
Escola Tècnica Superior d’Enginyeria Informàtica
Universitat Politècnica de València

Design and verification of a Systolic Array Multiplier
DEGREE FINAL WORK

Degree in Computer Engineering

Author: Pablo Andreu Cerezo

Tutor: José Flich Cardo

Experimental Tutor: Carles Hernandez Luz

Course 2019-2020

Resum
La intel·ligència artificial intenta resoldre molts dels problemes als quals s’enfronta la

societat moderna. Però, perquè aquesta aconsegueixi guanyar popularitat i arribar a estar
present en molts dels aspectes de les nostres vides, és necessari el desenvolupament de
xips eficients dedicats a la inferència en xarxes neuronals , tenint la multiplicació eficient
de matrius com a component essencial per a aquesta tasca.

Per això, en aquest treball s’afronta el disseny, verificació i caracterització d’un mul-
tiplicador de matrius compatible amb AXI. En aquest treball analitzem el fonament de
la multiplicació de matrius de manera sistòlica, fins els passos necessaris perquè aquest
sigui funcional dins el paradigma descrit. Com a resultat obtenim el nostre propi nucli
RTL compatible OpenCL capaç de multiplicar matrius en una FPGA i d’aquesta manera
fàcilment desplegable a un ASIC.

Paraules clau: Matriu sistòlica, FPGA, Verilog, FloPoCo, AXI, Vitis, OpenCL

Resumen
La inteligencia artificial intenta resolver muchos de los problemas a los que se enfren-

ta la sociedad moderna. Pero, para que esta consiga ganar popularidad y llegar a estar
presente en muchos de los aspectos de nuestras vidas, es necesario el desarrollo de chips
eficientes dedicados a la inferencia en redes neuronales, siendo la multiplicación eficiente
de matrices esencial para esta tarea.

Por ello, en este trabajo se afronta el diseño, verificación y caracterización de un multi-
plicador de matrices compatible con AXI. Nos proponemos analizar desde el fundamento
de la multiplicación de matrices de manera sistólica, hasta los pasos necesarios para que
este sea funcional dentro del paradigma descrito. Como resultado obtenemos un kernel
RTL lanzable desde OpenCl capaz de multiplicar matrices en una FPGA y siendo este
fácilmente desplegable en ASIC.

Palabras clave: Matriz sistólica, FPGA, Verilog, FloPoCo, AXI, Vitis, OpenCL

Abstract
Artificial intelligence aims to solve much of the problems of the contemporary society

that we live in. But, in order for it to be ever so prevalent, the development of efficient
inference-specific chips is needed, being matrix multiplication at the core of neural net-
work inference.

So, in this work, the design, verification and characterization of an AXI-Compliant
matrix multiplier will be reviewed. We range from the systolic array paradigm, to the
needed steps and modules to make it fully functional, finally reaching an open-CL launch-
able matrix multiplication kernel that can be tested on FPGA and can be easily ported for
ASIC usage.

Key words: Systolic array, FPGA, Verilog, FloPoCo, AXI, Vitis, OpenCL

iii

Contents

Contents v
List of Figures vii
List of Tables viii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Expected impact . 2
1.4 Methodology . 3
1.5 Memory structure . 3

2 Background 5
2.1 The Traditional CPU Model . 5
2.2 The Need for Accelerators (Heterogeneous Computing) 7

2.2.1 Floating Point Unit . 7
2.2.2 Systolic Array Organization . 9
2.2.3 Quantization . 11

2.3 Implementation Tools . 12
2.3.1 FPGA Tools . 12
2.3.2 Libraries . 12

3 State of the art 17
3.1 Widespread Dedicated Neural Network Accelerators 17

3.1.1 Nvidia Tensor Cores . 17
3.1.2 Google TPU . 18
3.1.3 Graphcore IPU . 20

3.2 Widespread FPGA Neural Network Accelerator designs 21
3.2.1 HLS Designs . 21
3.2.2 Xilinx DPU core . 22

3.3 Proposed design place on the current state of the art 23
4 Architectural design 25

4.1 Basic element: MAC unit . 27
4.1.1 Internal MAC unit architecture . 27
4.1.2 Data loading process . 29
4.1.3 Flow Control Mechanism . 30

4.2 Our systolic array design . 30
4.2.1 Overview example of the process of the proposed matrix multipli-

cation unit . 31
4.2.2 Systolic Array control submodules 34

4.3 AXI . 36
5 Performance Evaluation 37

5.1 Testing methodology . 37
5.1.1 Simulation of the design on Vivado 37
5.1.2 Simulation of the finished result on Vitis 37

v

vi CONTENTS

5.2 Results and discussion . 39
5.2.1 Performance . 39
5.2.2 Resources analysis . 41
5.2.3 FloPoCo tuning and its performance impact 43

5.3 Conclusion . 46
6 Conclusions 47

6.1 Connection between the Computer Science degree and the presented work 48
7 Future work 49

7.1 Improvements on current design . 49
7.2 Pipelining usage improvement . 49
7.3 A matrix caching mechanism for partial multiplications 50
7.4 Variable precision arithmetic . 51

Bibliography 53

Appendix
A Definitions, terminology and acronyms 55

List of Figures

2.1 The MIPS processor data-path. 5
2.2 The AMD Zen microarchitecture. 6
2.3 Single precision floating point representation. IEEE-754 standard. 8
2.4 bfloat16 floating point representation. 9
2.5 Matrix multiplication example. 9
2.6 Systolic array organization. Matrix multiplication example. Initialized sys-

tem. 10
2.7 Systolic array organization. Matrix multiplication example, first step. . . . 10
2.8 Systolic array organization. Matrix multiplication example, second step. . 10
2.9 Systolic array organization. Matrix multiplication example, third step. . . 10
2.10 Systolic array organization. Matrix multiplication example, fourth step. . 10
2.11 A quantization example. 11
2.12 Single precision floating point representation. The FloPoCo way. 13
2.13 Passively cooled Alveo U200 card. 15

3.1 Mixed precision multiplication with NVIDIA Tensor Cores. 17
3.2 Half precision floating point representation. IEEE-754 binary16 standard. 18
3.3 Google’s TPU version 1 system architecture overview. 18
3.4 Google’s TPU version two and three system architecture. 19
3.5 Coral edge for production TPU models as per march 2020. 20
3.6 IPU architectural overview diagram. 21
3.7 DPU Top-Level Block Diagram. 23

4.1 System representation of the proposed design. 26
4.2 MAC operator sub-module interface and basic operation. 27
4.3 FPU module internal . 28
4.4 FPU loading mechanism. First cycle. 29
4.5 FPU loading mechanism. Second cycle. 29
4.6 FPU loading mechanism. Third cycle. 29
4.7 Valid-Ready data transfer timing diagram example. 30
4.8 An example of a matrix multiplication. 31
4.9 An example of a matrix multiplication. First step. 32
4.10 An example of a matrix multiplication. Second step. 32
4.11 An example of a matrix multiplication. Third step. 32
4.12 An example of a matrix multiplication. Fourth step. 33
4.13 An example of a matrix multiplication. Fifth step. 33
4.14 An example of a matrix multiplication. Sixth step. 33
4.15 An example of a matrix multiplication. Seventh step. 34
4.16 An example of a matrix multiplication. Eight step. 34
4.17 Variable FIFO queue depth representation. 35

5.1 Results of the Vitis hardware emulation. 38
5.2 Vitis application timeline results. 38
5.3 Performance impact of different A multiplications against a B matrix loaded. 41

vii

5.4 Percentage of utilization of Alveo U200 resources. 42
5.5 Resource usage of Systolic array module and FIFO queue subsystem de-

pending on size of the Systolic Array. 43
5.6 Performance bottleneck of the default FloPoCo pipelining. 45
5.7 FLOPS per target frequency for an 8 × 8 Systolic Array. 45
5.8 Ideal maximum FLOPS per target frequency and pipelining usage for an

8x8 Systolic Array. 46

7.1 Sub-matrix multiplication example for MAC unit pipelining. 50
7.2 Rudimentary proposed Systolic Array caching mechanism. 50

List of Tables

4.1 Valid-Ready control flow mechanism possible states. 30

5.1 Size and performance comparison of the proposed design. 40
5.2 Resource usage of Alveo U200 according to size of the design. 42
5.3 Percentage of resources taken by the Systolic Array part of the design. . . 43
5.4 FloPoCo initial approach synthesis and performance results. 44
5.5 FloPoCo with tuned target frequencies synthesis and performance results. 44

viii

CHAPTER 1

Introduction

Neural network inference is at the core of machine learning inference and training. With
the recent advances and the current trends of adapting almost everything to machine
learning, accelerating those critical workloads becomes extremely important.

For accelerating AI (Artificial Intelligence) workloads, floating point matrix multipli-
cation becomes essential and it is considerably complex computationally speaking and
non-trivial to parallelize for large matrices. AI has been accelerated by the usage of
parallelization, but is still far from being perfectly efficient. Therefore, alternative chip
architectures for solving this efficiency problem have been developed over the last few
years.

One potential architecture for multiplying matrices is the Systolic Array design. The
Systolic Array organization is what our design uses as its foundation as is one of the most
efficient architectures for matrix multiplication with data reuse. A complete explanation
of the Systolic Array architecture, our selected Systolic Array design and an in-depth
view onto the challenges, performance and design choices of our design are exhibited in
this work.

1.1 Motivation

The market for AI hardware acceleration has been consistently rising for the past years,
but there are still some ways in which it can be greatly improved. When we proposed
this design we looked at the existing alternatives, and, even though this field is extremely
saturated with innovation, the Open-Source alternatives for implementing this were far
fewer than expected, making every one of the existing ones difficult to implement on
within our existing objectives. Those core objectives where:

• For the design to be Open Source.

• For the design to be easily converted into ASIC (Application-specific integrated
circuit), with this meaning that our design must be DSP-independent.

• For the design to be easily adapted for its use as a RISC-V arithmetic co-processor.

We couldn’t find existing projects that met that criteria, mainly because the use of
DSPs on FPGA designs is incredibly prevalent due to the current trend of HLS (High
Level Synthesis) design instead of the traditional RTL (Register Transfer Logic) that is
much more easily translated into silicon.

Therefore, we took this as an opportunity to create a brand new innovative matrix
multiplication unit to contribute to the AI acceleration field. Indeed, we designed a sys-

1

2 Introduction

tem to be considered as a proof of concept so that can later be developed into a competi-
tive matrix multiplier. This opportunity was great for me personally as hardware design
has been always at my heart and further expanding my knowledge of the field is one of
my passions. So this project will let me learn some industry-standard ways of communi-
cation such as the AXI protocol and enrich my understanding of FPGA programming.

Another great motivator for this work was the possibility to work in an investigation
environment, with great coworkers and mentors that offered great support and let me
fully develop my skills in the best possible way. Being this an opportunity to grow both
personally and professionally.

1.2 Objectives

So, once we had the motivation figured out, we defined the following objectives:

• The design had to be Open Source and certifiable.

• The design had to be made on RTL instead of HLS.

• The design must multiply single precision floating point matrices.

• The design had to implement a Systolic Array for efficient matrix multiplication.

• The design must be able to be attached to an AXI bus for processor communication.

With those objectives in mind, we thoroughly analysed the different flavours of Sys-
tolic Array implementations and AXI bus attachments and opted for defining some sec-
ondary objectives, listed next:

• The design had to implement FloPoCo as an arithmetic library, with arithmetic li-
braries being easily interchangeable. This allows for a flexible adaptation to custom
precision formats and different floating point libraries.

• The design had to be able to be easily configurable for different precision arithmetic
and mixed-precision arithmetic (potentially achieved by the use of FloPoCo).

• The design had to be tested and implemented on the Alveo U200 platform.

• The Systolic Array design should be implemented as Google’s TPU v1 implemented
it, thus, reducing the required AXI bus bandwidth.

• At the end of the design, it must be tested and benchmarked, making sure there
was no possible case of unplanned matrix multiplication failure.

• The design must be able to easily be expanded for more complex capabilities, so a
modular design must be provided.

1.3 Expected impact

Related with the expected impact this design could have on our modern society the pos-
sibilities are endless. AI is starting to become ubiquitous and has endless applications.
From object tracking or recognition to autonomous driving. All those options could be
accelerated with a design like the one proposed here, although with some major improve-
ments on performance and size.

1.4 Methodology 3

A possible development with this chip would be that of autonomous vehicles, or self
driving vehicles, as well as a human-machine interface, that, if installed on a train could
give the train driver some insight on what to perform on each moment, warning him on
possible dangerous situations even if those are not yet visible for such driver. Indeed, the
goal is to use the developed multiplier on the H2020 SELENE European Project, which
is lead by the advisors of this project and where the author of the project will further
collaborate and extend the work presented here. The SELENE project aims to bring AI
support to three challenging use cases, ranging from automated trains to autonomous
driving.

