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Abstract

Throughout the pages of this document, I present the results of the re-
search that was carried out in the context of my PhD studies.

During the aforementioned research, I studied the process of Traceabil-
ity Links Recovery between natural language requirements and industrial
software models. More precisely, due to their popularity and extensive
usage, I studied the process of Traceability Links Recovery between nat-

ural language requirements and Business Process Models, also known as
BPMN models.

In order to carry out the research, I focused my work on two main objec-
tives: (1) the development of the Traceability Links Recovery techniques
between natural language requirements and BPMN models, and (2) the
validation and analysis of the results obtained by the developed tech-
niques in industrial domain case studies. The results of the research
have been redacted and published in forums, conferences, and journals
specialized in the topics and context of the research.

This thesis document introduces the topics, context, and objectives of the
research, presents the academic publications that have been published as
a result of the work, and then discusses the outcomes of the investigation.
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Resumen

A través de las paginas de este documento, presento los resultados de la
investigacion realizada en el contexto de mis estudios de doctorado.

Durante la investigacion, he estudiado el proceso de Recuperacion de
Enlaces de Trazabilidad entre requisitos especificados en lenguaje natural
y modelos de software industriales. Mas concretamente, debido a su
popularidad y uso extensivo, he estudiado el proceso de Recuperaciéon de
Enlaces de Trazabilidad entre requisitos especificados en lenguaje natural
y Modelos de Procesos de Negocio, también conocidos como modelos
BPMN.

Para llevar a cabo esta investigacion, mi trabajo se ha centrado en dos
objetivos principales: (1) desarrollo de técnicas de Recuperacion de En-
laces de Trazabilidad entre requisitos especificados en lenguaje natural y
modelos BPMN, y (2) validacion y analisis de los resultados obtenidos
por las técnicas desarrolladas en casos de estudio de dominios industri-
ales. Los resultados de la investigacion han sido redactados y publicados
en foros, conferencias y revistas especializadas en los temas y contexto
de la investigacion.

Esta tesis introduce los temas, contexto y objetivos de la investigacion,
presenta las publicaciones académicas que han sido publicadas como re-
sultado del trabajo, y expone los resultados de la investigacion.
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Resum

A través de les pagines d’aquest document, presente els resultats de la
investigacio realitzada en el context dels meus estudis de doctorat.

Durant la investigacio, he estudiat el procés de Recuperacié d’Enllacos
de Tracabilitat entre requisits especificats en llenguatge natural i models
de programari industrials. Més concretament, a causa de la seua popu-
laritat i s extensiu, he estudiat el procés de Recuperacié d’Enllagos de
Tracabilitat entre requisits especificats en llenguatge natural i Models de
Processos de Negoci, també coneguts com a models BPMN.

Per a dur a terme aquesta investigacio, el meu treball s’ha centrat en dos
objectius principals: (1) desenvolupament de técniques de Recuperacio
d’Enllagos de Tragabilitat entre requisits especificats en llenguatge nat-
ural 1 models BPMN, i (2) validaci6 i analisi dels resultats obtinguts
per les técniques desenvolupades en casos d’estudi de dominis industri-
als. Els resultats de la investigacié han sigut redactats i publicats en
forums, conferéncies i revistes especialitzades en els temes i context de la
investigacio.

Aquesta tesi introdueix els temes, context i objectius de la investigacio,
presenta les publicacions académiques que han sigut publicades com a
resultat del treball, i exposa els resultats de la investigacio.
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Introduction






Introduction

This chapter introduces this thesis, highlighting the mo-
tivation for the research and the objectives of this work, as
well as providing an overview of the thesis and of the scien-
tific articles included in this compendium document. Finally,
this chapter presents the methodology followed to pursue this
research, and states the structure of the document.



Motivation

Traceability Links Recovery (TLR) is defined as the software engineering
task that deals with the identification and comprehension of dependencies
and relationships between software artifacts (Oliveto et al. 2010). TLR
is an important support activity during development, management, and
maintenance of software, since it is helpful for a number of software tasks
such as requirement coverage, software reuse, program comprehension, or
impact analysis. In addition, TLR is considered as a good practice by
numerous major software standards such as CMMI or ISO 15504 (Oliveto
et al. 2010). Moreover, research has shown that affordable traceability
can be critical to the success of a project (Watkins and Neal 1994),
and leads to increased maintainability and reliability of software systems
by making it possible to verify and trace non-reliable parts (Ghazarian
2010). Specifically, more complete traceability decreases the expected
defect rate in developed software (Rempel and Méader 2017).

Even though all of these factors vouch for TLR, being able to establish
and maintain traceability links has proven to be a time consuming, error
prone, and person-power intensive task (Oliveto et al. 2010; Zhang et
al. 2008). Therefore, TLR has been a subject of investigation for many
years within the software engineering community (Gotel and Finkelstein
1994; Spanoudakis and Zisman 2005), and in recent years, it has been
attracting more attention, becoming a subject of both fundamental and
applied research (Parizi, Lee, and Dabbagh 2014). However, most of the
works focus on performing TLR between requirements and code (Rubin
and Chechik 2013), and the application of TLR techniques to models in
general, and BPMN models in particular, is a topic that has not received
enough attention yet.

Thesis Objectives

Based on the context provided in the motivation section, the main goal
of this thesis is to analyze and improve the Traceability Links Recovery
process between natural language requirements and BPMN models. To
that extent, the following research questions are defined for the thesis:



RQ1 Is it possible to adapt state-of-the-art Information Retrieval ap-
proaches in order to make them available for Traceability Links Re-
covery between natural language requirements and BPMN models?

RQ2 If so, how can we refine the proposed approaches in order to improve
the Traceability Links Recovery process between natural language
requirements and BPMN models?

The results of the research carried out to fulfill the pursued objectives
have been published in several articles, introduced in the following sec-
tion.

Thesis Overview

Figure 1 presents an overview of the works that we carried out in order
to respond to the research questions posed by the thesis. We started the
thesis by identifying the most novel, state-of-the-art approaches in Trace-
ability Links Recovery, and concentrated our initial efforts in transform-
ing the approaches towards their application to model-based software
artifacts. We successfully leveraged the state-of-the-art approaches and
techniques for Traceability Links Recovery between natural language re-
quirements and generic conceptual models, publishing the results of the
work derived from our initial ideas in a paper for CAiSE Forum ’17
(Lapeiia, Font, Cetina, and O. Pastor 2017).

During the development of our first research ideas, we realized the impor-
tance of the role that natural language plays in the Traceability Links Re-
covery process: the approaches in use determine their outcomes through
semantic and linguistic similitude between the artifacts in use, and both
the requirements and models are incorporated to the approaches as input
through their innate natural language. Hence, in the second stage of this
thesis, we worked on improving the outcomes of the approaches through
the study of the natural language of the artifacts in use. To that extent,
we studied: (1) the process of transforming the models into natural lan-
guage and how it affects the approaches, published in (Lapena, Pérez,
and Cetina 2017), and (2) the impact of natural language processing
over the approaches, published in (Lapena, Font, O. Pastor, et al. 2017).



Traceability Links Recovery between requirements and models

RQ2

Impact of the M2NL
transformation on TLR
(ER Forum ’17)

RQ1 RQ1l

Adapting TLR
approaches to models
(CAISE Forum '17)

Evolutionary approach
for TLR in models
(IST “18)

RQ2

Impact of NLP of
requirements over TLR
(GPCE "17)

ﬂ

Traceability Links Recovery between requirements and BPMN models

RQ1 RQ2 RQ2

Improving TLR in
BPMN by mitigating
tacit knowledge in

requirements
(CAISE '19)

Exploration of research
opportunities in TRL
for BPMN models
(CAISE Ph. D. Cons. '19)

TLR approach for
BPMN models
(CAISE ‘18)

Figure 1: Thesis work overview

The ideas and work up to this point, regarding Information Retrieval in
model-based artifacts and Natural Language Processing of the artifacts
in use, were extended and incorporated into a paper in the Information
and Software Technology journal (Pérez et al. 2018) along with Feature
Location and Bug Location ideas stemming from the research of other
authors.

After the initial work on Traceability Links Recovery among natural lan-
guage requirements and models, we started exploring the particularities
of BPMN models. The first step in this novel stage of this thesis was
to apply the enhanced approaches to BPMN models, comparing their
results against state-of-the-art baselines.



The results of this work, which was published in (Lapena, Font, Cetina,
and O. Pastor 2018), brought to light certain particularities of the re-
search challenge related to the requirements, the BPMN models, and
their interaction within the context of the Traceability Links Recovery
problem. We reviewed our latest research work and the arising challenges
in the field through a paper in the CAiSE PhD Consortium (Lapena
2019).

In the final stage of this thesis, we have worked towards incorporating the
particularities of the BPMN models case into the developed approaches
for further improvement of the results. The first issue that we were able
to identify was a misalignment between the language in the requirements
and the BPMN models, in the form of tacit knowledge that was not made
explicit in the requirements but that did appear in the BPMN models.
We worked towards mitigating this language misalignment by expanding
the requirements through the usage of a domain ontology, publishing
the results in (Lapefa, Pérez, Cetina, and O. Pastor 2019). We also
identified other particularities within the language in use in the BPMN
models, which can also be leveraged to lead the approaches to enhanced
results, and realized that BPMN models comprise less text than other
kinds of software artifacts. These two last issues remain as future work.

Thesis Structure

This thesis is conformed and presented as compendium of articles. Ac-
cording to the guidelines and regulations for the development of a PhD
thesis in Universitat Politécnica de Valéncia, a PhD thesis that is pre-
sented as a compendium of articles must be structured in four parts:

I Introduction: The first part of the thesis (chapter 1) introduces
the motivation for the research, the description of the problem along
with the objectives of the work, the list of scientific articles published
towards the fulfillment of the thesis goals, and the methodology that
was followed to pursue the research presented in this thesis.



IT Publications: The second part of the thesis (chapters 2 to 7) pro-
vides the compendium of scientific articles that result from the re-
search that was carried out for the thesis. The contributions are
ordered chronologically and adapted to the format of the thesis.

IIT Introduction: The third part of the thesis (chapter 8) discusses
the results and contributions of the thesis to the research context,
and the future works that arise as a continuation of the ongoing
research.

IV Conclusions: The fourth and final part of the thesis (chapter 9)
finishes the thesis by providing a few concluding remarks for the
presented work.

The following section presents more information on the compendium of
articles included in this thesis, and on their relationship with research
questions, research projects, and case studies.

Articles Compendium

Figure 2 comprises a general overview of the research works that have
been carried out as a result of this thesis. In the figure, it is possible to
appreciate a total of five rows:

e The first row states the main objective of the thesis.

e The second row introduces the Research Questions posed by this
thesis.

e The third row links the publications with the research questions
posed by the thesis.

e The fourth row presents the research projects that served as a frame-
work for the research.

e Finally, the fifth and final row indicates the industrial and academic
case studies to which the thesis research has been applied.



Thesis
Objective

Analyze and improve Traceability Links Recovery between natural language requirements and BPMN models

Research
Questions

Adapt state-of-the-art approaches for TLR
between requirements and BPMN models

Refine the approaches to improve the TLR process
between requirements and BPMN models

Publications

caist Forum‘17 | 1sT18 | caise 18

ER Forum ‘17 [ GPCE‘17 | CAISE Ph. D. Consortium ‘19 | caisE ‘19

Tools

FROM and LORE

Research
Projects

MINECO projects VARIAMOS (TIN2015-64397-R) and ALPS (RTI2018-096411-B-100), ITEA REVaMP?

Case Studies

Construccion y Auxiliar de Ferrocarriles (CAF), software artifacts for industrial railway solutions
Camunda BPMN for Research, academic case study

Figure 2: Thesis contributions overview

Several research articles have been developed as a result of the research
that has been carried out for this thesis:

1. Model Fragment Reuse Driven by Requirements (CAiSE

Forum ’17) (Lapena, Font, Cetina, and O. Pastor 2017): In this
paper, we adapt the state of the art approaches in Information Re-
trieval in order to perform Traceability Links Recovery between nat-
ural language requirements and models.

. On the Influence of Models-to-Natural-Language Transfor-
mation in Traceability Link Recovery among Requirements
and Conceptual Models (ER Forum ’17) (Lapena, Pérez, and
Cetina 2017): In our previous work, we realized that the necessary
transformation of the models into natural language can affect the
Traceability Links Recovery process. In this paper, we study the in-
fluence that the transformation from models into natural language
has in the Traceability Links Recovery process, with the aim of im-
proving the results obtained by the approaches.

. Analyzing the Impact of Natural Language Processing over
Feature Location in Models (GPCE ’17) (Lapeia, Font, O.
Pastor, et al. 2017): In the context of code-based software artifacts,
processing the software artifacts in use through Natural Language
Processing techniques is often considered beneficial for the outcomes
of Information Retrieval processes. In this paper, we study the
transportation and usage of the state-of-the-art Natural Language
Processing techniques and their potential impact on Information
Retrieval processes in the context of models.
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4. Fragment retrieval on models for model maintenance: Ap-

plying a multi-objective perspective to an industrial case
study (IST ’18) (Pérez et al. 2018): This paper presents a novel
approach that builds on prior work to retrieve the most relevant
model fragments for different types of input queries, coming from
three different Software Engineering tasks: Traceability Links Re-
covery, Bug Location, and Feature Location. We contributed to
this research work by fully developing the studies on the Traceabil-
ity Links Recovery part. The studies on Bug Location and Feature
Location stem from the works of other authors in the same research
environment.

. Exploring New Directions in Traceability Link Recovery

in Models: the Process Models Case (CAiSE ’18) (Lapena,
Font, Cetina, and O. Pastor 2018): Through this paper, we apply
the results of our prior research to adapt and propose novel and
improved approaches for Traceability Links Recovery between re-
quirements and models, putting the focus on BPMN models.

. Traceability Links Recovery in BPMN Models (Doctoral

Consortium @ CAISE ’19) (Lapena 2019): In this paper, we
recap the status of our work up to this point, highlighting our lat-
est proposals and results, and explore ideas and opportunities for
further improvements and future research within the context of the
domain.

. Improving Traceability Links Recovery in Process Mod-

els through and Ontological Expansion of Requirements
(CAiSE ’19) (Lapefia, Pérez, Cetina, and O. Pastor 2019): In
prior works, we realized that the language in use in requirements
is often incomplete, disregarding tacit knowledge (knowledge that
is not specified in the requirements by the software engineers) that
does appear in the models. This issue affects the Traceability Links
Recovery process in a negative manner, since the language in the
software artifacts ends up misaligned. Through this paper, we ex-
plore ways of aligning the language of the artifacts, through an on-
tological expansion of the requirements to palliate the amount and
effect of tacit knowledge.



The works that conform this thesis have formed part of the research
context of three funding projects: two Spanish national research plans
named VARIAMOS (TIN2015-64397-R) and ALPS (RT12018-096411-8-
100), devoted to the extraction of software variability in Software Product
Lines, and one international project from the second call of European
ITEA 3 projects named REVaMP?, devoted to the creation of a holistic
platform and process for variability extraction.

The approaches proposed as a result of this research have been validated
through two case studies: (1) a proprietary industrial case study provided
by one of our industrial partners, CAF (Construcciones y Auxiliar de Fer-
rocarriles), manufacturer of railway solutions, and (2) Camunda BPMN
for Research, an academic case study freely available to the public. The
various works presented in this thesis have led to the development of a
series of frameworks and tools. Two of those tools, FROM and LORE,
which are mentioned within the compendium of articles, are the cul-
mination of the prototypes developed during the different stages of our
research.

Research Methodology

For the development of this thesis, we have followed the methodology
proposed by R. Wieringa (Wieringa 2014). Following the guidelines pro-
posed in the methodology, we identified our research as design science
research, since it is aimed at the resolution of a design problem. In that
sense, our research emerges from the need to improve Traceability Links
Recovery in the context of BPMN models, by developing novel Trace-
ability Links Recovery approaches, such that they are applicable to the
context with a measured degree of success, in order to help software
engineers with the automation of this important, yet complex task.

The methodology is based on the iteration of design research cycles as
the one depicted in Figure 3, consisting of the following phases:

1. Problem investigation: in this phase, we brought to light the
main research problems, and formulated the appropriate research
questions.
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2. Research design: in this phase, we designed the approaches to
respond to the research questions.

3. Design validation: in this phase, we studied the validity of the ap-
proaches through incorporating measurements commonly accepted
by the research community and extensively used in the relevant lit-
erature. In addition, we studied the threats to the validity of the
approaches and how to mitigate them.

4. Research execution: in this phase, we developed the approaches
and applied them to the case studies to obtain results, which have
been embodied into several research articles.

5. Results evaluation: in this phase, we analyzed the obtained re-
sults, obtaining responses to the posed research questions and iden-
tifying novel research opportunities in the process.

