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Improving fruit quality has become a major goal in plant breeding. Direct approaches to

tackling fruit quality traits specifically linked to consumer preferences and environmental

friendliness, such as improved flavor, nutraceutical compounds, and sustainability,

have slowly been added to a breeder priority list that already includes traits like

productivity, efficiency, and, especially, pest and disease control. Breeders already use

molecular genetic tools to improve fruit quality although most advances have been

made in producer and industrial quality standards. Furthermore, progress has largely

been limited to simple agronomic traits easy-to-observe, whereas the vast majority

of quality attributes, specifically those relating to flavor and nutrition, are complex

and have mostly been neglected. Fortunately, wild germplasm, which is used for

resistance against/tolerance of environmental stresses (including pathogens), is still

available and harbors significant genetic variation for taste and health-promoting traits.

Similarly, heirloom/traditional varieties could be used to identify which genes contribute

to flavor and health quality and, at the same time, serve as a good source of the

best alleles for organoleptic quality improvement. Grape (Vitis vinifera L.) and tomato

(Solanum lycopersicum L.) produce fleshy, berry-type fruits, among the most consumed

in the world. Both have undergone important domestication and selection processes,

that have dramatically reduced their genetic variability, and strongly standardized fruit

traits. Moreover, more and more consumers are asking for sustainable production,

incompatible with the wide range of chemical inputs. In the present paper, we review

the genetic resources available to tomato/grape breeders, and the recent technological

progresses that facilitate the identification of genes/alleles of interest within the natural

or generated variability gene pool. These technologies include omics, high-throughput

phenotyping/phenomics, and biotech approaches. Our review also covers a range

of technologies used to transfer to tomato and grape those alleles considered of

interest for fruit quality. These include traditional breeding, TILLING (Targeting Induced
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Local Lesions in Genomes), genetic engineering, or NPBT (New Plant Breeding

Technologies). Altogether, the combined exploitation of genetic variability and innovative

biotechnological tools may facilitate breeders to improve fruit quality tacking more into

account the consumer standards and the needs to move forward into more sustainable

farming practices.

Keywords: fruit quality, germplasm, grape, omics, new plant breeding techniques, tomato, QTLs

INTRODUCTION

Since the dawn of agriculture in Neolithic communities some
12,000–10,000 years ago, the selection of plants exhibiting
the most desirable traits has never ceased. This, so-called,
domestication process appears to have been instrumental in our
ancestors’ transition from a hunter-gatherer to an agricultural
lifestyle (Gepts, 2014), and was characterized by the low number
of plant species to succeed as widely-grown crops in modern
societies. Initially an intuitive process, selection was made on
a few easy-to-observe desirable traits (e.g., fruit size, shape and
color, or seed quality; Chalhoub et al., 2014; Vogel, 2014). As in
species reduction, only a few genes exercising large phenotypic
effects within this limited number of species were selected (Tang
et al., 2010).

In fruit crops, initial selection was probably based on
nutritious, non-toxic, and palatable features. Hedonic and
culinary qualities, including flavor, succulence, juiciness, and
other consumer-desirable characteristics were added later
(Table 1). However, since the 1930s breeders, including tomato
breeders, have centered their efforts on productivity and have
basically neglected fruit quality, including traits of interest to
consumers (e.g., flavor or nutritious). This can be explained
in many ways: one is the fact that it is difficult to breed for
complex multigene traits such as flavor; another is our lack of
understanding of the molecular genetic basis of fruit quality

TABLE 1 | Quality standards according to the different stakeholders in the

Agri-Food chain.

Standards Quality traits

Producer Resistant against biotic and abiotic stresses.

High yield (size...).

Easy to harvest and handle.

Synchronization of flowering or flowering time.

Market Shelf-life.

Less prone to handling and shipping damages.

Biochemical products (soluble solid concentration for processing

tomatoes, resveratrol for grapes).

Consumer Flavor/succulent/juicy.

Crispness/chewiness/oiliness.

Appearance/color.

Healthy/sustainably produce.

Nutritious.

Environmental Reduction of synthetic fertilizers and pesticides.

(Klee, 2010; Lim et al., 2014). Together with changes in consumer
habits, this has led to lower fruit quality and loss of flavor, which
indirectly have a negative impact on fruit consumption (Klee,
2010; Orzaez et al., 2010). Hence, scientists and breeders are faced
with a real challenge to improve grapes and tomatoes so that
they meet the needs both of producers, i.e., productivity, and
consumers, i.e., taste and healthiness (Handa et al., 2014). The
relevance of this goal lies in the importance of nutrition (i.e.,
vitamins, antioxidants, and minerals) to remedy physiological
disorders and reduce the incidence of human diseases (Klee,
2010). Today, regarding what quality parameters are crucial to
improve, yield, and sustainability are the first, because of their
role to ensure food security and healthiness. So, we need to
maintain the yield per hectare, reducing fertilizers, and pesticides
and increasing resilience to biotic and abiotic stresses in a
global climate change scenario. The next objective should be
increasing nutritional content, especially for crops that will be
cultivated in poor areas. Enable crop diversification in poor
areas could be a solution. Moreover, depending on the crop,
different nutritional contents will be easier to increase. In the
case of tomato, carotenoid related compounds are a clear target.
For grapes, polyphenols are the main topic of studies. Finally,
consumer preferences and taste should be taking into account.

Grape (Vitis vinifera L.) and tomato (Solanum lycopersicum L.)
are the focus of the present review. Both produce fleshy, berry-
type fruit, and have undergone important domestication and
selection processes that have dramatically reduced their genetic
variability. Tomato and grapevine have been selected to satisfy
the quality standards required by humans. This has entailed
a preference for varieties that were more productive, gave
larger fruits or displayed defined organoleptic characteristics.
In grapevine, despite the thousands of cultivars available, the
market is dominated by a few and these are classified as a
function of the final product: table grapes or raisins, or their
use in winemaking (This et al., 2006). In tomato, there has also
been a progressive/dramatic reduction in variability during the
domestication process in the original centers of diversification
and, later, when introduced into Europe, and then reintroduced
into North America (Blanca et al., 2015). Initially, selection was
performed by farmers; later, breeders and researchers became
involved. Ultimately, this has led to the development of tomato
cultivars yielding fruits of the shape, color, and size of choice. For
a long time, tomatoes have been used both as a fresh product and
as a processed commodity in soups, juices, sauce, pastes, powders,
or concentrates, all of which require different characteristics
(Bai and Lindhout, 2007; Bergougnoux, 2014). While grape and
tomato share a past history of reduced variability, important
differences exist: loss of flavor has more dramatically affected
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tomato, in part, due tomore active breeding for productivity than
in grapevine. Knowledge of the molecular genetic basis of fruit
quality traits and of environmental impact on these traits will
facilitate the maintenance of and/or an increase in production
while enabling us to improve or change flavor at will.

Despite the biotechnological advances of recent decades,
breeding programs often fail when dealing with complex quality
traits (Handa et al., 2014). Progress in biotechnology and omics
technologies applied to the variability available are likely to
help us decode the underlying genetic basis of complex traits.
Best alleles could subsequently be transferred into cultivars by
crossing, genetic engineering, or NPBT (New Plant Breeding
Technologies), to improve the quality of tomato or grape fruit.
The present review is based on four fundamental approaches
to increase fruit quality: (i) to enhance/maintain germplasm
diversity as the source for best alleles; (ii) to understand the
biochemical and genetic basis of fruit quality traits using this
genomic and phenotypic diversity; (iii) to develop and use tools
to dissect fruit quality traits, including improved computational
technologies and network analysis; and (iv) to conduct functional
studies of cultivar improvement. In conclusion, we will present
an up-to-date view of the genetic resources and technologies that
can improve fruit quality.