Regarding the UN (United Nations) sustainable development goals that this project
help further we shall outline a couple:

• Good Health and Well-Being (Goal 3)

• Sustainable Cities and Communities (Goal 11)

Those are selected although with artificial intelligence the possibilities and areas of
application are endless. We selected those goals as they perfectly suit with traditional AI
applications.

Good Health and Well-Being are selected as they can be directly related with self
driving cars, potentially leading to less road accidents and road clutter. Therefore, quality
of life is greatly improved. Sustainable cities and Communities are selected as smart
cities are becoming increasingly prevalent. Huge possibilities are envisaged on the front
of stoplight automation that automatically meets traffic demands or detects accidents.

1.4 Methodology

For the methodology some early decisions had to be made. Firstly, the arithmetic library
that we wanted to use. In that regard we chose FloPoCo due to it being entirely RTL and
having selectable and adaptable pipelining. It met our Open Source and RTL objectives
and provided single precision and mixed precision arithmetic support.

In terms of the AXI compatibility we chose the Xilinx’s AXI wrapper submodule as it
is a complete and fully tested component. Using the Xilinx AXI wrapper also enabled us
to use the XRT and Vitis kernels to test our design on a higher level.

As for testing we chose to test the output with a simple Python script we developed
and to use the Xilinx Vivado integrated waveform analysis tools to perform intra- and
inter-module debugging.

As for the design of the main part of the work (the systolic Array) we developed self-
sufficient MAC (Multiply ACcumulate) submodules that communicate to each other us-
ing the Valid-Ready interface. We chose this design as it is timing-agnostic inside the sys-
tolic array, and thus, simpler. It provided us backpressure support without any needed
top-level control logic.

1.5 Memory structure

This document is structured as follows.

In chapter 2 we present all the concepts that are necessary to understand this work.
From hardware concepts such as the function of a Floating Point unit and the most com-
mon Floating Point formats to the software libraries and tools used for this project.

4 Introduction

In chapter 3 we present the most prevalent AI accelerators in both the ASIC and FPGA
fields.

In chapter 4 we present the design of our matrix multiplier solution. From a gen-
eral diagram of the inner workings of the module, to an in depth explanation of every
submodule of the Systolic Array design.

In chapter 5 we thoroughly benchmark our design from various perspectives. We
asses the size, achievable frequency and performance for various real-world and theoret-
ical cases.

In chapter 6 we try to summarize the work done and put it into perspective with the
objectives presented on this chapter, assessing the relation between this work and the
Computer Science degree that it is presented in.

Finally in chapter 7 we present some possible optimizations that can be performed
on this design to truly extract the maximum possible performance out of the FloPoCo
generated operators and make it truly competitive.

CHAPTER 2

Background

In this chapter, we introduce all the basic concepts needed to understand this work. We
describe the IEEE754 floating point standard and the specific format used in this work.
We also introduce the systolic array architecture and show an example of a systolic array
multiplication process to further understand its inner workings. Then we introduce the
tools used to develop our design. Further, we present the tools that enable running our
design on a modern PCI-compatible FPGA and the programming paradigm used.

2.1 The Traditional CPU Model

Since the early processors, the CPU (Central Processing Unit) has applied the same com-
puting paradigm: First, reading data from memory and storing it into registers. Then,
forwarding data into a Computing Unit with an opcode to obtain the desired result. Re-
sults are stored on a register for further computations to be performed. Finally, data is
written back into main memory.

Figure 2.1: The MIPS processor data-path.

Source: [1, p. 302]

5

6 Background

On Figure 2.1 we can observe the aforementioned process. We have a PC (Program
Counter) register that points to the current instruction address to be run. Then, with that
address we fetch the instruction from memory (Instruction memory in this case). Next,
with the data that is coded on this instruction, this simple processor can do the following:

• Update the PC with a new instruction address. This is commonly called jumping
to a new address. In Figure 2.1 we can observe the wire going from Instruction
memory to the upper rightmost adder. There, the position of the program counter
will be updated n positions in comparison from its previous address. Therefore,
jumping to a new address with new instructions to be executed.

• Read data from a register and store it on the data memory.

• Read data from a register, perform an operation on the ALU (Arithmetic and Logic
Unit). Storing it later on a register. Both registers (Source and Destination), and the
operation to be performed on its data are encoded onto the instruction.

Figure 2.1 is obviously a simplified version of what we can see on modern processors,
but illustrates all the principal parts of one. Modern processors have multiple arithmetic
units, multiple cores, an entire memory hierarchy below the register level and many more
optimizations.

Figure 2.2: The AMD Zen microarchitecture.

Source: [2, p. 7]

On Figure 2.2 an example of a modern processor microarchitecture is shown. As we
can see, it has a complex cache subsystem and speculative instruction execution, denoted
by the integer and floating point register rename and schedulers. Those follow the algo-
rithm described on [3]. But, the basic layout presented on Figure 2.1 is still there. This

2.2 The Need for Accelerators (Heterogeneous Computing) 7

means that we still have an Instruction Fetch, Decode and the operands passing through
an ALU and being stored onto registers.

2.2 The Need for Accelerators (Heterogeneous Computing)

With the simple model described on Figure 2.1 we are heavily constrained on data par-
allelism (we can only compute as many operations as operators are available). This is
indeed logical, but, the number of resources needed to make a sequential program essen-
tially "Semi-parallel" is significant. The support for parallelism is described by Tomasulo
on its famous paper [3]. It basically works by dynamically checking dependencies be-
tween instructions on a sequential program and executing in parallel those that do not
depend on each other.

This process, however, is still an inefficient process, taking a great deal of die space
on a chip for diminishing single core performance returns as a consequence of Moore’s
law [4, Section: Costs and curves] slowing on recent times.

This is the reason why application specific chip designs are increasingly emerging on
these days. Specific compute units offer greater efficiency and speed gains on specific
workloads and are becoming a de facto complement to modern CPUs.

In this specific workload accelerator area: Graphical Processing Units (GPUs), Tensor
Processing Units (TPUs) and FPGAs are among the current options. They offer significant
efficiency and power advantages in certain workloads vs a traditional CPU due to their
inherently different design. That design is much less general purpose but accelerates
a limited range of functions greatly due to their dedicated hardware to do so. Notice
accelerated functions can also be performed by traditional CPUs, but in a much slower
and less power efficient manner.

2.2.1. Floating Point Unit

Most applications using accelerators rely on real number processing. This is the notable
case of artificial intelligence applications. For this reason we focus on accelerators that
target floating point numbers.

A floating point unit is a computing unit dedicated to perform floating point oper-
ations. Floating point is a representation method for real numbers, where we have a
base and an exponent coded into it, enabling the representation of huge numbers with a
limited set of bits.

This enables the representation of larger than 2bits numbers. Specifically, IEEE-754
single precision lets us represent numbers on the range of ≈ (−2127, 2127). However, this
range makes the representation of large exact numbers impossible. Nevertheless, this
format is still worth being used for real numbers.

Floating point numbers can be represented in a wide variety of ways. From the basic
ones described in this section and shown in Figure 3.2, to more complex ones such as
the FloPoCo one described on subsection 2.3.2 and the one used by Google described on
Figure 2.4. In this project, we select the FloPoCo method.

The IEEE-754 Floating Point Standard

IEEE-754 defines a wide variety of bit lengths and methods of defining floating point
numbers on a binary representation. Those methods are very similar, and for the pur-

8 Background

poses of this work, understanding the 32-bit floating point representation is enough. This
representation is called the Single Precision Floating Point number representation.

Figure 2.3: Single precision floating point representation. IEEE-754 standard.

The sign bit just represents the sign of the number, being zero for a positive floating
point number and one for a negative one. Special values such as +0, −0, +∞ and −∞
are supported.

The exponent is a number represented using 127-excess format with two’s comple-
ment. This means that a value of "00000000" is equal to -127 and a value of "11111111" is
equal to 128. A zero exponent value equals to "01111111".

The fraction bits represent a number in the 1.fraction format, being the first bit the 2−1

and so on.

As an example, the following procedure is the decoding process of the number coded
in Figure 2.3:

• Sign: The sign bit is decoded as positive.

• Exponent: The exponent bits are "10000000" or 27 = 128. By encoding the 128
to excess 127, the following result is presented 128 − 127 = 1. Making the final
exponent 1.

• Fraction: Following the method described before we have a fraction equal to "01000-
00000..." or 0 × 2−1 + 1 × 2−2 = 0.25. But, per IEEE-754 standard definition, the
mantissa number starts with an implicit bit set to one [5, p. 19], so the real mantissa
is 1.25.

If we put all the previous numbers together we get 21 × 1.25 = 2.5, obtaining its
decimal number representation.

With the previously explained format, special numbers such as zero, infinity, NaN
(Not a Number) and numbers close to zero are not coded. For those, the IEEE-754 stan-
dard defines special combinations of bits to represent them. One of those combinations
are the de-normalized, close-to-zero numbers. Those are coded with an exponent value
of all zeros. With the fraction component codification being 0.fraction instead of the pre-
vious 1.fraction. This enables the representation of very small numbers.

Also, setting all bits to one on the exponent field has special meanings. An exponent
of all ones with an all-zeros mantissa represents infinity, being -infinity possible with a
negative sign field. Furthermore, an all-ones exponent with any mantissa bit set to one is
considered NaN (not a number).

Bfloat16 number representation

The bfloat16 format is an alternative representation format to the conventional IEEE754
half precision format shown on Figure 3.2. This format emerged by the need of energy-
efficient methods with lower precision accuracy requirements.

This format is specially thought to be easily interoperable with the IEEE754 single
precision format shown on Figure 2.3. This interoperability is given by both formats us-

2.2 The Need for Accelerators (Heterogeneous Computing) 9

Figure 2.4: bfloat16 floating point representation.

ing the same number of bits on the exponent field. Making the conversion between the
IEEE754 single precision and bfloat16 as trivial as truncating the lower bits of the man-
tissa and thus, sacrificing a bit of precision. The inverse is also trivial, for a conversion
between bfloat16 and IEEE754 single precision, a mantissa padding with zeroes suffices.

This format makes mixed precision arithmetic functionally the same as single preci-
sion arithmetic inside an operator by eliminating the need for number translation hard-
ware, being multiplication on bfloat16 and addition on IEEE754 single precision possible
and widely implemented with this system.

bfloat16 is widely used on neural network workloads due to its high range of values
(as a result of its eight bit exponent). According to Google “it provides a better training
and model accuracy than the IEEE half-precision representation” [6, TPU Versions]

2.2.2. Systolic Array Organization

In this work we deploy a systolic array module. Such arrays represent a highly efficient
method to perform matrix multiplication operations and are used at the core of AI ap-
plications. For that reason, we describe here the basic foundations of systolic arrays,
describing our slightly different implementation on section 4.2.

A systolic array works by flowing data from memory through an array of connected
compute units, therefore reusing data read from memory. In our case, the matrix multiply
operation, compute units are made of MAC (Multiply ACcumulate) units. By reusing
data read from memory, this organization is much faster and efficient than a CPU. In
particular, the Google TPU v1 was 62 times more efficient in performance per watt in
comparison with a traditional CPU [7, p. 7].

We illustrate an example of the matrix multiplication on Figure 2.5 performed on a
systolic architecture.

Figure 2.5: Matrix multiplication example.

A first analysis of the systolic architecture shown on Figure 2.6 shows us four compute
units interconnected on a systolic array manner. Each compute unit takes two values, one
from top and one from left and multiply them, storing the result on a built-in accumulator
register. Notice that each compute unit will operate with the input values when they are
both available.

Then, the data fed to the unit is passed onto the next unit. Making the data flow inside
the systolic array without the need to use store operations and named registers.

As shown on Figure 2.7 the data is fed to the systolic array from top and left, flowing
on the direction indicated by the arrows. So the red data is multiplied to the blue data on

10 Background

Figure 2.6: Systolic array organization. Matrix multiplication example. Initialized system.

Figure 2.7: Systolic array organization. Ma-
trix multiplication example, first step.

Figure 2.8: Systolic array organization. Ma-
trix multiplication example, second step.

each unit and flows downwards, while the blue data will flow rightwards. The result of
the performed multiplications is accumulated into each units memory as shown above.

Then, on Figure 2.8 the systolic data flow can be seen clearly. The value 2 that was
on the upper leftmost unit flows into the upper rightmost unit, being multiplied by the
value 4 coming from above. This process will be repeated with all data fed into the matrix
and is a symmetrical process.