Results l Problem

evaluation investigation

| \

Research Research
execution design

N

validation

Figure 3: Research cycle

The cyclic process described in Figure 3 has been applied in an iterative
fashion. Starting from the initial research challenge, the produced knowl-
edge and the obtained results directed the initial research towards the
arising perspectives. In this thesis, the first cycle started by transporting
Traceability Links Recovery from code-based software artifacts towards
model-based software artifacts. The responses to the research questions
posed by the initial challenge triggered novel research questions, which
acted as starting points for further research.
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Chapter 1

Model Fragment Reuse Driven
by Requirements

Clone-and-Own is a common practice in families of soft-
ware products, where parts from legacy products are reused in
new developments. In industrial scenarios, CAO consumes
high amounts of time and effort, not guaranteeing good re-
sults. We propose a novel approach, Computer Assisted CAQO
for Models (CACAO4M), that uses a Multi-Objective Evolu-
tionary Algorithm (MOEA) with two objectives (Model Frag-
ment Similitude, and Model Fragment Understandability) to
rank relevant model fragments for reuse. We evaluated our
approach in the industrial domain of train control software.
Our approach outperforms the results of a baseline that uses
only the Model Fragment Similitude metric, which encourages
us to further research in this direction.
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Chapter 1. Model Fragment Reuse Driven by Requirements

1.1 Introduction

Clone-And-Own (CAO) (Antkiewicz et al. 2014) is a common practice in
the development of new products, consisting of adapting elements from
legacy products in new product implementations. Reuse enables faster
software development and easier tracking of projects, and helps maintain
the development style and conventions consistent between products. In
practice, CAQO is carried out manually, relying on developers’ knowledge
of the family. In industrial scenarios, engineers tasked with new develop-
ments often lack knowledge over the entirety of the family, making CAO
consume high amounts of time and effort, without guaranteeing good
results.

This paper presents Computer Assisted Clone-And-Own for Models (CA-
CAO4M), a novel approach for software families where products are
developed through Model-Driven Development (MDD). The approach
leverages the Multi-Objective Evolutionary Algorithm (MOEA) (Fon-
seca, Fleming, et al. 1993) technique to rank relevant model fragments
for the requirements of a new development with two objectives: (1) the
similitude of model fragments to the provided requirement, and (2) the
understandability of model fragments from the perspective of a software
engineer.

The results of our approach are evaluated in the domain of train control
software with our industrial partner, CAF (http://www.caf.net/en), a
worldwide provider of railway solutions, and compared against those of
a baseline that takes in account only the similitude of model fragments
to the provided requirement. The results of our approach improve those
of the baseline, providing engineers with model fragments that are appli-
cable to the problem requirement and easier to understand than those of
the baseline, encouraging further research.

Through our work, Section 1.2 presents the background, Section 1.3 de-
tails our approach, Section 1.4 evaluates our approach, Section 1.5 gath-
ers the related works, and Section 1.6 concludes the paper.
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1.2 Background

Product Model Product Model Fragment

Pantograph 1 Pantograph 2

Pantograph 2

Pantograph 1

Circuit
Breaker 1

Circuit Circuit
Breaker 1 Breaker 2

Circuit
Breaker 2

Converter 1 Converter 2 Converter 1 Converter 2

Circuit
Breaker 3

TCML Syntax
High Voltage Voltage Consumer ,.__,: :
Equipment Contactors Converters Equipment L

Figure 1.1: Example of TCML model and model fragment

1.2 Background

This section presents the Train Control and Management Language that
formalizes the products from our industrial partner. It has the expres-
siveness required to (1) describe the interaction between train equipment,
and (2) specify non-functional aspects. We present an equipment-focused
simplified subset of TCML, along with a running example.

Fig. 1.1 depicts a real-world example model. The right part of Fig. 1.1
shows an example model fragment that realizes the "converter assistance"
requirement, which allows the passing of current from one converter to
equipment assigned to its peer to cover overload or failure. To formalize
the model fragments used by CACAO4M, we use the Common Variability
Language (CVL) (Haugen et al. 2008), which defines variants of a base
model by replacing variable parts with alternative model replacements
found in a library.
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Chapter 1. Model Fragment Reuse Driven by Requirements

Legacy Models
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Figure 1.2: Approach Overview

1.3 Approach

Fig. 1.2 presents an overview of CACAO4M. As inputs, we use one
requirement for a new product in the family, and the models that im-
plement the legacy products in the family. Our approach runs in three
steps: (1) Initialization, (2) application of Genetic Operations, and
(3) Fitness Function assessing. The last two steps of the approach are
repeated until the solution converges to a certain stop condition. When
this occurs, the genetic algorithm provides a model fragment list, ranked

according to the objectives, for the requirement.
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1.3 Approach

1.3.1 Initialization & Genetic Operations

The first step of our approach generates an initial collection of model
fragments, by randomly extracting parts of the legacy models.

The second step of our approach generates a set of model fragments that
could realize the requirement. The generation of new model fragments is
done by applying a set of three genetic operators, adapted to work over
model fragments: selection of parents, crossover, and mutation. The
selection operator picks the best candidates from the population as
input for the rest of operators. We follow the wheel selection mechanism
(Affenzeller et al. 2009), where each model fragment from the popula-
tion has a probability of being selected proportional to its fitness score.
The crossover operation enables the creation of a new individual by
combining the genetic material from two parent model fragments. The
mutation operator is used to imitate the mutations that randomly oc-
cur in nature when new individuals are born. The operations are taken
from (Font et al. 2016a) and (Font et al. 2016b) respectively, where their
application to models is detailed.

1.3.2 Model Fragment Fitness

The third step of the approach assesses each of the candidate model
fragments, ranking them according to a fitness function. Our approach
presents a fitness function based on two objectives: (1) the degree of
similitude of the model fragment to the requirement, and (2) the under-
standability of the model fragment.

Model Fragment Similitude

To assess the relevance of each model fragment with relation to the pro-
vided requirement, we apply Latent Semantic Indexing (LSI) (Landauer,
Foltz, and Laham 1998). LSI constructs vector representations of a query
and a corpus of text documents by encoding them as a term-by-document
co-occurrence matrix.
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In our approach, terms are keywords extracted from requirements through
natural language processing techniques, the documents are generated
from the model fragments by extracting the terms that correspond to
the elements that conform them, and the query is the provided require-
ment. Once the matrix is built, it is normalized and decomposed into a
set of vectors using a matrix factorization technique called Singular Value
Decomposition (SVD) (Landauer, Foltz, and Laham 1998). The similar-
ity degree between the query and each document is calculated through
the cosine between the vectors that represent them. Fig. 1.3 shows an
example of co-occurrence matrix, taken from our approach. Fig. 1.3 also
shows the result of applying the SVD technique to the matrix, and the
scores associated to each model fragment.

Documents Query Singular Value Decomposition Score

MF1 MF2 . MFN Requiremeni t

MFN
PANTO 0 2 .se 2 1 -
ES MF2=0.93
CIRCUIT .
BREAKER 0 2 5 2 Q MFN=024

DOOR 3 0 B 1 1 MF1

Model Fragment
similitude scores

Keywords

MF1=-0.87

Figure 1.3: LSI example

Model Fragment Understandability

In order to measure the Understandability of a TCML model fragment,
we measure its size by accounting the amount of lines, shapes, and labels
that appear in the model fragment. As an example, we highlight the
calculations for the model on Fig. 1.1. To compute the Understandability
metric, we take in account the number of lines (9) and the number of
shapes (10), for a total of 19 model elements.

1.4 Evaluation
This section evaluates our approach by applying it to a case study from

our industrial partner consisting of 23 trains, each one having an associ-
ated requirements specification document, and an associated model.
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1.4 Ewvaluation

Legacy [|Models Model Fragments
Product Role Products CACAO4M Ranking
Family Assignment New Requirement

prodct

Fragment Confusion Matrix

Precision & Recall

Figure 1.4: Evaluation Steps

Requirements from the document are implemented through model frag-
ments in the model. The documents specify, on average, around 420
requirements each. The models comprise, on average, around 1200 ele-
ments each.

1.4.1 Ezxperimental Setup

Fig. 1.4 shows the steps followed to evaluate our approach. First, roles
are assigned to products in the product family. One product acts as
the new product and the rest act as legacy products. The models of the
products that act as legacy products, and one requirement of the product
that acts as the new product are used to perform CACAO4M, while the
model fragment that implements the latter is kept apart to be used as
an oracle. Therefore, in order for a product to act as an oracle, it is
necessary to have the mapping between its requirements and the model
fragments that implement each of them. From the 23 products in the
family, the mapping is available for 4. These products are the ones that
can be used as oracles in our family.

Then, CACAO4M performs the steps described in our approach to pro-
vide a model fragment ranking for the requirement of the new product.
We carry out the genetic algorithm inside CACAO4M, weighing the two
metrics (Model Similitude and Model Understandability) as 90% - 10%.
We also apply CACAO4M with a 100% - 0% weighing, to simulate a Sin-
gle Objective Evolutionary Algorithm (SOEA) where only Model Simili-
tude is taken in account. The SOEA is considered as the baseline against
which the results of the MOEA are compared.
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Finally, the first model fragment in the ranking for each result is com-
pared with the oracle model fragment, in order to obtain a confusion
matrix. A confusion matrix is a table used to describe the performance
of a classification model (in this case, our algorithms) on a set of test
data (the resulting model fragments) for which the true values are known
(from the oracle). Each solution outputted by the algorithm is a model
fragment composed of a subset of the model elements that are part of the
product model (where the requirement is being located). Since the gran-
ularity is at the level of model elements, each model element presence or
absence is considered as a classification.

The confusion matrix distinguishes between the predicted values and
the real values classifying them into four categories: (1) True Positive
(TP): predicted true - real true; (2) False Positive (FP): predicted
true - real false; (3) True Negative (TN): predicted false - real false;
and (4) False Negative (FIN): predicted false - real true. The evaluated
performance metrics are:

(1) Precision: number of elements from the solution that are correct
according to the ground truth, expressed as

TP
Precision = ZTP—F—F‘P (11)

(2) Recall: number of elements of the solution retrieved by the pro-
posed solution, expressed as

TP
= 1.2
Recall TP FN (1.2)

(3) F-measure: harmonic mean of precision and recall, expressed as

2% TP
F— = 1.
Measure = o TP+ FP + FN (1.3)

We perform our evaluation separately for every requirement in an oracle,
and for all the 4 possible oracles individually.
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1.4.2 Results
The LSI 90% & U 10% (MOEA) achieves the best results, providing a

mean precision value of 55.34%, a recall value of 49.98%, and a combined
F-measure of 52.52%; while the LSI 100% & U 0% (SOEA) achieves a
mean precision value of 53.21%, a recall value of 49.73%, and a combined
F-measure of 51.41%.

1.5 Related Work

Feature location approaches in a product family such as the one presented
in (Xue, Xing, and Jarzabek 2012) center their efforts in finding the code
that implements a feature between the different products by combining
techniques such as FCA and LSI. We are not interested in the code
representation of a feature in the family, but in locating the most relevant
model fragments that implement a requirement.

Works as (Wille et al. 2013) focus on the location of features over models
by comparing the models with each other to formalize the variability
among them in the form of a Software Product Line. We do not locate
features, but model fragments that implement requirements, and our goal
is not to formalize variability, but to help engineers develop requirements
through model fragment Clone-And-Own.

Font et al. (Font et al. 2016a) use a SOEA to locate features among
a family of models in the form of a variation point. Their approach is
refined in (Font et al. 2016b), where a SOEA is used to find sets of suitable
feature realizations. The presented approach, in contrast, locates model
fragments that are relevant for the development of a single requirement.
The presented approach also differs from (Font et al. 2016a) and (Font et
al. 2016b) both technique and metrics, by using a MOEA, with a fitness
function that combines Model Similitude and Model Understandability.

In (Lapena, Ballarin, and Cetina 2016), Lapena et. al use POS Tagging in
combination with an adapted two-step LSI to obtain rankings of methods
for all the requirements of a new product in a product family.
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In the presented work, we obtain only one ranking for one requirement
on demand. Plus, this approach uses a MOEA, against the modified
LSI in (Lapena, Ballarin, and Cetina 2016). Finally, the scope of this
work is centered around finding models that can be used to implement
a particular requirement, not finding relevant code for requirements im-
plementation.

1.6 Conclusions

Clone-And-Own (CAO) is a common practice in the development of new
products in families of software products. In practice, it is carried out
manually and relies on human factors, consuming high amounts of time
and effort without guaranteeing good results. This paper presents Com-
puter Assisted Clone-And-Own for Models (CACAO4M), a novel ap-
proach that leverages a MOEA to rank relevant model fragments for the
development of particular requirements for a new product. CACAO4M
assesses the similitude of model fragments to the provided requirement,
and their understandability. Through our approach, we aim to prioritize
the model fragments that are easier to understand from the perspective of
a software engineer. Our MOEA approach is evaluated against a SOEA
baseline that takes in account only model fragment similitude, outper-
forming the baseline in every performance indicator. Model Understand-
ability provides a way of locating model fragments that are applicable to
the problem requirement and easier to understand than those retrieved
by the SOEA. Results encourage us to work further in this direction.

Bibliography

Affenzeller, Michael et al. (2009). Genetic Algorithms and Genetic Program-
ming - Modern Concepts and Practical Applications. CRC Press. ISBN:
978-1-58488-629-7 (cit. on p. 21).

Antkiewicz Michatand Ji, Wenbin et al. (2014). “Flexible Product Line En-
gineering with a Virtual Platform”. In: Companion Proceedings of the
36th International Conference on Software Engineering. ICSE Compan-
ion 2014. Hyderabad, India: ACM, pp. 532-535. 1SBN: 978-1-4503-2768-8.
DOI: 10.1145/2591062.2591126 (cit. on p. 18).

26


https://doi.org/10.1145/2591062.2591126

Bibliography

Fonseca, Carlos M, Peter J Fleming, et al. (1993). “Genetic Algorithms for
Multiobjective Optimization: FormulationDiscussion and Generalization.”
In: ICGA. Vol. 93. Citeseer, pp. 416-423 (cit. on p. 18).

Font, Jaime et al. (2016a). “Feature location in model-based software prod-
uct lines through a genetic algorithm”. In: Software Reuse: Bridging with
Social-Awareness - 15th International Conference, ICSR 2016, Limassol,
Cyprus, June 5-7, 2016, Proceedings, pp. 39-54. DOI: 10.1007/978-3-
319-35122-3_3 (cit. on pp. 21, 25).

— (2016b). “Feature Location in Models through a Genetic Algorithm Driven
by Information Retrieval Techniques”. In: Proceedings of the ACM/IEEE
19th International Conference on Model Driven Engineering Languages
and Systems. MODELS ’16. Saint-malo, France: ACM, pp. 272-282. I1SBN:
978-1-4503-4321-3. DOIL: 10.1145/2976767.2976789 (cit. on pp. 21, 25).

Haugen, Qystein et al. (2008). “Adding Standardized Variability to Domain
Specific Languages”. In: Software Product Lines, 12th International Con-
ference, SPLC 2008, Limerick, Ireland, September 8-12, 2008, Proceed-
ings, pp. 139-148. DOI: 10.1109/SPLC.2008.25 (cit. on p. 19).

Landauer, Thomas K, Peter W Foltz, and Darrell Laham (1998). “An introduc-
tion to latent semantic analysis”. In: Discourse processes 25.2-3, pp. 259—
284 (cit. on pp. 21, 22).

Lapena, Raul, Manuel Ballarin, and Carlos Cetina (2016). “Towards clone-and-
own support: locating relevant methods in legacy products”. In: Proceed-
ings of the 20th International Systems and Software Product Line Confer-
ence, SPLC 2016, Beijing, China, September 16-23, 2016, pp. 194-203.
DOI: 10.1145/2934466.2934485 (cit. on pp. 25, 26).

Wille, David et al. (2013). “Interface variability in family model mining”.
In: 17th International Software Product Line Conference co-located work-
shops, SPLC 2013 workshops, Tokyo, Japan - August 26 - 30, 2013,
pp. 44-51. DOL: 10.1145/2499777.2500708 (cit. on p. 25).

Xue, Yinxing, Zhenchang Xing, and Stan Jarzabek (2012). “Feature Location
in a Collection of Product Variants”. In: 19th Working Conference on
Reverse Engineering, WCRE 2012, Kingston, ON, Canada, October 15-
18, 2012, pp. 145-154. pOI: 10.1109/WCRE.2012.24 (cit. on p. 25).

