝑐)𝑛

� (33) 

Despite the mass and energy equations are evaluated at the volumes, their values for the 
∆𝑾𝑖+1/2

𝑛  vector must be taken from the connectors for consistency, for which again an 
upwind approach will be adopted. 

The only issue when trying to adapt the Davis flux limiter method to a staggered grid is 
related with end-volumes. As seen in equation (30), conservative variables of neighbour 
connectors from both sides are needed to compute the flux limiter in each connector. 
Furthermore, equation (27) uses the terms 𝑟𝑖+1−  and 𝑟𝑖−1+ , which are computed from the 
conservative variables of two neighbour connectors on each side. This is not a serious 
problem in a one-dimensional model, since only two cells of each side of the modelled duct 
will be affected, and the problem can be solved by assuming that the values of the 
variables corresponding to the non-existent neighbour cells are the same as those of the 
end-cell. This approximation has been used in one-dimensional models with good results. 
However, when modelling a more complex geometry with a three-dimensional mesh, 
many end-volumes may appear and the effect of the simplifications adopted can be much 
more significant. 

In the method developed, the solution adopted was using the value of the conservative 
variables of the end connector, but inverting the sign of the momentum so that the 
resultant momentum at the wall is zero. This approximation has given good results when 
applied to meshes with a sufficiently large number of cells in each direction, although the 
solution tends to be more diffusive. 

 
4. Application to the shock-tube problem 

As a first validation of the method capabilities, it is commonplace to consider the shock-
tube problem [28]. In this problem, two gases with different thermo- and fluid-dynamic 
states are put into contact. In Figure 3(a) an outline of the initial state of the problem is 
shown. As time progresses, the contact discontinuity travels with the flow velocity, 
whereas a shock wave propagates in the same direction at a velocity corresponding to the 
addition of the speed of sound and the flow velocity, and a rarefaction wave whose 
propagation velocity is the speed of sound minus the flow velocity travels in the opposite 
direction. These perturbations define four zones with different thermo- and fluid-dynamic 
states, as shown in Figure 3(b). Since all kinds of possible propagating perturbations 
(contact discontinuity, and shock and rarefaction waves) are present and easy to identify 
in the solution, this problem is often used in the literature. 
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Figure 3: Initial state of the shock-tube problem (a) and scheme of the solution structure 
after a certain time (b). 

 

It is worth mentioning that, as in any other method of this nature, the CFL condition needs 
to be satisfied. This condition, obtained by Courant, Friedrichs and Lewy [29] in the 
context of the demonstration of the existence of a solution to certain partial differential 
equations (PDE), establishes that, for any numerical method, the domain of dependence of 
the method should include the domain of dependence of the PDE, at least in the limit when 
the mesh size ∆𝑥 and the time step ∆𝑡 tend to 0. This condition is usually expressed in 
term of the Courant number 𝜈 as: 

𝜈 = 𝜆∆𝑡 ∆𝑥⁄ < 1 (34) 

where 𝜆 is the propagation speed of the signal, which typically corresponds to the addition 
of the speed of sound and the flow velocity. In the case of the staggered-mesh finite 
volume model presented, the CFL condition can be expressed as: 

𝜈 = 𝜆∆𝑡𝐴𝑐 𝑉⁄ < 1 (35) 

After securing the CFL condition, the staggered-mesh finite-volume method was applied to 
the shock-tube problem. The initial conditions chosen were: 𝑝1 = 3.5 bar, 𝑝4 = 0.5 bar, 
𝑇1 = 2800 K, 𝑇4 = 300 K, and 𝑢1 = 𝑢4 = 0 ms-1. A 1D mesh was used, with 250 volumes 4 
mm long.  