This "symmetry" means that the same process is occurring on every compute unit
in an identical manner, making conceptually the scaling of this units extremely simple.
Larger size arrays means further reusing data and reducing access to memory.

In this example the compute units perform multiply and accumulate operations, but
they could perform a wide range of possible operations. What should be noted from
this example is the way the data flows inside the array, and not the specific operation
performed inside each compute unit.

Figure 2.9: Systolic array organization. Ma-
trix multiplication example, third step.

Figure 2.10: Systolic array organization.
Matrix multiplication example, fourth step.

Finally, on Figure 2.9 and Figure 2.10 the last two steps of this process can be seen.
The data flowing outside the array could be fed onto another array or simply discarded,
being that outside the scope of this example and being implementation-dependant.

2.2 The Need for Accelerators (Heterogeneous Computing) 11

On section 4.2 our specific implementation of the systolic array architecture will be
introduced.

2.2.3. Quantization

Quantization consists on converting the standard 32-bit values into 8-bit values by map-
ping them inside a range. Quantization is useful to neural networks as values inside
a neural network tend to stay between a small range, for example between -8.342f to
23.354f. Using quantization, we map the least value to 0 and the maximum value to 255
so that instead of having a smooth function we have a less-smooth but precise-enough
representation.

This quantization method is supported and widely used on multiple AI acceleration
designs, such as the Nvidia Tensor Cores [8, Turing Tensor Cores] as well as in the Google
TPU v1 (see subsection 3.1.2) and has become an incredibly efficient mechanism for num-
ber representation in neural networks.

By using this method, each quantized step would be of 0.12381549523f, so loosing
some precision is possible, but in neural networks, high precision needs tend to be over-
shadowed by the large exponent disparity of weights.

Figure 2.11: A quantization example.

Source: [9, Quantization in neural networks].

By using quantization we are obviously losing some precision. This is merely a con-
sequence of using less bits to represent a range of numbers. This precision loss is not
significant when dealing with non-zero values. However, we often use zeros as padding
when dealing with systolic arrays or to initialize certain values or represent certain deci-
sions.

This loss of precision can be observed on the previously mentioned quantization ex-
ample with 8 bits over [-8.342, 23.354]. Where zero would be the integer 67 and represent
-0.047f. Here we can see how the loss of precision on the zero over a large quantity of
numbers can cause a large drift on the final values.

The zero value problem only arises due to the non-zero representing value on the
quantized values, this can easily be solved by forcing one quantized value to zero or can
be ignored. The path of ignoring the non-precise zero values seems to not cause many is-
sues with the most common neural networks and algorithms where a few decimal places
in precision drift is not that important, though depending on the different rounding poli-
cies and bit lengths used on the quantization phase, the results can vary wildly [10].

12 Background

In this project we selected the FloPoCo floating-point unit to implemenent our FPU
units. This allows us to play with different quantization algorithms and methods in
our systolic array solution. Indeed, this is one of the grand goals we pursue in this
project as we plan to use the provided solution in the H2020 SELENE project.

2.3 Implementation Tools

In this section we describe the software tools and libraries used for the project. We target
the deployment of our systolic array in FPGAs. Therefore, we describe here the tools
used to program FPGAs as well as the available libraries to ease our designs.

2.3.1. FPGA Tools

As of FPGA tools we use both the Xilinx Vivado IDE tool and the Xilinx Vitis IDE tool. In
the next paragraphs, we will describe both of them.

Xilinx Vivado is a hardware design and verification software that we use extensively
in our design. Vivado enables us to organize the code, view schematics, calculate achiev-
able frequencies for different pipelined configurations and see the internal signal values
for a specific time in our design.

With this software, in addition to the high expressive power of System Verilog, we
verify our design with extensive test bench runs. Vivado simplifies debugging hardware
by setting custom waveform configuration files. Those let us debug and compare indi-
vidual signals in specific critical times and check whether the result of a module was as
expected.

“Xilinx Vitis Unified Software Platform is a tool that combines all aspects of Xilinx
software development into one unified environment”[11]. This translates into a tool that
lets the FPGA programmer design circuits on a HLS (High Level Synthesis) program-
ming language like Cpp or OpenCL. Those circuits, that we call kernels, can be launched
from an OpenCL code running on the host machine. This, in theory, makes the use and
design of FPGA much easier and comparable to a GPU accelerated workflow for the pro-
grammer.

HLS design is, in theory, a simpler and faster design process than traditional RTL
design. In practice, there is a handful of pragmas that you can use in order for Vitis to
infer an efficient design. The need, however, for maximum efficiency, configurability and
control is what motivated us to design our circuit on traditional RTL languages. This RTL
design gives us much more control to leverage the resources that are available to us on
the FPGA silicon, giving our design plenty more reconfiguration potential.

Vitis, in addition to being able to infer RTL designs from HLS descriptions, is able
to package RTL designs as kernels to be enqueued from the OpenCL code on the host
machine.

2.3.2. Libraries

FloPoCo

“FloPoCo (Floating-PointCores, but not only) is an open-source C++ framework for
the generation of arithmetic data-paths. It provides a command-line interface that inputs
operator specifications, and outputs synthesizable VHDL.” [12]

2.3 Implementation Tools 13

We extensively used this framework to generate the core of our systolic array, the
MAC (Multiply ACcumulate) arithmetic unit. This arithmetic unit is composed of Flo-
PoCo generated operators interconnected with HDL.

We specifically use FloPoCo for its enormous configuration potential and frequency
specific pipelining. This frequency specific pipelining lets us design a circuit where we
dictate a target frequency for the FloPoCo operators and the tool automatically generates
latches inside those operators when necessary and in a balanced way.

Using this characteristic we can leverage the full high frequency potential of our
FPGA or ASIC design moving the critical path outside of the arithmetic units without
much design effort on the designer part, ensuring simple, efficient and well performing
arithmetic operators.

We chose to use FloPoCo instead of conventional DSPs due to its configuration poten-
tial. It allows us to perform the following tasks in an IP core-less, and thus FPGA vendor
independent way:

• Choose target frequency: The designer just needs to select a target frequency and
FPGA family and the custom pipelining is done automatically by the tool. Making
the design simpler and much more easy to reconfigure and fine-tune for our specific
needs and targets.

• Choose input and output precision: Due to our design aiming to target neural net-
work inference, lower than single precision floating point or mixed precision float-
ing point can be needed. FloPoCo lets us perform those tasks in an easily parame-
terizable way. Making the design of a floating point multiplier with input precision
of 32 bits and output precision of 16 bits almost trivial. It is as simple as setting
the input fraction precision to 23 bits and input exponent precision to 8 bits. Then,
setting the output fraction precision to 7 bits and exponent precision to 8 bits. Call-
ing then FloPoCo with those parameters a fully pipelined design is completed and
ready to be used in our design.

FloPoCo Floating-point Format
The FloPoCo floating point format is slightly different from the IEEE-754 single and dou-
ble precision standard. In IEEE-754 single precision the bit definition is the one shown
on Figure 2.3. In FloPoCo, a single precision floating point number binary codification
would be as shown on Figure 2.12.

Figure 2.12: Single precision floating point representation. The FloPoCo way.

This format is used to avoid the special cases defined on subsection 2.2.1. Instead,
special cases are coded on the upper two bits. This leads to a uniform floating point
format of 1.Mantissa × 2exponent. This uniformity provides speed due to the suppression
of decoding mechanisms inside the operators.

The Exception field codification is as follows:

• "00": Zero, independently of the rest of the fields. Sign bit determines the sign of
the zero. Positive and negative zeroes are supported.

• "01": Normal number, as described on subsection 2.2.1.

14 Background

• "10": Infinity. Sign bit determines the sign of the infinite. Positive and negative
infinities are supported.

• "11": NaN. The rest of the bits are ignored.

AXI

AXI (Advanced eXtensible Interface) [13] is part of the ARM AMBA specification that
defines a parallel high-performance, multi-master, multi-slave communication interface,
mainly designed for on-chip communication.

We use AXI for communicating our design with the external world, making it usable
in a wide-range of environments. This bus lets the designer communicate with exter-
nal memory in order to feed and write the processed data into the onchip and offchip
memory.

Also, we need to consider that AXI defines several communication protocols that we
use extensively internally and externally on our design. We will be using AXI for the
external communications and AXI-Streaming interface for internal communications with
the reader and writer module.

OpenCL

OpenCL (Open Computing Language) is an open royalty-free standard for
general purpose parallel programming across CPUs, GPUs and other proces-
sors, giving software developers portable and efficient access to the power of
these heterogeneous processing platforms. [14]

Specifically we use OpenCL to leverage the parallel nature of FPGAs, being able to im-
plement an RTL design as a callable OpenCL kernel. This makes the flow of information
between host and kernel relatively transparent to the programmer. Further development
on the inner workings of FPGA kernels will be presented on the following section.

The Xilinx Runtime

The Xilinx Runtime (XRT) [15] is a combination of userspace and kernel driver compo-
nents. XRT supports PCIe based accelerator cards and provides an standardized software
interface to Xilinx FPGAs. XRT lets us program the FPGA independently of its underly-
ing configuration and technology (only applicable to Xilinx FPGAs), offering the needed
abstraction to make the code easily portable between platforms such as the Alveo plat-
forms or the Amazon F1 FPGA platform. With the Xilinx Runtime paired with the Vitis
environment, HLS designs can be easily called and implemented in various platforms.
It simplifies the use of external and internal memory thanks to the hardware abstraction
provided by the XRT.

In addition to the previously mentioned aspects, once the kernels are compiled, they
can be queued onto the execution environment by the Kernel Domain Scheduler (KDS),
making the KDS the execution of the queued tasks onto the available compute units on
an FPGA. This lets the programmer use as much space as available on the FPGA fabric,
making efficient use of the available hardware.

2.3 Implementation Tools 15

The Alveo Platform

The Alveo platform is the PCI-compatible Xilinx FPGA lineup, supporting multiple work-
loads depending on the card selected. All these PCI compatible FPGA cards come with
100Gb Ethernet and in different configurations depending on the needed workload.

This Alveo card and ecosystem are designed to provide datacenters diferent kinds
of performance gains on FPGA accelerated loads. From the U25 that aims to perform
smart and fast packet switching and act as a smart NIC (Network Interface Card) to the
U280, that has a great amount of LUTS, Registers and DSP Slices, as well as both HBM2
and DDR4 memory to perform a wide variety of tasks and be extremely flexible. Thus,
leveraging the flexible nature of FPGA designs. The whole Alveo lineup specifications
are published on the following reference [16].

This Alveo platform tries to leverage the fast design times of HLS (High Level Syn-
thesis) to achieve fast design turnaround times and adapt to ever-changing demands on
the business world. It achieves this by using OpenCL as it is widely understood, parallel,
and scalable language that is also compatible with a wide variety of existing hardware
such as GPUs and CPUs.

Figure 2.13: Passively cooled Alveo U200 card.

Source: Xilinx website.

CHAPTER 3

State of the art

In this chapter, the state of the art on current neural network accelerators is discussed. We
range from the GPU tensor cores to the Google’s TPU. We perform an overview of both
ASIC chips and FPGA designs, describing each one’s advantages and disadvantages.

3.1 Widespread Dedicated Neural Network Accelerators

In this section we present some of the widespread accelerators available in the market.
They all have a strong correlation to the systolic array multiplication methodology de-
scribed on subsection 2.2.2.

3.1.1. Nvidia Tensor Cores

The tensor core approach is the approach made by NVIDIA to tackle the problem of AI
inference and training.

Tensor cores implement a wide array of optimizations for matrix multiplication. For
instance, they offer mixed precision: FP16 and FP32. This means that an NVIDIA Tensor
GPU can multiply two FP16 matrices and accumulate them into an FP32 one, loosing less
precision than if the process were to be performed on the FP16 format solely. This process
is depicted on Figure 3.1

Figure 3.1: Mixed precision multiplication with NVIDIA Tensor Cores.

Source: NVIDIA on [17, p. 20]

This FP16 multiplication also means a significant speedup over FP32 multiplication.
The gains of this process are further increased if INT16 or INT8 formats are used. Those
formats can be used to represent numbers on a range of floats in a process called quanti-
zation described on subsubsection 2.2.3.

17

18 State of the art

The FP16 format shall be described as the same way of operation as described on
subsection 2.2.1 but, instead of using the bit order described on Figure 2.3 (IEEE754 single
precision), it uses the bit order described on Figure 3.2 (IEEE754 half precision).

Figure 3.2: Half precision floating point representation. IEEE-754 binary16 standard.

3.1.2. Google TPU

TPU v1

The google TPU is the systolic array implementation developed by Google on 2015. Since
then, many iterations over the same architecture have been performed.