27


https://doi.org/10.1007/978-3-319-35122-3_3
https://doi.org/10.1007/978-3-319-35122-3_3
https://doi.org/10.1145/2976767.2976789
https://doi.org/10.1109/SPLC.2008.25
https://doi.org/10.1145/2934466.2934485
https://doi.org/10.1145/2499777.2500708
https://doi.org/10.1109/WCRE.2012.24




Chapter 2

On the Influence of M2NL
Transformation in TLR among

Requirements and Conceptual
Models

Recovering traceability links between software artifacts
and requirements is a common task in Software Engineer-
ing. Information Retrieval (IR) techniques have been applied
to recover traceability links amongst code and requirements.
By transforming Models into Natural Language (M2NL), it is
possible to apply IR to calculate their traceability links to re-
quirements. However, results retrieved by IR are affected by
the writing style of the NL input. Regarding M2NL, there are
two main types of techniques in use: Rule-Based techniques,
and Element-Based techniques. Along with M2NL, there is a
wide range of Natural Language Processing (NLP) techniques
that can be applied. Through this work, we analyze how the
usage of distinct M2NL-NLP combinations of techniques im-
pacts IR-based Traceability Links Recovery over requirements
and models. We evaluate two different M2NL techniques, and
the inclusion of Simple and Advanced NLP along with M2NL,
in a real-world industrial case study.
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2.1 Introduction

Traceability Links Recovery (TLR) between software artifacts and re-
quirements is a common task in Software Engineering (SE), specially
when maintaining and evolving software products. For code and Natu-
ral Language (NL) requirements, Information Retrieval (IR) techniques
have been successfully used for TLR. By transforming conceptual models
into NL, it is possible to apply IR to requirements-models TLR. How-
ever, results retrieved by these techniques depend greatly in the style
in which NL is written. Two main types of techniques are applied for
Models-to-Natural-Language Transformation (M2NL): Rule-Based tech-
niques (Meziane, Athanasakis, and Ananiadou n.d.), and Element-Based
techniques (Font et al. 2016). Rule-Based techniques apply sets of logi-
cal and grammatical rules, while Element-Based techniques extract text
associated to model elements directly.

After the M2NL transformation process, there is a wide range of Nat-
ural Language Processing (NLP) techniques that are applied to process
NL representations of models. Some of them are: general phrase styling
techniques, syntactical analysis techniques (Hulth n.d.), semantic anal-
ysis techniques (Plisson, Lavrac, Mladenic, et al. n.d.), and human-in-
the-loop techniques. These techniques are combined in distinct ways by
different authors, depending on implementation circumstances and re-
search particularities.

The impact of the usage of different M2NL-NLP techniques combinations
on requirements-models TLR has not been studied yet. Through this
work, we analyze how distinct M2NL-NLP techniques combinations im-
pact requirements-models TLR through Latent Semantic Indexing (LSI)
(Landauer, Foltz, and Laham 1998), the technique that obtains the best
TLR results (Poshyvanyk et al. 2007). We evaluate two different M2NL
techniques and the inclusion of Simple and Advanced NLP along with
M2NL, in a real-world industrial case study in the rolling stocks domain
with our industrial partner, CAF! (Construcciones y Auxiliar de Ferro-
carriles).

Thttp://www.caf.net/en
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2.2 Approach

The combination of Rule-Based M2NL with Advanced NLP leads LSI
to the best results, returning the model fragments that materialize re-
quirements in an average ranking position of 1 4+ 1.12. However, in order
to use Rule-Based M2NL, engineers must adapt or create rules for their
Domain Specific Language (DSL). The combination of Element-Based
M2NL with Advanced NLP returns a worse result for the same measure-
ment (2 £ 5.09), but does not require said efforts.

The paper is structured as follows: Section 2.2 presents our Approach.
Section 2.3 details the Evaluation designed to tackle the Research Ques-
tions. Section 2.4 analyzes the statistical significance of the obtained
results. Section 2.5 presents the Threats to Validity of our work. Sec-
tion 2.6 summarizes the works related to the presented paper. Finally,
Section 2.7 concludes the paper.

2.2 Approach

So far, there has been no discussion on which Model-to-Natural-Language
Transformation (M2NL) techniques should be applied for requirements-
models Traceability Links Recovery (TLR). The effect of the inclusion
of Simple or Advanced Natural Language Processing (NLP) techniques
along with M2NL to the same intent has not been studied yet either. The
presented approach studies the impact of using two different M2NL tech-
niques, and the impact of including Simple or Advanced NLP techniques
along M2NL, over a widely accepted TLR technique, Latent Semantic
Indexing (LSI). Analyzing the success of LSI over the different inputs,
we aim to determine which one guides LSI to enhanced results.

The top part of Fig. 2.1 depicts the outline of this work. Through the us-
age of M2NL techniques, we convert model fragments into NL. Then, we
process the NL representation of the models and a NL requirement from
our case study through NLP techniques. With the processed model frag-
ments and requirement, we carry out LSI, ranking the model fragments
according to their similitude to the query requirement. The bottom part
of Fig. 2.1 shows the four configurations considered through this work,
which we analyze in order to determine their impact on requirements-

models TLR.
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Requirement

Processed
Requirement

Traceability

Model
Fragments to

Link Requirements
Recovery Similitude
Ranking

@ NL Processed NL
Model Representation Representation
Fragments of Model of Model
Fragments Fragments
Configuration 1 Configuration 2 Configuration 3 Configuration 4

M2NL Element-Based Element-Based Rule-Based Rule-Based

NLP Simple Advanced Simple Advanced
Figure 2.1: Traceability Link Recovery among Requirements and Conceptual Models

Overview

The following subsections describe the M2NL techniques taken in account
through the rest of this work, the NLP techniques used to process the
NL representations of the model fragments and requirements in the case
study, and the LSI technique from which results are extracted.

2.2.1 Models-to-Natural-Language Transformation Techniques

(M2NL)

In order to extract NL from models, two main techniques are applied in
the literature: Rule-Based, and Element-Based M2NL. Fig. 2.2 depicts
an example DSL model from our industrial partner (where the company-
specific DSL in use is TCML, Train Control Modeling Language), and
shows the results of applying both Rule-Based and Element-Based M2NL
to the model. In order to formalize model fragments, we use the Common
Variability Language (CVL) (Haugen et al. 2008).
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Product Model

Rule-Based M2NL
Pantograph 2 Converter 2 is connected to Circuit Breaker 3
Circuit Breaker 3 is connected to HVAC

Pantograph1

Circuit

Circuit
Breakerl Breaker2

Converter 2

(3)
N\

Converter 1
Circuit
Breaker 3

Element-Based M2NL
Converter 2 Circuit Breaker 3 HVAC

TCMLSyntax Model Fragment
nghYOItage Contactors Voltage Conﬁumer I:‘J[—4|
Equipment Converters Equipment

Figure 2.2: Example of TCML model and model fragment

Rule-Based M2NL

This technique uses a set of user-defined rules to process text inside
models. Through the rules, several aspects inherent to modeling lan-
guage (such as naming conventions, model element types, grammatical
element ordering, etc.) are exploited to generate semantically sound NL
representations of models.

We use the Rule-Based M2NL technique presented by Meziane et. al. in
(Meziane, Athanasakis, and Ananiadou n.d.), where the authors research
the language used in class diagrams components and develop rules for se-
mantically sound NL generation. The TCML used by our industrial part-
ner was developed following UML conventions, with equipment elements
corresponding to UML classes, equipment properties corresponding to
UML attributes, and connections corresponding to UML relationships.
We can leverage the rules in (Meziane, Athanasakis, and Ananiadou n.d.)
to generate NL representations of the TCML models. As an example,
for the model fragment depicted in the top left part of Fig. 2.2, this
technique would yield the following strings: ’Converter 2 is connected to
Circuit Breaker 3’, and ’Circuit Breaker 3 is connected to HVAC’.
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FElement-Based M2NL

This technique is used in approaches that concur M2NL for Feature Lo-
cation (Font et al. 2016) and Software Product Lines synthesis (Zhang,
Haugen, and Moller-Pedersen 2011) purposes. Through this technique,
the NL texts that represent each element of a model are extracted and
then concatenated into a single string, used as a NL representation of the
model. The NL representations generated through this technique vary
in understandability, being commonly closer to a collection of words or
expressions than to descriptions of functionality understandable by hu-
mans.

For the TCML models from our industrial partner, we use this technique
by extracting the text from all the model elements. As an example, for
the model fragment depicted in the top left part of Fig. 2.2, this technique
would yield the string "Converter 2 Circuit Breaker HVAC’. Fig. 2 is, for
understandability purposes and space reasons, a simplification of a real
model. In a real model, model elements contain more properties which
in turn yield more text in its NL representation.

2.2.2 NLP Techniques

Fig. 2.3 depicts the NLP techniques used through this work, along with
an example taken from a real-world train. In Fig. 2.3, a NL requirement
is used as the input for the example, but through our work, these tech-
niques are applied to both NL requirements and NL representations of
models obtained through the application of either Rule-Based M2NL or
Element-Based M2NL (see top part of Fig. 2.1).

Through this work, we include either Simple or Advanced NLP along with
M2NL. Simple NLP uses the techniques in 2.2.2, since we consider their
combination to be the most basic unit of NLP. Advanced NLP includes
the techniques that conform Simple NLP, plus those described in 2.2.2,
2.2.2, and 2.2.2.
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Non-Processed Requirement 3) Human
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Verbs: inhibit, push, lower, push, close, pass, be. PLC, circuit breaker,
door, state

Figure 2.3: Compendium of NLP Techniques

Syntactical Analysis

Syntactical Analysis (SA) techniques determine the grammatical func-
tion of words in sentences (e.g.: nouns, verbs, etc.). These techniques,
often referred to as Parts-Of-Speech (POS) Tagging, allow engineers to
implement grammatical filters, usually in search for nouns, which often
carry relevant information on features and actions (Capobianco et al.
n.d.). Words like verbs or adjectives are often disregarded. In Fig. 2.3,
it is possible to appreciate the SA process, with the POS Tagged To-
kens as outcome of syntactically analyzing a real-world NL requirement.
Nouns and verbs are depicted while, for space reasons, the rest of the
words are omitted.
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Root Reduction

Through the usage of semantic techniques such as Lemmatizing, words
can be reduced to their semantic roots (lemmas). Through lemmas, it
is possible to unify NL, avoiding verb tenses, plurals, and strange word
forms that interfere with TLR. Prior to carrying out Root Reduction
(RR) techniques, it is imperative to use SA techniques, since RR tech-
niques are based on word dictionaries built upon the grammatical role
of words. Semantic techniques provide more advanced word filters in NL
requirements. In Fig. 2.3, it is possible to appreciate the RR process,
with the Root-Reduced Tokens as outcome of the semantic analysis of
the POS Tags derived from the NL requirement. The lemmas of nouns
and verbs are depicted while, for space reasons, the rest of the words are
omitted.

Human-In-The-Loop

The inclusion of domain experts in TLR processes is a widely discussed
topic within SE. It is often beneficial to have domain knowledge embed-
ded in TLR, particularly for software reuse and variability. Some of the
human interaction techniques used in TLR are Domain Terms Extrac-
tion and Stopwords Removal. In order to carry out these techniques,
engineers provide two separate lists of terms: one list of both single-word
and multiple-word terms that belong to the domain and must be kept
for analysis, and a list of irrelevant words that have no analysis value.
Both kinds of terms can be automatically filtered in or out of the final
query. In Fig. 2.3, it is possible to appreciate the Human-In-The-Loop
process, where a software engineer provides both lists of terms, which are
consequently introduced into the final query, or filtered out of it.

Other Filters

The most basic NLP technique covered in this work is the combination of
tokenizing and lowercasing a sentence, and afterwards removing duplicate
words from it. This combination is often regarded as the most basic NLP
technique for several LSI examples.
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2.2.83 Traceability Link Recovery through Latent Semantic
Indexing

Latent Semantic Indexing (LSI) is an automatic mathematical /statistical
technique that analyzes relationships between queries and documents
(bodies of text). It constructs vector representations of both a user query
and a corpus of text documents by encoding them as a term-by-document
co-occurrence matrix, and analyzes the relationships between those vec-
tors to get a similarity ranking between the query and the documents.
Fig. 2.4 shows an example term-by-document co-occurrence matrix, with
values associated to our case study, the vectors, and the resulting rank-
ing. In the following paragraphs, an overview of the elements of the
matrix is provided.

Terms: Each row in the matrix (term) stands for each of the words
that compose the processed requirement and NL representations of
model fragments. In Fig. 2.4, it is possible to appreciate a set of
representative words in the domain such as 'pantograph’ or ’doors’
as the terms of each row.

Documents: Each column in the matrix stands for the processed NL
representation of each model fragment in our case study. In Fig.
2.4, it is possible to appreciate the identifiers of the model frag-
ments in the columns such as 'M_KAOO001" or 'M _ CIN072’, which
stand for the processed NL representations of those particular model
fragments.

Query: The final column stands for the query. In our approach, the
query is one processed requirement in our case study. In Fig. 2.4,
the identifier of the requirement in the query column ("R_BUDO010’)
represents its processed text.

Data: Each cell in the matrix contains the frequency with which the
term of its row appears in the document denoted by its column.
For instance, in Fig. 2.4, the term ’pantograph’ appears twice
in the "M KAOO001’ processed NL representation and once in the
'R_BUDO010’ processed requirement.
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We obtain vector representations of the documents and the query by
normalizing and decomposing the term-by-document co-occurrence ma-
trix using a matrix factorization technique called Singular Value De-
composition (SVD) (Landauer, Foltz, and Laham 1998). SVD is a form
of factor analysis, or more properly the mathematical generalization of
which factor analysis is a special case. In SVD, a rectangular matrix is
decomposed into the product of three other matrices. One component
matrix describes the original row entities as vectors of derived orthog-
onal factor values, another describes the original column entities in the
same way, and the third is a diagonal matrix containing scaling values
such that when the three components are matrix-multiplied, the original
matrix is reconstructed.

In Fig. 2.4, a three-dimensional graph of the SVD is provided. On
the graph, it is possible to appreciate the vectorial representations of
some of the matrix columns. For space reasons, only a small set of
the columns is represented. To measure the similarity degree between
vectors, our approach calculates the cosine between the query vector and
the documents vectors. Cosine values closer to one denote a higher degree
of similarity, and cosine values closer to minus one denote a lower degree
of similarity. Similarity increases as vectors point in the same general
direction (as more terms are shared between documents). Through this
measurement, our approach orders the model fragments according to
their similarity degree to the requirement.

The relevancy ranking (which can be seen in Fig. 2.4) is produced ac-
cording to the calculated similarity degrees. In this example, LSI re-
trieves 'M_BUDO010” and "M KAOO001’ in the first and second position
of the relevancy ranking due to query-documents cosines being ’0.9243’
and ’0.8454°, implying a high similarity degree between the fragments
and the requirement. On the opposite, the "M CINO072’ is returned in
a latter position of the ranking due to its query-document cosine being
’-0.7836’, implying a lower similarity degree.
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Figure 2.4: Traceability Link Recovery through Latent Semantic Indexing Example

2.3 Evaluation

Through the following paragraphs, we present the research questions that
our work tackles, describe our real-world case study and the oracle used
for our experiment, detail the design of our experiment, and present the
obtained results.

2.3.1 Research Questions

From the described problem, two research questions arise:

RQ1: How does the usage of different M2NL techniques affect the effec-
tiveness and efficiency of TLR over requirements and models?

RQ2: How does the inclusion of either Simple or Advanced NLP tech-
niques along with M2NL affect the effectiveness and efficiency of
TLR over requirements and models?

2.3.2 Case study

For our experiment, CAF provided us with requirements and models
of five railway solutions from Auckland, Bucharest, Cincinnati, Hous-
ton, and Kaohsiung. The trains are specified by about 100 requirements
each, with an average of 50 words. Regarding models, trains are spec-
ified through an average 8250 model elements. CAF also provided lists
of domain terms and stopwords. The domain terms list comprehends
around 300 domain terms, and the stopwords list comprehends around
60 words. Both lists were created by a CAF domain expert associated
to the provided products.
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2.3.3 Oracle

In order to evaluate the results of our experiment, CAF provided us with
their existing documentation on requirements-models traceability. Each
requirement can be mapped to a single model fragment. A model frag-
ment is a model elements subset, specified with the model fragment for-
malization capacities of the Common Variability Language (CVL) (Hau-
gen et al. 2008). We use the existing traceability as the oracle for eval-
uating the impact of each of the M2LN-NLP configurations on LSI. To
achieve this, we analyze the results of the rankings generated by LSI,
checking the position of the ranking in which the oracle (correct model
fragment for the input requirement) appears.

2.3.4 Design of the experiment

The first step is to select a M2NL-NLP configuration. With the chosen
configuration, we extract the NL representation of the model fragments
in our case study. Then, we perform the necessary NLP over the text
of both all the requirements and all the NL representations of model
fragments in our case study.

From the strings achieved through the first step, all the individual words
are extracted to form a list of words. The list of words (terms), the
processed representations of model fragments (documents), and one pro-
cessed requirement (query), are used as input for LSI. LSI returns a
ranking of model fragments, ordered according to their similarity to the
requirement. LSI is performed several times, taking each requirement
from our case study as query, in order to extract the model fragment
rankings for all the available requirements. Through these rankings and
the oracle, we can determine the ranking positions in which the correct
model fragments appear for each requirement. Through the results, we
are able to evaluate the impact of the chosen M2NL-NLP configuration
over LSI.