In Fig. 4 comparison is given between the analytical solution provided in [28] and the 
results obtained with the raw method without any flux limiter and with those obtained by 
including the momentum diffusion term. A noticeable overshooting associated with the 
propagation of the shock wave can be clearly seen in the basic solution, whereas it can be 
observed that those overshoots have been successfully removed by the inclusion of the 
momentum diffusion term. This appears to be the only point in which, as expected, this 
procedure produces significant changes in the solution, as the other features worth 
noticing are present in the two solutions shown: the smoothing effect on the trailing side 
of the leftwards-moving rarefaction wave, which is specially clear in the pressure and 
velocity plots, and a certain deviation from the analytical solution around x = 0.65 m in the 
pressure and velocity plots. Such deviation, that appears as an overestimation of the 
pressure value and an underestimation of the velocity magnitude, occurs precisely at the 
position of the contact discontinuity in the analytical solution for density and temperature 
(the deviations observed in the density and the temperature will be commented later). 

Rarefaction
wave

Contact

(a)
p

T

p

T
(b)
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Figure 4: Comparison of solutions of the shock-tube problem: analytical, obtained with the 
original (raw) method and with the momentum diffusion term (MDT). 

 

In Fig. 5, the same representation is given for the results obtained with the FCT method 
proposed in [16] and the TVD scheme presented here. Again it can be observed that any 
overshoots have been suitably removed by the FCT method and, to a lesser extent, by the 
inclusion of the additional TVD terms, and that in both cases the smoothing effect on the 
trailing side of the leftwards-moving rarefaction wave is apparent.  

 

Figure 5: Comparison of solutions of the shock-tube problem: analytical, obtained with the 
TVD method and the FCT method. 
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Regarding the deviation noticed above at the theoretical position of the contact 
discontinuity, it can be observed that, regardless of the correction method used, the 
contact discontinuity spreads in space, and thus the methods are introducing some 
diffusion at this point due to the procedure used for the solution of the mass and energy 
equations. When this information is fed back to the momentum equation the deviations 
observed in pressure and velocity are produced, as the flat profiles observed in the 
analytical solution are only compatible with a real discontinuity. Additionally, it can be 
observed that a small perturbation appears in the TVD solution for pressure and velocity 
that might indicate that, even if the density and the temperature seem to be correctly 
computed, the effect of the spread contact discontinuity on the momentum equation has 
not been properly handled. 

While the spreading of the contact discontinuity could be considered as a serious 
shortcoming for the description of actual shock waves, this will not in general be the case 
in practical engine applications, as actual discontinuities occurring in those flow situations 
are much less abrupt. Additionally, one should expect that this issue should be strongly 
dependent on the discretization used, and this is confirmed by Fig. 6, where density and 
pressure results obtained by using 250, 500 and 1000 volumes with the three correction 
methods considered are shown. As expected, the results for both magnitudes are closer to 
the analytical solution as the number of volumes increases. It is also worth mentioning 
that the perturbation observed in the pressure obtained with the TVD method is reduced, 
even if it has not totally disappeared, while the rest of the methods exhibit a smooth 
behaviour that even improves when increasing the number of volumes. 

 

Figure 6: Effect of the discretization used on the description of the contact discontinuity 
for the three flux limiters considered: (a) MDT, (b) FCT, (c) TVD. 



13 
 

Published version: http://dx.doi.org/10.1016/j.ijmecsci.2017.09.029 

In order to quantify the previous considerations, the 𝐿2 and 𝐿∞ norms of the deviation of 
all the variables corresponding to the cases represented in Fig. 6 were computed. These 
norms are defined as 

𝐿2 = ��𝑥𝑖2
𝑁𝑣

𝑖=1

�

1 2⁄

  (36) 

𝐿∞ =  max (|𝑥𝑖|) (37) 

where 𝑥𝑖 is the deviation between the analytical solution and the model prediction in each 
volume or connector, depending on the variable to which it is applied. These two norms 
were chosen because the 𝐿2 norm provides a mean global assessment of the deviation 
obtained, which is complemented by the local view provided by the 𝐿∞ norm. 