The first approach by Google with its TPU v1 was to create a systolic array multiplier
with 256x256 as its size. This approach was to use the previously described quantiza-
tion method in synergy with 8 bit integer operators to perform 65536 concurrent MAC
operations.

Figure 3.3: Google’s TPU version 1 system architecture overview.

Source: [9, RISC, CISC and the TPU instruction sets]

It also counted with a 700 MHz clock speed and 8 GiB of dual channel DDR3 RAM
and was built on the old 28nm process, consuming only 40W and thus, being available
as a PCIe accessory to the server market [9]. It performs the activation functions after
the systolic array efficiently and with an enormous reuse of data, using previous itera-
tion data for the next iteration without the need for that data to exit the TPU’s memory
subsystem.

3.1 Widespread Dedicated Neural Network Accelerators 19

In terms of the inner workings of the TPU v1 architecture seen on Figure 3.3, it is
worth noting that, as the weights are modified just once per batch, the required band-
width is lower and thus, they are stored on the outside DDR3 memory on model loading.
Before computation, weights are read from main memory and moved into the "Weight
FIFO". This buffer lets the TPU prefetch the next batches weights while still computing
the previous batch results.

The "Unified Buffer" holds the activations. There we store the input data and the
previous results to perform further computations. Due to its high usage, high bandwidth
and low latency is required, so out of chip storage is discarded and fast 24 MiB memory
is used for this purpose.

Once all weights are loaded into the weight FIFO and the activation buffer is full of
input values, a control signal is emitted that loads a layer of weights into the MXU (Matrix
multiply unit), propagating input values through the MXU and into the accumulators,
into the activation. This activation applies a simple activation function from a list of
activation functions that include the Binary step or ReLU, normalizing the result and
moving the output to the Unified Buffer to be reprocessed.

TPU v2 and TPU v3

The second generation TPU, was announced on may 2017 and counted with two 128x128
systolic arrays instead of the previous 256x256 one. This change was to mitigate the ineffi-
ciencies presented by the filling and emptying of a systolic array presented on section 4.2.

Figure 3.4: Google’s TPU version two and three system architecture.

Source: [6, TPU Versions]

The last iteration of the TPU (The TPU v3) was presented on 2018 and featured two
128x128 MXU per core instead of the previous one 128x128 MXU per core. It also doubled
HBM memory per core of 16 GB HBM compared to the previous 8 GB HBM of the TPU
v2.

20 State of the art

This TPU can be interconnected to train more complicated models in configurations
that Google brands as TPU Pods. A TPU Pod is basically a cluster of TPUs connected
over a dedicated network connection. This configuration allows for hosts with a TPU
Pod connected to distribute the workload between the nodes of the cluster accordingly
and efficiently, further accelerating workloads. TPU pod configurations can range from
a single TPU v2 or v3 up to 64 TPU v2 or 256 TPU v3.

Edge TPU

The Google Edge TPU is a chip model that aims to perform inference on the edge. This
means giving it a trained neural network and for it to perform real-time inference with it.
This has endless applications, from face recognition on cameras, to real-time object track-
ing on an autonomous robot or synthesizing audio during a live musical performance.

Figure 3.5: Coral edge for production TPU models as per march 2020.

Source: Coral for production models on [18]

The edge TPU manages to perform all these functions in an energy efficient manner
(two TOPS per watt [18]) thanks to its Systolic Array architecture. Being available in
a wide variety of form factors as an accelerator or as an standalone SoM (System on
Module).

Coral Edge TPU has a peak throughput of four TOPS at two Watts. Offering a de-
veloper platform aside from the options shown on Figure 3.5 , being currently aiming to
provide its accelerator as a surface mounted solution.

3.1.3. Graphcore IPU

“The Intelligence Processing Unit (IPU) is a novel, massively parallel platform re-
cently introduced by Graphcore and aimed at Artificial Intelligence/Machine Learning
(AI/ML) workloads”[19]

This Intelligence Processing Unit is designed for highly parallel and efficient execu-
tion of fine-grained operations, offering Multiple Instruction, Multiple Data parallelism
and being distributed on its architecture. Each Intelligence Processing Unit contains 1216
elements that consist on one computing core and 256 KiB of local memory. Each of this
elements is called a tile.

The IPU chip implements an interconnection network both between different IPU
chips and between tiles inside a core. This interconnection consists of ten IPU link in-
terfaces for IPU interconnection and two PCIe links for CPU interconnection as seen on
Figure 3.6.

3.2 Widespread FPGA Neural Network Accelerator designs 21

Figure 3.6: IPU architectural overview diagram.

Source: Graphcore’s webpage, similar overview can be seen on [19]

The IPU manages the task of tile-independent code execution by not implementing
shared memory. Instead the IPU implements 256 Kb of SRAM per tile, with that mem-
ory being exclusive, in opposition of the cache hierarchy of modern processors. This
non-shared core-independent memory results on a great homogeneity on memory ac-
cess times and great performance on irregular or random access pattern programs vs a
traditional CPU or GPU.

The IPU is also capable of performing mixed-precision arithmetic in a FP32-FP16
manner, also incorporating systolic array-like structures called Accumulating Matrix Prod-
uct (AMP) units presented on each tile. Those units offer the IPU a great matrix multi-
plication performance, being equivalent to a GPU. Graphcore claims better performance
than some high-end commercial GPUs at the time of writting this document.

3.2 Widespread FPGA Neural Network Accelerator designs

3.2.1. HLS Designs

Xilinx Vitis unified platform

“The Vitis application acceleration development flow provides a framework for de-
veloping and delivering FPGA accelerated applications using standard programming
languages for both software and hardware components.”[11, p. 23].

Thus, the Vitis platform aims to provide easy development for the Xilinx Alveo lineup
in different programming languages, such as C/C++ and OpenCL for the host applica-
tion and C/C++, OpenCL C and RTL for the kernel. This, combined with the described
tools on Figure 2.3.2 provides a modern flexible way of performing FPGA design and
application development.

22 State of the art

Intel/Altera FPGA Programming tools

The Intel FPGA ecosystem is extremely wide, offering a large array of tools for a large
array of use cases. The main tools that we shall focus for this work are:

• Intel Quartus Prime software: This software is the Intel-equivalent at the Xilinx
Vivado program used for this work. It offers the same features implemented in a
slightly different manner. The details of the differences between Intel’s approach to
synthesis and place and route and Xilinx’s approach are not relevant for this work,
but shall be noted.

• Intel HLS Compiler: The Intel HLS compiler is the Intel solution to HLS hardware
design, offering capabilities similar to those of the Vivado HLS solution and XOCC
(Xilinx OpenCL Compiler).

• Intel FPGA SDK for OpenCL: This is the Intel solution to OpenCL kernel and host
code paradigm. This solution competes with the Xilinx Vitis unified platform that
we used extensively on our design.

Xilinx CHaiDNN HLS convolutional neural network accelerator

“CHaiDNN is a Xilinx Deep Neural Network library for acceleration of deep neural
networks on Xilinx UltraScale MPSoCs. It is designed for maximum compute efficiency
at 6-bit integer data type. It also supports 8-bit integer data type.”[20]

CHaiDNN leverages both lower and fixed precision arithmetic and the HLS program-
ming paradigm to obtain substantial performance. Performance figures, design, API and
code can be found on the CHaiDNN Github repository at [20]

PipeCNN

PipeCNN is an FPGA HLS design that leverages the ease of use of OpenCL calls and de-
sign to perform Convolutional Neural Network computations. It works on Intel FPGAs
and GPUs due to its OpenCL implementation.

Performance figures, design, API and code can be found on the PipeCNN Github
repository at [21].

3.2.2. Xilinx DPU core

The Xilinx Deep Learning Processor Unit (DPU) core is an FPGA design core that is spe-
cially designed for convolutional network workloads.

It is highly parameterizable and flexible due to its FPGA based nature. Being the
degree of parallelism a parameter and supporting most convolutional neural networks,
such as VGG, ResNet, GoogLeNet, YOLO, SSD, MobileNet, FPN ... [22, p. 6].

3.3 Proposed design place on the current state of the art 23

Figure 3.7: DPU Top-Level Block Diagram.

Source: DPU IP Product Guide PG338 [22]

As seen on Figure 3.7, the DPU is composed of several Processing Engines (PE), a
global memory and control logic.

Those Processing Engines are highly optimized and able to use the Digital Signal Pro-
cessor (DSP) slices available on the FPGA fabric. In addition to speeding up processing
time with DSPs, Double Data Rate (DDR) clocking is used. In this specific case, one clock
signal is used to drive the LUT based FPGA design, and the other clock signal is used to
drive the DSP, resulting in a noticeable speedup in performance. [22, p. 12].

3.3 Proposed design place on the current state of the art

Although the proposed concept exists on a saturated market where multiple designs ex-
ist that perform similar tasks our design aims to provide DSP-less Open Source matrix
multiplication. This is where the competition fades drastically. This occurs mainly due
to DSPs offering greater performance than traditional LUT slices and designs aiming to
provide the best possible performance for the least possible power consumption and size.

So for meeting the DSP-less and thus, ASIC compatible design, we sacrifice perfor-
mance on the FPGA implementation, but, offer great configurability and the ability to
fabricate our design inside a chip. I couldn’t find a DSP-less, mixed and variable preci-
sion, AXI compliant, Open Source matrix multiplier design elsewhere. This might be due
to the rising popularity of HLS, that tends to generate DSP heavy designs.

CHAPTER 4

Architectural design

For the architectural design of this project, an overview of the architecture will be shown,
including the interconnection mechanism between modules and the intrinsic inner work-
ings of our design.

In this chapter we will take a bottom up approach of the system overview presented
on Figure 4.1. Thus, we first describe the inherent data dependencies of the Systolic
Array and then, how our systolic control submodules fix them. The whole design of the
systolic solution is shown in Figure 4.1. We will refer to this figure in different parts of
this chapter.

Our systolic architecture will support two operating modes. First, the systolic array
will receive specific commands to store a matrix of floating point numbers into the sys-
tolic grid. Each grid component will store a single value of the matrix. This matrix will be
one of the matrices the array will multiply. Therefore, we pursue in our design a weight-
centric approach where one of the matrices stays onsite in the systolic array. In the second
operating mode the array will be horizontally fed with a matrix and this matrix will be
multiplied on the fly by the stored one. The fed matrix will be injected horizontally and
the resulting matrix will be flowing vertically and will output the systolic array from the
bottom line of systolic components.

In both modes the matrices are injected always from left to right and sequentially.
Each matrix row is injected to a systolic array row through the decoupling buffers and
the associated FIFOs shown in the figure. Therefore, for a 16× 16 systolic array, the native
matrix multiplication operation will be performed by 16 × 16 input matrices. Of course,
larger matrices can be multiplied by multiple runs on the systolic array.

25

26 Architectural design

Figure 4.1: System representation of the proposed design.

4.1 Basic element: MAC unit 27

4.1 Basic element: MAC unit

The multiply accumulate unit is the most basic unit in our design, and the one perform-
ing the computation. It is basically a unit that receives two numbers, multiplies one of
these numbers (the one fed horizontally) by the one stored in the module, and then accu-
mulates the result of that operation with the one fed vertically. The module interface can
be seen on Figure 4.2 as well as its basic operation.

Figure 4.2: MAC operator sub-module interface and basic operation.

From the figure we can see that the MAC unit has four valid-ready hand-shake mech-
anisms. They implement the flow control that applies to every transaction issued from
the MAC unit as a consumer and the MAC unit as a producer. We can observe the MAC
unit behaves as a consumer to the left and upper part of the module, and as a producer
to the lower and rightmost part of the module. Indeed, the MAC modules are built and
connected forming a 2D grid as depicted in Figure 4.1.

Internally, MAC units have an accumulator, a multiplier, a register to latch the stored
value into and some control logic to interpret the incoming opcode and decide whether
to operate with its inputs or latch them in the stored register. Some processing of the
internal opcode is also performed as described further on section 4.2. The data comming
from the left will be then forwarded to the right side and the result produced by the
module is sent downwards.

Internally, the MAC unit uses the FloPoCo number format and operators, being en-
tirely reconfigurable to use FPGA-dependent DSP and different accumulator and multi-
plier designs as well as different precision or even mixed precision formats.

4.1.1. Internal MAC unit architecture

On Figure 4.3 a simplified version of the internal MAC module logic is presented. There
we can see the complexity of the control logic. This control logic is needed due to the four-
way synchronization of the MAC placement on the systolic array as seen on Figure 4.2.

The multiply and accumulate modules are taken straight out of the FloPoCo gen-
erated VHDL code and placed inside the Multiply Accumulate wrapper. This wrapper
reads the opcode and the valid signals and decides whether to load the data coming from
"Data1" into the "Store" register or into the multiplier.