The described steps (choosing a configuration, performing NLP of re-
quirements and model fragments, LSI, impact analysis) are carried out
four times, until the four configurations are chosen and analyzed.
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2.3.5 Results

For each M2NL-NLP configuration, we measured the average, best, and
worst result in the rankings generated by LSI. We also measured the time
that the execution of M2NL-NLP took for the different configurations
on average after 25 executions. We do not highlight the LSI execution
time averages, since it is practically identical for all the configurations
(around 70 seconds). Table 2.1 shows the results achieved by LSI when
performed over the four configurations, with the best results highlighted
in light gray.

Table 2.1: Results per M2NL-NLP techniques configuration

Average Result + Standard Deviation | Best Result | Worst Result | Time Taken (s)
Configuration 1 #2 + 5.54 #1 #34 12
Configuration 2 #2 £ 5.09 #1 #30 296
Configuration 3 #1 £ 2.75 #1 #19 53
Configuration 4 #1 + 1.12 #1 #5 336

Configuration 4 (Rule-Based M2NL + Advanced NLP) leads LSI to the
best results, retrieving an average ranking position of #1 + 1.12, a rank-
ing position #1 as its best result, and a ranking position #5 as its worst.
Configuration 1 (Element-Based M2NL + Simple NLP), on the opposite,
is the one that leads LSI to the worst results. Its best result is position
#1, but its worst peaks at position #34, presenting an average of #2 +
5.54. Configurations 2 (Element-Based M2NL + Advanced NLP) and 3
(Rule-Based M2NL + Simple NLP) present intermediate values, being
Configuration 3 slightly better than Configuration 2.

2.4 Statistical analysis

To properly compare the different configurations, the data resulting from
the empirical analysis was analyzed using statistical methods.
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2.4.1 Statistical significance

A statistical test must be run to assess whether there is enough empirical
evidence to claim that there is a difference between two configurations
(e.g., A is better than B). To achieve this, two hypotheses are defined:
the null hypothesis Hy, and the alternative hypothesis H;. The null
hypothesis Hy is typically defined to state that there is no difference
among the configurations, whereas the alternative hypothesis H; states
that the configurations differ. In such a case, a statistical test aims to
verify whether the null hypothesis H, should be rejected.

The statistical tests provide a probability value, p—wvalue. The p—wvalue
obtains values between 0 and 1. The lower the p — value of a test, the
more likely that the null hypothesis is false. It is accepted by the research
community that a p — value under 0.05 is statistically significant (Arcuri
and Briand 2014), and so the hypothesis Hy can be considered false. The
carried test depends on the properties of the data. Since our data does
not follow a normal distribution in general, our analysis requires the use
of non-parametric techniques. There are several tests for analyzing this
kind of data; however, the Quade test is the most powerful when working
with real data (Garcia et al. 2010). In addition, according to Conover
(Conover 1999), the Quade test is the one that has shown the best results
for a low number of configurations.

The p — Value of this test is 4.2082107% and the statistic of this test
is 9.659. Since the p — Value is smaller than 0.05, we reject the null
hypothesis. Consequently, we can state that there exist differences be-
tween among the four configurations for the performance indicator of the
position in the ranking.

However, with the Quade test, we cannot answer the following ques-
tion: Which of the configurations gives the best performance? In this
case, the performance of each configuration should be individually com-
pared against all other alternatives. In order to do this, we perform
an additional post hoc analysis. This kind of analysis performs a pair-
wise comparison among the results of each configuration, determining
whether statistically significant differences exist among the results of a
specific pair of configurations.
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The second column of Table 2.2 shows the p — Values of Holm’s post
hoc analysis for the performance indicator and the specific pair of con-
figurations (e.g., Configuration 1 and Configuration 2). The p — Values
shown in this table for two comparisons (the Configuration 1 vs Config-
uration 2 and Configuration 3 vs Configuration 4) are greater than the
corresponding significance threshold value (0.05), whereas the p—Values
for the other comparisons are smaller than 0.05. Hence, we can deter-
mine that the differences in performance between the Configuration 1
vs Configuration 2 and the Configuration 3 vs Configuration 4 are not
significant, but the differences in performance are significant in the other
comparisons (e.g., the comparison shows significant differences between
the Configuration 2 vs Configuration 4).

2.4.2 Effect size

Statistically significant differences can be obtained even if they are so
small as to be of no practical value (Arcuri and Briand 2014). Therefore,
it is important to assess if a configuration is statistically better than
another and to assess the magnitude of the improvement. Effect size
measures are taken in account to analyze this phenomenon. For a non-
parametric effect size measure, we use Vargha and Delaney’s Aj, (Vargha
and Delaney 2000). Ay measures the probability that running one con-
figuration yields higher values than running another configuration. If the
two configurations are equivalent, then A5 will be 0.5.

For example, Ay5 = 0.7 means that we would obtain better results in 70%
of the runs with the first of the pair of configurations that have been com-
pared, and A5 = 0.3 means that we would obtain better results in 70%
of the runs with the second of the pair of configurations that have been
compared. Thus, we have an A5 value for every pair of configurations.

The third column of Table 2.2 shows the values of the effect size statis-
tics between every pair of configurations. The A;5 values show a slight
superiority (even though these values are closer to the equivalent value
of 0.5) of the Configuration 2 in the comparison with the Configuration
1, and the Configuration 3 in the comparison with the Configuration 4.
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The A;5 values show the largest differences, with values around 0.39 when
Configuration 1 and Configuration 2 are compared with Configuration 3
or Configuration 4. Overall, these results confirm that Configuration 3
and Configuration 4 outperform Configuration 1 and Configuration 2.

Table 2.2: Holm’s post hoc p — Values and Ay, statistic for each pair of configurations

Pair of configurations p — Value Ay

Configuration 1 vs Configuration 2 0.89 0.4983
Configuration 1 vs Configuration 3 0.0065 0.3948
Configuration 1 vs Configuration 4 0.00079 0.4005
Configuration 2 vs Configuration 3 0.0024 0.3883
Configuration 2 vs Configuration 4 3.42107° 0.3973
Configuration 3 vs Configuration 4 0.83 0.5122

2.5 Threats to Validity

In this section, we use the classification of threats of validity of (Wohlin
et al. 2012) to acknowledge the limitations of our approach:
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1 Construct Validity: This aspect of validity reflects the extent

to which the operational measures that are studied represent what
the researchers have in mind. In order to minimize this risk, we
study the positions of the oracles in the rankings, an objective and
widely accepted measure, used before by other researchers in the
community (Haiduc et al. 2013).

Internal Validity: This aspect of validity is of concern when causal
relations are examined. There is a risk that the factor being inves-
tigated may be affected by other neglected factors. The number of
requirements and models presented in this work may look small, but
they implement a wide scope of different railway equipment.

3 External Validity: This aspect of validity is concerned with to

what extent it is possible to generalize the finding, and to what ex-
tent the findings are of relevance for other cases. Both requirements
and conceptual models are frequently leveraged to specify all kinds
of different software. LSI is a widely accepted and utilized tech-
nique which has proven to obtain good results in multiple domains.



2.6 Related Work

Therefore, our experiment does not rely on the particular conditions
of our domain. Nonetheless, the experiment and its results should
be replicated in other domains before assuring their generalization.

4 Reliability: This aspect is concerned with to what extent the data
and the analysis are dependent on the specific researchers. The
requirements and models of the trains used through our experiment
were provided by our industrial partner engineers, as well as the
domain terms and stopwords lists, which were crafted by domain
experts not involved in this research.

2.6 Related Work

In (Falessi, Cantone, and Canfora 2013), NLP techniques are used to as-
sess equivalence between requirements. The authors conclude that per-
formance of NLP in their field is determined by the properties of the
provided datasets. Properties are then considered as a factor to adjust
the NLP process and performance over an industrial case study. Through
our work, rather than adjusting the NLP process to study equivalence
between requirements, we tackle the impact of different M2NL-NLP con-
figurations on LSI, exposing the way they behave and improve (or worsen)
the IR process.

The work presented in (Arora et al. 2015) uses NLP to study how changes
in requirements impact other requirements. The authors analyze TLR
between requirements, and use NLP to determine the propagation of
changes. Our work does not analyze changes in requirements or how
they affect the system, but rather on what is the most appropriate way
of applying M2NL-NLP to requirements-models TLR. Moreover, the au-
thors of (Arora et al. 2015) do not consider different NLP configurations,
but rather guide the process through requirements properties.

Finally, (Eder et al. 2015) takes in consideration the possible LSI configu-
rations for TLR between requirements and test cases. The authors state
that LSI configurations depend on the available datasets, and also look
forward to automatically determining appropriate LSI configurations for
any given dataset.
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We do not tackle the impact of using different LSI configurations for
TLR, but rather analyze how different M2NL-NLP configurations affect
the results of TLR.

2.7 Conclusions

Through this paper, we analyze how different M2NL-NLP techniques
impact the outcome of requirements-models TLR. To that extent, we
process the requirements and models that specify a real-world industrial
case study through a series of combinations of M2NL-NLP techniques,
and then perform Latent Semantic Indexing (LSI) over the processed
specifications. We study the rankings produced by LSI with our oracle
to evaluate the impact of the M2NL-NLP techniques over TLR. Results
show that:

1 Rule-Based M2NL improves the results of Element-Based M2NL in a
statistically significant manner, but it requires an additional effort
from software engineers when Domain Specific Languages (DSLs)
are used. The rules from (Meziane, Athanasakis, and Ananiadou
n.d.) are specific for UML models, and work with the TCML DSL
of our industrial partner due to it being derived from UML, but
engineers that use a non-UML DSL need to either adapt the exist-
ing rules or create DSL-specific rules. With the obtained results,
engineers have more information to choose between investing their
efforts in Rule-Based M2NL, or (in case it yields sufficiently reliable
TLR results) using Element-Based M2NL.

2 The usage of Advanced NLP along with M2NL always improves its
results, although in a non-statistically significant manner. We no-
ticed that the terms used in the conceptual models are close to those
of requirements, so Advanced NLP does not have a huge impact over
the results. Nonetheless, the application of the Advanced NLP tech-
niques does not require a huge effort, and therefore its application
can be deemed worthy when maximizing the quality of TLR results
is a key priority.
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Chapter 3

Analyzing the Impact of
Natural Language Processing
over Feature Location in Models

Feature Location (FL) is a common task in the Software
Engineering field, specially in maintenance and evolution of
software products. The results of FL depend in a great man-
ner in the style in which Feature Descriptions and software
artifacts are written. Therefore, Natural Language Process-
ing (NLP) techniques are used to process them. Through this
paper, we analyze the influence of the most common NLP tech-
niques over FL in Conceptual Models through Latent Semantic
Indexing, and the influence of human participation when em-
bedding domain knowledge in the process. We evaluated the
techniques in a real-world industrial case study in the rolling
stocks domain.
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3.1 Introduction

Feature Location is a common task in the Software Engineering (SE)
field, specially in the maintenance and evolution of software products.
The identification of Features helps with bug fixing, Feature reuse, or
the formalization of Software Product Lines, amongst other tasks.

Feature Location techniques have been mainly applied to code. The
results of Feature Location in code depend greatly in the style in which
Feature Descriptions, code variables, and methods are written (Haiduc
et al. 2013). Therefore, Natural Language Processing (NLP) techniques
are used to process them, since NLP has a direct and beneficial impact
on the results.

There is a wide range of NLP techniques that can be used to process text
prior to Feature Location (Manning, Schiitze, et al. 1999). Some of these
techniques comprehend general phrase styling techniques (e.g.: lowercas-
ing, removal of duplicate words), syntactical analysis techniques (filtering
words through their role in a sentence, usually achieved through Parts-
Of-Speech Tagging) (Hulth n.d.), semantic analysis techniques (filtering
of words according to their meaning, usually achieved through seman-
tic root reduction of words to their lemmas) (Plisson, Lavrac, Mladenic,
et al. n.d.), and human-in-the-loop techniques (e.g.: domain terms ex-
traction, stopwords extraction). The NLP techniques can be used inde-
pendently of one another in most cases and scenarios, and are in fact
combined in distinct ways by different authors depending on implemen-
tation circumstances and the particularities of their research.

For Feature Location in Conceptual Models, new techniques such as For-
mal Concept Analysis or Clustering have been emerging on the past
years. However, the influence that NLP techniques (traditionally used
for Feature Location in code) may have on Feature Location in Concep-
tual Models is a topic that has not received enough attention yet.

In the following pages, we present a set of custom UML Conceptual
Models (described through the Background Section) from a real-world
case study.
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The Models differ from the code, being the elements and relationships
that conform them expressed with a distinct convention and manner
than the ones typically used for coding. Therefore, it is not possible
to assume without further validation that the NLP techniques that are
used for Feature Location in code can be immediately extrapolated with
success to Feature Location in Conceptual Models.

Through this work, we aim to analyze how the usage of different combi-
nations of NLP techniques impacts Feature Location in Models through
Latent Semantic Indexing (LSI) (Landauer, Foltz, and Laham 1998; Hof-
mann 1999), the technique that obtains the best Feature Location results
(Poshyvanyk, Gueheneuc, et al. 2007). Moreover, we elaborate on the
impact of human participation over LSI results when embedding domain
knowledge in the process, through the extended usage of stopwords and
domain terms. We evaluated the techniques in a real-world industrial
case study in the rolling stocks domain with our industrial partner, Con-
strucciones y Auxiliar de Ferrocarriles (CAF).

Results show that using NLP techniques that achieve good results in
Feature Location in code (such as Parts-Of-Speech Tagging or Lemma-
tizing) leads to a significant worsening of the rankings produced by LSI
for Feature Location in Models. Through the Discussion of this work,
we provide insight on why this is the case. For all the possible NLP
combinations, embedding domain knowledge in the NLP process slightly
improves the results. However, domain experts should decide whether
participating in the NLP process to achieve this slight improvement is
worth the effort and time involved.

The paper is structured as follows: Section 3.2 provides a background of
the Models used through our work. Section 3.3 presents the Approach
to our work. Section 3.4 formulates the Research Questions that we
aim to respond through our work. Section 3.5 details the Experiment
designed to tackle the Research Questions. Section 3.6 gives insight on
the Discussion of the results of our work. Section 3.7 presents the Threats
to Validity of our work. Section 3.8 summarizes the works related to the
presented paper. Finally, Section 3.9 presents the conclusions of our
work.
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3.2 Background

This section presents the Domain Specific Language (DSL) used to for-
malize the Conceptual Models that implement the train control and man-
agement software of the products manufactured by our industrial part-
ner, called Train Control Modeling Language (TCML). The TCML is a
custom version of UML used by our industrial partner, that has the ex-
pressiveness required to describe both the interaction between the main
pieces of equipment installed in a train unit, and the non-functional as-
pects related to regulation. It will be used through the rest of the paper
to present a running example. For the sake of understandability and
legibility, and due to intellectual property rights concerns, we present an
equipment-focused simplified subset of the TCML.

Product Model

Product Model Fragment

Pantograph 1

Circuit
Breaker 1

Converter 1

Circuit
Breaker 3

Pantograph 2

Pantograph 1

Circuit
Breaker 2

Circuit
Breaker 1

Converter 2

Converter 1

i Circuit |
n=o-\ Breaker 3 J;

Pantograph 2

Circuit
Breaker 2

Converter 2

TCM

L Syntax

High Voltage
Equipment

)

Contactors

Voltage
Converters

Consumer
Equipment

Figure 3.1: Example of Model and Model fragment

Fig. 3.1 depicts one example, taken from a real-world train. It presents
a converter assistance scenario where two separate pantographs (High
Voltage Equipment) collect energy from the overhead wires, and send it
to their respective circuit breakers (Contactors), which in turn send it to
their independent Voltage Converters. The converters then power their
assigned Consumer Equipment: the HVAC on the left (the train’s air
conditioning system), and the PA (public address system) and CCTV
(television system) on the right.

52



3.8 Approach

To formalize the Model fragments used by through the rest of our work,
we use the Common Variability Language (CVL) (Haugen et al. 2008).
The elements of Fig. 3.1 highlighted in gray conform an example Model
fragment, including one circuit breaker that connects Converter 2 to a
Consumer Equipment assigned to Converter 1. This Model fragment is
the realization of the "converter assistance" Feature, allowing the pass-
ing of current from one converter to equipment assigned to its peer for
coverage in case of overload or failure of the first one.

3.3 Approach

So far, there has been no discussion on which NLP techniques should be
applied, nor on which combination (or combinations) of NLP techniques
yield the best results when used to carry out Feature Location in Models.
Different authors use different techniques and combinations of techniques
in their research, guiding their NLP efforts through implementation cir-
cumstances and problem particularities.

The goal of the presented approach is, by targeting a real-world industrial
example, to study the impact of a set of combinations of the most spread
NLP techniques over a widely accepted Feature Location process, Latent
Semantic Indexing (LSI). By analyzing the success of LSI over different
inputs, generated through the NLP of Feature Descriptions and Models
by distinct technique combinations, we aim to determine which of them
guide LSI to enhanced results.

The following subsections describe the NLP techniques taken in account
through the rest of this work, and the combinations of techniques that
are considered for further generation of LSI results.