THE CONTRIBUTIONS OF
BIOTECHNOLOGICAL TOOLS TO LINK
GENOMIC VARIABILITY PRESENT IN
IN-SITU AND EX-SITU GERMPLASM
COLLECTIONS WITH THE DERIVED
PHENOTYPIC DIVERSITY

Germplasm Diversity
Sources of germplasm, here defined as the collection of genes and
their alleles available for plant improvement, include cultivated
species and sexually-compatible wild species but could also
include sexually-incompatible species harboring genes that can
impact on fruit quality and be transferred through genetic
engineering. Only a minimal part of the wide variability present
in wild germplasm was domesticated and resulted in selective
gain of phenotypical or physiological traits of interest for
humans. Similarly, the domestication process also resulted in a
loss of genes that were left behind in non-selected wild relatives,
but were needed to improve crop adaptation to environmental
changes. Modern plant breeding programs are based on a
process of human selection which differs dramatically from that
of natural evolution: selective pressure is no longer defined
primarily by a multifactorial changing environment but by
narrow human standards that focus on a few traits. Hence, even
if the number and nature of genes under selection may vary
across the different domesticated species, phenotypic, and genetic
diversity are more heavily reduced in “domesticated” germplasm
than in their wild relatives. These so-called bottlenecks occurred
during domestication and cultivar development, and have
recently been confirmed by sequencing (Tang et al., 2010;
Abbo et al., 2014; Amini et al., 2014; Andersen et al., 2015).
This reduction in genetic variability is particularly evident in

cultivated grapevine, in part, as a consequence of its vegetative
propagation (Roby et al., 2014), but it also occurs in tomato.
On the whole, as the (agronomical) traits selected by humans
differed from those oriented toward optimal adaptation to the
natural environment, a clear dichotomy arose between crops
and their wild progenitors (Gepts, 2014). This particular genetic
bottleneck, known as genetic erosion, could compromise modern
cultivars as they may be unable to cope with global warming or
newly emerging diseases (Prada, 2009; Chen et al., 2013; Bai et al.,
2016). For instance, the wild North American grapevine species
Muscadinia rotundifolia is known to be resistant to both powdery
and downy mildew (Feechan et al., 2013). This resistance was
mapped to a single locus that contains a family of seven
TIR-NB-LRR genes known to be involved in effector-triggered
immunity. Therefore, these wild species could constitute a source
of resistance-related genes to be introgressed into susceptible
cultivars.

In light of the consequences of genetic erosion and the
importance of preserving sources of genetic and phenotypic
diversity in crops, the scientific community has developed
germplasm banks (Prada, 2009). Nowadays, there are more than
a thousand seed banks distributed all over the world. Tomato
genetic resources in gene banks have been reviewed by (Bai and
Lindhout, 2007; Di Matteo et al., 2011) (Table 2) and altogether
may account for over 20,000 accessions. Grapevine germplasm
also exhibits great diversity with up to 10,000 cultivars predicted
(Laucou et al., 2011). In this context, many seed centers have
been dedicated specifically to grapevine species—especially in
countries with a tradition of viticulture (Table 2). Furthermore,
the Svalbard Global Seed Vault conserves in permafrost the seeds
of over four thousand plant species (>774,601 accessions, of
which 7,382 correspond to tomato or wild relatives of tomato
clade) (www.seedvault.no) (Fowler, 2008; Westengen et al.,
2013).

Genetic resources include wild, landraces (heirlooms and old
cultivars of local importance), modern cultivars, and synthetic
populations, and constitute the ground material for breeders.
Populations of wild relatives offer breeders untapped genetic
and phenotypic diversity that has evolved over millions of
years to adapt to a wide range of environmental niches
(Honnay et al., 2012). It is very much in our interest to
study this in depth (Khan et al., 2012). Landraces/heirlooms
or traditional varieties represent old cultivars that may be of
more or less local importance and were developed/selected by
traditional farmers over hundreds or a few thousand years
to best fit their needs. Landraces (local varieties) generally
display greater diversity than modern cultivars as they have been
selected to adapt to local, sometimes hostile environments, at
a time when agronomic technology (i.e., irrigation, fertilizers,
pesticides) was not yet widely available. Cultivar uniformity
was not desirable when varieties had to successfully adapt
to a range of environmental conditions (Fernie et al., 2006;
Cebolla-Cornejo et al., 2013). Modern agronomic practices often
result in more homogeneous environmental conditions: tomato
cultivation in greenhouses entails controlled watering, facilitating
the selection/development of genetically uniform cultivars to
enhance yield performance. Hence, landraces constitute a source
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TABLE 2 | Main seed bank collections worldwide where tomato and grapevine germplasm can be found.

Name Plants Resources Website References

The Solanaceae

database

Non-tuberous Solanaceae

germplasm collection

Ex situ plant collections http://www.bgard.science.ru.nl/ Bai and Lindhout, 2007

The isogenic tomato

‘mutation library’

Solanaceae About 3,500 tomato monogenic mutants

from the genetic background of the inbred

variety M82 by treatment with EMS (ethyl

methane sulfonate) and fast-neutron

mutagenesis

http://zamir.sgn.cornell.edu/mutants/ Menda et al., 2004

French Network of

Vine Conservatories

Grapevine (Vitis vinifera L.) 7,000 accessions from 40 countries http://www1.montpellier.inra.fr/vassal/ French Network of Vine

Conservatories

The

EuropeanVitisdatabase

Grapevine (Vitis vinifera L.) 27,000 Vitis accessions from 13 european

wine-growing countries

http://www.eu-vitis.de/index.php

FAO/IAEA Mutant

Variety Database

(MVD)

Wide range of plant

mutant including tomato

and grapevine

http://mvd.iaea.org/#!Home FAO/IAEA

of allelic variants lost to modern breeding (i.e., over the last
80 years) but potentially available for variety improvement
(Mazzucato et al., 2008; Prada, 2009; Leida et al., 2015).
Because of their greater proximity to modern cultivars than their
wild relatives, landrace cultivars with the desired phenotypes
hold great potential for cultivar improvement (Zhu et al.,
2008; Prada, 2009; Biasi and Brunori, 2015). For example,
Corrado et al. (2013), studied variability in a set of 214 tomato
accessions which included wild relatives, cultivated landraces,
and commercial varieties. They identified a number of loci
which were under strong positive selection among landrace and
commercial cultivars. Although the diversity present in wild and
landrace populations makes them useful for the identification of
genotypes carrying genes of agronomic importance, they are of
less use when we attempt to accurately dissect the underlying
genetic basis. To overcome these difficulties, researchers and
breeders have developed a wide range of cross populations
such as Recombinant Inbred Lines (RILs), Near Isogenic Lines
(NILs) or Introgression Lines (ILs), Double Haploid Lines
(DHLs), Induced Mutant Lines (IMLs), TILLING (Targeting
Induced Local Lesions in Genomes) Lines (TLs) (Varshney
et al., 2014; Henikoff et al., 2004), Multiparent Advanced
Generation Intercross (MAGIC, Cavanagh et al., 2008) and
Nested Association Mapping (NAM, McMullen et al., 2009;
Table 3). In grape, as in other perennial/long generation time
and/or self-incompatible species, for which it is difficult or
impossible to generate inbred lines, F1 segregating populations
(also termed Cross-Pollinators, CP) have been developed
for genetic mapping (Grattapaglia and Sederoff, 1994) and
propagated by grafting. Finally, germplasm collection can also
be used directly as a mapping population in Genome-Wide
Association Studies (GWAS; Rosenberg et al., 2010).

One way to unravel the genetic basis of fruit quality traits is
by analyzing spontaneous/natural or induced mutant lines (Di
Matteo et al., 2011; Bauchet and Causse, 2012). For tomato,
several natural mutants have been identified but these resources
are limited in comparison with induced mutant collections
(Bauchet and Causse, 2012; and Table 1). The carotenoid

pathway, for example, is one of the best elucidated metabolism in
tomato fruit due to the availability of a series of well-characterized
mutations (Figure 1). These mutants provide distinct berry color
phenotypes: apricot, at, loss of function in the isopentenyl
diphosphate 1 (ID11) gene (Pankratov et al., 2016); yellow flesh,
r, knockout of the phytoene synthase 1 (PSY1) gene (Fray and
Grierson, 1993); tangerine, t, loss of function in the carotenoid
isomerase 1 (CrtISO1) enzymatic activity (Isaacson et al., 2002);
Beta, B, and Delta, Del, gain of function in the lycopene β- and
ε-cyclase (CYC-b; LCY-e) genes (Gil et al., 1999; Ronen et al.,
2000); high-pigment 3, hp3, loss of function in the transcript
coding for the zeaxanthin epoxydase (ZEP) (Galpaz et al., 2008);
neoxanthin deficient 1, nxd1, defected in the neoxathin synthase
(NXS) enzymatic activity (Neuman et al., 2014). In this context,
the only known exception of a carotenoid structural gene which,
if mutated, does not affect the berry color is represented by
the β-carotene hydroxylase 2 (CHY2), whose knock out produce
the, so called, white flower (wf ) mutant, displaying, respectively,
regular and not pigmented fruits and flowers (Galpaz et al.,
2006). Additionally, a series of well-known mutants in ABA
biosynthesis are also available thanks to the studies carried out
by the german scientist Hans Stubbe: notabilis, not, loss of
function in the 9-cis-epoxycarotenoid dioxygenase (NCED) gene
(Burbidge et al., 1999); flacca, flc, knockout of the gene coding
for a molybdenum cofactor (MoCo) (Sagi et al., 2002); sitiens,
sit, deficient in the aldehyde oxidase (AAO) enzymatic activity
(Harrison et al., 2011). More recently, the first mutant in the
strigolactone pathway (ORT1) has been identified, although the
source of the mutation has not yet been elucidated (Kohlen et al.,
2012) (Figure 1). In addition, The Solanaceae genome network
(SGN) and the Tomato Genetic Resource Center (TGRC) host
large collections of tomato genotypes and mutants, which are
available to researchers (Di Matteo et al., 2011; Saito et al., 2011;
Bauchet and Causse, 2012; Sacco et al., 2013). More recently, a
collection of ethyl methanesulfonate (EMS) and γ-ray-derived
tomato mutants in the Micro-Tom dwarf background has been
generated (Saito et al., 2011; Shikata et al., 2016). To date, it
comprises over a thousand genotypes which have been used to
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FIGURE 1 | Carotenoid/Apocarotenoid (Volatiles, VOCs; Abscisic acid, ABA; Strigolactones, SL) biosynthesis and overview of tomato natural (mutants)

and metabolically engineered (ME) resources. Light red arrows and light green crosses refer to, respectively, gain and loss of function mutants. Dark red arrows

and dark green crosses pinpoint overexpression and knockout ME interventions, respectively.