28 Architectural design

Figure 4.3: FPU module internal

This control logic inside the FPU also determines whether the result coming out of
the "Add" operator is valid or not by counting the cycles that the Multiply-Accumulate
pipeline takes and issuing a valid signal at the proper cycle.

This valid signal is processed by the FPU control logic and the add result latched to
be dispatched into the lower module. The FPU control logic has several functions:

• Process the incoming opcode: This opcode has to be processed as we have three
possible accepted opcodes for the FPU:

– MAC: Tells the unit to perform a Multiply Accumulate with the stored data
and the given "Data1" and "Data2".

– Load: Tells the unit to load the data from "Data1" into the MAC "Store" register.

– Forward Load: Tells the unit to forward the data and opcode coming from
"Data1_i" and "opcode_i" to "Data1_o" and "opcode_o" for another unit to pro-
cess. This opcode is used to bypass cells that should not store the value pro-
vided.

• Synchronize and latch the data coming from every side. IE: Both inputs and both
outputs. This also means applying backpresssure when necessary.

4.1 Basic element: MAC unit 29

4.1.2. Data loading process

As previously described our design uses two loading opcodes (Load and Forward Load)
and one compute opcode. By using several opcodes, we reuse the horizontal channels
between every FPU unit inside the Systolic Array for both matrix multiplication and
loading.

This loading scheme is relatively simple. When a FPU unit receives a valid "Load"
opcode it proceeds to load the data coming from "data1_i" inside the Multiply Accumu-
late latch and forwards to the right a non-op opcode. This non-op code is used to avoid
the remaining units to perform any useless operation. On Figure 4.4 we can observe this
loading process, there we name "Invalid" to the non-opcode.

If a unit receives a valid "Forward Load" opcode right after a load opcode it proceeds
to send a "Load" opcode to the next unit with the received data. This case is the observed
on Figure 4.5. This "Forward Load" to "Load" let’s us chain FPUs and reuse the horizontal
channels for load operations. The opcode attachment to each datum is performed by the
Systolic Array control submodules shown on Figure 4.1.

Figure 4.4: FPU loading mechanism. First cycle.

Figure 4.5: FPU loading mechanism. Second cycle.

Figure 4.6: FPU loading mechanism. Third cycle.

On Figure 4.4, Figure 4.5 and Figure 4.6 all potential loading possibilities are shown.
The transition between load and invalid opcode is represented on Figure 4.4. The conver-
sion between load and forward load is represented on Figure 4.5. And the non opcode-
modifying transition between a new forward load and a previous forward load is repre-
sented on Figure 4.6.

30 Architectural design

4.1.3. Flow Control Mechanism

The Floating Point units apply a flow control mechanism on every neighbour unit. For
each one we use the valid-ready mechanism. In this mechanism, the data to be trans-
mitted is synchronized by two signals: valid and ready. The valid-ready handshake is
synchronous, and, as such, it must be checked at each cycle. We have four cases on the
synchronization signals:

Ready = 0 Ready = 1

Valid = 0
Nor the producer nor the consumer

are ready, data on the attached
dataline is not coherent.

The consumer is waiting for data from the
producer.

Valid = 1
The producer data line contains

valid data awaiting to be handshaked,
backpressure is applied by the consumer.

Handshake occurs on both ends, both
producer and consumer interpret this state

as a correct transaction and update their
states accordingly. If in the next edge this

state is still on, a further transaction will happen.

Table 4.1: Valid-Ready control flow mechanism possible states.

Figure 4.7: Valid-Ready data transfer timing diagram example.

Source: [23, Figure 3].

An example of a successful transaction as shown on the bottom right of Table 4.1 is
shown on Figure 4.7. There we can observe that this mechanism is synchronized on the
rising edge of the clock. If both the valid and ready signals are set to high on a given
rising clock edge a transfer will occur on the attached data line. On the first rising clock
edge of the figure we can observe that a transfer does not occur due to the ready signal
being set to low on that specific cycle.

This mechanism has the advantage of relaxing the constraints on how the data has
to be consumed from the components to which the accelerator is connected. It can be
implemented with no need for registers or counters. This handshake mechanism is im-
plemented on the FIFO interfaces and is further described on [23].

4.2 Our systolic array design

Our systolic array is composed by N × N MAC units interconnected without any addi-
tional logic. The absence of additional logic greatly promotes the scalability of the MAC
unit.

4.2 Our systolic array design 31

To better understand the inner functioning of our systolic array multiplication unit,
a running example will be shown on the next subsection. But first, some aspects of our
implementation of the systolic array multiplication shall be clarified.

The systolic array multiplication shown on subsection 2.2.2 requires both matrices to
be fed at the same time to the systolic array unit to perform the operation. That requires
an outstanding amount of memory bandwidth, and thus, would imply a memory bottle-
neck in our approach. That’s why a slight modification was performed on our systolic
array inner working.

This slight modification implies that we only need one n × wordLength channel to
feed data into our systolic array where n is the size of one matrix dimension. It consists
on the addition of a load opcode to each MAC matrix cell, letting the systolic array store
one matrix to be multiplied on. The loading mechanism has been described in subsec-
tion 4.1.2. This obviously means a slight increase on latency and a decrease on through-
put, but, assuming the reuse of the loaded matrix, the memory bandwidth gains offset
the slightly reduced throughput.

4.2.1. Overview example of the process of the proposed matrix multiplication
unit

Figure 4.8: An example of a matrix multiplication.

Here we have a simple example of a matrix multiplication where the leftmost ma-
trix (A matrix) is multiplied by the middle matrix (B matrix) in order to produce the
rightmost matrix (Result Matrix). This multiplication has already been performed on
subsection 2.2.2, but due to performance requirements our unit performs it in a slightly
different way.

In this example, the multiplication of the Figure 4.8 matrices will be performed in a
similar way that our model processes it. For the sake of simplicity, this example will be
laid out in steps. Each step is composed of several cycles and is considered a significant
unit of work, where the state of the computation is significantly different from one step
to another.

For the sake of understanding, we need to clarify two concepts:

• Loaded matrix: In our design the multiplicand matrix needs first to be loaded onto
the systolic array to be multiplied. This will be referred as the B matrix on our
A × B = C example.

• Multiplier matrix: This matrix shall be processed after the B matrix is loaded onto
the systolic array internal memory. We can have N multiplier matrices multiplied
by each loaded matrix. This will be referred as the A matrix from now on.

Now that the basic terms of a matrix multiplication are laid out, a trace of our systolic
array multiplication will be shown.

32 Architectural design

Figure 4.9: An example of a matrix multiplication. First step.

As shown in Figure 4.9, we first load onto the input queues the data to be processed.
B matrix should be loaded on column-major order, while A matrices shall be loaded on
row-major order. The load operation into the input queues can be done while we com-
pute in the array. For the sake of description we will not take into account this overlap.

Figure 4.10: An example of a matrix multiplication. Second step.

Then the first batch of inputs is loaded, reading its operation code and performing it
as specified. In Figure 4.10 we can observe that values 1 and 3 are loaded on MAC cells
[0,0] and [1,0] specifically. In this design, the partial result going into the MAC operators
on row zero is zero as they have no MAC units above.

Figure 4.11: An example of a matrix multiplication. Third step.

Now, at the third step all the weights (B matrix) are loaded onto the systolic array.
And the similitude between Figure 4.8 B matrix and Figure 4.11 is noticeable. When the
B matrix is loaded, partial multiplications will be performed.

4.2 Our systolic array design 33

Figure 4.12: An example of a matrix multiplication. Fourth step.

As shown on Figure 4.12 we launch the first MAC operation on the first row but not
the second row MAC operation. This is due to the staggered behaviour of a systolic multi-
plication. This staggering is due to the internal dependencies between MAC operations.
One term of the MAC[1,0] sum is the result of the multiplication and accumulation of
MAC[0,0]. Therefore the first MAC[0,0] operation shall be completed in order to launch
the MAC[1,0] operation.

Figure 4.13: An example of a matrix multiplication. Fifth step.

Next, the MAC value is multiplied on cell [0,0] by the stored data and the result is
passed onto [1,0] to be accumulated. Furthermore MAC value of [0,0] is passed onto [0,1]
and [0,0] takes a new MAC value (Figure 4.13). This cache-less, uniform access time, data
reuse is what really makes the Systolic Array architecture an specially efficient operation
mechanism.

Figure 4.14: An example of a matrix multiplication. Sixth step.

On Figure 4.14 the first result of our matrix multiplication is shown. This result is
1 × 1 + 2 × 3. If we refer to Figure 4.8 we can observe that this result corresponds to
the data on the result matrix position [0,0]. This also happens to be the first consumed
multiplicand data of our circuit. The previously mentioned data staggering can also be
observed on the results.

34 Architectural design

Figure 4.15: An example of a matrix multi-
plication. Seventh step.

Figure 4.16: An example of a matrix multi-
plication. Eight step.

Lastly, in Figure 4.15 and Figure 4.16 the last two cycles are performed. This simple
multiplication example shows us different traits of systolic array multiplication:

• Data reuse between operations is huge, being each element of the A matrix reused
N times for an N × N matrix. In a conventional processor, the partial results should
be stored on a register or on cache to be processed by the next operand, taking extra
cycles and using extra power.

• Single matrix multiplications are really computationally expensive with this model.
However, once you load a B matrix you can launch N A matrix multiplications
against that loaded B matrix. The more back to back A matrices you launch against
the loaded B matrix, the more the cost of filling and emptying the systolic array
will be offset by the benefit of using it. This is really the typical use case in neural
network inference settings, where weights are preloaded and then input data is
inferred.

4.2.2. Systolic Array control submodules

The systolic array control submodules are the ones that help feed organized and properly
formatted data into the systolic array, guaranteeing correct operation at the correct time.
In the next subsections we describe several basic control components, decoupling buffers,
FIFOs, and FloPoCo converters.

Coupling and decoupling buffers

The coupling and decoupling buffers serve a very important role on the bridging be-
tween the packets arriving to the module, and the row-independent data flowing into
the systolic array.

The decoupling buffer splits the data coming from an AXI packet into the different
needed data that go into the systolic array. It takes a 256-bit AXI packet and decomposes it
into eight 32-bit data packets that flow into each row of the systolic array. These numbers
are being used as an example, in the design the length of the systolic array is completely
parameterizable.

Then each datum is synchronized independently to each FIFO queue for each row of
the systolic array. If any row FIFO were to be full, the row synchronization would not

4.2 Our systolic array design 35

be produced and thus, backpressure would be applied. Indeed, the whole Systolic Array
is interconnected with valid-ready synchronization and backpressure can be applied by
any of the presented entities.

The control data is received into the Decoupling buffer and repeated and transmitted
to each row. This is needed as all rows are working independently from each other in this
particular design.

The coupling buffer works the same way as the decoupling buffer but it performs the
opposite function. It receives individual data from each row, and, when all the rows have
already fed data, it forms a packet and sends it into the AXI Writer control logic.

FIFO queues

FIFO queues, located between the decoupling buffer and the systolic array, are needed
due to the staggered data consumption of the systolic array paradigm as described on
subsection 4.2.1. These FIFO queues then, are very important for the correct working of
the systolic array. Without them, the design would not work as only a transaction could
be stored onto the systolic array.

The correct tuning of the length of these FIFOs is also very important, where the
minimal length would not be equal for all. This is due to the staggering of consumption of
data, where the upper FIFOs would need less length than the lower FIFOs. The minimal
theoretical input FIFO length for a 8 × 8 matrix ranges from 0 at row 0 to 7 at row 7.

The output FIFO length works in a similar way than the input FIFO but with the
lengths inverted. This means allocating a minimal theoretical input FIFO length of 7 for
the leftmost matrix output and zero for the rightmost matrix output.

Figure 4.17: Variable FIFO queue depth representation.

This FIFO queue variable depth can be seen more graphically on Figure 4.17, where
the top input queue is smaller than the bottom one and the rightmost output queue is
smaller than the leftmost. This is due to the input staggering presented on Figure 4.12
and output staggering presented on Figure 4.15. In this example we used a slightly larger

36 Architectural design

than minimal FIFO queue depth as it gives us a small buffer and is more didactic than
having a zero-depth queue as specified previously as minimal depth.

IEEE to FloPoCo and FloPoCo to IEEE

This modules are in charge of converting the standard IEEE single precision floating point
format in the desired FloPoCo format, in this case the equivalent to IEEE single precision.
They perform the transcoding between those two formats in a combinational way.