3.3.1 NLP Techniques

Fig. 3.2 is used here to illustrate the whole compendium of techniques
considered through this work, which are detailed one by one in this sec-
tion, through the following paragraphs.
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Non-Processed Feature Description Human-In-The-Loop
The PLC will inhibit the connection with the panto whenever the -
. . . L Domain Terms
lowering button in the active cabin is pushed, as long as the panto Extraction
is in closed state and more than five seconds have passed after the :
closing of the circuit breaker, being the doors in off position.

Syntactical ;
Analysis jo:
POS Tagged Tokens Software
Engineer

Nouns: PLC, connection, button, state, seconds, doors, position.
Verbs: inhibit, pushed, lower, push, close, pass, be.

Root :
Reduction Stopwords

Root-Reduced Tokens — Processed Requirement

Nouns: PLC, connection, button, state, second, door, position. T -
L P W PLC, circuit breaker, door,
Verbs: inhibit, push, lower, push, close, pass, be.

state

Figure 3.2: Compendium of NLP Techniques

Baseline NLP

The most basic NLP technique covered in this work is the combination
of tokenizing, lowercasing, and removal of duplicate keywords, which is
often used as the most basic NLP technique for several widely-known LSI
examples (Garcia 2006). As such, we use it as the baseline for comparing
the outcomes of the considered NLP techniques combinations. We disre-
gard the complete lack of NLP as baseline since the scope of this work is
the analysis of the outcomes of distinct NLP combinations of techniques,
against verifying whether performing NLP over NL queries is better or
not than not doing so.

Syntactical Analysis

Syntactical Analysis (SA) techniques split the words of NL sentences,
analyzing the specific roles of each one of them in the sentence and de-
termining their grammatical load. In other words, these techniques de-
termine the grammatical function of each word in a particular sentence
(e.g.: nouns, verbs, adjectives, adverbs, etc.).
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These techniques, often referred to as Parts-Of-Speech Tagging (POS
Tagging) techniques allow engineers to implement filters for words that
fulfill specific grammatical roles in a sentence, usually opting for nouns,
since these words are the ones that carry the relevant information about
descriptions of Features and actions (Capobianco et al. n.d.). Words like
verbs, adverbs, and adjectives are often filtered out and disregarded.

In Fig. 3.2, it is possible to appreciate the SA process, with the POS
Tagged Tokens as outcome of syntactically analyzing a real-world NL
Feature Description. Nouns and verbs are depicted while, for space rea-
sons, the rest of the words are omitted in the Figure.

Root Reduction

Through the usage of semantic techniques such as Lemmatizing, words
can be reduced to their semantic roots or lemmas. Thanks to lemmas, the
language of the NL Feature Descriptions is unified, avoiding verb tenses,
noun plurals, and strange word forms that interfere negatively with the
Feature Location processes. Prior to carrying out Root Reduction (RR)
techniques, it is imperative to use SA techniques, due to the fact that
RR techniques are based on word dictionaries that are built upon the
grammatical role of words in a sentence. The unification of the language
semantics is an evolution over pure syntactical role filtering that allows
for a more advanced filtering of words in NL Feature Descriptions.

In Fig. 3.2, it is possible to appreciate the RR process, with the Root-
Reduced Tokens as outcome of the semantic analysis of the POS Tags
derived from the NL Feature Description. For space reasons, only the
lemmas of nouns and verbs are depicted once again.

Human-in-the-Loop

The inclusion of domain experts and, in particular, software engineers
in Feature Location processes is a widely discussed topic within the SE
community. It is often regarded as beneficial to have some sort of domain
knowledge embedded in automated Feature Location systems, particu-
larly on areas related to software reuse and software variability.
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Some of the techniques derived from humans interacting with Feature Lo-
cation processes are Domain Terms Extraction and Stopwords Removal.

In order to carry out these techniques, Software Engineers provide two
separate lists of terms: one list of terms (both single-word terms and
multiple-word terms) that belongs to the domain and that must be al-
ways kept for analysis, and a list of irrelevant words that can appear
throughout the entirety of the specification documents and that have no
value whatsoever for the analysis. Both kinds of terms can be automat-
ically filtered in or out of the final query, depending on the needs of the
domain experts.

In Fig. 3.2, it is possible to appreciate the Human-in-the-Loop process,
where a software engineer provides both lists of terms, which are conse-
quently introduced into the final query, or filtered out of it. We do not
consider separating the techniques and including only one of the lists.
Should we include domain knowledge in our NLP, we should benefit of
the whole of it and not take out a part.

Other Filters

Many other filters can be implemented to make a NL query (in our par-
ticular case, a Feature Description written in Natural Language) suit
the needs of developers and researchers alike. For instance, a technique
not covered in this study is Stemming (which consists in the reduction
of words to their logical root or stem through a set of logically-related
grammatical rules). We opted for the inclusion of Lemmatizing on its
place, due to its more precise and advanced nature on the fulfillment of
the same task (Balakrishnan and Lloyd-Yemoh 2014).
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3.3.2 NLP Configurations

When considering the possible configurations for the NLP techniques,
we have taken in account the following facts, extracted from the prior
subsection:

1 Root Reduction cannot be carried out without applying prior Syn-
tactical Analysis.

2 We include or exclude domain knowledge as a whole.

3 The main goal of our work is to compare the distinct NLP tech-
niques configurations, but we also aim to analyze the raw impact
of embedding domain knowledge on NLP over Feature Location in

Models.

Baseline Processing Tier 1 Processing Tier 2 Processing
BP T1 Non-Processed T2
Non-Processed . Non-PIr)oces.seg Feature Description
Feature Description eature Description Syntactical
N Analysis
Without S\I/\ntalctl.cal oo -
. nalysis -Tagge:
Domain Tokens
Knowledge POS-Tagged
Baseline Processed Tokens B 3
. Feature rocesse Processed
- Filtering Feature Root-Reduced Filterin; Feature
Description e Tokens 8
Description Description
BP-DK T1-DK Non-Processed | ) T2-DK
Non-Processed Feature Description i
Non-Processed FEUSI i
o Feature Description - H
Feature Description i | Syntactical |
. i i Analysis |
With ; Syntactl.cal | :
. Analysis POS-Tagged
Domain Human-In-The-Loop Human-In-The-Loop Tokens Human-In-The-Loop
Knowledge 7 POS-Tagged 7 7
Baseline P;oc(:ssed - : - Processed Root-Reduced Processed
Processing b ea.u;e Feafurve Tokens Filtering Feature
escription Description Description

Figure 3.3: Possible NLP Techniques Configurations

Taking these three rules as our main standpoint, we have designed the
table presented in Fig. 3.3.

o7



Chapter 3. Analyzing the Impact of Natural Language Processing over Feature Location in Models

The Figure presents tree tiers of processing (baseline processing, process-
ing with syntactical analysis, and full processing), split in two subgroups
(excluding domain knowledge, and including domain knowledge), for a
total of six possible configurations:

1 Baseline Processing (BP).

2 Baseline Processing + Domain Knowledge (BP-DK).
3 Tier 1 Processing (T1).

4 Tier 1 Processing + Domain Knowledge (T1-DK).

5 Tier 2 Processing (T2).

6 Tier 2 Processing + Domain Knowledge (T2-DK).

In order to test the impact of the aforementioned configurations over the
Feature Location process, we apply them to process the input of a widely
used Feature Location technique, Latent Semantic Indexing (LSI). We
chose LSI due to it being the technique that offers best results in Feature
Location (Poshyvanyk, Gueheneuc, et al. 2007).

3.3.3 Latent Semantic Indexing

LSI is an automatic mathematical /statistical technique that analyzes re-
lationships between queries and documents (bodies of text). It constructs
vector representations of both a user query and a corpus of text docu-
ments by encoding them as a term-by-document co-occurrence matrix,
and analyzes the relationships between those vectors to get a similarity
ranking between the query and the documents. Through LSI, we are able
to extract a ranking of the Model fragments according to their similarity
to a provided query Feature Description.

First, textual representations of the Model fragments are obtained by
the concatenation of the words that appear on its elements, and prepro-
cessed with the same techniques as those used to preprocess the Feature
Description.
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As an example, the full Model presented in the left part of Figure 3.1,
after preprocessing, would yield the textual representation "Pantograph
Circuit Breaker Converter HVAC Pantograph Circuit Breaker Converter
Circuit Breaker PA CCTV".

Then, the term-by-document co-occurrence matriz is built. Terms are
the words that compose the preprocessed Feature Description and the
preprocessed textual representation of Model fragments. Documents are
the preprocessed textual representations of the Model fragments. Finally,
the query is formed by one processed Feature Description. Values of
term occurrences in both the documents and the query are counted, and
used to build the term-by-document co-occurrence matriz. The resulting
documents and query columns are then transformed into vectors, and
the relationships between the documents and the query are analyzed to
extract a ranking of the most similar Model fragments for the Feature
Description.

Processed

Processed Text of Model Fragments Feature Description

Singular Value Decomposition Ranking

M_KAO0O1 | M_AUCK002 | .. [ M_CINO72 R_BUD010
- Model Fragments

1 K Ranking

: B M_BUD010
q c
| M_KAO001

A

pantograph 2 3

hscb

enabled cab

driving mode

Terms

lighting M_CIN072

BUDO10
KAO001
AUCK002
BUDO10
CINO72

o|lo|lo|lo]|r
o|lo|r|r]|o
o|lo|lo|o|o|=
rlw|lo|lo]|e

doors

—» QR
—P K:M_
—> am
—» B
— > M_t

traction 0 1 [ 0

Figure 3.4: Latent Semantic Indexing Example

Figure 3.4 shows an example term-by-document co-occurrence matriz,
with values associated to our case study, the vectors, and the resulting
ranking. In the following paragraphs, an overview of the elements of the
matrix is provided:

e Each row in the matrix stands for each unique keyword (term) ex-
tracted in the first step of our approach. In Figure 3.4, it is possible
to appreciate a set of representative keywords in the domain such
as 'pantograph’ or ’doors’ as the terms of each row.

99



Chapter 3. Analyzing the Impact of Natural Language Processing over Feature Location in Models

e Each column in the matrix stands for the preprocessed text of each
Model fragment in our case study. In Figure 3.4, it is possible to
appreciate the identifiers of the Model fragments in the columns such
as’M_KAOO001’ or 'M__CIN072’, representing the preprocessed text
of those Model fragments.

e The final column stands for the query. In our approach, the query
column stands for the preprocessed text of a Feature Description in
our case study. In Figure 3.4, the identifier of the Feature Descrip-
tion in the query column ("R_BUDO010’) represents its preprocessed
text.

e Each cell in the matrix contains the frequency with which the term
of its row appears in the document denoted by its column. For in-
stance, in Figure 3.4, the term 'pantograph’ appears twice in the
"M KAOO001” preprocessed text and once in the 'R._BUDO010’ pre-
processed text.

We obtain vector representations of the documents and the query columns
by normalizing and decomposing the term-by-document co-occurrence
matriz using a matrix factorization technique called singular value de-
composition (SVD) (Landauer, Foltz, and Laham 1998; Hofmann 1999).
SVD is a form of factor analysis, or more properly the mathematical gen-
eralization of which factor analysis is a special case. In SVD, a rectangu-
lar matrix is decomposed into the product of three other matrices. One
component matrix describes the original row entities as vectors of derived
orthogonal factor values, another describes the original column entities
in the same way, and the third is a diagonal matrix containing scaling
values such that when the three components are matrix-multiplied, the
original matrix is reconstructed.

In Figure 3.4, a three-dimensional graph of the SVD is provided. On the
graph, it is possible to appreciate the vectorial representations of some of
the matrix columns. For space reasons, only a small set of the columns
is represented. In the Figure, it is possible to appreciate the B vector
(’M_BUDO10’ vector) as the closest to the Feature Description vector,
followed by vectors K, C, and A, which are the vector representations of
the columns highlighted in the left part of the matrix.
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To measure the similarity degree between vectors, our approach calcu-
lates the cosine between the query vector and the documents vectors. Co-
sine values closer to one denote a higher degree of similarity, and cosine
values closer to minus one denote a lower degree of similarity. Similarity
increases as vectors point in the same general direction (as more terms
are shared between documents). Having this measurement, our approach
orders the Model fragments according to their similarity degree to the
Feature Description.

The relevancy ranking (which can be seen in Figure 3.4) is produced
according to the calculated similarity degrees. In this example, LSI re-
trieves 'M _BUDO010” and "M KAOO001’ in the first and second position
of the product relevancy ranking due to the cosines being ’0.9243" and
’0.8454°, implying a high similarity degree between the fragments and
the Feature Description. On the other hand, "M CIN072’ is returned in
a latter position of the ranking due to its cosine being ’-0.7836’, a lower
similarity degree.

3.4 Research Questions

Through this section, we aim to clearly establish what is the scope of
our work, and to determine what are the research questions that we
must tackle and have in mind when designing our comparison experi-
ment. From the described problem, two research questions arise (RQ1
and RQ2), formulated in the following lines:

RQ1 How do different NLP configurations affect the efficiency and effec-
tiveness of Feature Location in Models?

RQ2 How are human NLP efforts reflected in the outcome of Feature
Location in Models?

Through the following section, we describe the experiment that we de-
signed to address both research questions, as well as its results.

61



Chapter 3. Analyzing the Impact of Natural Language Processing over Feature Location in Models

3.5 Experiment

Through the following subsections, we present our real-world case study,
describe the oracle used for our experiment, detail the design of our
experiment, and present the results of said experiment.

3.5.1 C(Case Study

We applied our experiment to a real-world case study from one of our
industrial partners, CAF (Construcciones y Auxiliar de Ferrocarriles,
available at http://www.caf.net/en). CAF is a worldwide provider
of railway solutions. Their trains can be seen all over the world and in
different forms (regular trains, subway, light rail, monorail, etc.).

A train unit is furnished with multiple pieces of equipment through its
vehicles and cabins. These pieces of equipment are often designed and
manufactured by different providers, and their aim is to carry out specific
tasks for the train. Some examples of these devices are traction equip-
ment, compressors, brakes, the pantograph that harvests power from the
overhead wires, etc. The control software of the train unit is in charge
of making all the equipment cooperate to achieve the train functionality,
while guaranteeing compliance with the specific regulations of each coun-
try. The functionality of each train is detailed in documents where each
desired Feature is specified through a Natural Language Description. In
turn, the documents are implemented in Models.

For our experiment, CAF provided us with the Feature Descriptions and
Models of five of their railway solutions, corresponding to the cities of
Auckland, Bucharest, Cincinnati, Houston, and Kaohsiung. The trains
are configured through about 100 Features per train, being each Fea-
ture described through one Feature Description. Feature Descriptions,
in turn, have an average of 50 words. Regarding Models, each train is
specified through no less than 8250 Model elements.

CAF also provided both a list of domain terms and a list of stopwords.
The domain terms list comprehends around 300 domain terms, and the
stopwords list comprehends around 60 words.
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Both lists were created by a domain expert from the company with a
wide knowledge of the provided software products.

3.5.2 Oracle

In order to evaluate the results of our experiment, CAF provided us with
their existing documentation on Feature Location between the Feature
Descriptions in the specification documents and the Models. In said
documentation on Feature Location, each Feature Description is mapped
to a single Model fragment. A Model fragment is a subset of elements
of a Model, specified with the Model fragment formalization capacities
of the Common Variability Language (CVL) (Haugen et al. 2008). In
other words, for each Feature, we know which is the associated Model
fragment that implements it.

We use the mapping as the oracle for evaluating the impact of each NLP
techniques configuration on LSI. In order to achieve this, we analyze
the results of the rankings generated by LSI, checking the position of
the ranking in which the oracle (correct Model fragment for the input
Feature Description) appears.

3.5.83 Design of the Experiment
In order to tackle our research questions, we need to study:

1 How Feature Location techniques respond to the different NLP in-
puts.

2 Whether human-introduced NLP affects the process and if so, in
which manner.

To that extent, we used the aforementioned configurations of NLP tech-
niques along with the priorly described LSI. The steps through which our
experiment is performed are detailed in the following paragraphs.

The first step is to select a NLP techniques configuration. With the
chosen configuration, we perform the NLP of the text of all the Feature
Descriptions in our case study. The same NLP is also applied to the
textual representation of all the Model fragments in our case study.
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From the NLP strings, all the resulting individual words are extracted to
form a list of words. The list of words (terms), the NLP text of the Model
fragments (documents), and the NLP text of one Feature Description
(query) are used as input for the LSI technique.

LSI returns a ranking of Model fragments, ordered according to the sim-
ilarity between their NLP textual representation to the NLP Feature
Description. Through the ranking, and by leveraging the oracle knowl-
edge, we can determine the ranking position in which the correct Model
fragment for the provided Feature Description appears.

The LSI process is performed several times, taking each of the Feature
Descriptions of our case study as query, in order to extract the NLP
Model fragment rankings for all the available Feature Descriptions.

Analyzing the positions in which the correct Model fragments appear,
we are able to evaluate the relative success or failure in terms of results
and performance of the chosen NLP techniques configuration over the
LSI process.

