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Abstract

Given a set function Λ with values in a Banach space X, we construct an in-
tegration theory for scalar functions with respect to Λ by using duality on X
and Choquet scalar integrals. Our construction extends the classical Bartle-
Dunford-Schwartz integration for vector measures. Since just the minimal
necessary conditions on Λ are required, several L1-spaces of integrable func-
tions associated to Λ appear in such a way that the integration map can be
defined in them. We study the properties of these spaces and how they are
related. We show that the behavior of the L1-spaces and the integration map
can be improved in the case when X is an order continuous Banach lattice,
providing new tools for (non-linear) operator theory and information science.
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1. Introduction

Lebesgue type integration of scalar functions with respect to a vector
measure was originally developed by Bartle, Dunford and Schwartz [3] in
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order to extend the classical Riesz representation theorem for vector val-
ued operators. Later, an equivalent integration theory was constructed by
Lewis [23] using the duality of the vector measure’s codomain. Nowadays
this theory is well understood and has found many important applications
in functional analysis and operator theory, among others the extension of
linear operators to larger domains, see [29] and the references therein for an
outlook of this topic. Similar and other applications would be desirable in
the case of non-finitely additive vector valued set functions, as for instance
the study of non-linear operators or the construction of some measuring tools
in information science (e.g. [4, 18]). The aim of this paper is to create an
integration theory for vector-valued capacities —sometimes also called fuzzy
capacities— and the corresponding spaces of integrable functions, which fits
with the integration with respect to vector measures and allows to address
this kind of applications in next works. As a first step in this process, Cho-
quet type integrals will provide the appropriated framework and will play a
fundamental role for our goal.

Let us explain our motivation regarding possible applications of our work.
Our interest in this topic is twofold. On the one hand, the relevance of our
paper from the point of view of the mathematical analysis may be found in
the aim of finding extensions of recent vector-measure-based developments
in operator theory and harmonic analysis. Indeed, Bartle-Dunford-Schwartz
integration has found an upturn of interest due to its use for computation of
maximal domains of operators, with applications in several applied problems
(see for example [10, 12, 11, 29]). In this direction, similar techniques would
be applied for non-linear operators using the tools developed here, where
linearity —vector measures— is substituted by non-linearity —fuzzy vector
capacities—. Concretely, we are thinking about fundamental non-linear op-
erators as the Hardy-Littlewood maximal operator. On the other hand, as
a continuation of our research in collaboration with information scientists,
we are also interested in the theoretical development of mathematical instru-
ments for the bibliometric analysis of the impact of the scientific research and
its multiple applications —altmetrics, research assessment, big data analy-
sis, just to mention some of them (see [6, 16])—. Current research on the
topic shows that two lines of research make sense. The first one stresses
the fact that non-additive set functions and integration are more and more
needed for constructing such measuring tools (see [4, 18, 21, 26]). The second
one highlights the fact that multiple scalar indexes —that is, vector-valued
indexes— are sometimes needed for a suitable mathematical treatment of the
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information (see [6, 17] and the references therein).
Integration with respect to general set functions has a long tradition,

and current contributions on this subject are hot research topics in several
branches of both pure and applied mathematics. In the Introduction of [22],
an excellent historical review on this integration can be found; see also [24]
for an overview of non-additive monotonic measures and their properties.
There are a lot of mathematical developments related to non-additive inte-
gration; the references in both papers just mentioned provide a nice selections
of works regarding this subject and its broad class of applications. We must
also refer to the so called pseudo analysis, that is based in the study of the
properties of the pseudo measures. Different terms are used for related types
of set functions, as for example fuzzy measures, capacities, non-monotonic
measures, pseudo-additive measures and null-additive set functions. Start-
ing from the early work of Choquet ([9]), Sugeno and others which may be
mentioned here (see for example [27, 28] and the references therein), solid
integration theories have been constructed for related classes of non-additive
measures (see the books [13, 30, 31]; also [33, 35]). In particular, the Cho-
quet integral has been deeply studied in the case of scalar functions and
scalar positive capacities (e.g. [13]) and even there are studies about the L1

and other function spaces associated to this integral (e.g. [7]). Regarding
general (topological) spaces of scalar functions that are integrable, a lot of
work has also been made in recent years, also from different —theoretical
and applied— points of view. Although the literature on the subject is really
broad, let us mention here the works that are more related to our develop-
ments, that are the papers [7, 8] for the classical Choquet integral for scalar
functions, and [32] for general pseudo measures.

Regarding the vector valued case, also vector capacities with values in a
Riesz space has been studied (e.g. [20]). In this case, thanks to the order
structure, a Choquet type vector integral can be defined by using vector Rie-
mann integration. Our approach will be different. Starting with a Banach
space valued capacity (without any order) we will use Choquet scalar inte-
grals and duality in a similar way as in Lewis integration to define a vector-
valued integral. Several L1-spaces associated to the vector capacity appear
along the paper as soon as some specific conditions are required. We study
the relation among them and the role played by the Dunford and Bochner
integration when the distribution functions with respect to the vector capac-
ity are considered; we must mention here the paper [15] for a similar study
in the case of vector measures, that in some sense inspired our work. Finally,
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we will see how much the behavior and the properties of the L1-spaces and
the integration map improve when the vector capacity take values in an order
continuous Banach lattice.

We must remark that the novelty of our results mainly concerns the vector
nature of the proposed Choquet integral, and the fact that we are directly
interested in the structure of the associated spaces of integrable functions,
besides the properties of the integrals. This is so because spaces of integrable
functions are central in both motivations that led us to start this study. From
the pure-analytic point of view, domains of (linear and non-linear) classical
operators are normally function spaces, and so the maximal domain must be
expected to be such an space too. From the point of view of the applications,
all the functions that can be used for representing a measuring tool with some
fixed requirements in information science are also elements of such an space.

The contents of this paper are structured as follows. In the preliminar-
ies we collect the basic concepts and facts on scalar capacities and function
spaces that are needed. Section 3 is devoted to the space L1(λ) of a scalar
positive capacity λ, that is, the space of (λ-a.e. classes of) measurable func-
tions f such that

∫
I
λ|f | dm < ∞ where m is the Lebesgue measure on the

interval I = [0,∞) and λ|f | is the distribution function of |f | with respect to
λ. Although this space has already been studied in [7], as it will be our main
tool we have preferred to include here a detailed outline in which minimal
conditions on λ are required taking care that the identification of functions
which are equal λ-a.e. is correct.

In Section 4 we consider a family F = (λα) of scalar positive capacities
and construct two quasi-Banach function spaces associated to F , namely, the
space L1(‖F‖) of the capacity ‖F‖ = supα λα and the space L1(F) of (‖F‖-
a.e. classes of) measurable functions f such that supα

∫
I
(λα)|f | dm < ∞. A

Banach space valued capacity Λ: Σ → X come into play in Section 5. As
particular cases of the results of Section 4, we obtain the quasi-Banach func-
tion spaces L1(‖Λ‖), w-L1

v(Λ), L1(|||Λ|||), w-L1
qv(Λ) associated to the families

(|x∗Λ|)x∗∈BX∗ and (qx∗Λ)x∗∈BX∗ , where |x∗Λ| and qx∗Λ are the variation and
quasi-variation respectively of the scalar capacity x∗Λ given by the composi-
tion of Λ with the element x∗ in the closed unit ball BX∗ of the topological
dual X∗ of X.

Under the appropriate conditions, in Section 6 we associate to Λ an in-
tegration map IΛ : w-L1

qv(Λ) → X∗∗, where 〈IΛ(f), x∗〉 =
∫
I
x∗Λf dm for all

positive f ∈ w-L1
qv(Λ) and x∗ ∈ X∗. For non-positive f we use its positive

and negative parts. Then two new sets appear in the case when X is non-
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reflexive: the set L1
qv(Λ) of functions f ∈ w-L1

qv(Λ) such that IΛ(fχA) ∈ j(X)
for all A ∈ Σ, where j is the canonical embedding of X into X∗∗, and
L1
v(Λ) = L1

qv(Λ) ∩ w-L1
v(Λ). We find the following containment relations

L1(‖Λ‖) ⊂ L1
v(Λ) ⊂ w-L1

v(Λ)
∩ ∩ ∩

L1(|||Λ|||) ⊂ L1
qv(Λ) ⊂ w-L1

qv(Λ).

In the case when Λ is a vector measure the vertical inclusions are equalities,
w-L1

v(Λ) and L1
v(Λ) coincide with the spaces of weakly integrable and inte-

grable functions (in the sense of Lewis) with respect to Λ respectively, and
IΛ is the integration operator with respect to Λ.

In general, since IΛ is not additive, we cannot know even if L1
qv(Λ) and

L1
v(Λ) are vector spaces. Section 7 gives conditions on X and Λ under which

these two sets are Banach function spaces with the norms of w-L1
qv(Λ) and

w-L1
v(Λ) respectively. The key is that under these conditions X is a Banach

lattice satisfying that j(X) is an ideal of X∗∗ and the map IΛ is increasing and
subadditive on positive functions. Moreover, IΛ turns out to be continuous,
the space w-L1

qv(Λ) coincides with the space of (Λ-a.e. classes of) measur-
able functions such that Λ|f | is Dunford integrable with respect to m and
L1(|||Λ|||) with the space of functions such that Λ|f | is Bochner integrable.

We end with Section 8 by showing an example of a vector capacity which
satisfies all the conditions required along the paper and giving easier descrip-
tions of its associated L1-spaces.

2. Preliminaries

Throughout this paper (Ω,Σ) will denote a measurable space. Let λ : Σ→
[0,∞] be a set function satisfying that λ(∅) = 0. Such a set function λ will
be called a capacity. A set Z ∈ Σ is λ-null if λ(A) = 0 for all A ∈ Σ such
that A ⊂ Z. Note that every measurable subset of a λ-null set is λ-null. A
property holds λ-a.e. if it holds except on a λ-null set. If (An) ⊂ Σ is an
increasing sequence with A = ∪An we will write An ↑ A. If the sequence is
decreasing with A = ∩An we will write An ↓ A. The following properties of
a capacity will be used in the sequel:

(P1) λ is increasing if λ(A) ≤ λ(B) for every A,B ∈ Σ such that A ⊂ B.

(P2) λ is null-additive if λ(A∪Z) = λ(A) for all A,Z ∈ Σ with Z being λ-null.
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(P3) λ is quasi-subadditive if there exists a constant K ≥ 1 such that

λ(A ∪B) ≤ K(λ(A) + λ(B))

for every disjoint sets A,B ∈ Σ. If K = 1 it is called subadditive.

(P4) λ is superadditive if λ(A) + λ(B) ≤ λ(A ∪ B) for every disjoint sets
A,B ∈ Σ.

(P5) λ is submodular if λ(A∪B) + λ(A∩B) ≤ λ(A) + λ(B) for all A,B ∈ Σ.

(P6) λ is continuous from below if λ(An) → λ(A) whenever An, A ∈ Σ with
An ↑ A.

(P7) λ is continuous from above at ∅ if λ(An) → 0 whenever An ∈ Σ with
An ↓ ∅ and λ(A1) <∞.

Denote by L0(Ω) the space of all measurable functions f : Ω→ R and by
L0(Ω)+ the positive cone of L0(Ω), that is the set of functions in L0(Ω) which
take values in [0,∞). Write Nλ for the set of functions f ∈ L0(Ω) such that
f = 0 λ-a.e. In what follows we require that ∪Zn is λ-null whenever (Zn) is
a sequence of λ-null sets. This fact is obtained for instance if λ is continuous
from below and has any of the properties (P2,3,5). Under this requirement
Nλ is a vector space and for fn− gn, f − g ∈ Nλ with fn → f λ-a.e. it follows
that gn → g λ-a.e. The support of a function f ∈ L0(Ω) will be denoted
by supp(f). Note that f ∈ Nλ if and only if supp(f) is λ-null. Denote by
L0(λ) the quotient space L0(Ω)/Nλ. That is, L0(λ) is the space of all real
measurable functions f defined on Ω, where functions which are equal λ-a.e.
are identified. For f ∈ L0(Ω) we will denote by f+ and f− the positive and
negative parts of f respectively, that is, f+ = fχPf and f− = (−f)χNf where
Pf = {ω ∈ Ω : f(ω) > 0} and Nf = {ω ∈ Ω : f(ω) < 0}. We will write S
for the space of simple functions on Σ and Sλ = {ϕ ∈ S : λ(supp(ϕ)) <∞}.

By a λ-quasi-Banach function space (briefly, λ-quasi-B.f.s.) we mean
a quasi-Banach space E ⊂ L0(λ) with quasi-norm ‖ · ‖E, satisfying that if
f ∈ L0(λ), g ∈ E and |f | ≤ |g| λ-a.e. then f ∈ E with ‖f‖E ≤ ‖g‖E. If E is a
Banach space we will refer it as a λ-Banach function space (briefly, λ-B.f.s.).
In particular, a λ-quasi-B.f.s. is a quasi-Banach lattice for the λ-a.e. pointwise
order. Note that all inclusions between λ-quasi-B.f.s. are continuous, see the
argument given in [25, p. 2]. A λ-quasi-B.f.s. E is σ-order continuous if for
every sequence (fn) ⊂ E with fn ↓ 0 λ-a.e. it follows that ‖fn‖E ↓ 0. In this
case S ∩ E is dense in E. It is said that E has the σ-Fatou property if for
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every (fn) ⊂ E such that 0 ≤ fn ↑ f λ-a.e. and sup ‖fn‖E <∞ we have that
f ∈ E and ‖fn‖E ↑ ‖f‖E.