The format differences can be appreciated by comparing Figure 2.12 with Figure 2.3.
But basically consist on eliminating all IEEE special number codifications and encoding
some of those special values into the upper two bits. Some of those special values are the
infinity values, zero and NaN.

Further explanation of the FloPoCo floating point number format can be seen on its
corresponding section on subsection 2.3.2.

4.3 AXI

Communications from and to the Systolic Array are necessary as it follows the role of
co-processor in a larger system. In order to perform this role, an standard communica-
tion protocol is strongly advised. Specifically, we chose the AXI interface (see Section
2.3.2) due to its tight coupling with the Xilinx ecosystem, and, in specific, with the Vitis
environment. Also, the AXI protocol is the default protocol used and assumed by the
embedded systems community.

AXI communication has been provided through several Xilinx modules that aim to
integrate RTL designs into OpenCL callable kernels inside an FPGA runtime. The cur-
rent module architecture supports several parameters through the AXI environment that
define the inner workings of the Systolic Array:

• Matrix Size: Defines the size of the N × N matrix to be passed onto the implemented
underlying hardware. Currently this number can only be lower or equal than the
implemented matrix size, and lets us multiply matrices smaller or equal to N × N
length.

• Number of matrices: Defines the number of A matrices of Matrix Size size to mul-
tiply against the loaded B matrix. Multiple back to back A matrix multiplications
against a loaded B matrix is extremely encouraged due to the performance benefits
of keeping the same matrix loaded.

• load b: Tells the systolic array if the first data to be passed through the AXI bus
is a b matrix to be loaded onto the systolic array or are A matrices that should be
multiplied by the currently loaded B matrix.

• AXI00_ptr0: AXI pointer of the memory address of the B matrix to load.

• AXI00_ptr1: AXI pointer of the memory address of the A matrix or matrices to
multiply against B.

• AXI00_ptr2: AXI pointer of the memory address to store the C matrix.

Through these parameters passed as scalars to the module on ap_start (the module
initializing signal) we control the number of transactions that need to occur and fully
interface with the AXI protocol, and thus, the Vitis environment and the Xilinx Runtime.

CHAPTER 5

Performance Evaluation

In this chapter, we asses the performance of our systolic array module. For most of the
analysis (frequency-related and resources-related) we use the whole system including the
AXI interface and the systolic array modules (FIFOs, decoupling buffers, and FloPoCo
units). For performance, however, we only analyze the systolic array subsystem. This
allows us to decouple the efficiency of our design from the potential performance bottle-
neck of the memory attached to the systolic array, which is out of the scope of this project
goal. Therefore, our performance results assume an ideal memory subsystem able to
provide the required bandwidth. Notice also that the additional components in our sys-
tem (FIFOs, decoupling buffers, FloPoCo units and AXI interface) would affect only on
latency but not on throughput.

For the analysis related to clock speed and resources needed we selected the Alveo
U200 platform due to it being available on our laboratory for testing and compatible with
the Vitis openCL proof of concept.

5.1 Testing methodology

5.1.1. Simulation of the design on Vivado

In terms of the simulation of the design we used several tools. We heavily leveraged the
Vivado simulation waveform analysis tool for module debugging. We also used the Vi-
vado RTL analysis tool for checking our design in a simpler and human-comprehensible
way.

The performance results shown on the next section are a mix of theoretical results
obtained counting the cycles taken with the waveform analysis tool and simulated results
obtained by dumping to a file the state of the simulation each cycle and post-processing
that file with a simple python script to check for correctness and real-world performance.

All frequency results are obtained using Vivado Synthesis timing summary. This util-
ity was also used to obtain the slack of our design at a given frequency and detect where
the critical path is, and, if possible optimize it.

5.1.2. Simulation of the finished result on Vitis

The Vitis Unified Software Platform lets us launch RTL designs as OpenCL kernels using
the AXI subsystem implemented in our work. Therefore, we can benchmark and ver-
ify the correctness of our design and the AXI subsystem in an easy manner and obtain
preliminary results.

37

38 Performance Evaluation

The Vitis simulation consists of the Host and Kernel codes. The Kernel code is our
whole Systolic Array including the AXI wrapper. The Host code is a simple OpenCL
code that loads up our kernel, creates two matrices "A" and "B", copies them into the
FPGA memory, launches the FPGA kernel computation and retrieves the result to verify
correctness and shows it on the screen.

The matrix sizes are 8 × 8 in order to speed up our hardware emulation compilation
times and the results are shown on Figure 5.1. There we can observe the correctness of the
results of the multiplication and, at the last line, the memory transactions that happened.
Those transactions consist on two 8 × 8 matrices "A" and "B" transferred from host mem-
ory to FPGA memory (RD) and one result matrix transferred from FPGA memory to host
memory (WR).

Figure 5.1: Results of the Vitis hardware emulation.

Figure 5.2: Vitis application timeline results.

Another perspective on this successful matrix multiplication is provided by running
the Vitis analyzer tool on the hardware emulation run shown on Figure 5.1. The results of
the application timeline analysis are shown on Figure 5.2. Those results show us the in-

5.2 Results and discussion 39

credible inefficiency of small kernels launched in the Vitis environment. The entire simu-
lation process (from kernel setup to kernel end) took 15.8 wall-clock seconds. Thankfully,
we are only using the OpenCL kernel approach for AXI integration debugging so slow
performance is not one of our main concerns.

Even though our full simulation took 15.8 seconds from kernel setup to finish, the
actual kernel runtime was only 403 ms. This is still a very slow performance but helps us
illustrate the time taken for runtime partial reconfiguration and kernel loading. Also, on
the bottom of Figure 5.2 we can appreciate the host to FPGA memory transfers from both
input matrices and the output matrix.

To summarize, the implementation of our design as an OpenCL kernel proved out
to be successful but relatively slow. From this result we learned that larger kernels are
strongly recommended to offset the time taken to setup the kernel environment on the
Xilinx Runtime and multiple operations against the same kernel are recommended.

5.2 Results and discussion

We evaluate the design shown at Figure 4.1 with the MAC units using FloPoCo library
operators tuned at a fixed frequency. First we provide results for performance and then
we focus our attention on FPGA resource needs. Finally, we will provide an analysis of
FloPoCo tuning effects on our design.

5.2.1. Performance

In terms of performance we analyze three cases: 1) scalability of our design in terms
of size (ie: the performance benefit of implementing an 8 × 8 matrix instead of a 4 × 4
matrix); 2) performance of our design in terms of A multiplications performed against
the same B matrix as described on subsection 4.2.1 and; 3) the frequency scaling of our
design.

Frequency scaling analysis is not obvious. Ideally, performance should linearly in-
crease as frequency increases, potentially reaching the maximum achievable frequency
threshold (i.e: when the slack of our design is zero). However, performance will be
affected by the FloPoCo unit, which allows us to achieve a particular frequency by re-
designing its pipeline. This will impact our performance. In our study we take this into
account and we analyze the maximum possible frequency for the Alveo U200 on each
FloPoCo target frequency.

Indeed, the achieved performance will vary as the number of pipeline stages in Flo-
PoCo will vary and not all of them will be efficiently used (unbalanced pipeline design
is possible). Also, those pipeline stages are not efficiently used due to inherent data
dependencies. Later, we further explain this problem, and at section 7.2 some possible
solutions are discussed.

Scalability of the Systolic Array

For this analysis the selected target frequency and thus, pipeline depth, is set to 250 MHz.
For the results, we show throughput measured as FLOPS/cycle instead of FLOPS/sec.
So, we focus only on an ideal scalability analysis not considering the frequency effect,
only our architectural design.

In Table 5.1 several performance figures are presented. The "Peak performance Flop/-
Cycle" column represents the maximum possible performance of our Systolic Array when

40 Performance Evaluation

Matrix Size
Peak performance

Flop/Cycle
Worst case performance

Flop/Cycle
Ideal Max

Flop/Cycle
4x4 2.29 0.86 8
8x8 9.14 3.41 32

16x16 36.57 13.56 128
32x32 146.29 54.07 512

Table 5.1: Size and performance comparison of the proposed design.

all internal MAC units are working at the same time. This column’s data is obtained by
obtaining the maximum performance of a MAC unit theoretically by counting cycles
(Each MAC unit takes seven cycles to process an input for this pipelining depth) and
scaling it to the size of the Systolic Array.

Conversely to Peak performance, the "Worst case performance" column represents
the worst possible performance of this Systolic Array taking into account infinite mem-
ory bandwith. This means that backpressure is not applied and this case just considers
the loading of a "B" matrix and multiplication of a single "A" matrix against it. This con-
trasts with "Peak performance" where infinite "A" matrices are launched against a single
"B" matrix. The results of this column where obtained by experimental testing. This ex-
perimental testing consists on a System Verilog testbench that writes selected signals into
disk to be further post-processed by a python script.

Finally, the "Ideal Max Flop/Cycle" column consists on obtaining the actual maxi-
mum throughput of the operators taking into account only the FloPoCo units. The differ-
ence between the "Ideal Max" and "Peak performance" columns is the overhead that our
synchronization (flow control) mechanisms is introducing.

With the results on Table 5.1 we can arrive to the following conclusions for a N × N
array:

• Peak performance scales linearly with MAC units and quadratically with N. This
means that the 8 × 8 matrix size has a 4x performance improvement over the 4 × 4
matrix size. This is due to 4x more MAC units available.

• Worst case performance does not scale linearly with matrix size. The larger the
Systolic Array the worse the worst case performance gets. This means that the 8x8
matrix multiplication does not have four times more performance than the 4x4 on
its worst case, instead it has 3.94 times more performance. This is due to a larger
matrix taking longer to fill with loaded data and to empty once the MAC operation
is performed.

• Ideal max Flop/Cycle scales linearly with MAC units, as peak performance does.

Performance impact when injecting consecutive A matrix multiplications

In this section, we analyze the performance impact of performing more A matrix multi-
plications against a loaded matrix (B).

The results shown on Figure 5.3 represent the expected logarithmic growth of through-
put with an increasing number of A matrices launched against a preloaded B matrix.
This growth is due to the offsetting of the computational time taken when performing
the loading, filling and emptying the Systolic Array.

The "initial and interpolated B load" line as presented on Figure 5.3 present an sce-
nario where n matrices are multiplied and two matrices are loaded, one at the beginning

5.2 Results and discussion 41

Figure 5.3: Performance impact of different A multiplications against a B matrix loaded.

of the computation and one right at the n/2 matrix. This line is here to present a common
case that has yet to be discussed. This case is the case where multiple matrix operations
are queued to be processed by our Systolic Array. This line represents the performance
hit of multiplying two n/2 batches of matrices in respect to the multiplication of only one
batch of n matrices.

This "initial and interpolated B load" line helps us illustrate the importance of keeping
the pipeline full and shows the efficiency loss of not doing so. In specific, the main thing
that this line highlights is that the performance of multiplying two batches of n/2 ma-
trices is greater that the performance of multiplying a single n/2 size batch. This can be
clearly seen by comparing the achieved FLOPS/cycle of the blue line at 10 matrices with
the performance of the red line at 20 matrices. There we can clearly see that by keeping
the pipeline full we obtain some of the performance back by pipelining the load of the
second matrix while the first matrix multiplication is still being processed.

5.2.2. Resources analysis

In terms of resources we focus our attention on the resources needed by the FPGA imple-
mentation, which is mainly LUTs, Flip Flops, Carry8 and DSP48E2. For this analysis we
target the full AXI-Integrated design with different matrix sizes and synthesized for the
Alveo U200 board.

Being Vitis compatible is extremely important as it lets us design, validate and test our
design seamlessly with its powerful environment. This means that all the PCI express
logic and memory transfers are not dealt directly by us on the RTL, instead they are
programmed on OpenCL and interfaced with the AXI RTL design through the Xilinx
Runtime installed on the Alveo U200 FPGA.

As seen on Table 5.2 and more graphically on Figure 5.4 the resources needed for the
design scale approximately linearly with the number of MAC units and quadratically

42 Performance Evaluation

Matrix size LUTs Flip Flops Carry8 DSP48E2

8x8 27971 24117 1676 133
16x16 109481 88038 6492 517
32x32 430691 339289 25724 2053

Table 5.2: Resource usage of Alveo U200 according to size of the design.

Figure 5.4: Percentage of utilization of Alveo U200 resources.

with the size of the Systolic Array. From 8 × 8 to 16 × 16 configurations there is four
times more MAC units and the design is 3.91 times larger on LUT usage.

This observed non-perfect linear scaling is due to the asymmetry of the input and
output FIFO queues and the constant AXI size for all designs. A deeper study into the
resources needed for the FIFO queues reveals that the theoretical number of resources
needed for a systolic array of size N × N is:

2 ∗
i=N

∑
i=1

i =
N(N + 1)

2
= N2 + N

While the size of the systolic array scales N2 and the AXI control logic barely varies
on size.