The described steps (choosing a NLP configuration, NLP of Feature De-
scriptions and Model fragments, LSI, impact analysis) are carried out for
the six considered configurations. By comparing the results of the six
configurations, we rate their global success or failure in terms of perfor-
mance and impact on the resulting rankings, and analyze the statistical
impact of humans on the NLP process.

In order to perform our experiment, we used a Lenovo E330 laptop, with
an Intel® Core™ i5-3210M@2.5GHz processor, with 16GB RAM and
Windows 10 64-bit.

3.5.4 Statistical Analysis

To properly compare the six NLP configurations, all of the data result-
ing from the empirical analysis was analyzed using statistical methods
following the guidelines in (Arcuri and Briand 2014).
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In order to answer the RQs we perform statistical analysis to: (1) provide
formal and quantitative evidence (statistical significance) that the six
NLP configurations do in fact have an impact on the comparison metrics
(i.e., that the differences in the results were not obtained by mere chance);
and (2) show that those differences are significant in practice (effect size).

Statistical Significance

To enable statistical analysis, all of the configurations should be run a
large enough number of times (in an independent way) to collect informa-
tion on the probability distribution for each configuration. A statistical
test should then be run to assess whether there is enough empirical evi-
dence to claim (with a high level of confidence) that there is a difference
between the two configurations (e.g., A is better than B). In order to
do this, two hypothesis, the null hypothesis Hy and the alternative hy-
pothesis Hy, are defined. The null hypothesis Hj is typically defined to
state that there is no difference among the configurations, whereas the
alternative hypotheses H; states that at least one configuration differs
from another. In such a case, a statistical test aims to verify whether the
null hypothesis Hy should be rejected.

The statistical tests provide a probability value, p —value. The p—wvalue
receives values ranging between 0 and 1. The lower the p — value of a
test, the more likely that the null hypothesis is false. It is accepted by the
research community that a p—value under 0.05 is statistically significant
(Arcuri and Briand 2014), and so the hypothesis Hy can be considered
false.

The test that we must follow depends on the properties of the data. Since
our data does not follow a normal distribution in general, our analysis
requires the use of non-parametric techniques. There are several tests for
analyzing this kind of data; however, the Quade test is more powerful
than the rest when working with real data (Garcia et al. 2010). In ad-
dition, according to Conover (Conover 1999), the Quade test has shown
better results than the others when the number of algorithms is low, (no
more than 4 or 5 algorithms).
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However, with the Quade test, is not possible to answer the following
question: Which of the configurations gives the best performance? In
this case, the performance of each configuration should be individually
compared against all other alternatives. In order to do this, we perform
an additional post hoc analysis. This kind of analysis performs a pair-
wise comparison among the results of each configuration, determining
whether statistically significant differences exist among the results of a
specific pair of configurations. In particular, we apply the Holm Post
Hoc procedure, as suggested by Garcia et al. (Garcia et al. 2010).

Effect Size

When comparing configurations with a large enough number of runs,
statistically significant differences can be obtained even if they are so
small as to be of no practical value (Arcuri and Briand 2014). Then,
it is important to assess if a configuration performs statistically better
than another and to asses the magnitude of the improvement. Effect size
measures are used to analyze this.

For a non-parametric effect size measure, we use Vargha and Delaney’s
Ajp (Vargha and Delaney 2000; Grissom and Kim 2005). A;s measures
the probability that using one configuration yields higher performance
values than using another configuration. If the two configurations are
equivalent, then A5 will be 0.5.

For example, Ay = 0.7 means that we would obtain better results 70% of
the times with the first of the two configurations compared, and A, = 0.4
means that we would obtain better results 60% of the times with the
second of the two configurations. Thus, we have an A;, value for every
pair of configurations.
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3.5.5 Results

For each NLP techniques configuration, we measured the best and worst
position of the oracles in the rankings generated by LSI through the steps
described in the previous section, as well as the average position in which
the oracle appeared. In other words, for each configuration, we measured
the best, worst, and average position of the correct Model fragment in
the 500 rankings generated via LSI (one ranking per available Feature
Description). We also measured the time that the execution of NLP took
for the different configurations (average time of 25 executions). In the
table, we do not highlight the LSI execution time averages, since it is
practically identical for all the configurations (around 70 seconds). The
amount of time associated to create the Domain Terms and Stopwords
List artifacts used to embed the Domain Knowledge along the techniques
(amounting up to around 3 hours) is also neglected in the table, being
a one-time event that does not account for the performance of the tech-
niques in the long term. Table 3.1 shows the results achieved by LSI
when performed over the six configurations:

Table 3.1: Results per NLP techniques configuration

Best Result Worst Result  Average Result Time Taken (s)

BD 71 714 75 75
BP-DK #1 #9 44 79
T1 1 726 216 287
T1-DK 48 491 413 295
T2 75 419 1 342
T2-DK 43 412 #9 376

In the table, it is possible to appreciate that the baseline processing
leads LSI to the best results, with the baseline processing with embed-
ded domain knowledge (BP-DK) achieving slightly better results than
its fully automated counterpart (BP). Both baseline processing combi-
nations achieve a ranking position #1 as their best result, with BP-DK
achieving a ranking position #9 as its worst result (improving BP’s #14
in 5 positions) and improving the average result of BP by 1 position.
Regarding timing, BP improves BP-DK by 4 seconds on average after 25
executions of both.
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From the results, it is also possible to discern that tier one processing, in
both of its forms (T1 and T1-DK), leads LSI to worse results with regards
to both ranking positions and performance. The best result presented by
T1 is position #11, and the worst one, #26, with the average appearance
of the oracle in position #16. T1-DK improves the results of T1 in
3 positions for the best result, 5 positions for the worst result, and 3
positions on average, but its results are still nowhere near those presented
by the baseline. Regarding timing, the processing performed by T1 takes
287 seconds on average after 25 executions, beating T1-DK by 8 seconds,
but surpassing the best timing result (BP’s) by 212 seconds.

Finally, the table shows the results obtained by LSI after applying tier
two processing to Feature Descriptions and Model fragments. T2 obtains
a #5 ranking position as its best result, a #19 ranking position as its
worst result, and a ranking position of #11 on average. Embedding do-
main knowledge on tier two processing, once again, slightly improves the
results of its fully automated counterpart. T2-DK obtains #3 as its best
ranking position, #12 as its worst ranking position, and an average #9
position of the oracles in the rankings. From this results, it is observable
that the results of tier two processing regarding ranking positions beat
those of tier one processing, but are still far from those of the baseline.
In addition, notice that both tier two combinations are utterly outper-
formed by the baseline combinations and the tier one combinations, since
after 25 executions, T2 took 342 seconds and T2-DK took 376 seconds
on average, which is 267 and 301 seconds slower than the best average
time, respectively.

Results Statistics

The Quade test applied to the results provides p — Values smaller than
0.05, which reject the null hypothesis for all the configuration pairs. Con-
sequently, we can state that there exist differences in the configurations
for the performance indicator evaluated (mean position in the ranking).

Table 3.2 shows the results of the statistical analysis performed (statis-
tical significance and effect size).
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Table 3.2: Holm’s post hoc p — Values and Ay, statistic for each pair of configurations

Configurations p —values Ay, measures
BP-DK vs BP 4.42107° 0.5966
T1 vs BP < 2x10716 0.0188
T1-DK vs BP < 2210716 0.0711
T2 vs BP < 2210716 0.1572
T2-DK vs BP < 2210716 0.2605
T1 vs BP-DK < 2210716 0
T1-DK vs BP-DK <« 2210716 0.0183
T2 vs BP-DK < 2210716 0.0818
T2-DK vs BP-DK < 2210716 0.1628
T1-DK vs T1 4.1210~1 0.7082
T2 vs T1 < 2210716 0.7962
T2-DK vs T1 < 2210716 0.9319
T2 vs T1-DK 42210713 0.6283
T2-DK vs T1-DK <« 2210716 0.7976
T2-DK vs T2 < 2210716 0.6669

The first column shows each pair of configurations, the second column
shows the p — Values of Holm’s post hoc analysis for each pair of al-
gorithms, and the third column shows the A5 statistic for each pair of
configurations.

All the p— Values shown in this table are smaller than their correspond-
ing significance threshold value (0.05), indicating that the differences of
performance between those configurations are significant.

Regarding the effect size, the largest differences were obtained between
the T1 and BP-DK configurations (where BP-DK achieves better results
than the T1 configuration 100% of times). In general, BP and BP-
DK configurations obtain better results than the competitors for all the
cases. When comparing BP and BP-DK, the configuration that includes
Domain Knowledge (BP-DK) will produce better results around 60% of
times.
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3.6 Discussion

The results presented in the previous section suggest that, when faced
with Feature Location in Models, the baseline processing with embedded
domain knowledge guides LSI to achieving the best possible results.

The usage of more advanced techniques, on the other hand, leads to worse
retrieval of results. Analyzing the Feature Descriptions, the Models, and
the overall process, we noticed a series of facts that help explain why this
is the case:
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1 Verbs and adjectives do appear in the Models, and thus hold a vital

amount of information for the Feature Location process. In addi-
tion, these words do not vary amongst Feature Descriptions and
Models. For instance, verbs tend to appear always in the infini-
tive form (raise, open, etc.), and adjectives are invariable (electric,
empty, etc.). This is not the case for nouns, which can and in fact do
appear in different forms. For instance, singular and plural forms are
indistinctly used through the Feature Descriptions (door vs. doors),
while in the Models, it is extremely rare to find a plural form of a
noun (there are only 2 occurrences of plural noun forms in the Mod-
els of the 5 trains), since multiplicity is defined through relationships

between elements and not expressed in the textual representation of
Models.

Our approach first uses POS Tagging to identify the tags of the
words, and then uses said tags to filter every word out of the NLP
process, except for nouns. This fact is propagated to Lemmatizing,
which relies on the outcome of the filtering to perform the necessary
operations to obtain the lemmas of the words. Due to the prior fact
(verbs and adjectives do hold relevant information in the Models),
our usage of these more complex processes removes a portion of the
available information of the problem, which is useful for the Feature
Location process, while the baseline does not cause this phenomena.
This explains the fact that both the tier one processing and the tier
2 processing lead LSI to worse results than the baseline.



3.6 Discussion

In the future, we may consider adding other tags such as verbs and
adjectives to the list of words that are not to be filtered out, checking
whether their inclusion can lead to Feature Location improvements.

3 As stated before, the noun words that appear in the Feature De-
scriptions are used in different forms in an indiscriminate manner.
When performing the tier one processing, using only POS Tagging,
this leads to a worsening of the results. The usage of tier two pro-
cessing includes Lemmatizing, which serves as a bridge that unifies
the language between the Feature Descriptions and the Model parts
that are left after POS Tagging. The unification of the language
is what causes the improvement that can be appreciated from tier
one results to tier two results. Still, since Lemmatizing is performed
after POS Tagging, a huge part of the information is already lost,
and thus, the provided results do not reach the levels of those pro-
vided by the baseline. Due to this fact, we may consider testing
the baseline with the inclusion of Lemmatizing in the future, while
ignoring the POS Tagging filtering. We believe that, since the base-
line includes nouns, it can also benefit from the language unification
provided by Lemmatizing.

4 Even if we may consider testing other combinations of techniques or
improving the processes through which they are being used in this
work in order to test the performance of results as a case study, time
performance results discourage us to use these techniques for real-
world SE tasks in the environment of the company we are working
with. In contrast with our reduced dataset, where the operations
can be addressed in a quick and easy manner, in a real-world en-
vironment thousands of Models and Feature Descriptions must be
taken in account, and the execution time of the different techniques
grows exponentially. Time performance is key for the competitive-
ness of a company such as our industrial partner, and thus software
engineers tasked with Feature Location cannot afford to wait for
results for as long as some NLP techniques require. Upon revisiting
the results, software engineers immediately preferred the baseline
processing, since it is easier to understand, implement, and manage,
as well as quicker in its execution.
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This allowed them to review Model fragments and retrieve Fea-
ture Location results faster, by post-processing the given rankings
through their domain knowledge and expertise.

We confirmed that adverbs and other connector words do not ap-
pear in the Models. Therefore, when counting occurrences of those
words in the Models, the result is always zero. This leads to the
fact that, by default, a percentage of the rows in the LSI term-by-
document co-occurrence matrix are introduced with no information
and therefore, do not contribute to the solving of the problem. A
considerable percentage of these words appear in the stopwords list
provided by the software engineers. The removal of these words
when processing the available texts, in turn, causes the removal of
their irrelevant rows from the LSI matrix. Part of the improvement
caused by humans on Feature Location results is due to this fact,
specially in the case of the baseline, where the inclusion of domain
terms does not play a part in the improvement that can be appre-
ciated between BP and BP-DK (see the next point for more details
on this).

6 In the case of the baseline, the inclusion of domain terms does not

cause a great impact on the results. After all, when using the base-
line processing, all the words are included in the LSI analysis. This
is not the case for POS Tagging or Lemmatizing, where the inclu-
sion of domain terms (which are often composed, containing adjec-
tives) causes an inclusion of information that would otherwise be
discarded. On the other hand, adverbs and other connector words
are discarded by POS Tagging, so the inclusion of rows with no
information is a phenomena that does not occur. Looking at state-
ments 4 and 5 altogether, we can observe that, due to the behavior
of the NLP techniques, we can only benefit from one specific aspect
of the domain knowledge at a time, depending on which techniques
we are leveraging to guide the Feature Location process (stopwords
for baseline processing, domain terms for POS Tagging based tech-
niques).



3.7 Threats to Validity

7 Nevertheless, the evidence suggests that even though human intro-

duced processing improves FL in all scenarios, its real impact is not
significant for the results. Improving an average of 1 to 3 positions
in a ranking of 500 Model fragments is not a real enhancement of
FL. Domain knowledge should only be provided and embedded in
NLP in cases where this is an almost immediate process. We do not
recommend having software engineers employ time and effort in this
task, but rather on more important, impactful duties.

These facts can be summarized as responses to our previously asked
research questions:

RQ1

RQ2

3.7

How do different NLP configurations affect the efficiency and ef-
fectiveness of Feature Location in Models? The baseline processing
yields the best results when used to guide Feature Location in Model
fragments. It outperforms more complex techniques in both results
and time. More complex techniques can lead to losses of information
in this field, and their execution times render them impractical in
real-world scenarios.

How are human NLP efforts reflected in the outcome of Feature
Location in Models? Human NLP efforts improve the outcome of
Feature Location in Model fragments in every chosen combination
of techniques for different reasons, but the improvement is slight.

Threats to Validity

In this section, we use the classification of threats of validity of (Runeson
and Host 2009; Wohlin et al. 2012) to acknowledge the limitations of our
approach:

1

Construct Validity: This aspect of validity reflects the extent
to which the operational measures that are studied represent what
the researchers have in mind. In order to minimize this risk, we
study the positions of the oracles in the rankings, an objective and
widely accepted measure, used before by other researchers in the
community (Haiduc et al. 2013).
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2 Internal Validity: This aspect of validity is of concern when causal
relations are examined. There is a risk that the factor being inves-
tigated may be affected by other neglected factors. The number of
Features and Models presented in this work may look small, but
they implement a wide scope of different railway equipment.

3 External Validity: This aspect of validity is concerned with to
what extent it is possible to generalize the finding, and to what ex-
tent the findings are of relevance for other cases. Both NL-expressed
Features and Conceptual Models are frequently leveraged to specify
all kinds of different software. LSI is a widely accepted and uti-
lized technique which has proven to obtain good results in multiple
domains. The NLP techniques studied through this work are also
commonly used in the whole of the SE community. Therefore, our
experiment does not rely on the particular conditions of our domain.
Nevertheless, our findings are based on a single study. Therefore, the
experiment and its results should be replicated with different kinds
of models and in other domains before assuring their generalization.

4 Reliability: This aspect is concerned with to what extent the data
and the analysis are dependent on the specific researchers. The
Feature Descriptions and Models of the trains used through our
experiment were provided by our industrial partner engineers, as
well as the domain terms and stopwords lists, which were crafted by
domain experts not involved in this research.

3.8 Related Work

The role of NLP is vital to the Software Engineering community (Ryan
1993). NLP has been applied to tackle different issues in software engi-
neering at several levels of abstraction. Works like (Sultanov and Hayes
2010; Sundaram et al. 2010) or (Duan and Cleland-Huang 2007), among
many others, use NLP to tackle specific problems and tasks, but do not
study the implications of using different NLP techniques or combinations
of techniques over the results, as our work does.
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In (Falessi, Cantone, and Canfora 2013), the authors use NLP techniques
to identify equivalence between NL software artifacts. The authors also
define and use a series of principles for evaluating the performance of NLP
when identifying said equivalence. They conclude that, in their field, the
performance of NLP is determined by the properties of the given dataset
over which it is performed. They measure the properties as a factor to ad-
just the NLP process and performance accordingly, and then apply their
principles to an industrial case study. Our work differs from (Falessi,
Cantone, and Canfora 2013), since the authors do not tackle the impact
of different NLP configurations as we do, but rather adjust the NLP
process according to a series of principles derived from dataset proper-
ties. Moreover, (Falessi, Cantone, and Canfora 2013) studies equivalence
between NL software artifacts, while we analyze NLP configurations to
process NL software artifacts for Feature Location in Models. In addi-
tion, we do not define a set of principles to serve as guidelines on which
NLP configuration to use, but rather present the results of applying the
NLP configurations to our case study, exposing the way they behave and
improve (or worsen) each other. Finally, we present an in-depth study
on how human involvement in the NLP process affects Feature Location
in Models, an issue that (Falessi, Cantone, and Canfora 2013) does not
tackle.

