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A CHARACTERIZATION OF THE SCHUR PROPERTY THROUGH THE
DISK ALGEBRA

DOMINGO GARCÍA, ENRIQUE JORDÁ, AND MANUEL MAESTRE

This paper is dedicated to our dear friend Richard Aron

Abstract. In this paper we give a new characterization of when a Banach space E has de
Schur property in terms of the disk algebra. We prove that E has the Schur property if and
only if A(D, E) = A(D, Ew).

1. Introduction

The disk algebra, either for one dimension, for many or infinite variables is an area of intensive
research (see e.g. [1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14]). In this paper we are going to consider
the natural vector-valued extension of the disk algebra A(D).

Let X and E be complex Banach spaces. As usual, BX and BX will stand for the open
(respectively closed) unit ball of X. By H(BX , E) we denote the space of all mappings f :
BX → E holomorphic (i.e. complex-Fréchet differentiable) on BX . As in the scalar valued case,
the vector-valued extension of the disk algebra has two natural and equivalent definitions. One,
denoted by Au(BX , E), is the Banach space of all uniformly continuous functions f : BX → E
that, moreover, are holomorphic on BX , endowed with the supremum norm. The other natural
definition is the following.

Au(BX , E) := {f : BX → E : f ∈ H(BX , E) and f uniformly continuous on BX}.

Clearly the mapping R : Au(BX , E)→ Au(BX , E) that associates to each element in Au(BX , E)
its restriction to the open unit ball BX is an isometric isomorphism, since uniformly continuous
functions defined on the open unit ball BX of a Banach space X and with values in another
Banach space are bounded and admit a unique extension to the closed unit ball BX which
is also uniformly continuous. Thus, from now on, we write Au(BX , E) = Au(BX , E). For
C-valued functions we simply denote Au(BX ,C) = Au(BX).

With Eτ we denote E endowed with the topology τ which could the weak topology w(E,E∗)
or, if E is a dual space, i.e. if there exists a complex Banach space Y such that E = Y ∗, the
weak-star topology w∗(Y ∗, Y ).

A very classical result by Dunford of 1938 [6, Theorem 76, p. 354] or [7, Theorem 3.10.1,
p. 93 combined with Theorem 3.17.1, p. 112], states that H(BX , Ew) = H(BX , E), that is,
a mapping f : BX → E is holomorphic if and only if u ◦ f : BX → C is holomorphic for
every u : E → C continuous linear form (in short for every u ∈ E∗). Moreover, if E = Y ∗,
then H(BX , Ew∗) = H(BX , E), again a mapping f : BX → Y ∗ is holomorphic if and only if
u ◦ f : BX → C is holomorphic for every u ∈ Y considered Y as a subspace of E∗ = Y ∗∗. The
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main goal of this paper is to discuss if analogues of Dunford’s results are true in the context of
vector-valued algebras of the disk (or more properly called, algebras of the ball).

For that reason, we are going to consider the following spaces.

Au(BX , Eτ ) := {f : BX → E : f ∈ H(BX , E) and f is τ − uniformly continuous on BX},

and

Au(BX , Eτ ) := {f : BX → E : f ∈ H(BX , E) and f is τ − uniformly continuous on BX},

where τ denotes either the topology w or w∗. Observe that when considering the norm topology
in the range space, we simply write E. All of these spaces are Banach spaces when endowed
with the supremum norm topology.

We explore the connections between these algebras of the disk,

Au(BX , Ew) = Au(BX , E), Au(BX , Ew)

and the space of mapping defined in the closed unit ball Au(BX , Ew). Since the mapping
R : Au(BX , Ew)→ Au(BX , Ew) defined as R(f)(x) = f(x) for every x in BX is well defined, in-
jective, and actually an isometry into, one can consider Au(BX , Ew) as a subset of Au(BX , Ew),
and we have the following chain of inclusions.

(1.1) Au(BX , E) = Au(BX , E) ⊆ Au(BX , Ew) ⊆ Au(BX , Ew).

Contrary to the Dunford’s first stated result for holomorphic mapping both inclusions can
be strict. This claim is shown in Section 2, where in Theorem 2.3 a necessary and sufficient
condition for the equality Au(BX , Ew) = Au(BX , Ew) is given. Moreover, our main result, The-
orem 2.7, proves that given a complex Banach space X, the equality Au(BX , E) = Au(BX , Ew)
holds if and only if E has the Schur property. Therefore, we give a new characterization of that
property.