As theoretically deduced and departing from those formulas we obtained the trend
of resource growth depending on systolic array growth. This trend turned out to be an
almost perfect fit (R=0.994) for the Systolic Array submodule and a perfect fit for the FIFO
submodule as shown on Figure 5.5. The non-perfect fit for the Systolic Array could be due
to several optimizations performed on synthesis in order to improve target frequency,
power consumption or size, but the variation is so minor that further exploring is not
deemed needed.

With these results we can observe that the main resource demanding component is
the systolic array module, and not the the FIFO queues. As can be seen comparing the

5.2 Results and discussion 43

Figure 5.5: Resource usage of Systolic array module and FIFO queue subsystem depending on
size of the Systolic Array.

Size of Systolic Array LUTs used by Systolic Array Flip Flops used by Systolic Array

8x8 92.36% 84.40%
16x16 96.61% 93.23%
32x32 98.52% 97.09%

Table 5.3: Percentage of resources taken by the Systolic Array part of the design.

growth trend formulas on Figure 5.5 the size of the systolic array scales with a greater
quadratic number than that of the FIFO. So, the larger the size of the systolic array the
higher the percentage of total size the Systolic Array will take in comparison with the
control logic.

This previous statement can be checked with the results provided on Table 5.1. The
results shown here prove that the part that performs the computations on our system is
taking significantly more space than the control logic needed to run it, the greater the
percent shown on Table 5.1, the more space efficient our system is.

5.2.3. FloPoCo tuning and its performance impact

In this section, the practical use of the FloPoCo configurable submodules is discussed,
including our approach and implemented optimizations.

The FloPoCo utility is used in this project in two components:

• The AXI control subsystem: Here, the FloPoCo operators are used to calculate how
many transactions should be passed onto the Xilinx AXI interface for each request.
We used FloPoCo here because it is DSP-less and can meet all our needed potential
frequency requirements, while DSPs cannot. The implemented FloPoCo operators
in the AXI subsystem are integer squarers (x2) and multipliers.

44 Performance Evaluation

• The MAC units: In this module, FloPoCo operators are used to perform the core
calculations of this work. Here a floating point multiplier and adder are imple-
mented.

The FloPoCo implementation is achieved by providing to the FloPoCo module two
parameters: the target FPGA family and the target frequency. In this sense, we had the
additional problem of our FPGA family (Alveo) not being supported by FloPoCo as it is
too new. To overcome this limitation we have chosen the most modern FPGA supported
by FloPoCo and tested several target frequencies and implementations to determine if
the pipelined realized by FloPoCo is optimal.

With that workflow in mind we proceeded to create a baseline FloPoCo target fre-
quency study to maximise FLOPs. This consisted on testing different target frequencies
for the FLoPoCo operators and their achieved throughput. Surprisingly, the achieved
results do not scale well with frequency due to our design not fully exploiting the whole
potential of the built-in operator pipelining due to inherent data dependencies between
the different MAC operators. Further solutions for using that pipelining are presented
on chapter 7.

FloPoCo target frequency Synthesis achieved clock frequency FLOP/S

400 MHz 348 MHz 1.82E+09
350 MHz 278 MHz 1.74E+09
300 MHz 227 MHz 1.78E+09
250 MHz 233 MHz 2.08E+09
200 MHz 160 MHz 1.43E+09

Table 5.4: FloPoCo initial approach synthesis and performance results.

According to the results presented on Table 5.4 the best target frequency is 250 MHz
FloPoCo target, but, upon further inspection, an anomaly can be found between the tar-
get 250 MHz and 300 MHz. This anomaly consists on a higher FLoPoCo target frequency
yielding lower synthesis results. Upon further inspection on the critical path of differ-
ent target frequencies we discovered that the FloPoCo integer operators were behaving
differently than the floating point ones, and were bringing the target frequency down.

Since the integer operators were only used once per AXI call and the floating point
ones were used widely through our design, we decided to take the integer FloPoCo oper-
ators out of the critical path by increasing their FloPoCo target frequency and thus, their
pipelining. With those optimizations we obtained the following results.

FloPoCo target frequency Synthesis achieved clock frequency FLOP/S

400 MHz 348 MHz 1.82E+09
350 MHz 307 MHz 1.92E+09
300 MHz 299 MHz 2.67E+09
250 MHz 299 MHz 2.67E+09
200 MHz 159 MHz 1.66E+09
150 MHz 154 MHz 1.93E+09

Table 5.5: FloPoCo with tuned target frequencies synthesis and performance results.

As shown on Figure 5.6 that compares the frequencies obtained on Table 5.4 and Ta-
ble 5.5 the FloPoCo integer generated pipeline is not well balanced with the Floating
Point pipeline, leaving for the user the job of tuning the different generated module fre-
quencies to better leverage the maximum performance of the FPGA fabric.

5.2 Results and discussion 45

Figure 5.6: Performance bottleneck of the default FloPoCo pipelining.

This lack of consistency between target and obtained frequencies could also be the
result of not selecting our synthesis FPGA family from the FloPoCo provided ones. But,
as FloPoCo does not give support for our specific FPGA family this is our only choice if
we want to use this tool. Further insights on this topic would be needed to determine if
this is a localized issue for our target FPGA family or a recurrent FloPoCo issue.

Figure 5.7: FLOPS per target frequency for an 8 × 8 Systolic Array.

In terms of ideal best performance of our design we calculated it by taking the la-
tency of our MAC unit and obtaining the FLOP/cycle of our design by multiplying the
FLOP/cycle of our MAC by the number of units on it. Once we obtain the maximum non-
pipelined MAC throughput we must multiply it by our achieved synthesis frequency.
This yields us the ideal max throughput of our design.

IdealMaxFLOPS =
(MatrixSize)2

(MultiplierLatency + AdderLatency)
× SynthesisFrequency

With this data we obtain the results displayed on Figure 5.7 that shows us that, as
expected, the maximum theoretical throughput would be for the lower frequency and

46 Performance Evaluation

minimal pipelining, as this pipelining is not used. But, the highest practical throughput
is at 250 MHz target. This is due to the MAC pipelining overhead being offset by the
internal synchronization mechanism speedup. This internal synchronization mechanism
is what is causing us the difference between our projected maximum throughput and the
obtained one.

It must be taken into account that a design that fully utilizes the internal MAC pipelin-
ing would be much faster as pipelining scales greatly with frequency and throughput is
not affected by pipelining latency.

Another good insight into the current pipelining usage of our design could be gained
from the graph shown on Figure 5.8, where we see the performance disadvantage of
leveraging FloPoCo pipeline only as frequency scaling. Further work can be done to
fully utilize the pipeline and improve significantly arithmetic performance. Although
dramatically improving performance in this aspect would yield bottlenecks on the AXI
subsystem.

Figure 5.8: Ideal maximum FLOPS per target frequency and pipelining usage for an 8x8 Systolic
Array.

5.3 Conclusion

As a general conclusion in our performance analysis, we can claim that the performance
of our Systolic Array is a valid proof of concept for its systolic array organization and
strategy and the design scales in resources and clock frequency. The current "naive" ap-
proach to the problem ended up providing simplicity and easeness of its design. The
design can be further iterated to significantly increase its throughput as shown on the
ideal maximum performance lines on the graphs shown on this chapter.

Further inspection on the ways that this performance can be increased is presented
on chapter 7 (Future work).

CHAPTER 6

Conclusions

In this project we target the domain of matrix multiplication with a Systolic Array archi-
tecture for the purpose of accelerating machine learning inference workloads. We try to
achieve this with a FPGA target for testing and with possible ASIC implementation in
mind. Every design decision of this project was based on those principles and we strive
to achieve decent performance out of our matrix multiplier.

With the previous objectives in mind we have designed, validated and evaluated a
Systolic Array design that aims to be a matrix multiplication coprocessor. Offloading
those incredibly expensive operations from the processor into our module to accelerate
mixed general purpose and neural network workloads. We achieved this goal by using
the industry standard AXI bus to receive requests from the main processor and to gather
and write data into memory.

The resulting design is an highly configurable and flexible matrix multiplication co-
processor. It is easily configurable in precision, frequency and size and offers good scala-
bility through an clear design which simplifies its use and understanding. It is completely
FPGA independent as it does not bind its implementation to any FPGA resource (mainly
DSPs), thus being completely RTL-based. Its use is made compatible as it uses the AXI
interface, widely used and adopted.

This all led us to implement a design that achieves a decent 2.08 Gigaflops for an
8 × 8 matrix. This is a good starting point for performance and has the potential to scale
up to 7.3 Gigaflops with the proposed optimizations in the Future Work chapter (chap-
ter 7). This means that, even though we have yet to extract all the performance that is
possible with the FloPoCo operator design, we have built a strong, scalable foundation
to further improve and develop an efficient matrix multiplier. This will be developed in
the framework of the H2020 SELENE project.

Even though the current design can be significantly improved, we managed to fulfil
all the objectives that where initially proposed on section 1.2. It ended up being a DSP-
less Open Source matrix multiplier that is accessed by the AMBA AXI standard bus.

Although this work ended up performing as expected and managed to achieve every
proposed objective, we encountered a few struggles in the design process that required
more time to invest.

The main problem that arose was a design problem. Initially, we wanted to implement
a HLS kernel to feed our RTL kernel. We tried to perform this connection using a new
Xilinx technology called Kernel to Kernel streaming, but, this technology ended up being
in a transitional stage and causing us a lot of unforeseen problems. All Xilinx examples
using this technology used the old version that was currently supported by our Alveo
runtime, but, the Xilinx Vitis platform could not generate a kernel with the old version

47

48 Conclusions

of the kernel to kernel streaming platform and the Xilinx runtime did not support yet the
new version of the streaming platform. So finally we abandoned that path and used the
current path of one monolithic kernel.

This last problem taught me the value of carefully investigating the current state of a
technology before using it and to never trust that a technology will work just because a
big manufacturer is endorsing it. It definitely was a lesson on being overconfident on the
work you are going to perform and the roadmap selected.

6.1 Connection between the Computer Science degree and the
presented work

In terms of the connection between the computer science degree and the presented work,
it is strong and has many sources. This degree helped me to structure my mind in a logic
and more parallel way, this is not learned in any subject in specific, it is a mix of lessons
learned in many many subjects. That parallel program oriented mind altogether with the
proper code commenting skills learned on many subjects where the soft skills needed on
this work.

But, in specific there are three subjects that are at the foundation of this work. The
main one is Digital Design, where I learned the basics of RTL programming as well as the
verification and implementation workflow with Vivado that I extensively used in this
work.

Furthermore, in the Computer Architecture and Engineering subject I learned the
fundamentals and culprits of processor design, understanding clearly the memory bottle-
neck that modern computation faces and thoroughly understanding the inner workings
of the Google TPU v1. Finally, in Advanced Architectures I learned the importance of
good flow control, back-pressure and in some ways of efficiently connecting components
inside a design.

CHAPTER 7

Future work

The proposed design can be significantly improved on several directions that will be
drafted on this chapter. Hereafter we present optimizations that range from improving
the inefficient pipelining use shown on subsection 5.2.3 to improvements on the AXI-
Systolic array interconnection and AXI bandwidth.

7.1 Improvements on current design

In terms of improving the current design there are a wide variety of options that present
themselves, from experimenting with new arithmetic libraries to improving the internal
module handshaking that is causing us a high number of delay cycles.

The more obvious path of improvement without any major change of our design is
the improvement of current handshaking between the elements shown on Figure 4.1. In
specific the most complicated and currently inefficient handshaking is the valid-ready
subsystem inside each Multiply Accumulate submodule. This specific submodule ended
up being the hardest one to implement of the whole work due to its 4-way synchroniza-
tion (two inputs and two outputs) and currently does not support concurrent processing
of data as to simplify the already complicated process of synchronization.

For further improvements on the MAC unit pipelining a complete rework of this sub-
module is needed. This is mainly due to its current simple design but slightly inefficient
implementation.

7.2 Pipelining usage improvement

In order to increase the utilization of the MAC units data pipelining is needed. Currently
our system uses the Adder and Multiplier pipelines just as frequency scaling, that’s why
our throughput does not scale well with pipelining stages Figure 5.7.

The described phenomenon is due to intrinsic data dependencies and thus, is impos-
sible to solve for the current design, but several workarounds are possible.

The studied workaround will be presented with the matrices shown on Figure 7.1.
Here we assume we have an internal systolic array size of four. Where previously we
would load the B1 matrix and launch the A1 and A3 matrices against it to create the C1
result we now would interlace the A1 and A3 multiplications so they could be performed
inside the Systolic Array on a pipelined fashion, effectively duplicating the throughput
but requiring twice the memory bandwidth.