The results are shown in Table 1 where, in order to make the results comparable, the 𝐿2 
norm was divided by the number of volumes 𝑁𝑣  used in each case. Consistently with the 
results shown in Fig. 6, the results for 𝐿2 improve when increasing 𝑁𝑣  for the three 
methods. This is not the case, however, for 𝐿∞, with a rather erratic behaviour and 
tendencies that change with the magnitude and the method considered. Therefore, 
increasing 𝑁𝑣  produces an overall improvement in the solution, but significant local 
differences may still occur. 

Considering now the comparison between the three methods, it can be observed that, for a 
sufficiently high number of volumes (𝑁𝑣 = 1000), the performance of the three methods is 
comparable, except in the case of the velocity, in which the momentum diffusion term 
provides significantly lower values for both norms. In the intermediate case of 𝑁𝑣 = 500 
the results are again comparable both in terms of 𝐿2 and 𝐿∞, as none of the methods 
provides the lowest value for all the magnitudes: the best result for pressure is given by 
the FCT technique whereas the best result for velocity is that obtained with the MDT 
method, but all of them within the same order of magnitude. This situation is somehow 
reversed in the case 𝑁𝑣 = 250, for which the best result for pressure is given by the MDT 
technique whereas the best result for velocity is that obtained with the FCT method. 

 
𝑵𝒗 

 
250 500 1000 

  FCT TVD MDT FCT TVD MDT FCT TVD MDT 

𝑳𝟐/𝑵𝒗 

𝑢 0.9949 1.6172 1.502 0.4839 0.50147 0.4399 0.3151 0.3038 0.267 

𝜌 0.0043 0.0042 0.00415 0.0022 0.00227 0.0023 0.0014 0.0014 0.0014 

𝑝 0.0038 0.0026 0.0023 0.0007 0.0008 0.00093 0.0007 0.0006 0.0005 

𝑇 21.499 21.698 21.823 14.621 14.651 14.719 9.8141 9.845 9.88 

𝑳∞ 

𝑢 220.49 363.01 342.85 223.56 231.27 196.51 236.59 213.26 181.22 

𝜌 0.4218 0.4092 0.4158 0.4056 0.4146 0.416 0.4131 0.4217 0.424 

𝑝 0.8965 0.5422 0.4322 0.1408 0.1922 0.3097 0.6596 0.4812 0.364 

𝑇 1566.1 1573.2 1581.1 1588.4 1578.9 1590.3 1601.1 1600.9 1606.7 

 
Table 1: Comparison of the 𝐿2 and 𝐿∞ norms of the deviation between the analytical shock-
tube solution and the different correction methods used. 
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5. Experimental assessment 

While the shock-tube problem provides a comprehensive view of the performance of the 
different schemes in terms of the spatial distribution (or, equivalently, of the time 
evolution at a given point) of the resulting flow perturbations, it is not well suited for 
studying the behaviour of the methods in the frequency domain. This results from the fact 
that, for a given location, the phenomenon studied takes places in a very short time 
interval (less than 1 ms), so that accounting for the details of the different solutions 
implies a very poor frequency discretization and, consequently, an insufficient amount of 
information in the frequency range of interest for engine gas exchange studies. 

Therefore, a different approach was chosen in order to study the frequency domain 
behaviour of the different schemes. This consisted in the consideration of the propagation 
in a straight duct of a finite amplitude pressure pulse whose characteristics (amplitude 
and duration) were chosen so as to guarantee a sufficient frequency resolution in the 
frequency range of interest as well as a sufficient excitation level at all the relevant 
frequencies, i.e. a substantially flat spectrum [30]. The experimental setup is shown in Fig. 
7 together with an approximate representation of the pulse propagation in the (x,t) plane.  

 

Figure 7: Experimental set-up and representation of pressure pulse propagation. 
 