In Section 3 we give two different sufficient conditions for the Banach space Au(BX , Ew) to
be a Banach algebra whenever the space E is a Banach algebra.

2. Spaces of holomorphic and uniformly continuous vector valued functions

The objective in this section is to clarify in which cases these inclusions are strict. If X is
finite dimensional, then f : BX → Eτ is continuous if and only if f is uniformly continuous,
since Eτ is always a space with a uniformity. Thus will not write the subindex u, putting
for example A(D, E) to denote the (uniformly) continuous functions on the closed disc D with
values in a Banach space E which are holomorphic in the interior.

First we consider the question of when the injective mapping R : Au(BX , Ew)→ Au(BX , Ew)
defined above as R(f)(x) = f(x) for every x in BX is onto.

In the space Au(BX , Ew), a priori we only have that for each u ∈ E∗ there is a unique

uniformly continuous extension û ◦ f : BX → C. This allow us to produce a unique uniformly
continuous extension but taking values in E∗∗w∗ as next Lemma shows.

Lemma 2.1. Let X be a Banach space. Given f ∈ Au(BX , Ew) there exists a unique f̂ ∈
Au(BX , E

∗∗
w∗) such that f̂ |BX

= f .
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Proof. Let f ∈ Au(BX , Ew). For each u ∈ E∗ there exists a function û ◦ f : BX → C which
extends u ◦ f continuously. If (xn)n is a sequence in BX convergent to x ∈ BX \ BX then we

define 〈f̂(x), u〉 = limn u ◦ f(xn). The continuity of û ◦ f yields that f̂(x) is a well defined

bounded linear mapping since f(BX) is (weakly) bounded. The uniform continuity of û ◦ f
and its holomorphy on BX implies f̂ ∈ Au(BX , E

∗∗
w∗).

In the next Lemma we give a sufficient condition for the strict inclusion Au(BX , Ew) (
Au(BX , Ew) to hold.

Lemma 2.2. If X and E are Banach spaces and we assume that there exists f ∈ Au(BX , Ew)

satisfying that f̂(∂BX) ∩ E∗∗ \ E 6= ∅, then

(a) f ∈ Au(BX , Ew) \ Au(BX , Ew)

(b) f̂ ∈ Au(BX , (E
∗∗)w∗) \ A(BX , (E

∗∗)w).
(c) Moroever, if we consider g : BX → E∗∗, defined by z 7→ f(z), then g ∈ Au(BX , (E

∗∗)w).
Let ĝ ∈ Au(BX , (E

(4))w∗) be the extension given by Lemma 2.1. Then, ĝ(∂BX) ∩E(4) \
E∗∗ 6= ∅ (i.e. g = f but ĝ 6= f̂).

Proof. Part (a) is obvious since if we assume that there exists g ∈ Au(BX , Ew) such that
f(x) = g(x) for every x ∈ BX . We can consider g : BX → (E∗∗)w∗ and it is a (uniformly)

continuous mapping. Since f̂ : BX → (E∗∗)w∗ is continuous too and both coincide with f in

the dense subset BX , we have g = f̂ and then f̂(∂BX) ⊂ E. A contradiction.

The assertion (b) follows from the fact that f(BX) ⊆ E, f(∂BX)∩E∗∗\E 6= ∅ and E
(E∗∗)w

=

E
‖·‖

= E.
To see (c) we fix z0 ∈ ∂BX with f̂(z0) ∈ E∗∗ \E. Since ĝ : BX → ((E∗∗)∗∗, w∗) is continuous,

if ĝ(z0) ∈ E∗∗ then for each sequence (zk)k ⊂ BX convergent to z0 and for each u ∈ (E∗∗)∗ we
have u(ĝ(z0)) = limk u ◦ g(zk) = limk u ◦ f(zk), i.e. f(zk) converges to ĝ(z0) in (E∗∗, w) and

f(zk) converges to f̂(z0) in the weaker topology (E∗∗, w∗) and we obtain that ĝ(z0) = f̂(z0).

But, as E
(E∗∗,w)

= E
(E∗∗,‖·‖)

= E, we get ĝ(z0) ∈ E, but, by hypothesis, f̂(z0) ∈ E∗∗ \ E. A
contradiction.

Observe that in part (c) above if we assume that, f̂(z) ∈ E∗∗ \ E for each z ∈ ∂BX , then,
ĝ(z) ∈ E(4) \ E∗∗ for each z ∈ ∂BX .