Let ρ be a λ-quasi-norm function, that is a map ρ : L0(Ω) → [0,∞]
satisfying the following conditions:

(C1) ρ(f) ≤ ρ(g) whenever f, g ∈ L0(Ω) with |f | ≤ |g| λ-a.e.

(C2) ρ(f) = 0 if and only if f = 0 λ-a.e.

(C3) ρ(af) = |a|ρ(f)1 for all a ∈ R and f ∈ L0(Ω).

(C4) There exists K ≥ 1 such that ρ(f + g) ≤ K(ρ(f) + ρ(g)) for all f, g ∈
L0(Ω).

Condition (C1) guarantees that ρ : L0(λ)→ [0,∞] is well defined. Then

Xρ = {f ∈ L0(λ) : ρ(f) <∞}

is a vector space and ρ is a quasi-norm on it. Moreover, if f ∈ L0(λ), g ∈ Xρ

and |f | ≤ |g| λ-a.e. then f ∈ Xρ with ρ(f) ≤ ρ(g).
The λ-quasi-norm function ρ is said to have the σ-Fatou property if ρ(fn) ↑

ρ(f) whenever fn, f ∈ L0(Ω) with 0 ≤ fn ↑ f λ-a.e. In this case, it is known
that Xρ is complete. For the sake of completeness we include a proof of this
fact; it can be obtained by adapting the proof of Theorem 1.6 in [5], taking
into account that in this book the definition of function norm includes the
σ-Fatou property (see also [7] and Sections 2 and 3 in [8]).

Proposition 1. Let ρ be a λ-quasi-norm function with the σ-Fatou property.
Then Xρ is a λ-quasi-B.f.s. with the σ-Fatou property and ρ is a quasi-norm
on it.

Proof. Let r > 0 be such that 2K = 2
1
r where K is the constant of condition

(C4). Then

ρ
( n∑
j=1

fj

)
≤ 4

1
r

( n∑
j=1

ρ(fj)
r
) 1
r

(1)

for all finite subset (fj)
n
j=1 ⊂ Xρ, see [19, Lemma 1.1]. Consider a Cauchy

sequence (fn) ⊂ Xρ and take (nk) strictly increasing such that ρ(fnk+1
−

1We use the convention 0 · ∞ =∞ · 0 = 0.
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fnk) ≤ 1
2k

. Denote gk = fnk+1
− fnk , A = {ω ∈ Ω :

∑
k≥1 |gk(ω)| < ∞} and

g =
∑

k≥1 gkχA. Since
∑m

k=1 |gk|χA ↑
∑

k≥1 |gk|χA pointwise, it follows that

ρ(g) ≤ ρ
(∑
k≥1

|gk|χA
)

= lim
m→∞

ρ
( m∑
k=1

|gk|χA
)
≤ 4

1
r

(∑
k≥1

ρ(gk)
r
) 1
r
<∞

and so g ∈ Xρ. Similarly, ρ(
∑

k≥m gkχA) ≤ 4
1
r (
∑

k≥m ρ(gk)
r)

1
r for each

m ≥ 1. Consider the sets ANm = {ω ∈ Ω :
∑m

k=1 |gk(ω)| > N} for m,N ≥ 1
and note that χANm ≤

1
N

∑m
k=1 |gk| pointwise and χANm ↑ χ∪m≥1ANm

as m→∞.
Then,

ρ(χ∪m≥1ANm
) = lim

m→∞
ρ(χANm) ≤ 1

N
lim
m→∞

ρ
( m∑
k=1

|gk|
)
≤ 4

1
r

N

(∑
k≥1

ρ(gk)
r
) 1
r
.

Since Ω\A = ∩N≥1 ∪m≥1 A
N
m and so ρ(χΩ\A) ≤ ρ(χ∪m≥1ANm

) for all N , taking
N →∞ we have that ρ(χΩ\A) = 0. This implies that Ω\A is λ-null. Noting
that g + fn1 − fnm =

∑
k≥m gkχA λ-a.e., given ε > 0 it follows that

ρ(g + fn1 − fn) ≤ K
(
ρ
(∑
k≥m

gkχA

)
+ ρ(fnm − fn)

)
< ε

for large enough n and m. Hence, fn → g+ fn1 in Xρ and so Xρ is complete.
The σ-Fatou property of Xρ follows clearly from the σ-Fatou property of

ρ.

Let ξ : Σ → R be a set function satisfying that ξ(∅) = 0. Such a set
function ξ will be called a real capacity. A set Z ∈ Σ is ξ-null if ξ(A) = 0
for all A ∈ Σ such that A ⊂ Z. The variation of ξ is the set function
|ξ| : Σ→ [0,∞] defined by

|ξ|(A) = sup
{ n∑

i=1

|ξ(Ai)| : (Ai)
n
i=1 ⊂ Σ is a partition of A

}
for A ∈ Σ. The quasi-variation of ξ is the set function qξ : Σ→ [0,∞] defined
by

qξ(A) = sup{|ξ(B)| : B ∈ Σ with B ⊂ A}

for A ∈ Σ. Note that both |ξ| and qξ are increasing capacities. We also
consider the capacity |ξ(·)| : Σ → [0,∞) given by |ξ(·)|(A) = |ξ(A)| for A ∈
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Σ. The following lemma collects several properties involving the capacities
|ξ|, qξ and |ξ(·)| which can be routinely checked. The reader can find more
information on the variation of non-additive set functions in [30, 36, 37].

Lemma 2. Let ξ be a real capacity on Σ. The following statements hold:

(a) |ξ(·)| ≤ qξ ≤ |ξ|.

(b) ξ-null, |ξ|-null, qξ-null and |ξ(·)|-null sets coincide.

(c) |ξ| is superadditive.

(d) |ξ(·)| = qξ ⇔ |ξ(·)| is increasing, and qξ = |ξ| ⇔ qξ is superadditive.

(e) If Φ(ξ) denotes any one of |ξ|, qξ, |ξ(·)|, then

(e1) Φ(a ξ) = |a|Φ(ξ) for all a ∈ R,

(e2) Φ(ξ + η) ≤ Φ(ξ) + Φ(η) for η being another real capacity on Σ, and

(e3) if (ξn) is a sequence of real capacities on Σ such that ξn(A)→ ξ(A)
for all A ∈ Σ then Φ(ξ) ≤ lim inf Φ(ξn).

(f) If |ξ(·)| has any of the properties (P2,3,6) then qξ has the same property.

(g) If qξ has any of the properties (P2,3,6) then |ξ| has the same property.

The quasi-additivity constant is preserved in (f) and (g).

Note that in the case when ξ takes values in [0,∞), from Lemma 2.(d),
in general ξ does not coincide with any of qξ or |ξ|.

3. L1-space of a capacity

Let λ : Σ→ [0,∞] be an increasing capacity and denote bym the Lebesgue
measure on the interval I = [0,∞). For f ∈ L0(Ω)+, the distribution function
of f with respect to λ is the map λf : I → [0,∞] defined by

λf (t) = λ({ω ∈ Ω : f(ω) > t})

for t ∈ I. Since λ is increasing we have that λf is decreasing and so measur-
able. Then we can consider the Lebesgue integral

Iλ(f) =

∫
I

λf dm ∈ [0,∞].
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Remark 3. If f ∈ L0(Ω)+ is such that λ(supp(f)) <∞ then λf is bounded
and so Riemann integrable in every interval [0, a] with 0 < a <∞. Then

Iλ(f) =

∫ ∞
0

λf (t) dt

is the Choquet integral of f with respect to λ created in [9].

A positive function ϕ ∈ S always can be written in its standard repre-
sentation, that is ϕ =

∑n
j=1 αjχAj where (Aj)

n
j=1 ⊂ Σ is a finite collection of

pairwise disjoint sets and 0 < α1 < α2 < · · · < αn. Setting α0 = 0, we have
that

λϕ =
n∑
k=1

λ
( n⋃
j=k

Aj

)
χ[αk−1,αk)

and so

Iλ(ϕ) =
n∑
k=1

λ
( n⋃
j=k

Aj

)
(αk − αk−1). (2)

In particular, Iλ(χA) = λ(A) for all A ∈ Σ.
Let us show some properties of the integration map Iλ : L0(Ω)+ → [0,∞]

which will be needed later on. Similar result in a slightly different context
can be found in recent papers on the Choquet integral. (See [22, Proposition
3.4], and in general Section 3 in this paper; Section 4 gives similar results
for other non-additive integrals. See also the references in this paper for
more information on these matters. The reader can find more information
on continuous monotone set functions in [24] and the papers quoted in it.)

Lemma 4. The following statements hold:

(a) Iλ(af) = aIλ(f) for all f ∈ L0(Ω)+ and 0 ≤ a ∈ R.

(b) Iλ(f) ≤ Iλ(g) for every f, g ∈ L0(Ω)+ such that f ≤ g pointwise.

(c) Iλ(f) = Iλ(g) whenever f, g ∈ L0(Ω)+ with f = g λ-a.e. if and only if λ
is null-additive.

(d) Iλ(fn) ↑ Iλ(f) whenever fn, f ∈ L0(Ω)+ with fn ↑ f pointwise if and only
if λ is continuous from below.

(e) Iλ(fn) ↓ 0 whenever fn ∈ L0(Ω)+ with fn ↓ 0 pointwise and Iλ(f1) <∞ if
and only if λ is continuous from above at ∅.
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Proof. An appropriate change of variables gives (a). Part (b) is also clear as
λ is increasing.

(c) Suppose that Iλ(f) = Iλ(g) for every f, g ∈ L0(Ω)+ such that f = g
λ-a.e. For A,Z ∈ Σ with Z being λ-null, taking f = χA∪Z and g = χA we
have that f = g λ-a.e. and so λ(A∪Z) = Iλ(f) = Iλ(g) = λ(A). Conversely,
suppose that λ is null-additive and consider f, g ∈ L0(Ω)+ with f = g except
on a λ-null set Z. For every t ∈ I, denote At = {ω ∈ Ω : f(ω) > t} and
Bt = {ω ∈ Ω : g(ω) > t}. Noting that At ∩ Z, Bt ∩ Z are λ-null and
At ∩ Ω\Z = Bt ∩ Ω\Z, we have that

λ(At) = λ(At ∩ Ω\Z) = λ(Bt ∩ Ω\Z) = λ(Bt).

Then λf = λg pointwise and so Iλ(f) = Iλ(g).
(d) Suppose that Iλ(fn) ↑ Iλ(f) for every fn, f ∈ L0(Ω)+ such that fn ↑ f

pointwise. For An, A ∈ Σ with An ↑ A, taking fn = χAn and f = χA we have
that fn ↑ f pointwise and so λ(An) = Iλ(fn) ↑ Iλ(f) = λ(A). Conversely,
suppose that λ is continuous from below and consider fn, f ∈ L0(Ω)+ with
fn ↑ f pointwise. Noting that {ω ∈ Ω : fn(ω) > t} ↑ {ω ∈ Ω : f(ω) > t} for
all t ∈ I, we have that λfn ↑ λf pointwise. Then, by applying the monotone
convergence theorem for the Lebesgue integral with respect to m, it follows
that Iλ(fn) ↑ Iλ(f).

(e) Suppose that Iλ(fn) ↓ 0 for every fn ∈ L0(Ω)+ such that fn ↓ 0
pointwise and Iλ(f1) <∞. For An ∈ Σ with An ↓ ∅ and λ(A1) <∞, taking
fn = χAn we have that fn ↓ 0 pointwise and Iλ(f1) = λ(A1) < ∞. So
λ(An) = Iλ(fn) ↓ 0. Conversely, suppose that λ is continuous from above at
∅ and consider fn ∈ L0(Ω)+ with fn ↓ 0 pointwise and Iλ(f1) <∞. Note that
λf1(t) < ∞ for all t > 0 as λf1 is decreasing. Since {ω ∈ Ω : fn(ω) > t} ↓ ∅
for all t > 0, we have that λfn ↓ 0 m-a.e. Then, by applying the dominated
convergence theorem for the Lebesgue integral with respect to m, it follows
that Iλ(fn) ↓ 0.

Related results on the additivity properties of the integral under further
requirements on the capacity are known; see for example Theorem 4.1 in
[7], and Section 4 in this work. See also [30] for a systematic approach to
non-additive set functions.

Consider the map ‖ · ‖λ : L0(Ω) → [0,∞] defined by ‖f‖λ = Iλ(|f |) for
f ∈ L0(Ω). The following proposition gives conditions under which ‖ · ‖λ is
a λ-quasi-norm function with the σ-Fatou property.
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Proposition 5. Suppose that λ is null-additive, quasi-subadditive and con-
tinuous from below. Then, the following statements hold:

(a) ‖f‖λ ≤ ‖g‖λ whenever f, g ∈ L0(Ω) with |f | ≤ |g| λ-a.e.