The pulse was generated through the controlled discharge from a high-pressure tank into 
the duct, making use of a fast-operation electrovalve [31]. Then, the resulting pulse was 
recorded 15 m downstream of the valve (transducer 1 in Fig. 7), at a second station 10 m 
downstream of the first one (transducer 3) and at a third station 10 m downstream of the 
second one and separated 15 m from the downstream open end (transducer 3). In this 
way, proper development of the pulse into a weakly nonlinear perturbation is allowed, 
and it is possible to avoid any overlap with the pulse reflected by the open end, as 
indicated in Fig. 7. The pulse recorded by transducer 1 and its frequency spectrum are 
shown in Fig. 8, where it can be observed that actually the pulse at this position is not yet 
fully developed, as indicated by the features present in the spectrum. 

The time domain pressure record was introduced as a boundary condition to the different 
methods considered. As this is an essentially forward-moving perturbation, it is well 
suited for a representation in terms of the Riemann variables of the method of 
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characteristics, and thus the boundary condition was formulated accordingly, along the 
lines indicated in [32]. 

 

Figure 8: Pressure pulse recorded at first measurement station, and later used as 
boundary condition for the computations: (a) time domain, (b) frequency domain. 

The results obtained at the two other measurement stations are shown in Fig. 9 for the 
different flux limiters considered (the results of the raw method exhibited very large 
oscillations and have been omitted for clarity). It is apparent in the time domain 
representation of Fig 9(a) that any overshoots associated with the original method appear 
to be substantially removed by the three methods, except in the vicinity of the rising ramp 
of the pulse. In this case, only the TVD method is able to damp the pressure oscillations 
and produce a result closer to the measurement. Apart from this, all the methods 
reproduce the overall shape of the pulse, except in the decay zone, where differences 
between the different methods are negligible, but none of them accounts for the gradual 
decay observed in the measurement. 

 

Figure 9: Pressure pulse as recorded at the second (a) and third (b) measurement stations, 
and results produced by the different methods. 

 

In the frequency domain representation given in Fig. 9(a), one may first notice that the 
experimental pulse is now properly developed, as a relatively smooth and almost flat 
spectrum is observed for frequencies above 200 Hz. Secondly, it is apparent that all the 
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methods reproduce quite faithfully the experimental behaviour for frequencies below 500 
Hz.  

For frequencies above 500 Hz the results are more erratic, but in general the FCT and MDT 
methods predict a sound pressure level higher than that predicted by the TVD method. It 
is likely that this behaviour is related with the non-physical oscillations retained by those 
methods. This would also be confirmed by the fact that this tendency is especially clear at 
the highest frequencies represented. In any case, it appears that none of the methods 
produces any severe suppression of the medium-to-high frequency content of the signal, 
contrary to the results shown in [33], which seem to point out that all nonlinear schemes 
should suffer from large dissipation in combination with the generation of spurious 
oscillations throughout the entire wavenumber spectrum.  

When considering the results obtained at the position of transducer 3, shown in Fig 9(b), 
all these effects are even more noticeable. As a result of the additional propagation, the 
residual oscillations previously shown by the MDT and FCT methods in the vicinity of the 
pulse ramp have grown dramatically, especially in the case of the FCT method, whereas 
the TVD results still follow quite closely the measured pressure trace. In the frequency 
domain a certain degradation of the quality of the results can be observed below 500 Hz 
for the three methods, and the agreement is somehow better than for transducer 2 
between 500 and 750 Hz. However, the main differences are found for frequencies above 
800 Hz: it is here where the effect of the spurious oscillations in the MDT and FCT methods 
becomes apparent, with an almost linear increase of the sound pressure level with 
frequency that produces a significant deviation with respect to the measured spectrum. At 
the same time, the TVD method produces a very good approach to the measurements in 
these high frequencies. Even if such long propagation distances do not occur in engine 
exhaust systems, these results point to a certain superiority of the TVD method from a 
frequency-domain point of view. 