These two lemmas give the following characterization.

Theorem 2.3. Let X and E be complex Banach spaces, the equality

Au(BX , Ew) = Au(BX , Ew),

holds if and only if every f ∈ Au(BX , Ew) satisfies that f̂(∂BX) ⊂ E.

An immediate consequence is the following Corollary.

Corollary 2.4. If E be a reflexive Banach space, then

Au(BX , Ew) = Au(BX , Ew),

for every Banach space X.

A basic example fulfilling the hypothesis of Lemma 2.2 is the following.
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Example 2.5. For f : D→ c0,→ z 7→ (zn)n, we have f̂ : D→ l∞, z 7→ (zn)n, and hence,

(a) f ∈ A(D, (c0)w) \ A(D, (c0)w)

(b) f̂ ∈ A(D, (l∞)w∗) \ A(D, (l∞)w).
(c) If we consider g : D → l∞, z 7→ f(z) then g ∈ A(D, (l∞)w). Let ĝ ∈ A∞(D, (l∗∗∞)∗w) be

the extension given by Proposition 2.1. Then, ĝ(z) ∈ l∗∗∞ \ l∞ for each z ∈ ∂D.

Proof. Take h : D → l∞, defined by h(z) = (zn)n. If u = (an) ∈ `1, we have u(h(z)) =∑∞
n=1 anz

n, that is an element of the algebra of the disk A(D). Thus h ∈ A(D, (l∞)w∗) and it

is an extension of f . By Lemma 2.1, the extension is unique. Hence f̂ = g.

Of course, in the above example u ◦ ĝ(z) = u ◦ f̂(z) for each u ∈ l1 ⊆ l∗∞ and each z ∈ D, but
l1 is not σ(l∗∞, l

∗∗
∞) dense (i.e. separating in l∗∗∞). Thus, if we want continuity in the extension

composing with the functionals of l∗∞, it is possible but we need the extension to take values in
l∗∗∞ \ l∞. The argument can be reiterated to get different extensions in further even duals.

The precise difference between A(D, (c0)w) and A(D, c0) is illustrated below.

Proposition 2.6. Let f : D→ c0, f(z) = (fn(z))n. Then

(a) f ∈ A(D, (c0)w) if and only if (fn)n converges weakly to 0 in A(D).
(b) f ∈ A(D, c0) if and only if (fn)n converges in norm to 0 in A(D).

Proof. We see (a). Since A(D) is a subspace of C(D), the Banach space of continuous functions
on D, we conclude from Riesz Representation theorem and Hahn-Banach theorem that each
functional u ∈ A(D)∗ can be represented with a regular complex measure µ, i.e u(f) =

∫
D fdµ.

If f ∈ A(D, (c0)w) then f(D) is (weakly) bounded in c0, i.e. there exists M > 0 such that
|fn(z)| ≤ M for each z ∈ D and n ∈ N. Moreover limn fn(z) = 0 for each z ∈ D. Hence we
can apply Dominated Convergence Lebesgue’s theorem to get that limn

∫
D fndµ = 0 for each

regular complex measure µ on D, and hence limn u(fn) = 0 for each u ∈ A(D)∗. Conversely, if
(fn)n tends weakly to 0 in A(D) then (fn)n is weakly bounded, and then norm bounded. Hence
for each (αn)n ⊂ l1, the series

∑
n αnfn is uniformly convergent in A(D).

To see (b) we observe that (fn)n converges in norm to 0 in A(D) if and only if (fn) is
equicontinuous and pointwise convergent to 0, if and only if (fn)n converges weakly to 0 and it
is equicontinuous. This is a consequence of Arzelà-Ascoli theorem, since A(D) is a subspace of
C(D), and the fact that in a compact space there is not any strictly weaker topology which is
Hausdorff. Now for the sequence (fn) ⊂ A(D) to be equicontinuous and weakly convergent to
0 is equivalent to be f : D→ c0 continuous and weakly holomorphic in D by (a). That in turn,
as D is a compact set, is equivalent to f be uniformly continuous and holomorphic on D.

Now we address the question of characterizing the complex Banach spaces E satisfying that
Au(BX , E) = Au(BX , Ew) for every Banach space X. The answer leads us to give a new
characterization of complex Banach spaces having the Schur property.

Theorem 2.7. Let X and E be complex Banach spaces. The following are equivalent.