49

50 Future work

Figure 7.1: Sub-matrix multiplication example for MAC unit pipelining.

This technique in conjunction with larger matrix sizes to offset the matrix loading
overhead presented on Figure 5.3 would result in much improved numbers similar to
those presented on Ideal max FLOPS in Figure 5.8.

This would greatly improve the throughput and efficiency of our operator but would
require more complex synchronization and interpolation mechanisms and thus create a
slightly larger control logic. Though this control logic size penalty would be greatly offset
by the dramatic increase on throughput.

7.3 A matrix caching mechanism for partial multiplications

The previous proposed design and current design have a significant drawback in terms
of memory movements for matrices larger than the Systolic Array grid. This drawback is
easily appreciable with the example shown in Figure 7.1. It consists on the inherent data
flow and reuse of already loaded submatrices.

For example, in order to obtain the "C1" submatrix shown on Figure 7.1 in the most
efficient manner we need to compute first the partial "C1" and "C3" submatrices with "A1"
and "A3" multiplication into "B1". But then we should load "B3" into the weights and then
launch the "A2" and "A4" matrices into it. Then we need to pull the previous partial result
from memory and add the new result, storing it into memory again. This uses up our
memory bandwidth needlessly and could be solved with a caching system inside the
module.

Figure 7.2: Rudimentary proposed Systolic Array caching mechanism.

This caching system could be implemented in several ways, but the simpler one seems
to be to put a limit on the chunk size (Number of divisions of a matrix dependant on our
systolic array size) of the submatrix multiplication that we can perform so we can cache
an entire column of the "A" matrix and launch it against a "B" row, obtaining all the partial
results of the desired "C" row as shown on Figure 7.2. This caching would be mapped on
a non-cacheable memory segment, thus, guaranteeing the coherency with the rest of the
memory hierarchy of the potential SoC.

7.4 Variable precision arithmetic 51

This would end up saving us a great deal of "A" reloads from memory and thus free-
ing up bandwidth for other users of the AXI bus or to process all the resulting partial ma-
trix multiplications yet to be added up. This method would use up n × wordSize bits of
memory and would allow us saving N × N × (N − 1) transactions for an N × N matrix.
So for the currently implemented method we would load up the Figure 7.2 "A" matrix
four times and for this caching method we would load up the "A" matrix just once. We
achieve a 250% decrease in AXI bandwidth usage for loading up "A" and "B" matrices in
this example. The larger the matrices, the greater the size of the cache needed to cache up
one column of the A matrix the larger the performance difference between both methods.

In general terms the reduction in bandwidth is equal to N3+N2

2×N2 for a needed cache size
of N × wordSize.

It needs to be noted that this caching strategy is simplistic and could be further im-
proved adding more complexity to the system, but that’s out of the scope of this work.

7.4 Variable precision arithmetic

As indicated on section 1.2 the design is compatible with different precision operators
and mixed precision operators. The compatibility is tested to be working but not yet
benchmarked due to the time constraints of this work. This variable precision arithmetic
could result on smaller designs and improved throughput and latency of the operations.
Also, power consumption reductions are expected as a result of a smaller design.

If implemented with the previous proposed changes, lower precision or mixed preci-
sion would allow us to achieve an smaller design or cram a couple more Systolic Array
rows into the same size design.

Bibliography

[1] David A. Patterson and John L. Hennessy. Computer organization and design: the
Hardware/Software Interface. Elsevier Science, 2011.

[2] M. Clark. “A new x86 core architecture for the next generation of computing”. In:
2016 IEEE Hot Chips 28 Symposium (HCS). Aug. 2016, pp. 1–19. DOI: 10 . 1109 /
HOTCHIPS.2016.7936224.

[3] R. M. Tomasulo. “An Efficient Algorithm for Exploiting Multiple Arithmetic Units”.
In: IBM Journal of Research and Development 11.1 (Jan. 1967), pp. 25–33. ISSN: 0018-
8646. DOI: 10.1147/rd.111.0025.

[4] G. E. Moore. “Cramming more components onto integrated circuits, Reprinted
from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.” In: IEEE Solid-
State Circuits Society Newsletter 11.3 (Sept. 2006), pp. 33–35. ISSN: 1098-4232. DOI:
10.1109/N-SSC.2006.4785860.

[5] “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-2019 (Revision of
IEEE 754-2008) (July 2019), pp. 1–84. ISSN: null. DOI: 10.1109/IEEESTD.2019.
8766229.

[6] Google. Cloud TPU System Architecture. URL: https://cloud.google.com/tpu/
docs/system-architecture (visited on 2020-03-11).

[7] Norman P. Jouppi, Cliff Young, Nishant Patil, et al. “In-Datacenter Performance
Analysis of a Tensor Processing Unit”. In: Proceedings of the 44th Annual International
Symposium on Computer Architecture. ISCA ’17. Toronto, ON, Canada: Association
for Computing Machinery, 2017, pp. 1–12. ISBN: 9781450348928. DOI: 10.1145/
3079856.3080246. URL: https://doi.org/10.1145/3079856.3080246.

[8] Emmett Kilgariff, Henry Moreton, Nick Stam, et al. NVIDIA Turing Architecture In-
Depth. URL: https://devblogs.nvidia.com/nvidia-turing-architecture-in-
depth/ (visited on 2020-05-11).

[9] Google. An in-depth look at Google’s first Tensor Processing Unit (TPU). 2017. URL:
https://cloud.google.com/blog/products/gcp/an- in- depth- look- at-
googles-first-tensor-processing-unit-tpu (visited on 2020-03-10).

[10] Moran Shkolnik, Brian Chmiel, Ron Banner, et al. “Robust Quantization: One Model
to Rule Them All”. In: ArXiv abs/2002.07686 (2020).

[11] Vitis Unified Software Platform Documentation. Application Acceleration Development.
UG1393. Xilinx. Nov. 2019.

[12] Florent de Dinechin and Bogdan Pasca. “Designing Custom Arithmetic Data Paths
with FloPoCo”. In: IEEE Design & Test of Computers 28.4 (July 2011), pp. 18–27.

[13] AMBA AXI and ACE Protocol Specification. ARM IHI 0022E (ID022613). ARM. Feb.
2013.

53

https://doi.org/10.1109/HOTCHIPS.2016.7936224
https://doi.org/10.1109/HOTCHIPS.2016.7936224
https://doi.org/10.1147/rd.111.0025
https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://cloud.google.com/tpu/docs/system-architecture
https://cloud.google.com/tpu/docs/system-architecture
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/
https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/
https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

54 BIBLIOGRAPHY

[14] The OpenCLTM Specification. Version V2.2-11. Khronos R© OpenCL Working Group.
July 2019.

[15] Xilinx Runtime (XRT) Architecture. URL: https://xilinx.github.io/XRT/2019.2/
html/index.html (visited on 2020-03-10).

[16] Alveo Product Selection Guide. URL: https://www.xilinx.com/support/documentation/
selection-guides/alveo-product-selection-guide.pdf (visited on 2020-05-26).

[17] NVIDIA. NVIDIA TESLA V100 GPU ARCHITECTURE. Tech. rep. WP-08608-001_v1.1.
NVIDIA, 2017.

[18] Coral. System-on-Module datasheet. URL: https://coral.ai/docs/som/datasheet/
(visited on 2020-03-25).

[19] Zhe Jia, Blake Tillman, Marco Maggioni, et al. Dissecting the Graphcore IPU Architec-
ture via Microbenchmarking. Tech. rep. 1912.03413v1. Dec. 2019, p. 91. URL: https:
//www.graphcore.ai/hubfs/assets/pdf/Citadel%20Securities%20Technical%
20Report % 20 - %20Dissecting % 20the % 20Graphcore % 20IPU % 20Architecture %
20via%20Microbenchmarking%20Dec%202019.pdf.

[20] CHaiDNN. URL: https://github.com/Xilinx/chaidnn (visited on 2020-05-27).

[21] PipeCNN. URL: https://github.com/doonny/PipeCNN (visited on 2020-05-27).

[22] Xilinx. Zynq DPU v3.2 product guide. Tech. rep. PG338 (v3.2). Mar. 2020, p. 66. URL:
https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_
2/pg338-dpu.pdf.

[23] Christopher W. Fletcher. EECS150: Interfaces: “FIFO” (a.k.a. Ready/Valid). URL: https:
//inst.eecs.berkeley.edu/~cs150/Documents/Interfaces.pdf (visited on 2020-
04-21).

https://xilinx.github.io/XRT/2019.2/html/index.html
https://xilinx.github.io/XRT/2019.2/html/index.html
https://www.xilinx.com/support/documentation/selection-guides/alveo-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/alveo-product-selection-guide.pdf
https://coral.ai/docs/som/datasheet/
https://www.graphcore.ai/hubfs/assets/pdf/Citadel%20Securities%20Technical%20Report%20-%20Dissecting%20the%20Graphcore%20IPU%20Architecture%20via%20Microbenchmarking%20Dec%202019.pdf
https://www.graphcore.ai/hubfs/assets/pdf/Citadel%20Securities%20Technical%20Report%20-%20Dissecting%20the%20Graphcore%20IPU%20Architecture%20via%20Microbenchmarking%20Dec%202019.pdf
https://www.graphcore.ai/hubfs/assets/pdf/Citadel%20Securities%20Technical%20Report%20-%20Dissecting%20the%20Graphcore%20IPU%20Architecture%20via%20Microbenchmarking%20Dec%202019.pdf
https://www.graphcore.ai/hubfs/assets/pdf/Citadel%20Securities%20Technical%20Report%20-%20Dissecting%20the%20Graphcore%20IPU%20Architecture%20via%20Microbenchmarking%20Dec%202019.pdf
https://github.com/Xilinx/chaidnn
https://github.com/doonny/PipeCNN
https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_2/pg338-dpu.pdf
https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_2/pg338-dpu.pdf
https://inst.eecs.berkeley.edu/~cs150/Documents/Interfaces.pdf
https://inst.eecs.berkeley.edu/~cs150/Documents/Interfaces.pdf

APPENDIX A

Definitions, terminology and
acronyms

• FPGA: Field Programmable Gate Array.

• AXI: Advanced Extensible Interface.

• RTL: Register-transfer level.

• HDL: Hardware description language.

• ASIC: Application-specific integrated circuit.

• MAC: Multiply Accumulate.

• VHDL: Very High Speed Integrated Circuit Hardware Description Language.

• RTL: Register-Transfer Level.

• HLS: High Level Synthesis.

• OpenCL: Open Computing Language.

• NaN: Not a Number.

• PCI: Peripheral Component Interconnect

• MIPS: Microprocessor without Interlocked Pipelined Stages.

• ALU: Arithmetic and Logic Unit.

• PC: Program Counter

• XRT: Xilinx RunTime.

• KDS: Kernel Domain Scheduler.

• TPU: Tensor Processing Unit.

• MXU: Matrix multiply unit.

• SoM: System on Module.

• TOPS: Tera OPerations per Second.

• APU: Application processing unit.

55

56 Definitions, terminology and acronyms

• DSP: Digital Signal Processor.

• DDR: Double Data Rate.

• PE: Processing Engine.

• AMP: Accumulating Matrix Product.

• FloPoCo: Floating Point Cores.

• FLOPS: Floating Point OPerations per Second.

• NIC: Network Interface Card.

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Expected impact
	Methodology
	Memory structure

	Background
	The Traditional CPU Model
	The Need for Accelerators (Heterogeneous Computing)
	Floating Point Unit
	Systolic Array Organization
	Quantization

	Implementation Tools
	FPGA Tools
	Libraries

	State of the art
	Widespread Dedicated Neural Network Accelerators
	Nvidia Tensor Cores
	Google TPU
	Graphcore IPU

	Widespread FPGA Neural Network Accelerator designs
	HLS Designs
	Xilinx DPU core

	Proposed design place on the current state of the art

	Architectural design
	Basic element: MAC unit
	Internal MAC unit architecture
	Data loading process
	Flow Control Mechanism

	Our systolic array design
	Overview example of the process of the proposed matrix multiplication unit
	Systolic Array control submodules

	AXI

	Performance Evaluation
	Testing methodology
	Simulation of the design on Vivado
	Simulation of the finished result on Vitis

	Results and discussion
	Performance
	Resources analysis
	FloPoCo tuning and its performance impact

	Conclusion

	Conclusions
	Connection between the Computer Science degree and the presented work

	Future work
	Improvements on current design
	Pipelining usage improvement
	A matrix caching mechanism for partial multiplications
	Variable precision arithmetic

	Bibliography
	Definitions, terminology and acronyms