 

6. Application to a simple geometry 

Once the performance of the different methods was assessed in detail in one-dimensional 
cases as the shock-tube and the pulse propagation problems, the three-dimensional 
version of the method was applied to a simple but representative geometry, whose 
acoustic response cannot be properly accounted for by means of any one-dimensional 
model. 

The geometry considered is shown in Fig. 10: it is a rectangular expansion chamber, with 
dimensions 129×258×344 mm3, meshed into cubes with 43 mm of side (for clarity, these 
are represented as spheres). The location of the inlet and outlet ducts was chosen so that a 
significant number of higher order modes should be excited. The transmission loss was 
obtained by simulating the improved impulse method proposed in [31], in which the 
chamber is excited by a pressure pulse similar to those shown in Fig. 9(a). In this way, 
there is significant content at all the relevant frequencies, and the transmission properties 
are directly obtained from the pulse transmitted by the chamber (as in section 5, the 
length of the duct downstream of the chamber is chosen so as to avoid any overlaps with 
the pulse reflected at the open end). 
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Figure 10: Geometry considered and mesh used. 

The results are shown in Fig. 11, both for the transmitted pulses in the time domain and 
the resulting transmission loss in the frequency domain. In this last case, the transmission 
loss computed with the linear frequency-domain counterpart of the present method, 
which was described and validated in reference [34], is also included as a reference.  

 

 

Figure 11: Pressure pulse transmitted by the chamber, and corresponding transmission 
loss, produced by the different flux limiters. 

 

In the time domain representation, it can be observed that the results of the original 
method are severely affected by spurious oscillations that extend along the whole decay of 
the pulse. In all the other cases, such oscillations have been substantially removed. 
However, there are significant differences between the behaviour observed for the MDT 
and FCT methods, on one side, and for the TVD method on the other side. In the first case, 
some remaining oscillations persist, which are likely to be related with the actual wave 
dynamics inside the chamber, as multiple internal reflections occur, whereas in the case of 
the TVD method it appears that all the oscillations, both non-physical and possibly 
physical, have been suppressed, and thus some essential dynamics of the system may have 
been lost. 
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This is confirmed by the transmission loss plots shown in Fig. 11, where it can be observed 
that the results obtained with the TVD method depart significantly from the behaviour 
predicted by the linear model, which is fully consistent with the geometry of the chamber 
and the position of the inlet and outlet ducts, whereas all the essential features present in 
the linear transmission loss have been reproduced by all the other methods, included the 
raw method without any flux limiter. In particular, the pass-bands observed are precisely 
related with the period of the oscillations retained by the FCT and the MDT methods, and 
obviously also present in the results of the original method, even if masked by the high-
frequency non-physical oscillations, whose associated frequency is above the frequency 
range represented. 

However, it is obvious from Fig. 11 that those non-physical oscillations have contaminated 
to some extent also the mid frequencies. This is particularly clear in the vicinity of the first 
three pass-bands, where instead of a zero value the original method predicts a negative 
transmission loss, i.e. some numerical noise is produced inside the chamber. At 
frequencies far from the pass-bands this may not be apparent, except for the fact that the 
original method gives everywhere, except at the resonant spikes, attenuation values lower 
than those corresponding to the linear solution, and thus this effect becomes visible only 
at the pass-bands themselves. This issue is also present in the results obtained with the 
MDT method, which might indicate that the expression of the momentum diffusion 
coefficient given by equation (12) is not the most convenient one for these particular flow 
conditions. 

The results of the FCT method give a fair reproduction of the linear solution, without any 
negative values but with some clearly dissipative effects in some of the pass-bands and in 
the narrow-band resonant spikes, which are partially suppressed. Such dissipation is 
partly due to the use of the FCT technique, but it is also the expected behaviour when a 
pulse of relatively high amplitude (approximately 50 mbar in this case) is used as the 
excitation [31]. It can also be observed that the solution obtained starts to deviate 
quantitatively from the linear solution for frequencies above 1000 Hz, which is consistent 
with the size of the mesh used. 