(i) E has the Schur property.
(ii) Au(BX , E) = Au(BX , Ew).
(iii) Au(BX , E) = Au(BX , Ew).

Proof. First we assume that E has the Schur property and there are a Banach space X and
f ∈ Au(BX , Ew) such that there exist ε > 0 and sequences (xn)n and (yn)n in BX such that
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‖xn − yn‖ tends to 0 and ‖f(xn) − f(yn)‖ ≥ ε. The hypothesis f ∈ Au(BX , Ew) yields that
u ◦ f is uniformly continuous, and then |u ◦ f(xn) − u ◦ f(yn)| tends to 0 for each u ∈ E∗,
i.e. f(xn) − f(yn) tends to 0 weakly in E, and hence also in norm since E has the Schur
property, a contradiction. Since Au(BX , E) ⊂ Au(BX , Ew) ⊂ Au(BX , Ew), we get Au(BX , E) =
Au(BX , Ew) = Au(BX , Ew) for every X.

To prove the converse, let E be a Banach space without the Schur property, and let (en)n
be a sequence in the unit sphere SE of E which is weakly convergent to 0. Let x0 ∈ SX . We
consider a linear mapping ϕ : X → C, such that ϕ(x0) = 1. Now we take a sequence (zn)n
in the unit circle ∂D and a sequence (rn)n of positive numbers (convergent to zero) such that

D(zj, rj)∩D(zk, rk) = ∅ if j 6= k. Take gn(z) := (z+zn)/2 and fn(z) = gn(z)k(n) for k(n) being a

natural number such that |gn(z)|k(n) < 1/4n in D\D(zn, rn). We define f(x) =
∑

n fn(ϕ(x))en,

x ∈ BX ,
Let us show that f ∈ Au(BX , Ew) \ Au(BX , E). The series is well defined since ϕ(x) belongs
at most to one ball D(zk, rk) for each x ∈ BX . For each n ∈ N and yn in the boundary of
D(zn, rn) ∩ D we have that ‖znx0 − ynx0‖ = |zn − yn| = rn tends to 0 and

‖f(znx0)− f(ynx0)‖ ≥ |fn(zn)| −
∑
j 6=n

|fj(zn)| −
∑
j∈N

|fj(yn)| ≥ 1− 1/3− 1/3 = 1/3.

Hence f is not uniformly continuous on BX .
If we take u ∈ E∗ then u(f)(x) =

∑
fn(ϕ(x))u(en) is a convergent series in A(BX) since

(u(en))n tends to 0 and
∑

n |fn(z)| ≤ 4/3 for all z ∈ D. Hence f ∈ Au(BX , Ew).

In particular we have the following Corollary.

Corollary 2.8. Let E be complex Banach space. The following are equivalent.

(i) E has the Schur property.
(ii) A(D, E) = A(D, Ew).
(iii) A(D, E) = A(D, Ew).

Remark 2.9. If E has the Schur property then

Au(BX , Ew) = Au(BX , Ew)(= Au(BX , E)),

but this does not give a characterization. Corollary 2.4 shows that for reflexive spaces

Au(BX , Ew) = Au(BX , Ew),

and from the Jossefson-Nizenweig theorem it follows that no infinite dimensional reflexive space
has the Schur property.

Remark 2.10. Example 2.5 together Proposition 2.6 and Theorem 2.7 give a proof of the well
known fact that the space A(D) does not have the Schur property.

Let us observe that in the above proof one can take the sequence (zn)n convergent to 1.
Consequently, the constructed f is in fact not continuous in x0. Actually, the characterization
gives that E has the Schur property if and only if A(D, Ew) = A(D, E). Now, it is a natural
question to ask if Au(BX , Ew) ∩ C(BX , E) = Au(BX , E) when E does not have the Schur
property. We see below that in general the answer is negative.
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Theorem 2.11. If the complex Banach space E does not have the Schur property then there
exists a complex Banach space X such that

Au(BX , Ew) ∩ C(BX , E) 6⊆ Au(BX , E).

Proof. Let (xn) be a sequence on the unit sphere of E weakly convergent to 0. We consider
f : Bl2 → E, (zn)n →

∑
znnxn. For each (zn)n in Bl2 we have

∑
|zn|n ≤ 1 +

∑
n≥2 |zn|2 ≤ 2,

hence f is well defined and bounded. We check now that f is continuous. We fix z = (zn)n ∈ Bl2 .
Let 0 < ε < 1. There exists n0 such that

‖(zn)n≥n0‖2 =

(∑
n≥n0

|zn|2
)1/2

< ε/4.