create the TOMATOMA database, representing an interesting
resource to research scored traits/phenotypes easily. Other
EMS tomato mutant collections include the M82 processing
tomato collection (http://zamir.sgn.cornell.edu/mutants/) and
the Red Setter collection (http://www.agrobios.it/tilling/). These
monogenic mutant populations could be directly screened to
identify the genes responsible for a specific function (Menda
et al., 2004; Long et al., 2006), or individual mutant lines could be
analyzed to confirm the function of a gene previously identified
by other means, such as QTL analysis (Goldsbrough et al., 1994).

Unlike tomato, collections of grapevine-induced mutants
are quite rare (Fortes et al., 2015). Consequently, almost all
studies in grape aimed at deciphering the molecular basis of
traits use natural mutants (This et al., 2006). The FAO/IAEA
Mutant Variety Database (MVD) maintains a wide range of
plant mutant cultivars including tomato and grapevine. In
grape, the counterpart of the conspicuous tomato/carotenoid
system is represented by the phenylpropanoid pathway and,

more specifically, by the synthesis of high-value sub-classes
of phenypropanoid compounds (anthocyanins, stilbenes etc).
An overview of grape genes and genetic resources for
important phenylpropanoids affecting fruit quality is shown
in Figure 2. While, contrary to the situation in tomato,
it is not possible to clearly define grapevine monogenic
mutants, several studies have unraveled the genetic basis of the
difference between red and white cultivars, which is mainly
due to a group of MYB transcription factors (MYBA1-1/2,
MYBA2, MYB5a/b), mutated in the latter and, thus, preventing
anthocyanin synthesis (Kobayashi et al., 2002; Deluc et al.,
2006, 2008; Walker et al., 2007; Rinaldo et al., 2015; Figure 2).
Similarly, Rinaldo et al. (2015) have reported that the acylated-
anthocyanin phenotype is associated to the expression of the
3AT gene, coding for an ANTHOCYANIN 3-O-GLUCOSIDE-6′′-
O-ACYLTRANSFERASE, which is lacking in white cultivars, as
well in some red varities as Pinot-Noir, that do not accumulate
acylated anthocyanins. TILLING was also used to screen the
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FIGURE 2 | Phenylpropanoid biosynthesis in grapevine and survey of structural and regulative genes engineered by genetic modification (GM).

Transcription factors positively (activators) or negatively (repressors) affecting phenylpropanoid pathway are represented by “Play” and “Stop” symbols, respectively.

Red arrows and green crosses pinpoint overexpression and knockout GM interventions, respectively. Asterisks indicate genes and metabolites previously reported to

be not/low expressed and accumulated, respectively, in white genotypes. Degrees refer to ME studies in which grapevine genes were ectopically expressed only in

heterologous systems.

tomato mutant database (Kurowska et al., 2011) for validation
of gene function and as a source/tool for crop improvement
(Minoia et al., 2010). Furthermore, it can also be applied to the
identification of SNPs in spontaneous mutants (EcoTILLING)
making it, thus, extremely useful in characterizing the variability
present in germplasm banks (Mba, 2013).

Genome and Epigenome Sequencing and
Genotyping Methods
Genomic variations can be the result of SNPs,
insertions/deletions (Indels), copy number variations (CNV),
and presence absence variations (PAV); they are responsible
for crop evolution and domestication (Xu and Bai, 2015).
Historically, to decipher genomic diversity, two types of
molecular markers were developed (reviewed by Yang et al.,
2015). The first were generated before the genomic era and
were able to identify genetic diversity in a wide range of

genotypes (and different conditions) without the need for
DNA or genome sequences. For example, the first markers
developed in the 1980s were the restriction fragment length
polymorphism (RFLP). Anonymous PCR-based markers such
as Random Amplified Polymorphic DNA (RAPD) markers
and Amplified fragment length polymorphism (AFLP) were
developed later. Single Sequence Repeat (SSR) or microsatellite
markers were more popular during the 1990s and the early
2000s, when a large source of reliable medium-throughput
markers was generated. However, even with these markers,
molecular mapping remained time-consuming, expensive,
and yielded relatively low mapping resolution (Xu and Bai,
2015). While several QTLs were identified on large genomic
regions, few have been used in breeding programs (Bernardo,
2008).

Three generations of sequencing technologies resulting in
three “waves” of genome sequencing facilitated the study of
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germplasm diversity and, thus, the production of new markers
and high-throughput genotyping technologies that impact on
breeding methods (Bolger et al., 2014; Varshney et al., 2014;
Xu and Bai, 2015; Yang et al., 2015). In 2007, the genomes
of an inbred line (PN40024) derived from Pinot Noir (Jaillon
et al., 2007) and a heterozygous genotype nowadays used by
winemakers (Velasco et al., 2007), were published by two
groups independently. Both studies used whole genome shotgun
(WGS) methods and predicted around 30 k protein-coding
genes (Jaillon et al., 2007; Velasco et al., 2007) distributed
around 38 chromosomes (n = 19). On the other side, a
high quality, well-annotated reference genome is available for
tomato (Sato et al., 2012). From this genome (around 900
Mb divided up to 12 chromosomes), 34,727 protein-coding
genes were identified and 30,855 of these were confirmed
by RNA sequencing. Moreover, using comparative genomics
with grape and A. thaliana genomes, this study highlighted
that two consecutive genome triplication events might have
occurred during its evolution (Sato et al., 2012). The use
of NGS methods is not limited to sequencing and de novo
assembly but, thanks to an increase in high-throughput read
lengths, single-base accuracy, reduced costs, and assembling
methods, NGS enables whole-genome resequencing to identify
genetic variations on a genome-wide basis (Xu and Bai, 2015).
A number of resequencing projects have already identified
genomic variations by resequencing and identifying a huge
number of DNA markers (cited above). Divergence between the
wild (S. pimpinellifolium) and domesticated tomato genomes
was estimated at around 0.6%, representing 5.4 million SNPs,
distributed along the chromosomes mostly in the gene-poor
regions (Sato et al., 2012). Despite this, more than 12,500 genes
carry non-synonymous changes. Another study has revealed
that the Micro-Tom genome presents about 1,230,000 SNPs
and 190,000 indels, by comparison with the “Heinz 1706”
genome (Aoki et al., 2013). Using a high-density polymorphism
array (7,720 SNPs, also known as the SolCAP array), Sim
et al. (2012) genotyped a collection of 426 tomato accessions,
which revealed that over 97% of the markers in the collection
were polymorphic. Currently, several hundred resequenced
genomes of tomato varieties, S. lycopersicum vr cerasiformes, and
S. pimpinellifolium are available for marker and variability studies
at https://solgenomics.net/jbrowse_solgenomics/. They are being
used to gain an understanding of genetic base domestication
and improvement, and for GWAS (Lin et al., 2014). WGS of
induced tomato mutants reveals many DNA markers, such as
SNPs (Menda et al., 2004; Saito et al., 2011; Xu and Bai, 2015).
In some cases, NGS can be applied to a limited number of
sites in the genome and the throughput can be increased using
Genotyping By Sequencing (GBS) (Kumar and Khurana, 2014;
Xu and Bai, 2015). For example, Víquez-Zamora et al. (2014)
used GBS on a RIL population of a cross between S. lycopersicum
cv. Moneymaker and S. pimpinellifolium G1.1554 to develop
a linkage map of 715 unique genetic loci from 1,974 SNPs.
These results were subsequently used to map QTL responsible
for TYLCV (Tomato yellow leaf curl virus) resistance. A similar
strategy based on the SolCAPwas used by Rambla et al. (2017a) to
define a volatile QTL map in an RIL population derived from the

cross between S. lycopersicum (Money maker) and the TO-937
accession of S. pimpinellifolium.