(b) ‖f‖λ = 0 if and only if f = 0 λ-a.e.

(c) ‖af‖λ = |a| ‖f‖λ for all a ∈ R and f ∈ L0(Ω).

(d) ‖f+g‖λ ≤ 2K(‖f‖λ+‖g‖λ) for all f, g ∈ L0(Ω), with K being the constant
of the quasi-subadditivity of λ.

(e) ‖fn‖λ ↑ ‖f‖λ whenever fn, f ∈ L0(Ω) with 0 ≤ fn ↑ f λ-a.e.

Proof. (a) Let f, g ∈ L0(Ω) be such that |f |χA ≤ |g|χA pointwise for some
A ∈ Σ with Ω\A being λ-null. Since |f |χA = |f | and |g|χA = |g| λ-a.e., from
Lemma 4.(b) and (c) it follows that

‖f‖λ = Iλ(|f |) = Iλ(|f |χA) ≤ Iλ(|g|χA) = Iλ(|g|) = ‖g‖λ.

(b) If f = 0 except on a λ-null set Z, then {ω ∈ Ω : |f(ω)| > t} ⊂ Z for
all t ∈ I and so λ|f | = 0 pointwise. Hence ‖f‖λ = 0. Conversely, suppose
that ‖f‖λ = 0 and denote An = {ω ∈ Ω : |f(ω)| > 1

n
}. Since 1

n
χAn ≤ |f |

pointwise we have that

0 = ‖f‖λ ≥
∥∥∥ 1

n
χAn

∥∥∥
λ

= Iλ

( 1

n
χAn

)
=

1

n
λ(An)

and so λ(An) = 0. Note that An ↑ supp(f) from which λ(supp(f)) = 0 as λ
is continuous from below. Then f = 0 λ-a.e.

(c) Clear from Lemma 4.(a).
(d) For every f, g ∈ L0(Ω), noting that

{ω ∈ Ω : |(f + g)(ω)| > t} ⊂ {ω ∈ Ω : |2f(ω)| > t} ∪ {ω ∈ Ω : |2g(ω)| > t}

for all t ∈ I and since λ is increasing and quasi-subadditive with constant K,
it follows that λ|f+g| ≤ K(λ2|f | + λ2|g|) pointwise. Then,

‖f + g‖λ ≤ K(‖2f‖λ + ‖2g‖λ) = 2K(‖f‖λ + ‖g‖λ).

(e) Let fn, f ∈ L0(Ω) be such that 0 ≤ fnχA ↑ fχA pointwise for some
A ∈ Σ with Ω\A being λ-null. Since fnχA = |fn| and fχA = |f | λ-a.e., from
Lemma 4.(c) and (d) it follows that

‖fn‖λ = Iλ(|fn|) = Iλ(fnχA) ↑ Iλ(fχA) = Iλ(|f |) = ‖f‖λ.
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In the remainder of this section we will assume that the capacity λ satisfies
the properties (P1,2,3,6). These properties guarantee the good behaviour of
the L1-space of λ defined as

L1(λ) = {f ∈ L0(λ) : ‖f‖λ <∞}.

Note that a simple function ϕ ∈ L1(λ) if and only if ϕ ∈ Sλ, see (2).

Theorem 6. The space L1(λ) is a λ-quasi-B.f.s. with the σ-Fatou property
and ‖ · ‖λ is a quasi-norm on it. Moreover, L1(λ) is σ-order continuous if
and only if λ is continuous from above at ∅. In this last case, Sλ is dense in
L1(λ).

Proof. The first part follows from Propositions 1 and 5.
Suppose that L1(λ) is σ-order continuous and let fn ∈ L0(Ω)+ with fn ↓ 0

pointwise and Iλ(f1) < ∞. Since fn ∈ L1(λ) as ‖fn‖λ ≤ ‖f1‖λ = Iλ(f1), we
have that Iλ(fn) = ‖fn‖λ ↓ 0. Then λ is continuous from above at ∅ by
Lemma 4.(e).

Conversely, suppose that λ is continuous from above at ∅ and let fn ∈
L1(λ) be such that fn ↓ 0 λ-a.e. Taking A ∈ Σ such that Ω\A is λ-null and
fnχA ↓ 0 pointwise and noting that Iλ(f1χA) = ‖f1χA‖λ = ‖f1‖λ <∞, from
Lemma 4.(e) we have that ‖fn‖λ = ‖fnχA‖λ = Iλ(fnχA) ↓ 0. So L1(λ) is
σ-order continuous.

Noting that Sλ = S ∩ L1(λ) we conclude the proof.

Remark 7. Let µ : Σ→ [0,∞] be a measure. Obviously µ is a capacity satis-
fying all the properties (P1-7). For every positive ϕ ∈ S, from (2) it follows
that Iµ(ϕ) coincides with the Lebesgue integral

∫
Ω
ϕdµ. For f ∈ L0(Ω)+, tak-

ing a sequence (ϕn) ⊂ S such that 0 ≤ ϕn ↑ f pointwise, from Lemma 4.(d)
and applying the monotone convergence theorem for the Lebesgue integral
with respect to µ, it follows that

Iµ(f) = lim Iµ(ϕn) = lim

∫
Ω

ϕn dµ =

∫
Ω

f dµ.

Then our space L1(µ) is just the classical space of Lebesgue integrable func-
tions with respect to µ.

Now we want to extend the integration map Iλ to non-positive functions
of L1(λ). In order to obtain the Lebesgue integral in the case when λ is a
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measure, for a function f ∈ L1(λ) we define Iλ(f) = Iλ(f
+)− Iλ(f−). Note

that the definition is meaningful as Iλ(f
+), Iλ(f

−) < ∞ and if g ∈ L1(λ) is
such that f = g λ-a.e., since f+ = g+ and f− = g− λ-a.e., from Lemma
4.(c) it follows that Iλ(f) = Iλ(g). It is important to emphasize that the
integration map Iλ : L0(Ω)+ → [0,∞] is not additive in general. In fact this
is only the case when λ is a measure, since finite additivity and continuity
from below imply countable additivity. So the definition of Iλ for a non-
positive function depend on its positive and negative parts.

From Lemma 4.(a) it follows that Iλ : L1(λ)→ R is homogeneous, that is,
Iλ(af) = aIλ(f) for all f ∈ L1(λ) and a ∈ R. Indeed, we only have to note
that (af)+ = af+, (af)− = af− if a ≥ 0 and (af)+ = −af−, (af)− = −af+

if a < 0.
It is well known that Iλ is subadditive on the set of positive simple func-

tions if and only if λ is submodular, see for instance [13, Ch. 6] and the
references therein or [1] for a nice proof. In this case, since λ is continuous
from below, it follows that Iλ is subadditive on all L0(Ω)+ and so ‖ · ‖λ is a
norm, that is L1(λ) is a λ-B.f.s.

Proposition 8. If λ is submodular then Iλ : L1(λ)→ R is continuous.

Proof. Suppose that λ is submodular and so Iλ is subadditive on L0(Ω)+.
Given f, g ∈ L0(Ω)+, applying Lemma 4.(b) we have that

Iλ(f) ≤ Iλ(|f − g|+ g) ≤ Iλ(|f − g|) + Iλ(g),

from which it follows that |Iλ(f) − Iλ(g)| ≤ Iλ(|f − g|). For f, g ∈ L1(λ),
since |f+ − g+| ≤ |f − g| and |f− − g−| ≤ |f − g|, we obtain that

|Iλ(f)− Iλ(g)| ≤ |Iλ(f+)− Iλ(g+)|+ |Iλ(f−)− Iλ(g−)|
≤ Iλ(|f+ − g+|) + Iλ(|f− − g−|)
≤ 2 Iλ(|f − g|) = 2 ‖f − g‖λ .

We end this section by constructing a class of capacities which satisfy all
the necessary properties to obtain a good L1-space.

Example 9. Let µ : Σ → [0,∞] be a measure and Φ: I → I an increasing
function vanishing only at zero, with limx→0+ Φ(x) = 0 and being derivable
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in (0,∞) with a decreasing derivative Φ′. For instance Φ(x) = xp with 0 <
p < 1, Φ(x) = 1− e−x or Φ(x) = ln(1 + x). Note that

Φ(a+ b− c) + Φ(c) ≤ Φ(a) + Φ(b) (3)

for all 0 ≤ c ≤ a, b <∞. Consider the capacity λ : Σ→ [0,∞] given by

λ(A) = Φ(µ(A))

for all A ∈ Σ. As usual, Φ(∞) = limx→∞Φ(x). Note that the λ-null and
µ-null sets coincide and so L0(λ) = L0(µ). It is direct to check that λ is
increasing, null-additive and continuous from below. Let us see that λ is
submodular and so subadditive. For every A,B ∈ Σ with µ(A), µ(B) < ∞,
since µ is a measure we have that

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B).

Applying (3) for a = µ(A), b = µ(B) and c = µ(A ∩B), we obtain that

λ(A ∪B) + λ(A ∩B) = Φ(µ(A) + µ(B)− µ(A ∩B)) + Φ(µ(A ∩B))

≤ Φ(µ(A)) + Φ(µ(B)) = λ(A) + λ(B).

If any of A or B has infinite µ measure then the submodular inequality is
clear. Therefore

L1(λ) =
{
f ∈ L0(µ) : ‖f‖λ =

∫
I

Φ(µ|f |) dm <∞
}

is a µ-B.f.s. with the σ-Fatou property and ‖ · ‖λ is a norm on it. Moreover,
the integration map Iλ : L1(λ)→ R is continuous. The space L1(λ) turns out
to be an intermediate space between L∞(µ) and L1(µ), that is,

L∞(µ) ∩ L1(µ) ⊂ L1(λ) ⊂ L∞(µ) + L1(µ).

Let us show this fact. For every positive ϕ ∈ S with standard representation
ϕ =

∑n
j=1 αjχAj such that αn ≤ 1, since Φ is concave (as Φ′ decreases) and∑n

k=1(αk − αk−1) = αn ≤ 1, it follows that

‖ϕ‖λ =
n∑
k=1

Φ
(
µ
( n⋃
j=k

Aj

))
(αk − αk−1)

≤ Φ
( n∑
k=1

µ
( n⋃
j=k

Aj

)
(αk − αk−1)

)
= Φ

(∫
Ω

ϕdµ
)
.
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Note that the concave inequality holds even if some ∪nj=kAj has infinite µ
measure. Then, if f ∈ L0(µ) is such that |f | ≤ 1 µ-a.e., taking a sequence
(ϕn) ⊂ S such that 0 ≤ ϕn ↑ |f | µ-a.e., we have that

‖f‖λ = lim ‖ϕn‖λ ≤ lim Φ
(∫

Ω

ϕn dµ
)

= Φ
(∫

Ω

|f | dµ
)
.

Hence every non-null function f ∈ L∞(µ) ∩ L1(µ) satisfies that

‖f‖λ ≤ ‖f‖∞Φ
( ‖f‖1

‖f‖∞

)
and so L∞(µ) ∩ L1(µ) ⊂ L1(λ). On other hand, since Φ′ is decreasing we
have that

Φ′(x0)x ≤ Φ(x) (4)

for all 0 ≤ x < x0 < ∞. Let f ∈ L1(λ) and denote An = {ω ∈ Ω :
|f(ω)| > n}. Note that there exists n such that µ(An) < ∞ as in other
case Φ(µ|f |) = Φ(∞) which contradicts ‖f‖λ < ∞. Then limµ(An) = 0 as
An ↓ {ω ∈ Ω : |f(ω)| = ∞}. Take x0 > 0 such that Φ′(x0) > 0 and n0 such
that µ(An0) < x0. Then, since µ|f |χAn0

≤ µ(An0) pointwise, by (4) it follows
that

‖fχAn0
‖λ =

∫
I

Φ(µ|f |χAn0
) dm ≥ Φ′(x0)

∫
I

µ|f |χAn0
dm = Φ′(x0)

∫
Ω

|f |χAn0
dµ.

Hence f = fχΩ\An0
+ fχAn0

with fχΩ\An0
∈ L∞(µ) and fχAn0

∈ L1(µ) and
so we have that L1(λ) ⊂ L∞(µ) + L1(µ).

Finally note that in the case when Φ(∞) =∞ or µ is finite it follows that
λ is continuous from above at ∅ and so L1(λ) is σ-order continuous having
Sµ (S if µ is finite) as a dense subspace.

4. L1-spaces associated to a family of capacities

Let F = (λα)α∈∆ be a family of capacities on Σ satisfying the properties
(P1,2,6) and being uniformly quasi-subadditive, that is, there is a constant
K ≥ 1 such that

λα(A ∪B) ≤ K(λα(A) + λα(B))

for all A,B ∈ Σ and α ∈ ∆. For each α ∈ ∆, by Theorem 6, we have that

L1(λα) =
{
f ∈ L0(λα) : ‖f‖λα =

∫
I

(λα)|f | dm <∞
}
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is a λα-quasi-B.f.s. with the σ-Fatou property and ‖ · ‖λα is a quasi-norm on
it.