We have ∑
n≥n0

|zn|n ≤
∑
n≥n0

|zn|2 = ‖(zn)n≥n0‖22 < ‖(zn)n≥n0‖2 < ε/4.

If t = (tn)n ∈ Bl2 and ‖z − t‖2 < ε/4 then also

‖(zn)n≥n0 − (tn)n≥n0‖2 < ε/4,

and hence

‖(tn)n≥n0‖2 ≤ ‖(tn − zn)n≥n0‖2 + ‖(zn)n≥n0‖2 < ε/2.

This yields ∑
n≥n0

|tn|n ≤
∑
n≥n0

|tn|2 = ‖(tn)n≥n0‖22 ≤ ‖(tn)n≥n0‖2 < ε/2.

We get now 0 < δ < ε/4 such that ‖z − t‖2 < δ implies

n0−1∑
n=1

|znn − tnn| <
ε

4
.

For this δ we get that ‖z − t‖2 < δ implies

‖f(z)− f(t)‖ = ‖
∑
n

(znn − tnn)xn‖ ≤
n0−1∑
n=1

|znn − tnn|+
∑
n≥n0

|zn|n +
∑
n≥n0

|tn|n < ε.

Hence f is continuous.
Let u ∈ E∗ and z = (zn)n ∈ Bl2 . The series

u ◦ f(z) =
∑

znnu(xn), z = (zn)n ∈ Bl2

is uniformly convergent on Bl2 , i.e. the series converges in Au(Bl2). This follows from the
convergence to 0 of (u(xn))n and the estimate∑

n

|zn|n ≤ 1 + ‖z‖22 ≤ 2

for each z = (zn)n ∈ Bl2 .



A CHARACTERIZATION OF THE SCHUR PROPERTY 7

To finish we observe that∥∥∥∥f(en)− f
(
n− 1

n
en

)∥∥∥∥ = 1−
(
n− 1

n

)n
→ 1− e−1,

and hence f is not uniformly continuous.

There exists another natural extension to the infinite dimensional setting of the algebra of
the disk, it is the Banach algebra of holomorphic, bounded and continuous functions on the
closed ball of a Banach space defined as

A∞(BX , E) = {f : BX → E : f ∈ H∞(BX , E) ∩ C(BX , E)},
endowed with the supremum norm, where H∞(BX , E) denotes the space of all holomorphic
and bounded mappings from BX into E.

The corresponding analogue with the weak topology is

A∞(BX , Ew) = {f : BX → Ew) : f ∈ H∞(BX , Ew)) ∩ C(BX , Ew)}.
One has here the following inclusions

Au(BX , E) ⊆ A∞(BX , E) ⊆ A∞(BX , Ew).

Analogues to Theorems 2.7 and 2.11 hold, and give in part (a) the following characterization.

Theorem 2.12. (a) Let X and E be complex Banach spaces. The space E has the Schur
property if and only if

A∞(BX , E) = A∞(BX , Ew).

(b) If the complex Banach space E does not have the Schur property there exists a complex
Banach space X for which

Au(BX , E) 6⊆ A∞(BX , E) ∩ Au(BX , Ew)

3. Banach Algebras

Since holomorphic functions, continuous and bounded uniformly continuous functions re-
main stable under products, it is immediate that Au(BX , E) and A∞(BX , E) are Banach alge-
bras whenever E is. Additionally, Au(BX , Ew) and A∞(BX , Ew) are contained in H∞(BX , E),
the Banach space of all bounded holomorphic functions from BX into E. Hence, for f, g ∈
Au(BX , Ew), respectively f, g ∈ A∞(BX , Ew), we have

‖fg‖ = sup
x∈BX

‖f(x)g(x)‖ ≤ sup
x∈BX

‖f(x)‖‖g(x)‖ = ‖f‖g‖.

Thus, fg ∈ H∞(BX , E), respectively fg ∈ H∞(BX , E)∩C∞(BX , F ). Where C∞(BX , F ) is the
Banach space of all bounded continuous mappings on the closed unit ball BX with values in F .

Our aim in this section is to study, if we assume that E is a Banach algebra, when the Banach
spaces Au(BX , Ew) and A∞(BX , Ew) are Banach algebras.