The rather strange behaviour exhibited by the TVD results will now be examined in some 
detail, as the results obtained in section 5 suggested that the frequency-domain 
performance of this method compared favourably to the other ones in a one-dimensional 
case. The bad results obtained in the three dimensional case indicate that, as pointed out 
in section 3, the problem may lie in the treatment of end-volumes. While the solution 
adopted may give fair results when a mesh with a sufficiently large number of cells in each 
direction is used, this may not be the case for the relatively modest mesh used here. 
However, instead of increasing the number of volumes, what would penalize significantly 
the computational cost, a modification of the method aiming to reduce the effect observed 
was attempted. 

The modification introduced consisted in changing the value of parameter 𝜉 in equation 
(28), whose suggested value is 0.5. As this choice has a direct impact on the results of the 
method through equation (27), the effect of considering smaller 𝜉 values was studied. Such 
a change should reduce the influence of the additional TVD terms and consequently the 
effects of the ad hoc assumption at the end-volumes. 
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The results obtained are shown in Fig. 12, again for both the transmitted pulses and the 
resulting transmission loss. It is apparent in the time domain representation that when 
reducing the value of 𝜉 the physically meaningful oscillations associated with the internal 
wave dynamics of the chamber are recovered. This indicates that the original value might 
have been optimal for a one-dimensional case, but too diffusive for this application. This is 
confirmed by the transmission loss results, in which it can be observed that the TVD 
predictions are closer to the linear solution the lower is the value of 𝜉 used. In fact, for 
𝜉 = 0.05 the agreement with the linear solution is very good for frequencies below 1 kHz, 
the results being even better than those produced by the FCT method and shown in Fig. 
11. For frequencies above 1 kHz, the results are almost indistinguishable from those 
obtained with the FCT or the MDT methods. It is likely that lower 𝜉 values would lead to 
negative transmission losses as those produced by the original and the MDT methods. 

 

Figure 12: Effect of parameter 𝜉 in equation (28) on the pressure pulse transmitted by the 
chamber and the corresponding transmission loss obtained with the TVD method. 

 

In any case, this analysis would not be complete if the influence of such a change in 𝜉 were 
not evaluated in the one-dimensional cases previously considered. The influence on the 
results of the shock tube problem can be observed in Fig. 13, where an expanded view of 
the most relevant part of the pressure and velocity results is shown. For clarity, only the 
two extreme values of 𝜉 have been considered. 

 

Figure 13: Effect of parameter 𝜉 in equation (28) on the pressure and velocity results of 
the shock-tube problem: detail at the contact discontinuity and the shock front. 

 
It is clear that lowering the value of 𝜉 eliminates the spurious fluctuations previously 
noticed in the vicinity of the contact discontinuity, so that the results are now comparable 
to those obtained from the MDT and the FCT methods. However, this is achieved at the 
cost of a clearly insufficient removal of the spurious oscillations occurring at the shock 
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wave front. Therefore, the use of such a small value for 𝜉 is not advisable in this particular 
problem. 

The influence of 𝜉 on the TVD results for the pulse propagation problem can be checked in 
Fig. 14, where the pulses recorded after propagation along 20 m and their corresponding 
spectra are shown. It is apparent that the advantages previously exhibited by the TVD 
method regarding the absence of spurious oscillations and the good reproduction of the 
signal frequency content have been lost, the results being very similar to those provided 
by the MDT or the FCT methods. 

 

Figure 14: Effect of parameter 𝜉 in equation (28) on the pressure pulse as recorded at the 
third measurement station. 

 

It appears thus that this new formulation of the TVD method is especially well suited for 
the analysis of the acoustics of cavities, but in any other of the conditions considered here 
its performance is clearly worse than that of the MDT and FCT methods. 