Recent studies have shown the differential regulation of
genes encoding epigenetic regulators as well as local chromatin
and DNA methylation changes in response to a variety of
abiotic stresses including cold, salinity, drought, osmolality,
or mineral nutrition (reviewed by Fortes and Gallusci, 2017).
Epigenetics constitutes another process that greatly influences
gene expression and, therefore, contributes to genetic plasticity.
DNA methylation represents a layer of regulatory complexity
beyond that encoded in the basic structure of the plant genome
(Harrigan et al., 2007). Using techniques such as bisulfite Sanger
sequencing, whole-genome bisulfite sequencing, and chromatin
immunoprecipitation sequencing (ChIP-seq), Zhong et al. (2013)
have shown that tomato ripening involves specific epigenetic
remodeling. They found that binding sites for RIN, one of
the key ripening transcription factors, were frequently localized
in the demethylated regions of the promoters of numerous
ripening genes. This binding process occurred in concert with
demethylation. The binding of RIN to regulate fruit ripening
genes is attenuated in the cnr ripening mutant. In addition,
they found that DNA regions near the 5′ ends of genes were
hypermethylated in the cnrmutant (Zhong et al., 2013). In amore
recent study (Liu et al., 2015), a direct relationship between DNA
demethylase (SlDML2) activity and tomato fruit ripening was
reported. Briefly, silencing SlDML2 caused ripening inhibition
via hypermethylation. Simultaneously, a drastic reduction in
the expression of both transcription factors controlling fruit
ripening and of down-stream pathways (e.g., carotenoids)
occurred. Consequently, crop-improvement strategies should
take account of both DNA sequence variation between plant
lines and information encoded in the epigenome. In this context,
the grape was recently proposed as an essential model for
epigenetic and epigenomic studies in agriculturally-important,
woody perennials to enable so-called epigenetic breeding (Fortes
and Gallusci, 2017). Currently, a Tomato Epigenome database
(http://ted.bti.cornell.edu/epigenome/1196099620) is available to
investigate the presence of DNA methylation phenomena for
each tomato gene. Epigenetic mechanisms have also been
reported as being involved in defining the levels of Vitamin E
accumulation in tomato fruits (Quadrana et al., 2014). Epigenetic
marks may participate in the priming mechanisms to better
withstand biotic and abiotic stresses, a topic that deserves
attention in order to moderate stress susceptibility and increase
climate change resilience in grapevine and tomato (reviewed by
Fortes and Gallusci, 2017).

Phenomics
While sequencing and genotyping technologies have leaped
forward significantly, limited progress in the throughput and
price affordability of phenotyping technologies has slowed the
identification of genetic-phenotypic associations (Fiorani and
Schurr, 2013; Bolger et al., 2014).

Phenotype-based selection came long before DNA discovery
and the use of genotyping technologies. However, sequencing
and molecular biotechnologies made rapid progress while
phenotyping biotechnologies still need to be improved. Indeed,
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while the sequence of genonic DNA gives a comprehensive view
of genetic capacity, the information it contains is cryptic and does
not directly explain the differences between cells and all plant
phenotypes (Angel et al., 2012). When it comes to fruit such
as tomato or grape, it is the phenotype that is directly linked
to our interest. Until now, plant phenotyping mainly focused
on a single scale (molecule, cell, organ, plant, field, or canopy)
depending on the organ of interest (shoots or roots) and the
technology used. However, Rousseau et al. (2015) insist on the
importance of multi-scale analysis. Indeed, genome expression
can be observed at multiple microscopic and macroscopic
levels including proteomics, metabolomics, physiological traits,
and others that are visible/invisible to the naked eye. Hence,
phenotypic traits provide more direct information about plant
production and health than genomic data do. Nevertheless,
because few technologies are available, phenotyping methods
have traditionally been restricted to macroscopic traits.

Fortunately, the recent improvement in phenotypingmethods
(reviewed by Fiorani and Schurr, 2013) enable us to broaden the
concept of phenotyping and include both molecular mechanisms
(proteomic and metabolomic) and all intermediate layers that
result in macroscopic physiological and phenological traits
(architecture, yield, taste). Progress is mainly related to the
development of a wide range of sensors, their automatization
and adaptation to both indoor and outdoor conditions. Hence,
advances in phenotyping technologies, including cost reductions
and time gains, facilitate an increase in throughput phenotyping
for multi-level traits under control or field conditions (reviewed
by Fiorani and Schurr, 2013; Araus and Cairns, 2014). In fact,
the global phenotype can be considered the result of all the
measurable traits, influenced in a complex and dynamic manner
(time and space) by both genome expression and environmental
effects.

Macroscopic shoot phenotyping improvements have mainly
been due to the development of new sensors (Table 4) (Araus
and Cairns, 2014; Fahlgren et al., 2015). For root phenotyping,
new technologies were recently established (Wasson et al., 2012;
Fiorani and Schurr, 2013; Kuijken et al., 2015) by easily accessing
the roots (artificial growth medium and dynamic 2D or 3D
imaging), and by indirect methods which phenotype roots in
the soil (Table 5). For example, using a time-lapse scanning
system, Dresbøll et al. (2013) demonstrated that the growth rate
of tomato roots decreased under waterlogging. More recently, a
series of platforms that integrate morphological parameters and,
in some cases, gene expression have been developed. Among
these, for example, MorphoGraphX is able to quantify several
morphogenetic processes in 4D (Barbier de Reuille et al., 2015).
New sensors were also developed to improve post harvested
practices such as shelf life (Abano and Buah, 2014). For example,
NIR spectroscopy was used to optimize the storage time of apple
lots (Giovanelli et al., 2014).

On the other hand, automated facilities have evolved into
high-throughput phenotyping platforms providing a powerful
tool to fundamental research that can be conducted at growth
chamber, greenhouse or field levels. In order to reduce
error variance under field conditions, most of the sensors
described above could be adapted to allow high-throughput

measures, thus increasing the number of samples under analysis
(reviewed by Araus and Cairns, 2014). Ground vehicles equipped
with sensors were used in several studies (Andrade-Sanchez
et al., 2014), while aerial vehicles with dedicated instruments
facilitate rapid plant characterization in many plots, notably for
phenotyping canopy traits (Araus and Cairns, 2014; Sankaran
et al., 2015). Among them, due to their reduced cost, user-
friendly flying control, and high autonomy, polycopters also
called Unmanned Aerial Platforms (UAPs) could constitute
the future of field phenotyping. The laboratory of plant-
microbe interactions (INRA, Toulouse, France) set up a low cost
phenotyping platform so called “Heliaphen,” which allows the
growth and the high throughput phenotyping of 1,300 plants
in outdoor semi-natural conditions (https://www.youtube.com/
watch?v=VZSvgeWuhlw). The development of plants in high
capacity pots (15 L) makes possible the study of crops during
their entire life cycle. In this way, the effect of soil heterogeneity
is reduced compared to field conditions. The use of a mobile
robot, which phenotypes and monitors hydric conditions for
each plant, is one of the original aspects of this platform (personal
communication from N. Langlade).

In microscopic imaging technologies, improvements in
time acquisition, automatization, and user-friendly interface
make high-throughput phenotyping possible on a microscopic
scale (Sozzani et al., 2014; Rousseau et al., 2015). In a
recent study, Legland et al. (2012) coupled microscopic and
macroscopic approaches to create a synthetic representation
of cell morphology variations at the whole fruit level. The
complexity and the high volume of data produced by high-
throughput phenotyping platforms require computing power
and robust bioinformatic tools (Araus and Cairns, 2014).
Furthermore, to date, phenotyping data are still dispersed in
different file types, programs, and databases and, therefore,
efforts to comply with defined standards, which enable
comparison and information exchange between phenotyping
experiments and conditions, are needed (Krajewski et al., 2015).

Proteomics
The proteome integrates environmental and genetic information
and is, therefore, fundamental. Knowledge of the proteome
permits a more direct connection between proteins and the
corresponding phenotypes (Boggess et al., 2013). Nowadays,
significant improvements have been achieved in this field
(reviewed by Angel et al., 2012). For example, coupling liquid
chromatography (LC) separations with mass spectrometry (MS)-
based technologies that enable the characterization of a protein at
the proteome and sub-proteome levels, such as post-translational
modifications (PTMs) of proteins like, for instance, lysine
succinylation (Jin and Wu, 2016). Hence, many studies have
used proteomic analyses to highlight the link between proteomic
and phenotypic variations (Tanou et al., 2009; Zhao et al.,
2013; Kumar and Khurana, 2014). Several studies of tomato
proteome have provided both qualitative and quantitative data
(reviewed by Kumar and Khurana, 2014). For example, using
shotgun proteomic analysis of fruit tissues, Shah et al. (2012)
presented data about the interaction between tomato fruit and
Botrytis cinerea showing that the proteins produced by the
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TABLE 4 | New sensors and their application to plant macroscopic phenotyping.