Let us observe that as a consequence of Theorem 2.7, if E is a Banach algebra with the
Schur property (e.g. as `1) then Au(BX , Ew) = Au(BX , E), and hence, Au(BX , Ew) is a Banach
algebra too.
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Proposition 3.1. Let E be a Banach subalgebra of C(K), the Banach algebra of complex valued
continuous functions on a Hausdorff compact space K endowed with the supremum norm. The
following hold.

(a) A∞(BX , Ew) is a Banach algebra.
(b) Au(BX , Ew) is a Banach algebra.

Proof. To see (a), let f, g ∈ A∞(BX , Ew) and (xn)n be a sequence in BX convergent in norm
to x ∈ BX . Then (f(xn)g(xn))n is a sequence of continuous functions on K which is uniformly
bounded and pointwise convergent to f(x)g(x), i.e. for each z ∈ K f(xn)(z)g(xn)(z) converges
to f(x)(z)g(x)(z). By Dominated Convergence Lebesgue’s theorem, for each regular measure
µ in K we get

lim
n

∫
K

f(xn)(z)g(xn)(z)dµ(z) =

∫
K

f(x)(z)g(x)(z)dµ(z).

We conclude from Hahn-Banach theorem and Riesz representation theorem that f(xn)g(xn)
tends weakly to f(x)g(x), and we have obtained that fg ∈ A∞(BX , Ew).

Now we prove (b). Let M(E) be the maximal ideal space of E and f, g ∈ Au(BX , Ew). Since
Au(BX , Ew) is a subspace of A∞(BX , Ew), part (a) implies that u ◦ fg is continuous for each
u ∈ M(E). Suppose that there exists u ∈ E∗ such that u ◦ fg is not uniformly continuous.
Then there exist ε > 0 and two sequences (xn)n and (yn)n in BX such that ‖xn − yn‖ → 0 but
|u ◦ fg(xn)− u ◦ fg(yn)| > ε for every n. Let z ∈ K.

|δz(f(xn)g(xn)− f(yn)g(yn))| = |f(xn)(z)g(xn)(z)− f(yn)(z)g(yn)(z)|
≤ |f(xn)(z)(g(xn)(z)− g(yn)(z))|+ |g(yn)(z)(f(xn)(z)− f(yn)(z))|

≤ ‖f‖|g(xn)(z)− g(yn)(z)|+ ‖g‖|f(xn)(z)− f(yn)(z)|,
and the right hand side tends to 0 since δz ∈ E∗ and δz ◦ f and δz ◦ g are uniformly continuous.
Now, the Riesz representation theorem and the Hahn-Banach theorem yield that there exists
a regular measure µ on K such that

u(x) =

∫
K

x(z)dµ(z)

for each x ∈ E. Since (f(xn)g(xn) − f(yn)g(yn))n ⊂ E is a bounded sequence which tends
pointwise to 0, we have that, Dominated Convergence Lebesgue’s theorem yields

u ◦ fg(xn)− u ◦ fg(yn) = lim
n

∫
K

(f(xn)(z)g(xn)(z)− f(yn)(z)g(yn)(z))dµ(z) = 0,

a contradiction.

Proposition 3.2. Let E be a Banach algebra such that span(M(E)) is dense in E∗. Then both
A∞(BX , Ew) and Au(BX , Ew) are Banach algebras.

Proof. We prove the statement for Au(BX , Ew), the proof for A∞(BX , Ew) is analogous. We
observe that if f, g ∈ Au(BX , Ew), then u◦fg is uniformly continuous for each u ∈ span(M(E)),

since such a u can be written u =
∑k

i=1 aimi, with ai ∈ C and mi ∈ M(E), and m ◦ (fg) =
(m ◦ f)(m ◦ g) is a uniformly continuous function for each m ∈ M(E). Assume that both f
and g are in the unit ball of Au(BX , E), and then
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sup
x∈BX

‖f(x)g(x)‖ ≤ sup
x∈BX

‖f(x)‖‖g(x)‖ ≤ 1.

Let v ∈ E∗, let ε > 0 and let u ∈ span(M(E)) such that ‖v− u‖ < ε/3. There exists 0 < δ < 1
such that x, y ∈ BX and ‖x−y‖ < δ imply |u◦(fg)(x)−u◦(fg)(y)| < ε/3. Now, for x, y ∈ BX

and ‖x− y‖ < δ, we have

|v◦(fg)(x)−v◦(fg)(y)| ≤ |(v−u)◦(fg)(x)|+ |(u−v)◦(fg)(y)|+ |u◦(fg)(x)−u◦(fg)(y)| < ε.