Consider the set function ‖F‖ : Σ→ [0,∞] given by

‖F‖(A) = sup
α∈∆

λα(A)

for A ∈ Σ. Note that ‖F‖ is a capacity and a set is ‖F‖-null if and only if
it is λα-null for all α ∈ ∆.

Proposition 10. The capacity ‖F‖ satisfies the properties (P1,2,3,6).

Proof. It is clear that ‖F‖ is increasing (as each λα is so) and quasi-subadditive
with the constant K of the uniform quasi-subadditivity of F .

Let A,Z ∈ Σ with Z being ‖F‖-null. Since each λα is null-additive and
Z is λα-null, we have that λα(A∪Z) = λα(A). Then ‖F‖(A∪Z) = ‖F‖(A)
and hence ‖F‖ is null-additive.

Let An, A ∈ Σ be such that An ↑ A. Since ‖F‖ is increasing we have that
‖F‖(An) ↑ and ‖F‖(An) ≤ ‖F‖(A) for all n. Then lim ‖F‖(An) ≤ ‖F‖(A).
On other hand, since each λα is continuous from below, we have that

λα(A) = limλα(An) ≤ lim ‖F‖(An).

Then ‖F‖(A) ≤ lim ‖F‖(An). That is, ‖F‖(An) ↑ ‖F‖(A) and so ‖F‖ is
continuous from below.

From Theorem 6 we have that

L1(‖F‖) =
{
f ∈ L0(‖F‖) : ‖f‖‖F‖ =

∫
I

‖F‖|f | dm <∞
}

is a ‖F‖-quasi-B.f.s. with the σ-Fatou property and ‖ · ‖‖F‖ is a quasi-norm
on it. For each α ∈ ∆ and f ∈ L0(Ω), since (λα)|f | ≤ ‖F‖|f | pointwise,
we have that ‖f‖λα ≤ ‖f‖‖F‖. On other hand, since every ‖F‖-null set is
λα-null, the map [i] which takes a ‖F‖-a.e. class in L0(‖F‖) represented by
f into the λα-a.e. class in L0(λα) represented by the same f is well-defined.
Then, [i] takes L1(‖F‖) into L1(λα) and we will write L1(‖F‖) ⊂[i] L

1(λα).
Let us create an intermediate space between L1(‖F‖) and each L1(λα).

Consider the map ‖ · ‖F : L0(Ω)→ [0,∞] defined by

‖f‖F = sup
α∈∆
‖f‖λα

for f ∈ L0(Ω). The following proposition shows that ‖ · ‖F is a ‖F‖-quasi-
norm function with the σ-Fatou property.
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Proposition 11. The following statements hold:

(a) ‖f‖F ≤ ‖g‖F whenever f, g ∈ L0(Ω) with |f | ≤ |g| ‖F‖-a.e.

(b) ‖f‖F = 0 if and only if f = 0 ‖F‖-a.e.

(c) ‖af‖F = |a| ‖f‖F for all a ∈ R and f ∈ L0(Ω).

(d) ‖f + g‖F ≤ 2K
(
‖f‖F + ‖g‖F

)
for all f, g ∈ L0(Ω), with K being the

constant of the uniform quasi-subadditivity of F .

(e) ‖fn‖F ↑ ‖f‖F whenever fn, f ∈ L0(Ω) with 0 ≤ fn ↑ f ‖F‖-a.e.

Proof. By Proposition 5, each map ‖·‖λα : L0(Ω)→ [0,∞] is a λα-quasi-norm
function with the σ-Fatou property.

(a) If f, g ∈ L0(Ω) are such that |f | ≤ |g| ‖F‖-a.e., then for each α ∈ ∆
we have that |f | ≤ |g| λα-a.e. and so ‖f‖λα ≤ ‖g‖λα . Hence, ‖f‖F ≤ ‖g‖F .

(b) Recall that for any capacity λ we have that f = 0 λ-a.e. if and only if
supp(f) is λ-null. Then, ‖f‖F = 0 or equivalently ‖f‖λα = 0 for all α ∈ ∆,
if and only if supp(f) is λα-null for all α ∈ ∆ , that is, supp(f) is ‖F‖-null.

(c) Clear as ‖af‖λα = |a| ‖f‖λα for all a ∈ R, f ∈ L0(Ω) and α ∈ ∆.
(d) Given f, g ∈ L0(Ω), since the constant K of the uniform quasi-

subadditivity of F is the constant of the quasi-subadditivity of each λα, we
have that ‖f + g‖λα ≤ 2K(‖f‖λα + ‖g‖λα). Hence, ‖f + g‖F ≤ 2K(‖f‖F +
‖g‖F).

(e) Let fn, f ∈ L0(Ω) be such that 0 ≤ fn ↑ f ‖F‖-a.e. Since ‖fn‖F ↑
and ‖fn‖F ≤ ‖f‖F , we have that lim ‖fn‖F ≤ ‖f‖F . On other hand, for
each α ∈ ∆ we have that 0 ≤ fn ↑ f λα-a.e. and so

‖f‖λα = lim ‖fn‖λα ≤ lim ‖fn‖F .

Then ‖f‖F ≤ lim ‖fn‖F . That is, ‖fn‖F ↑ ‖f‖F .

Propositions 1 and 11 yield the following result.

Theorem 12. The space

L1(F) =
{
f ∈ L0(‖F‖) : ‖f‖F = sup

α∈∆
‖f‖λα <∞

}
is a ‖F‖-quasi-B.f.s. with the σ-Fatou property and ‖ · ‖F is a quasi-norm
on it.
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For every α ∈ ∆ and f ∈ L0(Ω) we have that ‖f‖λα ≤ ‖f‖F ≤ ‖f‖‖F‖.
So,

S‖F‖ ⊂ L1(‖F‖) ⊂ L1(F) ⊂[i] L
1(λα).

Note that ‖χA‖F = ‖χA‖‖F‖ = ‖F‖(A) for all A ∈ Σ, as ‖χA‖λ = λ(A) for
any capacity λ.

Let us see that particular conditions on the family F make that L1(F) is
the “intersection” of all the spaces L1(λα) in the sense:

L1(F) = {f ∈ L0(‖F‖) : f ∈ L1(λα) for all α ∈ ∆}.

Let E be a real Banach space with norm ‖ · ‖E and denote by BE the closed
unit ball of E. Assume that each α ∈ E is associated to an increasing
capacity λα on Σ in a way that:

(E1) λaα = |a|λα for all a ∈ R and α ∈ E.

(E2) λα+β ≤ λα + λβ for all α, β ∈ E.

(E3) If αn → α in E then λα ≤ lim inf λαn .

Suppose that N ⊂ BE satisfies the following properties:

(N1) For every α ∈ BE there exists β ∈ N such that λα ≤ λβ.

(N2) For each α ∈ N the capacity λα is null-additive and continuous from
below.

(N3) There exists K ≥ 1 such that λα(A ∪ B) ≤ K(λα(A) + λα(B)) for all
A,B ∈ Σ and α ∈ N .

Consider the uniformly quasi-subadditive family F = (λα)α∈N of capacities
which satisfy the properties (P1,2,6). Note that the map ‖ · ‖λα : L0(Ω) →
[0,∞] can be considered for all α ∈ E but we only can assure that L1(λα) is
a λα-quasi-B.f.s. with quasi-norm ‖ · ‖λα if α ∈ N .

Theorem 13. For f ∈ L0(Ω) the following statements are equivalent:

(a) ‖f‖F <∞.

(b) ‖f‖λα <∞ for all α ∈ N .

(c) ‖f‖λα <∞ for all α ∈ E.
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Proof. (a) ⇒ (b) Clear as ‖f‖F = supα∈N ‖f‖λα .
(b) ⇒ (c) For each non-null α ∈ E, by (E1) and (N1) we have that

λα = ‖α‖Eλ α
‖α‖E
≤ ‖α‖Eλβ

for some β ∈ N and so ‖f‖λα ≤ ‖α‖E · ‖f‖λβ <∞. Note that for α = 0, by
(E1) we have that λα = 0 and so ‖ · ‖λα = 0.

(c) ⇒ (a) For every k ∈ N denote

Fk = {α ∈ E : ‖f‖λα ≤ k}.

Let us see that Fk is closed in E. Consider a sequence (αn) ⊂ Fk satisfying
that αn → α in E. By (E3) we have that (λα)|f | ≤ lim inf(λαn)|f | pointwise.
Then, applying the Fatou lemma for the Lebesgue integral with respect to
m, it follows that

‖f‖λα =

∫
I

(λα)|f | dm ≤
∫
I

lim inf(λαn)|f | dm ≤ lim inf

∫
I

(λαn)|f | dm ≤ k

and so α ∈ Fk. On other hand, since E = ∪Fk, from the Baire theorem
there exists Fk0 with a non-void interior, that is, B(α0, r0) ⊂ Fk0 for some
closed ball of E centered at α0 with radius r0 > 0. Let α ∈ N ⊂ BE

and take β = α0 + r0α ∈ B(α0, r0). From (E1) and (E2) it follows that
(λα)|f | ≤ 1

r0
((λβ)|f | + (λα0)|f |) pointwise. Since β, α0 ∈ Fk0 , we have that

‖f‖λα =

∫
I

(λα)|f | dm ≤
1

r0

(∫
I

(λβ)|f | dm+

∫
I

(λα0)|f | dm
)
≤ 2k0

r0

and so ‖f‖F ≤ 2k0

r0
<∞.

From Theorem 13 we have that

L1(F) = {f ∈ L0(‖F‖) : ‖f‖λα <∞ for all α ∈ N}
= {f ∈ L0(‖F‖) : ‖f‖λα <∞ for all α ∈ E}.

Moreover, from (N1) it follows that ‖f‖F = supα∈BE ‖f‖λα for all f ∈ L0(Ω).
This means that L1(F) is independent of N , that is, any other subset of BE

with the same properties as N gives the same space. Also L1(‖F‖) and S‖F‖
are independent of N , as ‖F‖(A) = supα∈BE λα(A) for all A ∈ Σ.
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Remark 14. (I) The only simple functions in L1(F) are those of S‖F‖.
Indeed, if ϕ ∈ S is such that ‖ϕ‖λα <∞ for all α ∈ N , then ‖χsupp(ϕ)‖λα =
λα(supp(ϕ)) <∞ for all α ∈ N and so ‖F‖(supp(ϕ)) = ‖χsupp(ϕ)‖F <∞.

(II) Let a ∈ R and α ∈ N . By (E1) the increasing capacity λaα is null-
additive, continuous from below and satisfies (N3). Then we can consider
the λaα-quasi-B.f.s. L1(λaα) which satisfies L1(F) ⊂[i] L

1(λaα) with ‖f‖λaα ≤
|a| ‖f‖F .

5. w-L1-spaces associated to a vector capacity

Let X be a real Banach space with norm ‖ · ‖X and Λ: Σ → X a set
function satisfying that Λ(∅) = 0. Such a set function Λ will be called a
vector capacity. A set Z ∈ Σ is Λ-null if Λ(A) = 0 for all A ∈ Σ such that
A ⊂ Z. For each x∗ belonging to the topological dual X∗ of X we consider
the real capacity x∗Λ: Σ → R defined by x∗Λ(A) = 〈x∗,Λ(A)〉 for A ∈ Σ.
The semivariation of Λ is the increasing capacity ‖Λ‖ : Σ → [0,∞] defined
by

‖Λ‖(A) = sup
x∗∈BX∗

|x∗Λ|(A)

for A ∈ Σ, where BX∗ denotes the closed unit ball of X∗ and |x∗Λ| is
the variation of x∗Λ. The quasi-variation of Λ is the increasing capacity
|||Λ||| : Σ→ [0,∞] defined by

|||Λ|||(A) = sup{‖Λ(B)‖X : B ∈ Σ with B ⊂ A}

for A ∈ Σ. Note that |||Λ|||(A) ≤ ‖Λ‖(A) and |||Λ|||(A) = supx∗∈BX∗ qx∗Λ(A)
for all A ∈ Σ, where qx∗Λ is the quasi-variation of x∗Λ. It is routine to
check that the Λ-null, ‖Λ‖-null and |||Λ|||-null sets are the same. So, in
the case when the identification works we denote L0(‖Λ‖) = L0(|||Λ|||) by
L0(Λ). Moreover, since the notions of ‖Λ‖-quasi-B.f.s. and |||Λ|||-quasi-B.f.s.
coincide, we will refer to them as Λ-quasi-B.f.s. In the case of a real capacity
ξ : Σ→ R it follows that ‖ξ‖ = |ξ| and |||ξ||| = qξ.

5.1. The space w-L1
v(Λ)

Let N ⊂ BX∗ satisfy the following properties:

(vN1) For every x∗ ∈ BX∗ there exists y∗ ∈ N such that |x∗Λ| ≤ |y∗Λ|.

(vN2) |x∗Λ| is null-additive and continuous from below for all x∗ ∈ N .
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(vN3) There exists a constant K ≥ 1 such that

|x∗Λ|(A ∪B) ≤ K(|x∗Λ|(A) + |x∗Λ|(B))

for all A,B ∈ Σ and x∗ ∈ N .