Sensor technology Measure Applications References

Sensitive cameras in the

visible spectral range of the

electromagnetic spectrum.

Produce raw data in the RGB or in the

HSV (hue, saturation, value) spaces.

Shoot phenology and color. Fiorani and Schurr, 2013; Araus and

Cairns, 2014

Fluorescence cameras. Analysis of fluorescence parameters. Photosynthesis status. Maxwell and Johnson, 2000; Berger

et al., 2004; Bélanger et al., 2008;

Chaerle et al., 2009; Fiorani et al.,

2012; Fiorani and Schurr, 2013;

Araus and Cairns, 2014

Identification of biotic and abiotic stresses before

visible phenotypes could be detected.

Thermal cameras. Measure the leaf temperature. Identification of abiotic (Fuentes et al., 2012; Mishra

et al., 2012), and biotic (Calderón et al., 2014; Raza

et al., 2015) stresses.

Review by (Fiorani and Schurr, 2013;

Meron et al., 2013; Araus and Cairns,

2014; Calderón et al., 2014; Prashar

and Jones, 2014)

Evaluation of fruit maturity and bruise (Vadivambal

and Jayas, 2011; Ishimwe et al., 2014).

Imaging spectroscopy. Scanning specific wavebands of interest

through high resolution cameras.

Water status by the analysis of the Near-Infrared

(NIR) to the mid-infrared wavebands.

Fiorani and Schurr, 2013; Giovanelli

et al., 2014

Photosynthesis status by the analysis of the peak of

green reflectance at 550 nm.

Determination of nitrogen content and pigment

composition (Fiorani and Schurr, 2013).

Estimation of storage time for apple using NIR.

I-sensor. Measurement of electrical impedance. Estimation of cuticule and wax characteristics on

vine berries and the link with disease resistance.

Herzog et al., 2015

TABLE 5 | 3D imaging technology for plant phenotyping.

3D sensor Measures Application

Stereo camera. 3D imaging. Biomass and shoot structure.

High resolution volumetric imaging (X-ray tomographs, Magnetic resonance

imaging, and positron emission detectors).

3D imaging of physiological status. Water content, morphometricparameters.

Laser scanning technologies such as Light Detection And Range (LIDAR)

(Menzel et al., 2009; Eitel et al., 2011; Hosoi and Omasa, 2012; Araus and

Cairns, 2014; Deery et al., 2014; Raza et al., 2015; Rousseau et al., 2015).

Measures the distance between a

target and the sensor by analyzing

the reflected light of a laser.

Canopy characterization such as phenology, and

leaf area index (Llorens et al., 2011; Rinaldi et al.,

2013; Sanz et al., 2013; Hosoi et al., 2011).

fungus include those that facilitate the pathogen’s penetration
and growth on the plant tissue, those that inhibit resistance
responses by the plant, and those that enable the pathogen to
use the nutrient resources within the plant. On the other hand,
the proteins produced by the plant include those that limit
pathogenic infection and protect the plant tissue from additional
damage.

A similar study by (Parker et al., 2013) analyzed the interaction
between tomato and the Pseudomonas syringae bacteria through
an iTRAQ (isobaric tags for relative and absolute quantification)
quantitative proteomic approach. Proteomic data could also be
used as biomarkers to facilitate the rapid identification of biotic
or abiotic stress before it becomes visible through diagnostic
tools (Angel et al., 2012). An interesting, novel approach involves
the use of combined genomic-proteomic data to predict DNA-
binding proteins (like transcription factors), integrated through
computational models which can greatly promote functional

annotation of tomato or other plant genomes (Motion et al.,
2015). However, in contrast to the genomic data common
to all cells of the same organism, proteomic data could be
highly tissue-, cell-, or compartment-specific, making it more
difficult to access the overview offered by plant proteome. In
this context, another important issue is represented by the
characterization of the protein fraction at sub-cellular level,
like those specifically synthesized in plastids (Barsan et al.,
2012), which can significantly influence a series of physiological
processes such as fruit ripening. In another example, the
characterization of proteomic changes induced during ripening
processes into grape fruit skin provided important information
to determine the skin parameters which could impact on wine
quality (Deytieux et al., 2007). Furthermore, alterations in
sugar and phenylpropanoid metabolism due to thermal stress
were revealed by a quantitative proteomic study of Cabernet
Sauvignon grape cells (George et al., 2015).
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Metabolomics
Metabolomics has played a remarkable role in assessing
genotypic and phenotypic diversity in plants, in defining
biochemical changes associated with developmental changes
during plant growth and, increasingly, in compositional
comparisons. Furthermore, metabolic information is often
viewed as a more accurate reflection of biological endpoints
than transcript or protein analysis (Harrigan et al., 2007).
Therefore, metabolomic data may strongly support breeding and
selection of novel yield-enhanced and nutritionally improved
crops (Harrigan et al., 2007). It also seems that metabolite
composition, although genetically based, is heavily influenced by
environmental factors, much more, even, than enzyme activity
(Biais et al., 2014). Reassuring results have proved that the
hereditability of the tomato fruit metabolome, including that
part of the metabolome affecting flavor, in terms of mQTL,
was relatively high, in both primary metabolites (sugars and
acids) (Schauer et al., 2008) and volatiles (Rambla et al., 2016).
Obviously, flavor-related traits have attracted much attention.
The combination of a taste panel and other omics technologies
have facilitated the definition of sugars, organic acids, and
volatile compounds underlying flavor and consumer preferences
(Mathieu et al., 2009). Furthermore, the robustness of the
mQTL and the release of flavor compounds often depend on
enzymatic activities that cleave the chemical bond between
the flavor compound and a glycosyl moiety. One example is
represented by the non-smoky glycosyltransferase1 (NSGT1) gene,
that takes part in the phenylpropanoid pathway, which was
shown to prevent the “smoky” aroma attribute (Tikunov et al.,
2013). Similar glycosylation/glycosidation mechanisms operate
in grape varieties that usually accumulate large amounts of
volatile precursors as conjugated compounds that are released
following tissue maceration (Rambla et al., 2016, 2017b). Using
target approaches based on knowledge of metabolic pathways
has led to the characterization of several genes involved in the
biosynthesis of phenylpropanoids (Tieman et al., 2010; Mageroy
et al., 2012), fatty acid-derived volatiles (Speirs et al., 1998; Chen
et al., 2004; Matsui et al., 2007; Shen et al., 2014), apocarotenoids
(Simkin et al., 2004), esters (Goulet et al., 2015), and other
phenylalanine-derived volatile compounds (Tieman et al., 2010),
and in the conjugation and/or deconjugation and emission of
volatiles (Tikunov et al., 2013). Moreover, Schauer et al. (2005)
performed one of the first GC–MS-based surveys of the relative
metabolic levels of leaves and fruits of S. lycopersicum and five
sexually-compatible wild tomato species (S. pimpinellifolium,
S. neorickii, S. chmielewskii, S. habrochaites, and S. pennellii).
Interestingly, several biochemical markers associated with the
desired traits (stress resilience, nutritional quality) were identified
in the wild species. A series of robust LC–MS-based protocols
for tomato metabolome have been developed at WUR (De Vos
et al., 2007) and KAZUSA (Iijima et al., 2008), and exploited
in several studies of fruit development and physiology (Yin
et al., 2010; Mounet et al., 2012), and stress response (Etalo
et al., 2013; Lucatti et al., 2013). In a recent study (D’Esposito
et al., 2017), genotype × environment interaction, particularly
related to sensorial attributes, was investigated in three tomato
varieties using a combination of genomic, transcriptomic and

metabolomic technologies. The varieties in question included
the “cosmopolitan” Heinz 1706—which showed high resilience
in the different environments tested—and two Italian Protected
Designation of Origin (DOP) ecotypes—San Marzano and
Vesuviano—which displayed high plasticity to environmental
variations.

In grape, studies focusing on ripening and using
complementary platforms such as NMR and GC–MS to
identify metabolic markers of pre-ripening and ripening stages,
are available (Fortes et al., 2011; Agudelo-Romero et al., 2013).
Using an integrated transcriptomic/metabolomic approach,
Agudelo-Romero et al. (2013) provided hints about how the
development of a grape cultivar-specific aroma is controlled
at transcriptional level. In the same context, the distinctive
processes regulating the accumulation of polyphenols in
berry skins of Cabernet Sauvignon and Shiraz cultivars were
investigated at gene expression and metabolite levels (Degu et al.,
2014).