Let G be a compact topological group, let 1 ≤ p < ∞ and let Lp(G) be the space of all
functions f : G→ C with f measurable and |f |p integrable with respect to the Haar measure.
These spaces are Banach algebras with respect to the convolution [8, 5.21, p.135].

Corollary 3.3. Let G be an abelian compact topological group and let 1 < p < ∞, we have
that Au(BX , Lp(G)w) is a Banach algebra.

Proof. Let denote Ĝ its dual group formed by all the characters. For ξ ∈ Ĝ the abstract Fourier

transform f̂ : Ĝ→ C is defined by

f̂(ξ) =

∫
G

〈x, ξ〉f(x)dx.

By [8, Theorem 4.2], the maximal ideal space M(L1(G)) of L1(G) is completely determined by

the Fourier transform, i.e. for ξ ∈ Ĝ, if we define

Λξ(f) := f̂(ξ), f ∈ L1(G),

then

M(L1(G)) = {Λξ : ξ ∈ Ĝ}.
Moreover, Lp(G) ⊂ L1(G) for 1 < p <∞. Thus

M(Lp(G)) = {Λξ : ξ ∈ Ĝ}, 1 < p <∞.
Now, for each 1 < p < ∞, Lp(G) is a reflexive Banach algebra and M(Lp(G)) is separating
in Lp(G) by the Fourier Uniqueness theorem [8, 4.33]. Hence, the reflexivity of Lp(G) yields
that the span of M(Lp(G)) is dense in Lq(G), with 1/p+ 1/q = 1. The result now follows from
Proposition 3.2.

Remark 3.4. (a) As a particular case of the above corollary we can take as G the torus T,
the finite product of the torus TN or the countable product of the copies of the torus
TN. In these cases the characters are Z, the finite product ZN and the countable direct
sum Z(N) respectively, and the abstract Fourier transform becomes the usual Fourier
transform.

(b) c0 satisfies the hypothesis of both Proposition 3.1 and Proposition 3.2. But, in general,
Proposition 3.2 cannot be applied to C(K) for an arbitrary compact space K, because
the maximal ideal space M(C(K)) of C(K), that coincides with the set {δx : x ∈ K} of
the evaluations at points of K, is not a total subset of C(K)∗, i.e. they do not separate
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points in C(K)∗∗. Indeed, let K be a perfect Hausdorff compact set and let m be a
regular measure on K satisfying that all singletons have measure zero. This happens
if K ⊂ Rn and m is the Lebesgue measure or if K is an infinite compact group and m
is the Haar measure. Let us assume without loss of generality m(K) = 1. Under these
hypothesis, m cannot be approached by a finite linear combination of evaluations.

Let 1 > δ > 0. We denote m(f) =
∫
K
fdm. Let {x1, . . . , xn} ⊂ K and {a1, . . . , an} ∈

C be arbitrary. Let U be an open neighborhood of {x1, . . . , xn} with m(U) < δ. Let V
be a closed neighborhood of {x1, . . . , xn} contained in U . We apply Uryshon’s Lemma
to get a positive function f in the closed unit ball of C(K) such that f |V = 0 and
fK\U = 1. We have now m(f) > 1− δ since f is positive and identically 1 in K \U and
m(K \ U) > 1− δ. Moreover

∑
aif(xi) = 0. Thus

||m−
n∑
i=1

aiδxi‖| ≥ |m(f)−
∑

aif(xi)| > 1− δ.

Hence the evaluations at points of K is not a total subset of C(K)∗. Further, we have
proved that the distance of m to the closed span of {δx : x ∈ K} is 1.

Reciprocally, the Banach algebras Lp(G) with respect to the convolution ?, where G
is an abelian compact topological group and 1 < p < ∞, are not subalgebras of any
C(K), since there exists f in Lp(G) such that ‖f ? f‖ < ‖f‖2. Hence Lp(G) fulfills the
hypothesis of Proposition 3.2 but not the one of Proposition 3.1.

Acknowledgement. The second author wants to thank M. Filali and J. Galindo for several
nice and helpful discussions about concrete algebras satisfying the conditions of Proposition 3.2
during his visit in April of 2015 to the University of Oulu.
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