The work presented in (Arora et al. 2015) uses NLP to study how changes
in NL software artifacts impact other artifacts of the same kind in the
same specification. Through the pages of their work, the authors analyze
the traceability links between NL software artifacts, and use NLP to de-
termine how changes must propagate. Opposite to (Arora et al. 2015),
our work does not analyze changes in NL software artifacts or how they
affect the system. Instead, we put the focus on what is the most ap-
propriate way of applying NLP to said artifacts for Feature Location in
Models. Moreover, the authors of (Arora et al. 2015) do not consider
different configurations for their NLP, but rather guide the process by
taking in consideration the properties of the artifacts.

The work presented in (Eder et al. 2015) takes in consideration the pos-
sible configurations of LLSI when using the technique for traceability links
recovery between software artifacts, namely requirements and test cases.
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In their work, the authors state that the configurations of LSI depend
on the datasets used, and they look forward to automatically determin-
ing an appropriate configuration for LSI for any given dataset. In our
work, we do not tackle different LSI configurations or how LSI configu-
rations impact the results of traceability recovery between requirements
and Models, but rather analyze how different NLP configurations affect
the results of Feature Location in Models.

Other approaches related to the Feature Location process presented in
this paper comprehend Feature and Requirement location techniques.
Through the following paragraphs, we discuss said approaches and com-
pare our work to them.

Typechef (Késtner et al. 2011) provides an infrastructure to locate the
code associated to a given Feature by means of analyzing the #ifdef
directives. Trace analysis (Eisenberg and Volder 2005) is a run-time
technique used to locate Features. When the technique is executed, it
produces traces indicating which parts of code have been executed. Some
approaches related to Feature location use LSI to extract the code associ-
ated to a Feature (Poshyvanyk, Guéhéneuc, et al. 2007; Liu et al. 2007).
These techniques have been generally applied to search the code of a
Feature in a given individual product. The main goal of our approach, in
contrast, is to analyze how NLP configurations impact Feature Location
in Models.

Feature location approaches in a product family such as the one presented
in (Xue, Xing, and Jarzabek 2012) center their efforts in finding the code
that implements a Feature between the different products by combining
techniques such as FCA (Ganter and R. Wille 2012) and LSI. In our
approach, we are not interested in the code representation of a Feature
in the family, but in finding the NLP configuration that guides LSI to
better results when used for Feature Location in Models.

Other works such as (She et al. 2011) focus on applying reverse engineer-
ing to the source code to obtain the variability Model. In (Czarnecki and
Wasowski 2007) the authors use propositional logic which describes the
dependencies between Features.
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In (Nadi et al. 2014) the authors combine Typechef techniques and propo-
sitional logic to extract conditions among a collection of Features. These
works engage explicitly the variability of products, but do not tackle NLP
configurations and their impact on Feature Location in Models, as our
work does.

In (Lapena, Ballarin, and Cetina 2016), Lapena et al. use POS Tagging in
combination with an adapted two-step LSI to obtain rankings of methods
for all the requirements of a new product in a product family. The scope
of the presented work, on the other hand, is centered around analyzing
how distinct NLP configurations affect the results of Feature Location in
Models.

Some works (D. Wille et al. 2013; Holthusen et al. 2014; Zhang, Haugen,
and Mgller-Pedersen 2011; Zhang, Haugen, and Mgller-Pedersen 2012;
Martinez et al. 2015) focus on Feature Location in Models by comparing
the Models with each other to formalize the variability among them in
the form of a Software Product Line. The presented work differs from
these works in that the aim is not to formalize the variability, but to

analyze the impact that NLP configurations have on Feature Location in
Models.

Finally, Font et al. (Font et al. 2016a) use a Single Objective Evolutive
Algorithm (SOEA) to locate Features among a family of Models in the
form of a variation point. Their approach is refined in (Font et al. 2016b),
where the authors use a SOEA to find sets of suitable Feature realiza-
tions. The authors first cluster Model fragments based on their common
attributes into Feature realization candidates through Formal Concept
Analysis, and then Latent Semantic Indexing ranks the candidates based
on the similarity with the Feature description. The presented approach,

in contrast, analyzes how NLP configurations affect Feature Location in
Models.
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3.9 Conclusions

Natural Language Processing (NLP) techniques have been extensively
used to preprocess the language of software artifacts for Feature Location
in code, due to the direct and positive impact they have on the outcome.
However, the impact that these techniques have on the results of Feature
Location in Models is an issue that has not been tackled yet.

Through this paper, we analyze how NLP techniques affect the outcome
of Feature Location in Models. We process the Feature Descriptions and
Models from a real-world industrial case study through combinations
of NLP techniques, and perform Latent Semantic Indexing (LSI) over
the processed specifications. We study the rankings produced by LSI
with our oracle to evaluate the impact and repercussions of the NLP
techniques over the Feature Location process.

Results show that using NLP techniques that have achieved good results
in the past for Feature Location in code leads to a significant worsening of
the rankings in the case of Feature Location in Models when compared
to a Baseline Processing. We were able to identify a series of issues
that cause this effect. In addition, our results highlight that embedding
domain knowledge in the NLP process improves the Feature Location
results, although in a non-significant manner. Domain experts should
decide whether participating in the NLP process is worth the effort and
time involved. The findings of our work are useful since:

1 Thanks to the retrieved results, we found out that we should not get
carried away by inertia and apply NLP as we do in Feature Location
in code. Advanced NLP techniques do improve the Feature Location
results in the code realm, but we cannot assume that they will do so
in the Models field as well. In fact, using these techniques by inertia
may lead us to a worsening of the results.

2 Regarding domain experts participation in the NLP process, our
results shed light on their true impact over Feature Location in
Models. Thanks to that, domain experts can better value if the
time and effort inverted in participating in the NLP process does
pay off in terms of results improvement.
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3 Finally, the Discussion of this work about NLP techniques configura-
tions identifies specific issues that must be tackled in order to apply
NLP in domains where BP-DK does not guide Feature Location in
Models to proficient results.
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Chapter 4

Fragment Retrieval on Models
for Model Maintenance:
Applying a Multi-Objective
Perspective to an Industrial
Case Study

Context: Traceability Links Recovery (TLR), Bug Lo-
calization (BL), and Feature Location (FL) are amongst the
most relevant tasks performed during software maintenance.
However, most research in the field targets code, while models
have not received enough attention yet.

Objective: This paper presents our approach (FROM,
Fragment Retrieval on Models) that uses an Evolutionary Al-
gorithm to retrieve the most relevant model fragments for three
different types of input queries: natural language requirements
for TLR, bug descriptions for BL, and feature descriptions for
FL.
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Method: FROM uses an FEvolutionary Algorithm that
generates model fragments through genetic operations, and as-
sesses the relevance of each model fragment with regard to
the provided query through a fitness configuration. We an-
alyze the influence that four fitness configurations have over
the results of FROM, combining three objectives: Similitude,
Understandability, and Timing. To analyze this, we use a
real-world case study from our industrial partner, which is a
worldwide leader in train manufacturing. We record the re-
sults in terms of recall, precision, and F-measure. Moreover,
results are compared against those obtained by a baseline, and
a statistical analysis is performed to provide evidences of the
significance of the results.

Results: The results show that FROM can be applied
in our industrial case study. Also, the results show that the
configurations and the baseline have significant differences in
performance for TLR, BL, and FL tasks. Moreover, our re-
sults show that there is no single configuration that is powerful
enough to obtain the best results in all tasks.

Conclusions: The type of task performed (TLR, BL,
and FL) during the retrieval of model fragments has an actual
impact on the results of the configurations of the FEvolution-
ary Algorithm. Our findings suggest which configuration offers
better results as well as the objectives that do not contribute
to improve the results.



4.1 Introduction

4.1 Introduction

Amongst the most common and relevant tasks in the Software Engineer-
ing field, especially when maintaining software products, are Traceability
Links Recovery, Bug Localization, and Feature Location (Oliveto et al.
2010; Mahmoud, Niu, and Xu 2012; Dit et al. 2011; Rubin and Chechik
2013). To tackle these tasks, Information Retrieval (IR) techniques, such
as Latent Semantic Indexing (LSI) (Landauer, Foltz, and Laham 1998;
Hofmann 1999), have been used successfully (Poshyvanyk et al. 2007;
Revelle, Dit, and Poshyvanyk 2010). However, most research targets code
(Rubin and Chechik 2013; Dit et al. 2011; Wong et al. 2016), neglecting
other software artifacts such as models. Models raise the abstraction
level using concepts that are much less bound to the underlying imple-
mentation and technology and are much closer to the problem domain
(Brambilla, Cabot, and Wimmer 2012). The practice of Model Driven
Engineering has proved to increase efficiency and effectiveness in software
development (Brambilla, Cabot, and Wimmer 2012).

To increase the automation level when Traceability Links Recovery, Bug
Localization and Feature Location are performed over models, we pro-
pose an approach named Fragment Retrieval on Models (FROM). Our
approach uses a Multi-Objective Evolutionary Algorithm to retrieve the
most relevant model fragments for different types of queries (natural
language requirements for Traceability Links Recovery, bug descriptions
for Bug Localization, and feature descriptions for Feature Location). To
guide the Evolutionary Algorithm, we use three fitness objectives: Model
Similitude through Latent Semantic Indexing (LSI) (Landauer, Foltz,
and Laham 1998; Hofmann 1999), Model Understandability through
Model Size (Chimiak-Opoka 2011; Storrle 2014), and Model Timing
through the Defect Principle (Zimmermann et al. 2004; Sisman and
Kak 2012). Moreover, we combine the three objectives into a total of
four configurations: (1) Similitude, (2) Similitude+Understandability,
(3) Similitude+Timing, and (4) Similitude+Understandability+ Timing.
We analyze the impact of each configuration on the results of the Evo-
lutionary Algorithm for Traceability Links Recovery, Bug Localization,
and Feature Location.
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In order to carry out this analysis, we use the models, natural language re-
quirements, bug descriptions, and feature descriptions, all of them from a
real-world case study provided by our industrial partner, Construcciones
y Auxiliar de Ferrocarriles (CAF)!, which is a worldwide leader in train
manufacturing.

We record the results of the Evolutionary Algorithm for each configura-
tion and the baseline for each type of query in terms of recall, precision,
and F-measure. Also, results are compared against those obtained by a
baseline in order to put FROM in perspective of previous works. The
baseline retrieves model fragments using model comparisons among mod-
els instead of using an evolutionary algorithm or LSI. Our findings reveal
that there is not a unique configuration of objectives that retrieves the
best results for all of queries. In other words, the usage of different fit-
ness objectives configurations is required to optimize the results of the
Evolutionary Algorithm for either Traceability Links Recovery, Bug Lo-
calization, or Feature Location. In addition, we provide evidences of the
significance of the results by means of statistical analysis.

The rest of the paper is structured as follows: Section 4.2 presents a
motivating example. Section 4.3 presents our approach. Section 4.4
describes the evaluation, the results, and the statistical analysis. Section
4.5 discusses the results. Section 4.6 presents the threats to validity.
Section 4.7 reviews the related work. Finally, Section 4.8 concludes the

paper.

4.2 Motivating Example

Despite Model-Driven Development has not had the expected widespread
success so far, major players in the software engineering field (i.e., tool
vendors, researchers, and enterprise software developers) foresee a broad
adoption of model-driven techniques because of scenarios that demand
more abstract approaches than mere coding (Brambilla, Cabot, and
Wimmer 2012).

1

www.caf.net/en
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4.2 Motivating Example

Fostering modeling efforts brings benefits in industrial contexts in order

to improve productivity, while ensuring quality and performance (Bram-
billa, Cabot, and Wimmer 2012).

In a model-driven industrial context, companies tend to have a myriad of
products with large and complex models behind. The models are created
and maintained over long periods of time by different software engineers,
and the engineers in charge of the maintenance tasks (Traceability Links
Recovery, Bug Localization, and Feature Location) often lack knowledge
over the entirety of the product details. Under these conditions, main-
tenance tasks consume high amounts of time and effort, without guar-
anteeing good results. Our industrial partner reported performing the
maintenance tasks manually at least 25 times per week, costing them a
total monthly amount of working time ranging from 43.3 to 66.7 hours.

Figure 4.1 depicts a model example, taken from a real-world train, speci-
fied using the Domain Specific Language (DSL) that formalizes the train
control and management of the products manufactured by our industrial
partner. The DSL has the expressiveness required to describe both the
interaction between the main pieces of installed equipment, and the non-
functional aspects related to regulation. It will be used through the rest
of the paper to present a running example. For the sake of understand-
ability and legibility, and due to intellectual property rights concerns, we
present an equipment-focused simplified subset of the DSL.

Specifically, the example of the figure presents a converter assistance sce-
nario where two pantographs (High Voltage Equipment) collect energy
from the overhead wires, and send it to their respective circuit breakers
(Contactors), which in turn send it to their independent Voltage Con-
verters. The converters then power their assigned Consumer Equipment:
the HVAC on the left (air conditioning system), and the PA (public ad-
dress system) and CCTV (television system) on the right. The elements
of Figure 4.1 highlighted in gray conform an example model fragment,
including one circuit breaker that connects Converter 2 to a Consumer
Equipment assigned to Converter 1. This model fragment is the real-
ization of the 'converter assistance’ feature, which allows the passing of
current from one converter to equipment assigned to its peer for coverage
in case of overload or failure of the first converter.
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Product Model and Fragment

Pantograph 1 |a Pantograph2 |+
B 1
Circuit Circuit
Breaker 1 Breaker 2
D K
Converter1 |t Converter2 |t

DSL Syntax
High _Voltage Contactors Voltage Coqsumer
Equipment Converters Equipment
Model Fragment Encoding:
A|B|[C|D|E|F|[G[H|IT|J[K|L[M|IN|O|[P|Q|R]|S

ofojofo|jofo|lo|jOofOfO|lO|O|OfOfO|O|1]|1(1

Figure 4.1: Example of model and model fragment

A model fragment (which always belongs to a parent model) is encoded
as a string of binary values that contains as many positions as elements
in the parent model, where each position in the string has two possible
values: 0 in case the element does not appear in the fragment, or 1 in
case the element does appear in the fragment. In Figure 4.1, elements Q,
R, and S conform the model fragment, so the corresponding values are
set to '17 in its binary string representation.

Although it may appear easy to locate the ’converter assistance’ feature
in the model, it becomes very complex in the models of our industrial
partner where each train unit is specified through several thousand ele-
ments. According to our industrial partner, software engineers who be-
longed to the original team of modelers and who work on a monthly basis
with the product involved in the example, are able to locate the feature
in around 26 minutes. Another engineer, not related to the project but
with knowledge of the products in the company, spent 34 minutes on the
same task.
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Finally, two newcomer modelers spent around 40 minutes of combined
work until they fulfilled the task, but they did so in a non-accurate
manner. Considering these numbers, an approach that automatically
retrieves model fragments is strongly needed.

4.3 Approach

The goal of the presented approach, FROM (Fragment Retrieval On
Models), is to use an Evolutionary Algorithm to retrieve model fragments
for Traceability Links Recovery, Bug Localization, and Feature Location.
In addition, we use different combinations of fitness objectives as fitness
function for the Evolutionary Algorithm in FROM in order to establish
which combination of objectives guides FROM to the best results.

Figure 4.2 shows an overview of FROM. The top part of the figure high-
lights the inputs (the three possible types of Natural Language (NL)
queries and the models where the model fragment must be retrieved),
the middle part shows the steps of the Evolutionary Algorithm (includ-
ing the Fitness Objectives within the Fitness Function), and the bot-
tom part presents the four Fitness Objective Configurations considered
through this work.

4.3.1 Queries

In FROM, we consider Traceability Links Recovery, Bug Localization,
and Feature Location.

1) Traceability Links Recovery: The functionality of software prod-
ucts refers to what tasks a product should be able to carry out, and also
to how those tasks should be carried out. It is described through spec-
ifications, which usually take the shape of NL requirements documents.
The objective of Traceability Links Recovery among requirements and
models is to establish the model fragment that implements a particular
NL requirement. For Traceability Links Recovery, the input query is a
NL requirement, for which the model fragment must be retrieved.
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Queries: (1) Traceability Link Recovery (2) Bug Location (3) Feature Location

Models

( Step 1 - Initialization >

Initial Model
Fragment Population

|

4( Step 2 - Genetic Operations >

Model Fragment
Population

Query

Evaluated Model
Fragment Population

Step 3 - Fitness Function

( Model Similitude >

(Model Understandability>

( Model Timing >

Stop condition?