One important phenological aspect, the terroir (i.e., the
complex of all environmental factors responsible for the qualities
of a grapevine cultivar grown in a specific habitat), was studied
for the Corvina variety using volatile/non-volatile metabolomics,
and transcriptomics. On the whole, a strong terroir-specific
effect was revealed in clones grown in different vineyards—an
effect that persists over several vintages (Anesi et al., 2015).
The primary aromatic profile of a wine is mainly due to the
genotype × environment-derived relationship between volatile
metabolites and their precursors. Volatiles have been extensively
studied in grape (reviewed in: González-Barreiro et al., 2015),
whereas volatile precursors have scarcely been investigated
(Martin et al., 2012). Recently, Rambla et al. (2016) performed an
in-depth analysis of volatile and precursor metabolites in white
(Airén) and red (Tempranillo) grape variety berries at different
developmental stages. The use of a series of bioinformatic
approaches—such as correlation networks—proved the existence
of complex metabolite-metabolite patterns that were more
complex in Airén, as would be expected given the enriched aroma
bouquet typical of white varieties. Metabolomics has contributed
much to our increased understanding of the molecular basis
of biotic stress resistance. A series of metabolites, including
quercetin-3-O-glucoside and a trans-feruloyl derivative, have
been shown to underlie cultivar resistance to downy mildew
infection (Kashif et al., 2009). More recently, Agudelo-Romero
et al. (2015) concluded that berries infected with B. cinerea,
reprogram carbohydrate and lipid metabolisms toward increased
synthesis of secondary metabolites like trans-resveratrol and
gallic acid, which are involved in plant defense.

Furthermore, metabolomic approaches have been used to
assess the impact on the metabolome and fruit quality
traits of mutations or genetically engineered approaches in
structural/regulatory genes. Of special significance are the
metabolic boost identified in tomato fruit by the light-
hyperresponsive high-pigment (hp) gene (Bino et al., 2005). The
authors concluded that fruits from hp plants overproduced many
metabolites with antioxidant or photoprotective activities. A
number of additional tomato fruit color mutants that affect
the metabolite profile have been identified (list available at
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http://kdcomm.net/∼tomato/Tomato/color.html). However, not
all of these them resulted in the accumulation of quality
molecules (with positive health or organoleptic effects) in the
fruit. Among these mutants are the B (Beta) and Bc/B◦g

mutants, yielding high amounts in β-carotene and lycopene,
respectively, due to a gain or loss of function in chromoplast-
specific lycopene β-cyclase (Cyc-B) activity (Ronen et al., 2000,
and Figure 1). Similarly, the Abg (Aubergine), Aft (Anthocyanin
fruit) and Atv (Atroviolaceum) loci result in anthocyanin-
accumulating fruits (Mes et al., 2008; Schreiber et al., 2012),
phenotypes associated with a perturbation in the expression
of the transcription factors controlling anthocyanin synthesis,
such as ANTHOCYANIN 1 (ANT1) and ANTHOCYANIN 2
(AN2). In contrast to classical mutants, metabolic engineering
overcomes a number of classic breeding constraints, including
a limited gene-pool, time consuming processes, etc. Against
this broader scenario, tomato fruits have been engineered to
accumulate large amounts of many high-value nutrients (in an
approach known as metabolic engineering, ME): vitamins such
as folate (Díaz de la Garza et al., 2007) and ascorbate (Nunes-
Nesi et al., 2005); secondary metabolites such as carotenoids, for
which tomato represents a model system. An overview of ME
studies of carotenoids in tomato is shown in Figure 1: so far,
transgenic fruits enriched in lycopene [(Fraser et al., 2002, 2007);
(ectopic expression of the bacterial (CrtB) or the tomato (PSY1)
phytoene synthase genes); (Rosati et al., 2000) (down-regulation
by antisense technology, of the lycopene-b-cyclase 1 (LCY-
b1) gene)], β-carotene [(Apel and Bock, 2009); transplastomic
expression of the bacterial lycopene-β-cyclase (CrtY) activity];
(D’Ambrosio et al., 2004, 2011) (stable transgenics for the tomato
LCY-b1 gene); (Römer et al., 2000) [ectopic expression of the
bacterial carotenoid isomerase (CrtI); (Rosati et al., 2000) (stable
transformants espressing the arabidopsis LCY-b1 gene), lutein
(Giorio et al., 2013; over-expression of the endogenous lycopene
ε-cyclase (LCY-ε-) activity)], and β–xanthophylls [Dharmapuri
et al., 2002; simultaneous expression of the arabidopsis LCY-b1
and of a pepper β-carotene hydroxylase 1 (CHY1)]; (D’Ambrosio
et al., 2011) [overexpression of the tomato β-carotene hydroxylase
2 (CHY2)] have been achieved. Furthermore, ME tomatoes
accumulating high-value ketocarotenoids (e.g., astaxanthin)
have been obtained by the simultaneous expression of the β-
carotene hydroxylase (CrtZ) from Haematococcus pluvialis and
the algal β-carotene ketolase (CrtW) from Chlamydomonas
reinhardtii (Huang et al., 2013) (Figure 1). In some cases, it
is not possible to achieve stable silenced transgenic plants for
a specific activity, likely due to the occurrence of a lethal
phenotype in the transformant cells; in this context, an useful
alternative is represented by virus induced gene silencing (VIGS),
which allows to study a specific enzymatic step by transient
transformation assays. In tomato fruits, this tool has been
exploited to investigate the functions of all the genes involved
in lycopene biosynthesis (PSY1, 2, 3; phytoene desaturase, PDS;
15-cis-ζ -carotene isomerase, Z-ISO; ζ -carotene desaturase, ZDS;
carotenoid isomerase 1, like-1, like-2,CrtISO1, CrtISO-LIKE1,
CrtISO-LIKE2), and the presence of three functional units,
comprising PSY1, PDS/ZISO, and ZDS/CrtISO has been found
(Fantini et al., 2013). ME has also been used to elucidate

enzymatic activities taking place in carotenoid catabolism:
with this purpose, apocarotenoid emission has been strongly
reduced by the down-regulation, via RNAi technology, of
the carotenoid cleavage dioxygenase 1b (CCD1b) gene (Simkin
et al., 2004). Similarly, ABA biosynthesis has been investigated
by through the production of RNAi plants for the 9-cis-
epoxycarotenoid dioxygenase (NCED1) gene (Sun et al., 2012);
and two CCD (CCD7 and CCD8) transcripts, involved in
strigolactone pathway, have been characterized by tomato stable
transformants, in which the two enzymatic functions had been
knocked out (Vogel et al., 2010; Kohlen et al., 2012). Engineering
tomatoes for high flavonoids in the fruit is a biotechnology goal
as theise types of healthy metabolites are deficient in the fruit.
To this end, successful efforts for flavonoid increase (Schijlen
et al., 2006) and de novo anthocyanin accumulation (Zhang et al.,
2013) have been reported; in a recent study, Zhang et al. (2015)
used the AtMYB12 transcription factor to engineer high levels
of novel phenylpropanoids in tomato. This up-regulation of
specific branches of phenylpropanoid metabolism was disclosed
by a combination of RNA sequencing and LC–MS analyses.
Phenylpropanoids have also been the target molecules of the
few ME attempts reported in grape (illustrated in Figure 2):
interestingly, while only limited studies have modified the
expression of structural genes, most efforts have focused on the
identification of biosynthetic transcriptional regulators. Within
the formers, flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-
hydroxylase (F3′5′H), key genes for flavonoid hydroxylation (and,
thus, for their stability, color and antioxidant capacity) have
been cloned in red grapevine, cv Shiraz, and their functionality
has been proved by ectopic expression in Petunia hybrida (Bogs
et al., 2006); in another study, Giovinazzo et al. (2005) have
achieved stilbene accumulation in tomato fruits by expressing
a grape stilbene synthase (STS). In the latter, a vast range of
MYB transcription factors acting as activators or repressors
of the pathway have has been described: interestingly, some
of them have been found to perturb the whole biosynthesis
[positively: MYBA1-1/2, MYBA2, MYB5a/b (Kobayashi et al.,
2002; Deluc et al., 2006, 2008; Walker et al., 2007; Rinaldo
et al., 2015); negatively: MYB4a/b (Cavallini et al., 2015)], while
another group looks to affect distinct phenylpropanoid sub-
classes [MYB14/15, directly activating STS genes (STSs)] (Höll
et al., 2013); MYBF1, positively regulating flavonol synthase
(FLS) expression (Czemmel et al., 2009); MYBPA1/2 and
MYBC2-L1/3, respectively boosting or repressing flavan-3-ols/
proanthocyanidin synthesis (Bogs et al., 2007; Cavallini et al.,
2015; Figure 2). Besides MYBs, additional transcription factors
affecting phenylpropanoid metabolite pool have been isolated
and characterized in grape: Wang et al. (2016), for instance,
have identified a VvbHLH1 factor, whose ectopic expression in
Arabidopsis resulted in increased flavonoid content, although
this factor looks to be also associated to ABA-related processes,
like drought and salt stresses; similarly, Malacarne et al. (2016)
have recently described a new bZIP factor, named VvibZIPC22,
whose ectopic expression in tobacco has proved its role in
triggering flavonoid synthesis and accumulation (Figure 2).
Once synthesized, flavonoids and anthocyanins are rapidly
transported to the vacuole: basically, three mechanisms including
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vesicle trafficking, membrane transporters and glutathione S-
transferase (GST)-mediated transport have been described. In
grape, in particular, two kinds of anthocyanin active transporters,
and localized to the tonoplast, have been discovered: two
belonging to the Multidrug And Toxic Extrusion (MATE) family
and called anthoMATE1-3 (AM1 and AM3), which can bind
acylated anthocyanins and translocate them to the vacuole in
the presence of MgATP (Gomez et al., 2009); and an ABC-
type transporter, ABCC1, shown to perform the transport
of glucosylated anthocyanidins (Francisco et al., 2013). More
recently, three GSTs (VviGST1, VviGST3, VviGST4) have been
tested for their ability to bind glutathione and monomers of
different phenylpropanoids (anthocyanin, PAs, and flavonols):
interestingly, all the three genes displayed the binding activity,
although with distinct specificity according the phenylpropanoid
class (Pérez-Díaz et al., 2016).