Each x∗ ∈ X∗ is associated to the increasing capacity |x∗Λ|. From Lemma
2.(e) it follows that:

(vE1) |(ax∗)Λ| = |a| |x∗Λ| for all a ∈ R and x∗ ∈ X∗.

(vE2) |(x∗ + y∗)Λ| ≤ |x∗Λ|+ |y∗Λ| for all x∗, y∗ ∈ X∗.

(vE3) If x∗n → x∗ in X∗ then |x∗Λ| ≤ lim inf |x∗nΛ|.

Consider the uniformly quasi-subadditive family F = (|x∗Λ|)x∗∈N of capaci-
ties satisfying the properties (P1,2,6). Noting that ‖F‖ = ‖Λ‖ and denoting
by w-L1

v(Λ) the space L1(F), from all what we have seen in Section 4 we
obtain the next conclusions.

Theorem 15. The following statements hold:

(a) L1(|x∗Λ|) = {f ∈ L0(|x∗Λ|) : ‖f‖|x∗Λ| =
∫
I
|x∗Λ||f | dm < ∞} is a |x∗Λ|-

quasi-B.f.s. with the σ-Fatou property and ‖ · ‖|x∗Λ| is a quasi-norm on it

for every x∗ ∈ N̂ = {ay∗ : a ∈ R, y∗ ∈ N}.

(b) ‖Λ‖ is a capacity satisfying the properties (P1,2,3,6).

(c) L1(‖Λ‖) = {f ∈ L0(Λ) : ‖f‖‖Λ‖ =
∫
I
‖Λ‖|f | dm < ∞} is a Λ-quasi-B.f.s.

with the σ-Fatou property and ‖ · ‖‖Λ‖ is a quasi-norm on it.

(d) w-L1
v(Λ) = {f ∈ L0(Λ) : ‖f‖|x∗Λ| <∞ for all x∗ ∈ X∗} is a Λ-quasi-B.f.s.

with the σ-Fatou property and a quasi-norm on it is given by

‖f‖v = sup
x∗∈BX∗

‖f‖|x∗Λ|.

(e) ‖x∗‖−1
X∗‖f‖|x∗Λ| ≤ ‖f‖v ≤ ‖f‖‖Λ‖ for all f ∈ L0(Ω), and x∗ ∈ X∗ non-null.

(f) S‖Λ‖ ⊂ L1(‖Λ‖) ⊂ w-L1
v(Λ) ⊂[i] L

1(|x∗Λ|) for all x∗ ∈ N̂ .

For a real capacity ξ : Σ→ R the existence of a set N satisfying (vN1,2,3)
is equivalent to |ξ| having the properties (P2,3,6). Moreover, in this case it
follows that L1(‖ξ‖) = w-L1

v(ξ) = L1(|ξ|) with equals norms.
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5.2. The space w-L1
qv(Λ)

Let N ⊂ BX∗ satisfy the following properties:

(qvN1) For every x∗ ∈ BX∗ there exists y∗ ∈ N such that qx∗Λ ≤ qy∗Λ.

(qvN2) qx∗Λ is null-additive and continuous from below for all x∗ ∈ N .

(qvN3) There exists a constant K ≥ 1 such that

qx∗Λ(A ∪B) ≤ K(qx∗Λ(A) + qx∗Λ(B))

for all A,B ∈ Σ and x∗ ∈ N .

Each x∗ ∈ X∗ is associated to the increasing capacity qx∗Λ. From Lemma
2.(e) it follows that:

(qvE1) q(ax∗)Λ = |a| qx∗Λ for all a ∈ R and x∗ ∈ X∗.

(qvE2) q(x∗+y∗)Λ ≤ qx∗Λ + qy∗Λ for all x∗, y∗ ∈ X∗.

(qvE3) If x∗n → x∗ in X∗ then qx∗Λ ≤ lim inf qx∗nΛ.

Consider the uniformly quasi-subadditive family F = (qx∗Λ)x∗∈N of capacities
satisfying the properties (P1,2,6). Noting that the qx∗Λ-null and the |x∗Λ|-
null sets coincide and ‖F‖ = |||Λ|||, denoting by w-L1

qv(Λ) the space L1(F),
from all what we have seen in Section 4 we obtain the next conclusions.

Theorem 16. The following statements hold:

(a) L1(qx∗Λ) = {f ∈ L0(|x∗Λ|) : ‖f‖qx∗Λ =
∫
I
(qx∗Λ)|f | dm < ∞} is a |x∗Λ|-

quasi-B.f.s. with the σ-Fatou property and ‖ · ‖qx∗Λ is a quasi-norm on it

for every x∗ ∈ N̂ = {ay∗ : a ∈ R, y∗ ∈ N}.

(b) |||Λ||| is a capacity satisfying the properties (P1,2,3,6).

(c) L1(|||Λ|||) = {f ∈ L0(Λ) : ‖f‖|||Λ||| =
∫
I
|||Λ||||f | dm < ∞} is a Λ-quasi-

B.f.s. with the σ-Fatou property and ‖ · ‖|||Λ||| is a quasi-norm on it.

(d) w-L1
qv(Λ) = {f ∈ L0(Λ) : ‖f‖qx∗Λ < ∞ for all x∗ ∈ X∗} is a Λ-quasi-

B.f.s. with the σ-Fatou property and a quasi-norm on it is given by

‖f‖qv = sup
x∗∈BX∗

‖f‖qx∗Λ .
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(e) ‖x∗‖−1
X∗‖f‖qx∗Λ ≤ ‖f‖qv ≤ ‖f‖|||Λ||| for all f ∈ L0(Ω) and x∗ ∈ X∗ non-

null.

(f) S|||Λ||| ⊂ L1(|||Λ|||) ⊂ w-L1
qv(Λ) ⊂[i] L

1(qx∗Λ) for all x∗ ∈ N̂ .

For a real capacity ξ : Σ→ R the existence of a setN satisfying (qvN1,2,3)
is equivalent to qξ having the properties (P2,3,6). Moreover, in this case it
follows that L1(|||ξ|||) = w-L1

qv(ξ) = L1(qξ) with equals norms. Note that if
ξ is positive and satisfies (P1,2,3,6), then qξ = ξ and so L1(qξ) = L1(ξ).

5.3. Relation between w-L1
v(Λ) and w-L1

qv(Λ)

Let N ⊂ BX∗ satisfy the properties (qvN1,2,3). By Lemma 2.(g) we
have that N has the properties (vN2,3). Let us see that (vN1) also holds.
Let x∗ ∈ BX∗ and y∗ ∈ N be such that qx∗Λ ≤ qy∗Λ. For every partition
(Ai)

n
i=1 ⊂ Σ of a set A ∈ Σ, recalling that the variation of a real capacity is

always superadditive, we have that
n∑
i=1

|x∗Λ(Ai)| ≤
n∑
i=1

qx∗Λ(Ai) ≤
n∑
i=1

qy∗Λ(Ai) ≤
n∑
i=1

|y∗Λ|(Ai) ≤ |y∗Λ|(A)

and so |x∗Λ|(A) ≤ |y∗Λ|(A). Then, we can consider all the spaces given
by Theorems 15 and 16. For f ∈ L0(Ω) and x∗ ∈ X∗, since qx∗Λ ≤ |x∗Λ|,
we have that ‖f‖qx∗Λ ≤ ‖f‖|x∗Λ| and so ‖f‖qv ≤ ‖f‖v. On the other hand,
since |||Λ||| ≤ ‖Λ‖, we have that ‖f‖|||Λ||| ≤ ‖f‖‖Λ‖. Therefore, the following
containments hold:

S‖Λ‖ ⊂ L1(‖Λ‖) ⊂ w-L1
v(Λ) ⊂[i] L1(|x∗Λ|)

∩ ∩ ∩ ∩
S|||Λ||| ⊂ L1(|||Λ|||) ⊂ w-L1

qv(Λ) ⊂[i] L1(qx∗Λ)
(5)

with equality in the vertical inclusions ∩ if there exists C ≥ 1 such that
|x∗Λ| ≤ C qx∗Λ for every x∗ ∈ N .

For a real capacity ξ : Σ→ R with quasi-variation qξ satisfying the prop-
erties (P2,3,6) it follows that L1(|ξ|) ⊂ L1(qξ), with equality only in the case
when there exists C ≥ 1 such that |ξ| ≤ Cqξ (for instance if ξ is a measure).

Remark 17. In the case when Λ is a vector measure, it is direct to check that
the set N = BX∗ satisfies the properties (qvN1,2,3). Since |x∗Λ| ≤ 2 qx∗Λ for
all x∗ ∈ X∗, all the vertical inclusions in (5) are equalities. From Remark
7 it follows that w-L1

v(Λ) = w-L1
qv(Λ) is just the space of weakly integrable

functions with respect to Λ, see [34]. Note that in this case ‖Λ‖ is finite and
so S‖Λ‖ = S.
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6. Integral map for a vector capacity

Let Λ: Σ→ X be a vector capacity and let N ⊂ BX∗ satisfy the proper-
ties (qvN1,2,3). Assume that Λ has the following properties:

(Λ1) Λ is weakly continuous from below, that is, Λ(An)→ Λ(A) weakly in X
whenever An, A ∈ Σ with An ↑ A.

(Λ2) Λ is null-additive, that is, Λ(A ∪ Z) = Λ(A) for all A,Z ∈ Σ with Z
Λ-null.

For f ∈ L0(Ω)+ the distribution function of f with respect to Λ is defined
as the map Λf : I → X given by

Λf (t) = Λ({ω ∈ Ω : f(ω) > t})

for t ∈ I. Every x∗ ∈ X∗ yields the map x∗Λf : I → R defined by x∗Λf (t) =
〈x∗,Λf (t)〉 for t ∈ I. Our goal is to construct an integration map for Λ on
w-L1

qv(Λ) through the Lebesgue integrals of x∗Λf . Note that if N satisfies
(vN1,2,3) instead of (qvN1,2,3), the same construction works on w-L1

v(Λ).
For this aim the properties (Λ1,2) are crucial as they guarantee the next
results.

Lemma 18. The following statements hold:

(a) The map x∗Λf is measurable for all f ∈ L0(Ω)+ and x∗ ∈ X∗.

(b) If f, g ∈ L0(Ω)+ are such that f = g Λ-a.e. then Λf = Λg pointwise.

Proof. (a) Let ξ : Σ → R be a real capacity continuous from below, i.e.
ξ(An)→ ξ(A) whenever An, A ∈ Σ with An ↑ A. Every positive ϕ ∈ S with
standard representation ϕ =

∑n
j=1 αjχAj satisfies that

ξϕ =
n∑
k=1

ξ
( n⋃
j=k

Aj

)
χ[αk−1,αk)

is measurable. For a general f ∈ L0(Ω)+, taking a sequence (ϕn) ⊂ S such
that 0 ≤ ϕn ↑ f pointwise, since

{ω ∈ Ω : ϕn(ω) > t} ↑ {ω ∈ Ω : f(ω) > t}

for all t ∈ I, we have that ξϕn → ξf pointwise with ξϕn being measurable. So,
ξf is measurable. By (Λ1) it follows that the real capacity x∗Λ is continuous
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from below for each x∗ ∈ X∗ and since x∗Λf coincides with the distribution
function (x∗Λ)f of f with respect to x∗Λ, we have the conclusion.

(b) Let f, g ∈ L0(Ω)+ be such that f = g except on a Λ-null set Z. For
every t ∈ I, denote At = {ω ∈ Ω : f(ω) > t} and Bt = {ω ∈ Ω : g(ω) > t}.
Noting that At ∩ Z, Bt ∩ Z are Λ-null and At ∩ Ω\Z = Bt ∩ Ω\Z, by (Λ2)
we have that

Λ(At) = Λ(At ∩ Ω\Z) = Λ(Bt ∩ Ω\Z) = Λ(Bt).

Then Λf = Λg pointwise.

Denote

D(Λ) =
{
f ∈ L0(Λ) :

∫
I

|x∗Λ|f || dm <∞ for all x∗ ∈ X∗
}
,

that is, D(Λ) is the set of functions f ∈ L0(Λ) such that Λ|f | is Dunford
integrable with respect to m, see [14, Ch. II, § 3]. For every f ∈ D(Λ) it
follows that

‖f‖D(Λ) = sup
x∗∈BX∗

∫
I

|x∗Λ|f || dm <∞,

see the proof of (c) ⇒ (a) in Theorem 13.

Remark 19. Note that in general D(Λ) is not even a vector space. If we can
find M ⊂ BX∗ satisfing that for every x∗ ∈ BX∗ there exists y∗ ∈ M such
that |x∗Λ(·)| ≤ |y∗Λ(·)| and (|x∗Λ(·)|)x∗∈M is a uniformly quasi-subadditive
family of capacities with the properties (P1,2,6), from Theorems 12 and 13
it follows that D(Λ) is a Λ-quasi-B.f.s. with quasi-norm ‖ · ‖D(Λ). But in this
case, qx∗Λ = |x∗Λ(·)| for all x∗ ∈M as |x∗Λ(·)| is increasing and M satisfies
the properties (qvN1,2,3), so w-L1

qv(Λ) = D(Λ) with equal norms. This is
the reason why we do not consider this space in Section 5.