 

7. Summary and conclusions 

Staggered-mesh finite-volume models making use of a non-linear second order time and 
space discretization are affected by the occurrence of unphysical overshoots in the vicinity 
of discontinuities in the flow variables. In order to remove those overshoots, and as an 
alternative to the inclusion in the momentum equation of an equivalent friction force or a 
momentum diffusion term, two flux limiters commonly used in finite differences schemes 
have been considered: a Flux Corrected Transport (FCT) technique and a Total Variation 
Diminishing (TVD) method. In previous work by the authors [16], it was found that an FCT 
method with dissipation via damping together with the phoenical form of the anti-
diffusion term produced the best results when adapted to the staggered-mesh finite-
volume model. In the case of the TVD methods, different formulations have been analyzed, 
and finally the Davis method was chosen for its adaptation in view of its relatively modest 
computational cost and its acceptable performance. Additionally, a momentum diffusion 
term (MDT) as described by Montenegro et al. [15] has been considered as a reference for 
evaluation purposes. 

The resulting methods were first checked in the case of the well-known shock-tube 
problem. In this case, all the methods were comparably successful in removing the 
overshoots associated with the propagation of the shock wave. Additionally, they all 
exhibited a certain smoothing of the trailing side of the leftwards-moving rarefaction 
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wave, and a considerable spreading of the contact discontinuity that in turn produces an 
overestimation of the pressure and an underestimation of the velocity at that point. In the 
case if the TVD method, these deviations were accompanied by spurious fluctuations, that 
did not get to disappear completely even when the mesh was improved in order to provide 
a better description of the contact discontinuity. Such fluctuations in the TVD solution 
were only removed when, at a later stage, the value of the 𝜉 parameter in equation (28) 
was reduced, but then the ability of the method to suppress the oscillations occurring at 
the shock wave front was severely penalized. 

Secondly, in order to analyze the relative merits of the different schemes when describing 
the frequency domain behaviour of unsteady flows, they were applied to the simple but 
relevant case of a finite-amplitude pressure pulse propagating in a uniform duct, and the 
results obtained were compared with experimental measurements. In this case, it was the 
TVD method the one to provide the best approximation to the experimental results, both 
in the time and the frequency domains. In fact, none of the other methods considered is 
able to control the amplification over long distances of the unphysical oscillations 
produced following the rising ramp of the pulse, which could give rise to serious stability 
problems when interacting with any downstream boundary condition. Additionally, those 
oscillations lead to an excessively high content in the high frequencies. It was later 
checked that this applies also to the TVD scheme when value of the 𝜉 parameter is 
reduced. 

Finally, the method was applied to a simple but representative geometry in which three-
dimensional features appear at relatively low frequencies. Initially, all the methods except 
the TVD were able to reproduce qualitatively the main features of the expected behaviour 
(characterized by the linear solution), but among the others only the FCT method was able 
to produce consistent transmission loss results without any negative value, i.e. without 
numerical noise generation inside the chamber. This might suggest that further analyses of 
the momentum diffusion coefficient used could produce an improvement in the results of 
the MDT method. 

In the case of the TVD method, the initial results indicated a clear excess in dissipation that 
was attributed to the treatment of the end volumes, as this is the main issue in its 
implementation on a three-dimensional case. The consequent reduction of the value of the 
𝜉 parameter produced a dramatic improvement in the results, which compare favourably 
with those obtained with any of the other methods. However, this modified formulation 
does not produce acceptable results in the one-dimensional problems studied, as 
commented above.  

Therefore, it has not been possible to identify a single method that behaves properly in all 
the situations considered, with the possible exception of the FCT method. It is likely, 
however, that further work on the expression of the momentum diffusion coefficient might 
lead to acceptable results in all the cases also with the MDT method. The new formulation 
of the TVD method would be the solution of choice for cavity acoustics, but its use is not 
advisable in any other conditions. 
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