HOW KNOWLEDGE OF THE GENETIC
BASIS OF THE OBSERVED VARIABILITY
COULD CONTRIBUTE TO IMPROVE FRUIT
QUALITY

Over the last 25 years, a number of papers have started to
dissect the genetic basis of fruit quality traits by means of QTL
analysis (Duchêne et al., 2012; Klee and Tieman, 2013). In
tomato, fruit morphology, yield, fruit color, and soluble solid
concentration were the major focus of attention during the
early QTL mapping years but recently, more complex traits
such as primarymetabolites, nutritional, antioxidant, and volatile
compounds have received more attention (reviewed by Grandillo
et al., 2013; see Table 6). The translation of those early studies
into gene discovery and/or application to breeding programs
remains slow. This low impact can be explained in several ways,
including the limited accuracy of QTL mapping experiments due
to the lack of sufficient markers; the accuracy of phenotypic
evaluations; or the limitations or poor suitability of mapping
population designs (Collard et al., 2005), among others.

In spite of these shortcomings, genes involved in tomato
fruit morphology and sugar content QTLs have been isolated
(Fridman et al., 2000; Monforte et al., 2014). Recent advances
in sequencing, genotyping, and phenotyping technologies,
combined with the development of a wide range of plant
germplasm collections and populations, facilitate more accurate
QTL detection (Chen et al., 2015; Li and Sillanpää, 2015).
Today, these technologies permit the fine mapping of QTLs
and candidate genes for a wide range of complex traits such as
seed characteristics (Doligez et al., 2013), developmental stages
(Duchêne et al., 2012), or tolerance to root chilling (Arms et al.,
2015). In this last study, Arms et al. (2015) took advantage of a
sub-NILs population in order to identify and functionally test
candidate genes. Recently, Houel et al. (2015) worked on QTLs
related to leaf area and berry quality using high-throughput
genotyping technology from the Illumina R© 18K SNP chip and a
mapping population of 129 microvines derived from Picovine ×
Ugni Blanc flb. The compact size, early flowering, and continuous
production of reproductive organs make the Microvine or Dwarf

and Rapid Cycling and Flowering (DRCF) mutant a valuable
tool for QTL mapping (Houel et al., 2015). Combined with the
6,000 SNP markers given by the 18K SNP chip, this microvine
population has facilitated the identification of 10 QTLs of the 43
traits analyzed simultaneously (Houel et al., 2015). In tomato,
the development of the Illumina R© 8K SNP chip (Sim et al.,
2012) gave the research community access to affordable high-
throughput genotyping. The combination of bulk segregant
analysis with whole genome sequencing (i.e., QTL-seq) is another
approach that has proved a cost-effective method of identifying
QTLs involved in tomato fruit morphology (Illa-Berenguer et al.,
2015).

Hence, several studies insist on the importance of the
populations used to permit QTL fine mapping (Nicolas et al.,
2016). Indeed, the choice of an appropriate genotype panel from
the vast germplasm available is particularly relevant for QTL
identification either in the case of using a segregating mapping
population (Table 2) or in GWASenome Wide Association
Studies (GWAS). Take, for example, one of the biggest collection
of grapevine cultivars: that of the Institut National de la
Recherche Agronomique (France). The 2,486 unique grapevine
cultivars in this collection can be used to identify new QTLs
(Nicolas et al., 2016). From this huge population, Nicolas et al.
(2016) designed a diversity core panel of 247 grapevine cultivars
with limited relatedness to use in identifying new QTLs with
the GWAS approach as it captures most of the genetic and
phenotypic diversity present in the original collection. Even
though GWAS is a very promising strategy, the development of
bi-/multi-parent populations is still highly relevant (Pascual et al.,
2016) when comparing QTL detection in tomato RIL, MAGIC
populations and GWAS, to find significant differences between
the populations. RILs and MAGICs are especially powerful tools
for rare allele mappings, whereas GWAS provides a more general
view of common variants. An integration of different populations
and mega QTL analysis (Monforte et al., 2014), would help
detect an increasing number of small effect loci. High-throughput
genotyping methods also help speed up the construction of time-
consuming populations as IL collections (Barrantes et al., 2014).
We would encourage the development of a larger number of
these populations (especially ILs and MAGICs/NAMs) in the
near future, to allow easy access to a wide range of germplasm
resources.

One critical issue following QTL identification is to determine
the stability and robustness of their genetic basis in different
backgrounds and environments. Several studies have addressed
the stability of QTLs over time and generation, as well as across
environments (Monforte et al., 2001; Gur and Zamir, 2004; Chaïb
et al., 2006; Doligez et al., 2013; Arms et al., 2015; Houel et al.,
2015). These authors have shown that selecting stable QTLs to
introgress into agronomic cultivars is feasible, a finding that
must especially be taken into account considering issues relating
to global warming. Introgression lines have been proved to be
a highly suitable population design to address these questions
(Monforte et al., 2001; Gur and Zamir, 2004).

Quantitative trait loci maps have been published for most
descriptors of tomato fruit quality (color, texture, flavor) and also
for specific metabolites associated with these quality descriptors.
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TABLE 6 | QTL analysis in tomato and grape.

Species QTL or Candidate

Genes (CG)

Characters References

Tomato QTL and CG Tolerance to chilling Oyanedel et al., 2001; Elizondo and Oyanedel, 2011; Arms et al., 2015

Tomato QTL Shot turgor maintenance Truco et al., 2000

Tomato QTL Flavor and gustative

quality of berries

Saliba-Colombani et al., 2001; Causse et al., 2004; Schauer et al., 2006; Tieman et al., 2006;

Mathieu et al., 2009; Zanor et al., 2009; Zhang et al., 2015; Calafiore et al., 2016

Tomato QTL Flowering characteristics Tanksley et al., 1996; Doganlar et al., 2002; Jiménez-Gómez et al., 2007; Nakano et al., 2016

Tomato QTL Fruit Morphology, color,

soluble solid

concentration, yield

Eshed and Zamir, 1995; Fulton et al., 1997; Bernacchi et al., 1998; Saliba-Colombani et al., 2001;

Monforte et al., 2001; Van der Knaap et al., 2002; Gur and Zamir, 2004; Huang and van der Knaap,

2011

Tomato QTL Carotene/nutritional/vitamins Saliba-Colombani et al., 2001; Liu et al., 2003; Rousseaux et al., 2005; Schauer et al., 2006; Capel

et al., 2015

Grape QTL Disease resistance Fischer et al., 2004; Marguerit et al., 2009; Riaz et al., 2006, 2011

Grape CG Disease resistance Barker et al., 2005; Coleman et al., 2009; Barba et al., 2014; Feechan et al., 2013

Grape QTL Pest resistance Doucleff et al., 2004; Fischer et al., 2004; Zyprian et al., 2016; Krivanek et al., 2006; Xu et al., 2008

Grape QTL

For these tomato fruit volatiles, QTLs have been identified
in experimental populations obtained from crosses between
tomato cultivars and different germplasm sources used as donor
parents—e.g., cherry tomato (Saliba-Colombani et al., 2001;
Zanor et al., 2009) or the distantly related, green-fruited, wild
tomato species Solanum pennellii (Tadmor et al., 2002; Tieman
et al., 2006) and Solanum habrochaites (Mathieu et al., 2009).
In some cases, QTL validity (Zanor et al., 2009; Rambla et al.,
2016, 2017a) has been confirmed in other populations which are,
therefore, useful for breeding. Genomics has been successfully
used in a limited number of cases to narrow down the regions
of several hundreds of genes to a plausible candidate gene, as in
the aforementioned case of the “smoky” aroma (Tikunov et al.,
2013), and the gene for Brix (Zanor et al., 2009). In most cases,
however, the gene underlying the QLT has yet to be identified.