For a positive function f ∈ D(Λ) we define the integral of f with respect
to Λ as the element IΛ(f) ∈ X∗∗ given by

〈IΛ(f), x∗〉 =

∫
I

x∗Λf dm

for all x∗ ∈ X∗. That is, IΛ(f) is the Dunford integral of Λf with respect to
m. Note that

|〈IΛ(f), x∗〉| ≤ ‖x∗‖X∗‖f‖D(Λ).

26



For a general function f ∈ D(Λ) we cannot use its positive and negative
parts for defining IΛ(f) as they could not be in D(Λ), so we will consider
functions in w-L1

qv(Λ). Note that w-L1
qv(Λ) ⊂ D(Λ) with ‖f‖D(Λ) ≤ ‖f‖qv

for f ∈ w-L1
qv(Λ), as |x∗Λ(·)| ≤ qx∗Λ for all x∗ ∈ X∗. For a general function

f ∈ w-L1
qv(Λ) we define IΛ(f) = IΛ(f+) − IΛ(f−). By Lemma 18.(b) we

have that IΛ(f) = IΛ(g) whenever f, g ∈ w-L1
qv(Λ) with f = g Λ-a.e. So the

integration map IΛ : w-L1
qv(Λ)→ X∗∗ is well defined. However, the definition

of IΛ for a non positive function depends on its positive and negative parts
as IΛ is not additive in general. In fact it can be proved that the additivity
is obtained only in the case when Λ is a vector measure on the δ-ring of sets
A ∈ Σ with |||Λ|||(A) <∞. The following properties of IΛ will be used later.

Lemma 20. The following statements hold:

(a) IΛ is homogeneous, that is, IΛ(af) = aIΛ(f) for all f ∈ w-L1
qv(Λ) and

a ∈ R.

(b) If fn, f ∈ w-L1
qv(Λ) are such that 0 ≤ fn ↑ f Λ-a.e. then IΛ(fn) → IΛ(f)

in the weak∗ topology of X∗∗.

Proof. (a) For a positive function f ∈ w-L1
qv(Λ) and a ≥ 0, by making an

appropriate change of variables it follows that
∫
I
x∗Λaf dm = a

∫
I
x∗Λf dm

for all x∗ ∈ X∗ and so IΛ(af) = aIΛ(f). For general f and a only note that
(af)+ = af+, (af)− = af− if a ≥ 0 and (af)+ = −af−, (af)− = −af+ if
a < 0.

(b) Let fn, f ∈ w-L1
qv(Λ) be such that 0 ≤ fnχA ↑ fχA pointwise with

A ∈ Σ being such that Ω\A is Λ-null. Since

{ω ∈ Ω : (fnχA)(ω) > t} ↑ {ω ∈ Ω : (fχA)(ω) > t}

for all t ∈ I, from (Λ1) it follows that x∗ΛfnχA → x∗ΛfχA pointwise for
every x∗ ∈ X∗. On the other hand, since |x∗ΛfnχA| ≤ (qx∗Λ)|f | pointwise, by
applying the dominated convergence theorem for the Lebesgue integral with
respect to m we have that

〈IΛ(fnχA), x∗〉 =

∫
I

x∗ΛfnχA dm→
∫
I

x∗ΛfχA dm = 〈IΛ(fχA), x∗〉.

Since IΛ(fn) = IΛ(fnχA) and IΛ(f) = IΛ(fχA) the conclusion follows.
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If ξ : Σ → R is a real capacity continuous from below, null-additive and
qξ satisfies (P3), in which case qξ also satisfies (P2,6), the integration map
Iξ : L1(qξ)→ R is given by Iξ(f) =

∫
I
ξf+ dm−

∫
I
ξf− dm for all f ∈ L1(qξ).

Remark 21. In the case when x∗ ∈ X∗ is such that x∗Λ is null-additive and
qx∗Λ satisfies (P3), since x∗Λ is continuous from below by (Λ1), it follows
that 〈IΛ(f), x∗〉 = Ix∗Λ(f) for all f ∈ w-L1

qv(Λ) ⊂ L1(qx∗Λ).

We have defined IΛ by using Dunford integration, a natural question now
is what is the role of the Bochner integration in this play. For Bochner
integration theory we refer to [2, Ch. 11, § 8]. Denote by j the canonical
embedding of X into X∗∗ and

B(Λ) = {f ∈ L0(Λ) : Λ|f | is Bochner integrable}.

Note that

B(Λ) ⊂
{
f ∈ L0(Λ) :

∫
I

‖Λ|f |‖X dm <∞
}
⊂ D(Λ). (6)

Every positive ϕ ∈ S with standard representation ϕ =
∑n

j=1 αjχAj satisfies
that

Λϕ =
n∑
k=1

Λ(∪nj=kAj)χ[αk−1,αk) (7)

is an X-step function and so Bochner integrable with respect to m with
Bochner integral

∫
I

Λϕ dm =
∑n

k=1 Λ(∪nj=kAj)(αk − αk−1) ∈ X. Hence, ϕ ∈
B(Λ) with IΛ(ϕ) = j(

∫
I

Λϕ dm). From this it follows that S ⊂ B(Λ). In the
case when the convergence in the property (Λ1) is in X, i.e. Λ is continuous
from below, we find another functions in B(Λ).

Proposition 22. If Λ is continuous from below then L1(|||Λ|||) ⊂ B(Λ) and

IΛ(f) = j
(∫

I

Λf+ dm
)
− j
(∫

I

Λf− dm
)

for every f ∈ L1(|||Λ|||).

Proof. Let f ∈ L0(Ω)+ and take a sequence (ϕn) ⊂ S such that 0 ≤ ϕn ↑ f
pointwise. Since Λ is continuous from below we have that

‖Λf (t)− Λϕn(t)‖X → 0
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for all t ∈ I and so Λf is strongly m-measurable. If moreover f ∈ L1(|||Λ|||),
since

‖Λf (t)− Λϕn(t)‖X ≤ ‖Λf (t)‖X + ‖Λϕn(t)‖X ≤ 2 |||Λ|||f (t)

for all t ∈ I, by applying the dominated convergence theorem for the Lebesgue
integral with respect to m we have that

∫
I
‖Λf − Λϕn‖ dm → 0. This

means that Λf is Bochner integrable with respect to m with Bochner in-
tegral

∫
I

Λf dm such that
∫
I

Λϕn dm →
∫
I

Λf dm in X. So, f ∈ B(Λ) and
IΛ(ϕn) → j(

∫
I

Λf dm) in X∗∗. On the other hand, from Lemma 20.(b) it
follows that IΛ(ϕn) → IΛ(f) weakly∗ in X∗∗. So, IΛ(f) = j(

∫
I

Λf dm). For
a general f ∈ L1(|||Λ|||), noting that |f |, f+, f− ∈ L1(|||Λ|||) we have the
conclusion.

Remark 23. In the case when Λ is continuous from below, if there exists a
constant C ≥ 1 such that |||Λ||| ≤ C‖Λ(·)‖X , from (6) and Proposition 22 it
follows that

L1(|||Λ|||) = B(Λ) =
{
f ∈ L0(Λ) :

∫
I

‖Λ|f |‖X dm <∞
}
.

Now, two natural sets arise when we think about Pettis integration, see
for instance [2, Ch. 11, § 10]. Namely,

L1
qv(Λ) = {f ∈ w-L1

qv(Λ) : IΛ(fχA) ∈ j(X) for all A ∈ Σ}

and L1
v(Λ) = L1

qv(Λ)∩w-L1
v(Λ). Since IΛ is not additive in general we cannot

know even if L1
qv(Λ) and L1

v(Λ) are vector spaces. Our goal in the next
section is to give conditions under which these spaces are closed subspaces
of w-L1

qv(Λ) and w-L1
v(Λ) respectively. Of course, if X is reflexive there is no

problem as in this case L1
qv(Λ) = w-L1

qv(Λ) and L1
v(Λ) = w-L1

v(Λ).
Note that S|||Λ||| ⊂ L1

qv(Λ) and S‖Λ‖ ⊂ L1
v(Λ). Even more, in the case

when Λ is continuous from below we have that L1(|||Λ|||) ⊂ L1
qv(Λ) and

L1(‖Λ‖) ⊂ L1
v(Λ). All these containments follows from (5), Proposition 22

and the preceding comments.

Remark 24. If Λ is a vector measure, in which case it is continuous from
below and null-additive, as we have already pointed out in Remark 17, it
follows that w-L1

v(Λ) = w-L1
qv(Λ) is the space of weakly integrable functions

with respect to Λ. Moreover, every f ∈ w-L1
qv(Λ) satisfies that IΛ(f) =
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w-
∫

Ω
f dΛ is the weak integral of f with respect to Λ, see [34]. Indeed, for a

positive ϕ ∈ S, by (7) and since x∗Λ is a real measure for each x∗ ∈ X∗, it
follows that

∫
I
x∗Λϕ dm =

∫
Ω
ϕdx∗Λ. For a positive function f ∈ w-L1

qv(Λ),
taking a sequence (ϕn) ⊂ S such that 0 ≤ ϕn ↑ f Λ-a.e., by Lemma 20.(b)
and applying the dominated convergence theorem for the Lebesgue integral
with respect to x∗Λ we have that

〈IΛ(f), x∗〉 = lim〈IΛ(ϕn), x∗〉 = lim

∫
Ω

ϕn dx
∗Λ =

∫
Ω

f dx∗Λ =
〈
w-

∫
Ω

f dΛ, x∗
〉
.

For a general f ∈ w-L1
v(Λ), since the weak integration map with respect to Λ

is a linear operator the conclusion follows. Therefore, L1
v(Λ) = L1

qv(Λ) is the
space of integrable functions with respect to Λ and for every f ∈ L1

qv(Λ) we
have that IΛ(f) =

∫
Ω
f dΛ is the integral of f with respect to Λ, see [34].

7. L1-spaces associated to a vector capacity

Let X be an order continuous Banach lattice, that is, every order bounded
increasing sequence in X converges in the norm of X, see [25, Proposition
1.a.8]. In this case, from [25, Theorem 1.b.16] we have that j(X) is an ideal
of X∗∗, that is, if x∗∗ ∈ X∗∗ and x ∈ X with |x∗∗| ≤ |j(x)| then x∗∗ ∈ j(X).
Recall that X∗ is also a Banach lattice with the order x∗ ≥ 0 if and only if
〈x∗, x〉 ≥ 0 for all 0 ≤ x ∈ X.

Consider a vector capacity Λ: Σ→ X with the following properties:

(oΛ1) Λ is increasing, that is, Λ(A) ≤ Λ(B) for all A,B ∈ Σ such that A ⊂ B.

(oΛ2) Λ is submodular, that is, Λ(A ∪ B) + Λ(A ∩ B) ≤ Λ(A) + Λ(B) for all
A,B ∈ Σ.

(oΛ3) Λ is continuous from below, that is, Λ(An) → Λ(A) in X whenever
An, A ∈ Σ with An ↑ A.

Note that by (oΛ1) we have that Λ is positive, that is, Λ(A) ≥ 0 for all
A ∈ Σ. Then, from (oΛ2) it follows that Λ is subadditive, that is, Λ(A∪B) ≤
Λ(A) + Λ(B) for all A,B ∈ Σ.

Lemma 25. The vector capacity Λ has the properties (Λ1,2) and the set
N =

{
x∗ ∈ BX∗ : x∗ ≥ 0

}
satisfies (qvN1,2,3).
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Proof. The property (Λ1) is obvious from (oΛ3). For every A,Z ∈ Σ with Z
Λ-null, by (oΛ1) and since Λ is subadditive, it follows that

Λ(A) ≤ Λ(A ∪ Z) ≤ Λ(A) + Λ(Z) = Λ(A)

and so (Λ2) holds. For every x∗ ∈ BX∗ it follows that |x∗| ∈ N and qx∗Λ ≤
q|x∗|Λ, as |〈x∗, x〉| ≤ 〈|x∗|, |x|〉 for all x ∈ X. So, (qvN1) holds. For each
0 ≤ x∗ ∈ X∗, from (oΛ1) we have that the real capacity x∗Λ is increasing
and takes values in [0,∞). Then, qx∗Λ = x∗Λ, see Lemma 2.(d). Since by
(oΛ2) we have that x∗Λ is submodular and so subadditive, (qvN3) holds for
K = 1. Moreover, by (oΛ3) and since x∗Λ is null-additive (as it is increasing
and subadditive), it follows that (qvN2) holds.

From the previous lemma, all what we have seen in Section 6 holds for
Λ. In particular,

S‖Λ‖ ⊂ L1(‖Λ‖) ⊂ L1
v(Λ) ⊂ w-L1

v(Λ) ⊂[i] L1(|x∗Λ|)
∩ ∩ ∩ ∩ ∩
S|||Λ||| ⊂ L1(|||Λ|||) ⊂ L1

qv(Λ) ⊂ w-L1
qv(Λ) ⊂[i] L1(x∗Λ)

(8)

with 0 ≤ x∗ ∈ X∗. Moreover, we can add the following results.