NEW PLANT BREEDING TECHNIQUES
(NPBT) FOR FRUIT QUALITY STUDIES

Over the past 10 years, the introduction of so-called, new plant
breeding techniques (NPBT) has constituted a breakthrough
in the field of crop improvement. A number of technologies
have been developed to produce new plants with desired
traits, in which the main bottlenecks to standard genetic
modification (i.e., the presence of foreign DNA in the modified
food plant) are no longer an issue. In this context, several
different strategies, based on the exploitation of chimeric
nucleases have been applied. Overall, they rely on a system
composed of sequence-specific DNA-binding domains coupled
to a non-specific DNA cleavage module (reviewed in: Gaj,
2014; Sprink et al., 2015; Schaart et al., 2016) that expedite
efficient genomic modifications through the introduction of
sequenced specific/targeted DNA double-strand breaks (DSBs),
which boost all the DNA repair components, like error-prone
non-homologous end joining (NHEJ), and homology-directed
repair (HDR). To date, the most widely utilized NPBTs are:

zinc finger nucleases, ZFNs; transcription activator-like effector
nucleases, TALENs; and Clustered Regulatory Interspaced
Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas)
system, CRISPR/Cas. Each strategy has its own advantages and
disadvantages, as illustrated in Table 7. To date, no TALEN
and ZNF studies of grape are available, whereas two proof-
of-concept trials have been described in tomato: Lor et al.
(2014) knocked out the PROCERA (PRO) gene involved in
the negative regulation of gibberellin signaling; in contrast,
Hilioti et al. (2016) have shown the effectiveness of the
ZFN approach by targeting the expression of the LEAFY-
COTYLEDON1-LIKE4 (L1L4) transcription factor, coding for
the β subunit of nuclear factor Y and severely affecting plant
development.

Currently, the most promising NPBT is based on the
exploitation of the CRISPR/Cas9 system. Involved in the
immune response processes of the prokaryotes (Barrangou et al.,
2007), CRISPRs have been identified in 90% of sequenced
archaea (Grissa et al., 2007). A simplified CRISPR system,
relying on a single protein (Cas9), has been shown capable
of modulating expression of specific one-by-one targets in
human cells, insects and plants (Shalem et al., 2014; Konermann
et al., 2015). More recently, a powerful tool for multi-modular
expression of several plant genes in a single construct (with
so-called “Goldenbraid” technology; Sarrion-Perdigones et al.,
2011, 2013) has been adapted to CRISPR/Cas9 technology to
build constructs able to modify the expression of a series
of targets of interest (Vazquez-Vilar et al., 2016). Examples
of efficient modifications of specific target genes have been
reported both for tomato and grape: by using the CRISPR/Cas9
system. In fact, the ripening inhibitor (RIN) gene, encoding
a MADS-box transcription factor regulating ethylene synthesis
and, thus, fruit ripening, has been successfully mutagenized (Ito
et al., 2015); simultaneously, the efficient knockout of the L-
idonate dehydrogenase gene (IdnDH), involved in the tartaric
acid pathway, has been achieved in both grape cell suspension
and plants (Ren et al., 2016). Additionally, still in grape, a
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computational survey of all the CRISPR/Cas9 sites available in
the genome has been performed. This has revealed the presence
of 35,767,960 potential CRISPR/Cas9 target sites, distributed
across all chromosomes with a preferential localization at the
coding region level (Wang et al., 2016). A Grape-CRISPR website
of all possible protospacers and target sites has been created and
made available to the public (http://biodb.sdau.edu.cn/gc/index.
html).

New plant breeding techniques have already proved successful
in the potential improvement of apple and citrus fruit quality (Jia
and Nian, 2014; Nishitani et al., 2016), although the feasibility
of the technology has been exploited as proof-of-concept by the
knockout of the PDS gene, acting on carotenoid biosynthesis at
vegetative and reproductive levels. In contrast, to date, only two
advanced studies in tomato have been described: precise targeting
of the pectate lyase (PL) gene, which resulted in delayed fruit
softening without perturbing other ripening-related parameters
(Uluisik et al., 2016); and editing the SlAGAMOUS-LIKE6
(SlAGL6), a MADS-box transcription factor which provides
tolerance to heat stress conditions and results in parthenocarpic
fruits (Klap et al., 2016).

Taking into consideration the potential of these technologies,
a more precise metabolic refinery is expected to come by
selecting specific targets for nutritional and anti-nutritional
molecules. This would imply the loss (knock out) and/or
gain of function (activation) of selected enzymatic activities,
respectively. Overall, these technologies potentially represent a
powerful, innovative opportunity to introduce fine modifications
in specific target genes. However, although the effect of
knocking out genes has already proved successful, more work
is needed for other kinds of gene remodeling (e.g., activation,
production of allelic variants, etc.). To this end, significant
contributions are likely to be provided by combining the
CRISPR systems with additional enzymatic activities acting on
DNA, such as recombinases, transposases, and DNA histone
methyltransferases/acetyltransferases. These additional editing
capabilities could potentially enable a vaster array of gene changes
that, in the case of the fruit quality trait, may lead to a revolution
in efficiency and respond better to consumer interests.

CONCLUSION AND PERSPECTIVES

Three elements required to identify the genetic basis responsible
for suitable phenotypes, and to use them to improve fruit
quality produced in fields, have experienced huge technological
progresses in the recent years. The first one is the constitution
of germplasm banks in order to conserve the existing
genetic diversity, including both natural and artificialy-induced
variability. The second one is the ability to identify suitable
phenotypes, notably innovations from wild genotypes, and
to decipher their genetic basis. Finally, the third element is
represented by the capacity to introduce the genetic elements into
agronomic germplasm, remarkably through NPBT or selection
assisted by markers. Altogether, the important advances in plant
biotechnologies described in this review could last for long time,
further facilitating plant breeding.

Indeed, biotechnologies are often praised for assuring food
security to a growing Human population, through their
impact on crop yield, and de facto, hunger has diminished
drastically. Nevertheless, malnutrition still remains a global
health problem, which also concerns developed countries (e.g.,
obesity) (FAO, 2015 hunger report; Steiber et al., 2004),
suggesting that access to balanced and quality food is a
combination of multiple factors besides agronomic yield as food
allocation, waste and nutritional quality (Foley et al., 2011;
Tilman and Clark, 2015). Hence, the responsibility of plant
scientist is to develop solution in order to try to solve the
society concerns. This could be achieved by a wide range of
biotechnologies, dedicated to setting up the best suited genotypes,
and producing knowledge that enables the optimization of
agronomic practices (Chappell and LaValle, 2011; Amini et al.,
2014).

However, in the context of recent societal mistrust about
biotechnologies, sustainability of fruit production is becoming
a quality trait more and more demanded by consumers, and
awareness by research institutes. If one wants biotechnologies
to be synonym of sustainability, improving yields and fruit
quality in a long run on diverse field conditions, the notion
of cost-benefits should be weighted ensuring that (i) Human
and environmental health are not threatened, (ii) scientist
and farmer self-reliance is not jeopardized by monopoles hold
by international conglomerates including seed, chemical, and
processing companies (Francis et al., 2003; Altieri and Nicholls,
2005; Chappell and LaValle, 2011; Guillemaud et al., 2016), and
(iii) biotechnologies bring real benefits compared to existing
processes (Temple et al., 2011; Abbo et al., 2014; Amini et al.,
2014; Andersen et al., 2015; Reganold and Wachter, 2016).
This debate around biotechnology use is well-illustrated by the
debate around GMOs whose use could be more problematic
than genetic manipulation itself (Altieri and Rosset, 1999;
Chappell and LaValle, 2011; Amini et al., 2014; Guillemaud et al.,
2016).

Therein, biotechnologies have their place within agroecology
which bases the design of agricultural systems on the valorization
of ecosystemic services to set up agri-food system economically
viable, socially fair, and sustainable for the environment (Francis
et al., 2003; Altieri and Nicholls, 2005; Wezel et al., 2009,
2014; García et al., 2013; Kershen, 2013). In this frame,
evaluation of of biotechnologies relevance taking into account
their global impact on all components of our societies, could be
considered as a sustainable way to integrate biotechnologies to
agriculture.
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