Proposition 26. The following statements hold:

(a) w-L1
qv(Λ) = D(Λ) = {f ∈ L0(Λ) :

∫
I
x∗Λ|f | dm < ∞ for all 0 ≤ x∗ ∈ X∗}

and ‖f‖qv = ‖IΛ(|f |)‖X∗∗ for all f ∈ w-L1
qv(Λ).

(b) L1(|||Λ|||) = B(Λ) = {f ∈ L0(Λ) :
∫
I
‖Λ|f |‖X dm < ∞} and ‖f‖|||Λ||| =∫

I
‖Λ|f |‖X dm for all f ∈ L1(|||Λ|||).

(c) S|||Λ||| = S.

Proof. (a) For the first part only note that qx∗Λ ≤ q|x∗|Λ = |x∗|Λ for all
x∗ ∈ X∗. In the second one we use that ‖y∗‖Y ∗ = sup0≤y∈BY 〈y

∗, y〉 for any
Banach lattice Y and 0 ≤ y∗ ∈ Y ∗. Namely, for every f ∈ w-L1

qv(Λ) it follows
that

‖f‖qv = sup
x∗∈N

∫
I

(qx∗Λ)|f | dm = sup
x∗∈N

∫
I

x∗Λ|f | dm

= sup
x∗∈N
〈IΛ(|f |), x∗〉 = ‖IΛ(|f |)‖X∗∗ .
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(b) Note that ‖y‖Y = sup0≤y∗∈BY ∗ 〈y
∗, y〉 for any Banach lattice Y and

0 ≤ y ∈ Y . Then, for every A ∈ Σ we have that

|||Λ|||(A) = sup
x∗∈N

qx∗Λ(A) = sup
x∗∈N

x∗Λ(A) = ‖Λ(A)‖X .

From this fact that the conclusion follows, see Remark 23.
(c) Clear as |||Λ||| = ‖Λ(·)‖X .

For each 0 ≤ x∗ ∈ X∗, the capacity x∗Λ satisfies the properties (P1,2,3,5,6)
and 〈IΛ(f), x∗〉 = Ix∗Λ(f) for all f ∈ w-L1

qv(Λ) ⊂ L1(x∗Λ), see Remark 21.
This gives the following properties for IΛ.

Proposition 27. The following statements hold:

(a) 0 ≤ IΛ(f) ≤ IΛ(g) for all f, g ∈ w-L1
qv(Λ) such that 0 ≤ f ≤ g Λ-a.e.

(b) IΛ(f + g) ≤ IΛ(f) + IΛ(g) for all positive functions f, g ∈ w-L1
qv(Λ).

(c) IΛ : w-L1
qv(Λ)→ X∗∗ is continuous.

Proof. (a) Let f, g ∈ w-L1
qv(Λ) be such that 0 ≤ f ≤ g Λ-a.e. For each

0 ≤ x∗ ∈ X∗, since every Λ-null set is x∗Λ-null, by Lemma 4.(b) and (c) we
have that

0 ≤ 〈IΛ(f), x∗〉 = Ix∗Λ(f) ≤ Ix∗Λ(g) = 〈IΛ(g), x∗〉.

Since the canonical embedding of X into X∗∗ is order preserving (see [25,
Proposition 1.a.2]) and so x ∈ X is such that x ≥ 0 if and only if 〈x∗, x〉 ≥ 0
for all 0 ≤ x∗ ∈ X∗, it follows that 0 ≤ IΛ(f) ≤ IΛ(g).

(b) Let f, g ∈ w-L1
qv(Λ) be positive functions. For each 0 ≤ x∗ ∈ X∗, since

x∗Λ is submodular and so Ix∗Λ is subadditive on L0(Ω)+ (see the comments
preceding Proposition 8), we have that

〈IΛ(f + g), x∗〉 = Ix∗Λ(f + g) ≤ Ix∗Λ(f) + Ix∗Λ(g)

= 〈IΛ(f), x∗〉+ 〈IΛ(g), x∗〉 = 〈IΛ(f) + IΛ(g), x∗〉.

Then, IΛ(f + g) ≤ IΛ(f) + IΛ(g).
(c) For every f, g ∈ w-L1

qv(Λ) and 0 ≤ x∗ ∈ X∗ it follows that

|Ix∗Λ(f)− Ix∗Λ(g)| ≤ 2 Ix∗Λ(|f − g|),
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see the proof of Proposition 8. Then, using that ‖y∗‖Y ∗ ≤ 2 sup0≤y∈BY |〈y
∗, y〉|

for any Banach lattice Y and y∗ ∈ Y ∗, we have that

‖IΛ(f)− IΛ(g)‖X∗∗ ≤ 2 sup
x∗∈N

|〈IΛ(f)− IΛ(g), x∗〉|

= 2 sup
x∗∈N

|Ix∗Λ(f)− Ix∗Λ(g)|

≤ 4 sup
x∗∈N

Ix∗Λ(|f − g|) = 4 ‖f − g‖qv.

Note that the spaces w-L1
qv(Λ) and w-L1

v(Λ) are actually Λ-B.f.s.’. Indeed,
for 0 ≤ x∗ ∈ X∗, since x∗Λ is increasing and submodular it can be proved
that |x∗Λ| is submodular, and so Ix∗Λ and I|x∗Λ| are subadditive on L0(Ω)+.
Recalling that

‖f‖qv = sup
x∗∈N

Ix∗Λ(|f |) and ‖f‖v = sup
x∗∈N

I|x∗Λ|(|f |)

for every f ∈ L0(Λ), it follows that ‖ · ‖qv and ‖ · ‖v are norms.
The properties of IΛ shown in Proposition 27 allow us to get the main

result of this section.

Theorem 28. The sets L1
qv(Λ) and L1

v(Λ) are Λ-B.f.s.’ with norms ‖ · ‖qv
and ‖ · ‖v respectively.

Proof. From Lemma 20.(a) it is clear that af ∈ L1
qv(Λ) for all f ∈ L1

qv(Λ)
and a ∈ R. If f, g ∈ L1

qv(Λ) are positive functions, since j(X) is an ideal
of X∗∗, from Proposition 27.(b) it follows that f + g ∈ L1

qv(Λ). For general
f, g ∈ L1

qv(Λ) and A ∈ Σ, noting that (f + g)+ ≤ f+ + g+ and (f + g)− ≤
f− + g−, by Proposition 27.(a) and (b) we have that

|IΛ((f + g)χA)| = |IΛ((fχA + gχA)+)− IΛ((fχA + gχA)−)|
≤ IΛ((fχA + gχA)+) + IΛ((fχA + gχA)−)

≤ IΛ((fχA)+ + (gχA)+) + IΛ((fχA)− + (gχA)−)

≤ IΛ((fχA)+) + IΛ((gχA)+) + IΛ((fχA)−) + IΛ((gχA)−).

Since h+ = hχPh and h− = (−h)χNh for any h ∈ L0(Ω) (see the Preliminar-
ies), it follows that the last element in the above inequality belongs to j(X)
and so IΛ((f + g)χA) ∈ j(X). Hence, f + g ∈ L1

qv(Λ). Therefore, L1
qv(Λ) is

33



a linear subspace of w-L1
qv(Λ), from which it is clear that L1

v(Λ) is a linear
subspace of w-L1

v(Λ).
Since IΛ : w-L1

qv(Λ)→ X∗∗ is continuous and j(X) is closed in X∗∗, it fol-
lows that L1

qv(Λ) is closed in w-L1
qv(Λ). From this, since w-L1

v(Λ) ⊂ w-L1
qv(Λ)

and all the containments between Λ-quasi-B.f.s.’ are continuous, it follows
that L1

v(Λ) is closed in w-L1
v(Λ). Then, L1

qv(Λ) and L1
v(Λ) are Banach spaces

with norms ‖ · ‖qv and ‖ · ‖v respectively.
On the other hand, if f ∈ L0(Λ) and g ∈ L1

qv(Λ) are such that |f | ≤ |g| Λ-
a.e. then f ∈ w-L1

qv(Λ) with ‖f‖qv ≤ ‖g‖qv. Moreover, since (fχA)+, (fχA)− ≤
|g| Λ-a.e. for every A ∈ Σ, by Proposition 27.(a) and (b) we have that

IΛ((fχA)+), IΛ((fχA)−) ≤ IΛ(|g|) ≤ IΛ(g+) + IΛ(g−).

Then IΛ((fχA)+), IΛ((fχA)−) ∈ j(X) and so f ∈ Lqv(Λ). Hence, L1
qv(Λ) and

L1
v(Λ) are Λ-B.f.s.’.

Finally we conclude this section by characterizing when the space L1
qv(Λ)

is σ-order continuous.

Theorem 29. The Λ-B.f.s. L1
qv(Λ) is σ-order continuous if and only if Λ

is continuous from above at ∅, i.e. Λ(An) → 0 in X whenever An ∈ Σ with
An ↓ ∅. Moreover, in this case S is dense in L1

qv(Λ).

Proof. First note that S ⊂ L1
qv(Λ), see (8) and Proposition 26.(c). Moreover,

from Proposition 22 it follows that IΛ(χA) = j(Λ(A)) for all A ∈ Σ.
Suppose that L1

qv(Λ) is σ-order continuous. Given An ∈ Σ with An ↓ ∅,
since χAn ↓ 0 pointwise and (χAn) ⊂ L1

qv(Λ), by using Proposition 26.(a) we
have that

‖Λ(An)‖X = ‖IΛ(χAn)‖X∗∗ = ‖χAn‖qv → 0.

Conversely suppose that Λ is continuous from above at ∅ and let (fn) ⊂
L1
qv(Λ) be such that fn ↓ 0 Λ-a.e. For each 0 ≤ x∗ ∈ X∗, since x∗Λ is

continuous from above at ∅, by Theorem 6 we have that L1(x∗Λ) is σ-order
continuous. Then, since fn ↓ 0 x∗Λ-a.e. it follows that

〈IΛ(fn), x∗〉 = Ix∗Λ(fn) = ‖fn‖x∗Λ ↓ 0.

Hence, IΛ(fn) ↓ 0 in the order of X∗∗. Since j(X) is order continuous as X
is so, we have that ‖fn‖qv = ‖IΛ(fn)‖X∗∗ ↓ 0.
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8. Example

Consider the measure space (N,P(N), c) with c being the counting mea-
sure. Note that L0(c) is just the space `0 of all real sequences and the c-a.e.
pointwise order coincides with the coordinate order. Let X be a σ-order con-
tinuous saturated c-B.f.s. Recall that X being saturated means that there
exists a sequence x = (xn) ∈ X such that xn > 0 for all n. In this case, X is
a Köthe function space in the sense of [25, Definition 1.b.17]. In what follows
we collect some properties of X which will be used later in our example.

Denoting the scalar product of two sequences x = (xn), y = (yn) ∈ `0 by
(x, y) =

∑
xnyn provided the sum exists, the Köthe dual of X is given by

X ′ =
{
y = (yn) ∈ `0 : (|x|, |y|) <∞ for all x = (xn) ∈ X

}
.

The space X ′ endowed with the norm ‖y‖X′ = supx∈BX |(x, y)| for y ∈ X ′, is a
saturated c-B.f.s. The linear isometry η : X ′ → X∗ given by 〈η(y), x〉 = (x, y)
for all y ∈ X ′ and x ∈ X is surjective as X is σ-order continuous, see [25,
pg. 29]. If x∗ ∈ X∗ and y ∈ X ′ are such that x∗ = η(y), then x∗ ≥ 0 if and
only if y ≥ 0. Note that X ⊂ X ′′. From [25, Proposition 1.b.18] it follows
that ‖x‖X = ‖x‖X′′ for all x ∈ X. The equality X = X ′′ holds with equal
norms if and only if X has the Fatou property, see [25, pg. 30]. Also we will
use the linear isometry π : X ′′ → X∗∗ defined by 〈π(z), x∗〉 =

(
z, η−1(x∗)

)
for

all z ∈ X ′′ and x∗ ∈ X∗. Note that if z ∈ X then π(z) = j(z).
Let us construct now a vector capacity with values in X. Consider a σ-

finite measure µ : Σ→ [0,∞] and let Φ: I → I be a function as in Example
9. Then, the capacity λ : Σ → [0,∞] given by λ(A) = Φ(µ(A)) for A ∈ Σ,
satisfies the properties (P1,2,3,5,6) and the λ-null and µ-null sets coincide.
Take a sequence of pairwise disjoint sets (Ωn) ⊂ Σ such that Ω = ∪Ωn and
µ(Ωn) < ∞ for all n and assume that e = (λ(Ωn))n ∈ X. We define the
vector capacity Λ: Σ→ X by

Λ(A) = (λ(A ∩ Ωn))n

for A ∈ Σ. Note that Λ is well defined as Λ(A) ≤ e.

Remark 30. The condition e ∈ X holds in many cases. For instance if
µ(Ωn) → 0 then e ∈ c0. This happens whenever µ is finite. An example
of a non-finite µ could be the measure m on I with density h(x) = 1

1+x
,

that is µ(A) =
∫
A
h dm. In this case, by taking Ωn = [n− 1, n) we have that
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µ(Ωn) = ln(1+n
n

) < 1
n

. So e ∈ c0 and for instance if Φ(x) = xp with 0 < p < 1
then e ∈ `q for every 1

p
< q <∞.

Let us see that Λ satisfies the requirements of Section 7.

Lemma 31. The vector capacity Λ has the properties (oΛ1,2,3) and is con-
tinuous from above at ∅. Moreover the Λ-null and µ-null sets coincide.

Proof. Note that Λ is increasing and submodular as λ is so. Given Ak, A ∈ Σ
such that Ak ↑ A, since λ is increasing and continuous from below, for each
fixed n we have that λ(Ak ∩Ωn) ↑ λ(A∩Ωn). Then Λ(Ak) ↑ Λ(A) pointwise
and so in X, as X is σ-order continuous. Hence, Λ is continuous from below.

Given Ak ∈ Σ with Ak ↓ ∅, since µ is a measure, for each fixed n it follows
that µ(Ak ∩Ωn) ↓ 0 and so λ(Ak ∩Ωn) ↓ 0. That is, Λ(Ak) ↓ 0 pointwise and
so in X. Hence, Λ is continuous from above at ∅.

It is direct to check that a set Z is Λ-null if and only if Z ∩ Ωn is λ-null
(equivalently, µ-null) for all n. This happens if and only if Z = ∪Z ∩ Ωn is
µ-null.

Therefore, all what we have seen in Sections 5, 6 and 7 hold for Λ. More-
over we can give nicer descriptions for the L1-spaces associated to Λ in terms
of λ.

Proposition 32. The following statements hold:

(a) L1(|||Λ|||) = {f ∈ L0(µ) :
∫
I
‖(λ|f |χΩn

)n‖X dm <∞} and for f ∈ L1(|||Λ|||)
we have that ‖f‖|||Λ||| =

∫
I
‖(λ|f |χΩn

)n‖X dm.

(b) w-L1
qv(Λ) = {f ∈ L0(µ) : (Iλ(|f |χΩn))n ∈ X ′′} and for f ∈ w-L1

qv(Λ) we
have that ‖f‖qv = ‖(Iλ(|f |χΩn))n‖X′′. Moreover, (Iλ(fχΩn))n ∈ X ′′ and
IΛ(f) = π((Iλ(fχΩn))n).

(c) L1
qv(Λ) = {f ∈ L0(µ) : (Iλ(|f |χΩn))n ∈ X} and for f ∈ L1

qv(Λ) we
have that ‖f‖qv = ‖(Iλ(|f |χΩn))n‖X . Moreover, (Iλ(fχΩn))n ∈ X and
IΛ(f) = j((Iλ(fχΩn))n).

Proof. First note that L0(Λ) = L0(µ) as the Λ-null and µ-null sets coincide.
(a) For every f ∈ L0(Ω)+, since

{ω ∈ Ω : f(ω) > t} ∩ Ωn = {ω ∈ Ω : (fχΩn)(ω) > t}

for all t ∈ I, it follows that Λf = (λfχΩn
)n. Then, the conclusion follows from

Proposition 26.(b).
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(b) Let 0 ≤ x∗ ∈ X∗ and 0 ≤ y = (yn) ∈ X ′ be such that x∗ = η(y). For
f ∈ L0(Ω)+ we have that

x∗Λf (t) = 〈x∗,Λf (t)〉 =
∑

ynλfχΩn
(t)

for all t ∈ I. By applying the monotone convergence theorem we obtain that∫
I

x∗Λf dm =
∑

yn

∫
I

λfχΩn
dm =

∑
ynIλ(fχΩn).

From this it follows that f ∈ L0(µ) is such that
∫
I
x∗Λ|f | dm < ∞ for all

0 ≤ x∗ ∈ X∗ if and only if
(
Iλ(|f |χΩn)

)
n
∈ X ′′. Then, by Proposition

26.(a), the description of w-L1
qv(Λ) holds. Moreover, for a positive function

f ∈ w-L1
qv(Λ) we have that

〈IΛ(f), x∗〉 =

∫
I

x∗Λf dm = 〈π((Iλ(fχΩn))n), x∗〉

for all 0 ≤ x∗ ∈ X∗. The same equality holds for a general x∗ ∈ X∗ by taking
positive and negative parts of x∗. Hence, IΛ(f) = π((Iλ(fχΩn))n). Then, for
a general f ∈ w-L1

qv(Λ) it follows that

‖f‖qv = ‖IΛ(|f |)‖X∗∗ =
∥∥(Iλ(|f |χΩn)

)
n

∥∥
X′′
.

For every n it is clear that fχΩn ∈ L1(λ) as (Iλ(|f |χΩn))n ∈ X ′′. Noting that
(fχA)+ = f+χA and (fχA)− = f−χA for all A ∈ Σ, we have that

(Iλ(fχΩn))n = (Iλ(f
+χΩn))n − (Iλ(f

−χΩn))n ∈ X ′′

as f+, f− ∈ w-L1
qv(Λ). Moreover,

IΛ(f) = IΛ(f+)− IΛ(f−)

= π((Iλ(f
+χΩn))n)− π((Iλ(f

−χΩn))n)

= π((Iλ(fχΩn))n).

(c) For every f ∈ L1
qv(Λ) ⊂ w-L1

qv(Λ) we have that (Iλ(fχΩn))n ∈ X ′′ and

π((Iλ(fχΩn))n) = IΛ(f) ∈ j(X).

Since π coincides with j on X and π is injective it follows that (Iλ(fχΩn))n ∈
X and IΛ(f) = j((Iλ(fχΩn))n). Noting that |f | ∈ L1

qv(Λ), we have that
(Iλ(|f |χΩn))n ∈ X and ‖f‖qv = ‖(Iλ(|f |χΩn))n‖X′′ = ‖(Iλ(|f |χΩn))n‖X .
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On the other hand, if f ∈ L0(µ) is such that (Iλ(|f |χΩn))n ∈ X ⊂ X ′′

we have that f ∈ w-L1
qv(Λ). Then, for every A ∈ Σ it follows that fχA ∈

w-L1
qv(Λ) and

|IΛ(fχA)| = |IΛ(f+χA)− IΛ(f−χA)| ≤ IΛ(f+χA) + IΛ(f−χA)

≤ 2IΛ(|f |) = 2 π((Iλ(|f |χΩn))n) = 2 j((Iλ(|f |χΩn))n),

and so IΛ(fχA) ∈ j(X). Hence, f ∈ L1
qv(Λ).

Note that L1
qv(Λ) is σ-order continuous as Λ is continuous from above at

∅, see Theorem 29.
In order to give a description in terms of λ for the spaces L1(‖Λ‖),

w-L1
v(Λ) and L1

v(Λ), we consider the variation |λ| of λ defined as in the
real capacity case. Since |λ| is superadditive and λ is subadditive it follows
that |λ| is finitely additive. Moreover, since |λ| is continuous from below as
λ is so, we have that |λ| is a measure. We will need the following result.

Lemma 33. Let x∗ ∈ X∗ and y = (yn) ∈ X ′ be such that x∗ = η(y). For
every A ∈ Σ it follows that

|x∗Λ|(A) =
∑
|yn| |λ|(A ∩ Ωn).

Proof. For every partition (Ai)
m
i=1 ⊂ Σ of A ∈ Σ we have that

m∑
i=1

|x∗Λ(Ai)| =
m∑
i=1

∣∣∣∑
n≥1

ynλ(Ai ∩ Ωn)
∣∣∣ ≤ m∑

i=1

∑
n≥1

|yn|λ(Ai ∩ Ωn)

=
∑
n≥1

|yn|
m∑
i=1

λ(Ai ∩ Ωn) ≤
∑
n≥1

|yn||λ|(A ∩ Ωn).

Hence, |x∗Λ|(A) ≤
∑
|yn| |λ|(A∩Ωn). On the other hand, for a fixed k take

a partition (Bk
i )mki=1 ⊂ Σ of A ∩ Ωk. Since Bk

i ∩ Ωk = Bk
i and Bk

i ∩ Ωn = ∅
whenever n 6= k, we have that

|yk|
mk∑
i=1

λ(Bk
i ) =

mk∑
i=1

∣∣∣∑
n≥1

ynλ(Bk
i ∩ Ωn)

∣∣∣ =

mk∑
i=1

|x∗Λ(Bk
i )| ≤ |x∗Λ|(A ∩ Ωk).

Then, |yk| |λ|(A ∩ Ωk) ≤ |x∗Λ|(A ∩ Ωk). Since |x∗Λ| is superadditive and
increasing it follows that

n∑
k=1

|yk| |λ|(A ∩ Ωk) ≤
n∑
k=1

|x∗Λ|(A ∩ Ωk) ≤ |x∗Λ|(A)
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for all n and so
∑
|yn| |λ|(A ∩ Ωn) ≤ |x∗Λ|(A).

Now from the previous lemma we can obtain the following conclusions.

Proposition 34. The following statements hold:

(a) L1(‖Λ‖) is the space of functions f ∈ L0(µ) such that (|λ||f |χΩn
(t))n ∈ X ′′

for all t > 0 and
∫
I
‖(|λ||f |χΩn

)n‖X′′ dm < ∞, and for f ∈ L1(‖Λ‖) we
have that ‖f‖‖Λ‖ =

∫
I
‖(|λ||f |χΩn

)n‖X′′ dm.

(b) w-L1
v(Λ) = {f ∈ L0(µ) : (I|λ|(|f |χΩn))n ∈ X ′′} and for f ∈ w-L1

v(Λ) we
have that ‖f‖v = ‖(I|λ|(|f |χΩn))n‖X′′.

(c) L1
v(Λ) = {f ∈ L0(µ) : (Iλ(|f |χΩn))n ∈ X and (I|λ|(|f |χΩn))n ∈ X ′′}.

Note that I|λ|(|f |χΩn) =
∫

Ωn
|f | d|λ| for all n as |λ| is a measure.

Proof. (a) By Lemma 33 every A ∈ Σ satisfies that

‖Λ‖(A) = sup
x∗∈BX∗

|x∗Λ|(A) = sup
y=(yn)∈BX′

∑
|yn| |λ|(A ∩ Ωn).

Then ‖Λ‖(A) <∞ if and only if (|λ|(A ∩ Ωn))n ∈ X ′′, and in this case

‖Λ‖(A) = ‖(|λ|(A ∩ Ωn))n‖X′′ .

If f ∈ L1(‖Λ‖), since
∫
I
‖Λ‖|f | dm <∞ and ‖Λ‖|f | is decreasing, we have that

‖Λ‖|f |(t) <∞ for all t > 0. So (|λ||f |χΩn
(t))n ∈ X ′′ with ‖(|λ||f |χΩn

(t))n‖X′′ =
‖Λ‖|f |(t) for all t > 0. The converse inclusion follows as if f ∈ L0(µ) is such
that (|λ|fχΩn

(t))n ∈ X ′′ for all t > 0 then ‖Λ‖|f |(t) = ‖(|λ|fχΩn
(t))n‖X′′ for

all t > 0.
(b) Let f ∈ L0(µ). For every x∗ ∈ X∗ and y = (yn) ∈ X ′ with x∗ = η(y),

from Lemma 33 and applying the monotone convergence theorem it follows
that ∫

I

|x∗Λ||f | dm =
∑
|yn|

∫
I

|λ||f |χΩn
dm =

∑
|yn|I|λ|(|f |χΩn).

Then
∫
I
|x∗Λ||f | dm < ∞ for all x∗ ∈ X∗ if and only if (I|λ|(|f |χΩn))n ∈ X ′′.

From this the description of w-L1
v(Λ) holds. Moreover, for f ∈ w-L1

v(Λ) we
have that

‖f‖v = sup
y=(yn)∈BX′

∑
|yn|I|λ|(|f |χΩn) = ‖(I|λ|(|f |χΩn))n‖X′′ .

(c) Clear from part (b) of this proposition and Proposition 32.(c).
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Finally note that in the case when X has the Fatou property (i.e. X =
X ′′), we have that L1

qv(Λ) = w-L1
qv(Λ) and

L1
v(Λ) = w-L1

v(Λ) = {f ∈ L0(µ) : (I|λ|(|f |χΩn))n ∈ X}.

The first equality above follows as λ ≤ |λ| and so Iλ(|f |χΩn) ≤ I|λ|(|f |χΩn)
for all n. Moreover, ‖f‖v = ‖(I|λ|(|f |χΩn))n‖X for all f ∈ L1

v(Λ). Also in
this case we have that L1

v(Λ) is σ-order continuous. Indeed, given (fk) ⊂
L1
v(Λ) such that fk ↓ 0 µ-a.e. (equivalently |λ|-a.e.), since L1(|λ|) is σ-order

continuous as |λ| is a measure, for each fixed n it follows that I|λ|(fkχΩn) ↓ 0.
Then (I|λ|(|fk|χΩn))n ↓ 0 pointwise and so in X.
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