Model Fragment
No Yes Ranking
Config. 1 Config. 2 Config. 3 Config. 4
Similitude % v v v
Understandability X 4 X v
Timing X X v v

Figure 4.2: Overview of the approach and configurations

For example, a functional requirement of our case study is: 'The PLC
will inhibit the connection with the pantograph whenever the lowering
button in the active cabin is pushed, as long as the pantograph is in
closed state and more than five seconds have passed after the closing of
the circuit breaker, being the doors off’.
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2) Bug Localization: When errors manifest in the expected function-
ality of a product, software engineers create bug report documents or
incidence tickets, which adopt the form of NL descriptions of the errors.
The objective of Bug Localization is to identify the model fragment that
causes a particular error in a product model in order to fix it. For Bug
Localization, the input query is one of the error descriptions. For exam-
ple, a bug description taken from our case study is: ’In case of failure
of the second converter, the third converter is expected to deviate 50%
of its power to the HVAC within 2 seconds, but the converter assistance
scenario does not activate’.

3) Feature Location: The term ’feature’ refers to a particular charac-
teristic that a product may include. The presence or absence of a char-
acteristic in a product, in that sense, entails the existence of different
product configurations. Feature Location is concerned with identifying
software artifacts (in our case, model fragments) associated with such
specific characteristics. For Feature Location, the input query is the de-
scription of a feature in NL. For example, a feature taken from our case
study is: ’Enabled Cabin Detection: the system will automatically deter-
mine the cabin in use through the presence of a key in the control desk,
and will automatically set it as the Enabled Cabin from which the train
will be controlled’.

4.3.2 FEwvolutionary Algorithm

Our approach relies on a Multi-Objective Evolutionary Algorithm (Fon-
seca, Fleming, et al. 1993) that iterates over model fragments, modifying
them using genetic operations. In a previous work (Font et al. 2015),
domain experts were requested to limit the search space by choosing a
subset of the models, or by providing restrictions of elements that do not
have to appear in the solutions. However, the search space was still very
large (a model of 500 elements can yield around 10%° potential fragments).
Evolutionary algorithms have obtained good results by addressing similar
problems with large search spaces, so we have chosen to use an evolution-
ary algorithm. The output of the approach is a model fragment ranking
for the input Traceability Links Recovery, Bug Localization, or Feature
Location query. The MOEA runs in three steps:

93



Chapter 4. Fragment Retrieval on Models for Model Maintenance: Applying a Multi-Objective

Perspective to an Industrial Case Study

1) Initialization: The first step of our approach is to, from the product
models, generate a population of model fragments that serves as input
for the genetic algorithm. In order to generate the population of model
fragments, parts of the models are extracted randomly and added to a
collection of model fragments.

In order to generate a random model fragment, we designed algorithm
1 (see 4.8). The algorithm first selects a random initial model element
E. Then, using E, a new model fragment F is created. In addition, a
second element N, neighbor to E, is taken. A valid neighbor N is an
element that is directly connected to E. In case there is more than one
possible neighbor element, one of the possible neighbors is randomly
chosen. Then, a random number of iterations are performed.

Notice that, due to the neighbor selection process, the algorithm re-
turns a model fragment built with a subset of elements from the parent
model which are contiguously connected. This algorithm only produces
fragments that are part of the original model, it does not create new
elements, and the resulting model fragments keeps the conformance to
the metamodel.

2) Genetic Operations: The second step of our approach is to gener-
ate a set of model fragments that could realize the provided Traceability
Links Recovery, Bug Localization, or Feature Location query. The gener-
ation of new model fragments, based on existing ones, is done by apply-
ing a set of two genetic operators adapted to work over model fragments:
crossover, and mutation. Both are further described in the following
paragraphs.

The crossover operation (Font et al. 2016a) enables the creation of
a new individual by combining the genetic material from two parent
model fragments. The crossover operation takes the model fragment from
the first parent and the model from the second parent, and generates a
new individual that contains elements from both parents through model
comparisons. If the comparison finds the first model fragment in the
second model, the operation creates a new individual with the model
fragment taken from the first parent but referencing the product model
from the second parent.
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Otherwise, the crossover returns the first parent unchanged. This opera-
tion broadens the search space to different models. The model fragments
from the first parent and the new individual will be the same but, since
parent and child can reference different models, they will often mutate
differently and provide different individuals in further generations. The
algorithm of this operation is outlined in Algorithm 2 (available in 4.8).

The upper part of Figure 4.3 shows an example of the application of
the crossover operation. First, we select the two parents to which the
operator is applied. Then, the model fragment inside the first parent
is compared with the second parent. Since the comparison is able to
find the model fragment in the second parent, the process creates a new
individual with the model fragment, referencing the second parent.

The mutation operator (Font et al. 2016b) is used to imitate the mu-
tations that randomly occur in nature when new individuals are born.
That is, new individuals hold small differences with their parents that
could make them adapt better (or worse) to their living environment.
Following this idea, the mutation operator applied to model fragments
takes as input a model fragment and mutates it into a new one, which is
returned as output. As the approach is looking for fragments of a prod-
uct model that realize a particular feature, the new modified fragment
must remain a part of the product model. Therefore, the modifications
that can be done to the model fragment must be driven by the product
model.

In particular, the mutation operator can perform two distinct modifica-
tions: addition of elements to the model fragment, or removal of elements
from the model fragment. To that extent, one of the two operations is
firstly chosen. If the operation ’addition’ is chosen (see the bottom-left
part of Figure 4.3), an element of the fragment with connections to model
elements that are not included in the fragment is chosen in order to add
one of these non-included model elements to the fragment. For instance,
the Converter 1 element of the fragment has a connection with the HVAC
model element, not included in the original model fragment. As result
of the addition operation, a modified model fragment that includes the
HVAC model element is obtained.
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If the operation 'removal’ is chosen (see the bottom-right part of Figure
4.3), an element of the model fragment that is connected with only one
other element of the model fragment is chosen to be removed from the
model fragment. For instance, a modified model fragment that does
not include the Pantograph 1 model element is obtained as a result of
the removal operation. The algorithm of this operation is outlined in
Algorithm 3 (available in 4.8).

Model of Parent 1 Model of Parent 2

Pantograph 1 Pantograph 2 ‘ Pantograph 1
Circuit
Breaker1

Pantograph 2 ‘

Circuit Circuit Circuit
Breaker2 Breaker1 Breaker2

Converter 1 ‘ Converter 2
(oo ) (Thac ) Craac ) (Cm )
AN J/ AN / N\ o / AN - /

Crossover Operation
(Parent reference changes
from Parent 1 to Parent 2)

Offspring

Model of Parent 2

Pantograph 1

Pantograph 2 ‘

Circuit Circuit
Breaker1 Breaker2

‘ Converterl ‘

(e ) (
AN J \.

Mutation Operation
Either addition or removal is
chosen to modify the model

If addition fragment If removal
is chosen is chosen

Mutated Offspring after Mutated Offspring after

adding HVAC Model of Parent 2|  removing Pantograph 1 | Model of Parent 2

Pantograph 1 || Pantograph 2 ‘ Pantograph 1 ‘ Pantograph 2 ‘
Circuit Circuit Circuit Circuit
Breaker1 ‘ Breaker2 ‘ Breaker1 ‘ Breaker2 ‘
J L - J
‘ Converter 1 ‘ ‘ Converter 1 ‘

C m ) Crwac ) ( m )
AN s N N

Figure 4.3: Genetic operations example
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3) Fitness Function: The third step of the approach assesses each
of the produced candidate model fragments, ranking them according to
a fitness function. Our approach presents fitness functions based on
combinations of three distinct fitness objectives, detailed in the following
section.

4.3.3 Fitness Objectives
In this section, details are provided for each objective.

1) Model Fragment Similitude: To assess the relevance of each model
fragment with relation to the provided query, we apply methods based
on Information Retrieval (IR) techniques. In particular, we apply Latent
Semantic Indexing (LSI) (Landauer, Foltz, and Laham 1998; Hofmann
1999) to analyze the relationships between the model fragments in the
population and the query.

However, results retrieved by LSI depend greatly on the style on which
the Natural Language (NL) of the input is written. It is often regarded
as beneficial to preprocess the inputs of LSI through Natural Language
Processing (NLP) techniques (Haiduc et al. 2013) to improve LSI results.
A frequent practice to achieve said preprocessing is to use a combination
of Parts-of-Speech (POS) tagging, removal of stopwords, and stemming,
as presented in (Hulth 2003).

In our approach, we adopt said practice to process the NL from the model
fragments and the queries. The NL texts of both the model fragments
and the queries are preprocessed through the following steps: (1) our
approach searches for domain terms provided by the software engineers
in the text, saving them; (2) POS tagging is applied to the text, and
the POS tags of the words are analyzed and filtered by their syntactic
role, keeping only the nouns, as suggested by (Hulth 2003); and (3) the
remaining POS Tags are stemmed, and refined with a set of stopwords,
also provided by the software engineers. The stemmed POS Tags from
Step 3 plus the saved domain terms from Step 1 build the text of the
processed elements used as input for LSI.
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Once the NL texts from both the model fragments and the query are pro-
cessed, it is possible to apply the LSI technique. LSI constructs vector
representations of a query and a corpus of text documents by encoding
them as a term-by-document co-occurrence matrix. That is, a matrix
where each row corresponds to terms and each column corresponds to
documents, followed by the query in the last column. Each cell of the ma-
trix holds the number of occurrences of a term inside a document or the
query. In our approach, terms are all the individual words from the pro-
cessed NL of model fragments and the query, the documents are the NL
representations of model fragments, and the query is the provided Trace-
ability Links Recovery, Bug Localization, or Feature Location query. To
generate the documents, the model fragments are processed to extract
the terms that correspond to the elements that conforms them. The
words obtained this way for a particular model fragment conform its
corresponding document.

Once the matrix is built, it is normalized and decomposed into a set of
vectors using a matrix factorization technique called Singular Value De-
composition (SVD) (Landauer, Foltz, and Laham 1998). SVD is a form
of factor analysis, or more properly the mathematical generalization of
which factor analysis is a special case. In SVD, a rectangular matrix is
decomposed into the product of three other matrices. One component
matrix describes the original row entities as vectors of derived orthog-
onal factor values, another describes the original column entities in the
same way, and the third is a diagonal matrix containing scaling values
such that when the three components are matrix-multiplied, the origi-
nal matrix is reconstructed. In SVD, a 'k’ value of dimensions is chosen
as a tuning parameter, reducing the matrices accordingly. According to
recent research, keeping a 'k’ value of around 300 (or the maximum, if
there are less than 300 dimensions) will usually provide the best pos-
sible results with moderate-sized document collections (Bradford 2008).
However, as stated by (Thomas et al. 2013) and (Borg, Runeson, and
Ardo 2014), the 'k’ value should be studied and tuned for each approach
individually in order to optimize the results. In their work, Khatiwada
et al. (Khatiwada, Tushev, and Mahmoud 2018) determine the 'k’ pa-
rameter through a brute force strategy, generating several 'k’ values and
evaluating the performance of each of their datasets for every 'k’ value.
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The tuning of the 'k’ parameter for our work, however, is out of the scope
of this paper, and as such we acknowledge it as future work.

Using SVD, one vector that represents the latent semantics of the NL
texts is obtained for each document and for the query. Finally, the simi-
larities between each document and the query are calculated as the cosine
between both of their vectors, obtaining values between -1 and 1.

The top part of Figure 4.4 shows an example of co-occurrence matrix,
taken from our approach (for space reasons, columns and rows are shown
in a compact way). Each document column is a NL representation of
one of the model fragments in the population. The query column is the
provided input Traceability Links Recovery, Bug Localization, or Feature
Location query. Each term row is one of the words extracted from the NL
texts of model fragments and the provided Traceability Links Recovery,
Bug Localization, or Feature Location query. Each cell shows the number
of occurrences of each of the terms in the model fragments. The bottom
left part of Figure 4.4 shows the result of applying the SVD technique to
the matrix. The vector labeled with 'Q’ represents the query, while the
ones labeled as "MF’ represent document model fragments. Bottom right
part of Figure 4.4 shows the scores of each model fragment, calculated
by computing the cosine between their associated vector and the query
vector.

Documents Query
MF1 MF2 MFN Query
* Pantograph 0 2 2 1
-g Circuit Breaker 0 2 5 2
3 Door 3 0 1 1
]
~
Singular Value Decomposition Scores

MEN Model Fragment

Similitude Scores
MF2
MF2=0.93
Q MFN = 0.24
MF1

MF1=-0.87

Figure 4.4: LSI example
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2) Model Fragment Understandability. There are several metrics
that measure different factors in models, such as their underlying com-
plexity or their understandability by humans (Chimiak-Opoka 2011).
The findings published in (Storrle 2014) prove that there is a strong
correlation between the size of a particular model and its understand-
ability by a human modeler, therefore impacting the performance of the
modeler when working with it. When presented with several models
for an industrial solution, smaller models always entail better modeler
performance results.

To measure the size of a model fragment, three metrics are defined in
(Storrle 2014) and described in 4.8: U1l) Counting the number of el-
ements in a model, U2) Weight factors per model element, and U3)
Weight factors per model element per diagram type.

In (Storrle 2014), the author analyzes the results of applying the three
metrics to a set of models, finding that the three metrics are extremely
correlated, with none yielding significantly better results over the other
two. Since it is easier to implement and compute, it is strongly sug-
gested to use Ul. Therefore, we use U1 as the metric of choice for our
Understandability Fitness Objective.

3) Model Fragment Timing. The Defect Principle, or Defect Local-
ization Principle, states that the most recent modifications to a project
are the most relevant for certain Information Retrieval purposes (Has-
san and Holt 2005; Zimmermann et al. 2004; Sisman and Kak 2012).
Through the Defect Principle, modification timespans can be considered
and introduced as a Fitness Objective for Traceability Links Recovery,
Bug Localization, and Feature Location.

Through this work, we carry out Traceability Links Recovery, Bug Local-
ization, and Feature Location on models. Therefore, our aim is to retrieve
the most relevant model fragments for a particular Traceability Links Re-
covery, Bug Localization, or Feature Location query. Model fragments
are formed by model elements, and each model element has an associated
modification time. When we apply the Defect Principle to model frag-
ments, we have to decide how to assign a modification time to the model
fragment from the modification time information on its model elements.
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There are four possible measurements of the modification timespans for
the Defect Principle:

(1) Most recent model modifications: this measurement captures
the modification timespan of the most recently modified model ele-
ment.

(2) Oldest model modifications: this measurement captures the
modification timespan of the least recently modified model element.

(3) Mean of the modification timespan of the modified model
elements: the value of the measurement is the mean value of the
modification timespans of the model elements.

(4) Sum of the modification timespan of the modified model
elements: the value of the measurement is the sum of the modifi-
cation timespans of the model elements.

Software engineers from our industrial partner, when faced with different
model fragments, declared that those they had modified more recently
were more familiar to them, thus easier to understand and work with.
Therefore, we chose measurement (1) as the way to evaluate our Model
Timing Fitness Objective.

The time difference is based on the number of days and can therefore be
very large when the model fragment was modified a long time ago. To
normalize the time difference, mathematical solutions such as square root
or logarithm can be used. We used square roots because it has achieved
good results in other works that use time differences (Zimmermann et al.
2004).

Figure 4.5 shows an example of timespan for each model element of the
model fragment highlighted in gray. For example, the Circuit Breaker 1
has been modified 89 days ago. Since the most recent model modification
is 17 days (from the Convertl model element), the value of the model
fragment is 17 days that means a square root of 4.123.

101



Chapter 4. Fragment Retrieval on Models for Model Maintenance: Applying a Multi-Objective

Perspective to an Industrial Case Study

Pantograph 1 || Pantograph?2

. . N . .
T=89 - 3 Circuit Circuit
Breakerl J| Breaker2
T=74- -t === >~
T=17 — 1= = — 3 Converterl

T: Timespan from the last modification in days

Figure 4.5: Timespan of the modifications of the model elements of a fragment

4.3.4 Fitness Objectives Configurations

To compare how the distinct objective configurations affect FROM for
the different types of queries, we have designed a total four possible
objective configurations (shown in the bottom part of Figure 4.2):

C1: Similitude.

C2: Similitude + Understandability.

C3: Similitude + Timing.

C4: Similitude + Understandability + Timing.

It is worth mentioning that creating configurations without the Similitude
measurement is possible, but meaningless. Such configurations would
produce the smallest and/or most recently modified model fragments in
the case study, regardless on whether they had anything to do with the
introduced query, rendering them useless.
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4.4 Evaluation

This section presents the evaluation of our approach.

4.4.1 Research Questions

There are several aspects that we want to evaluate with regard to how the
different configurations affect FROM for the different types of queries.
In order to address the evaluation of these aspects, we formulated the
following research questions:

RQ;: How does the performance of the different objective configurations
compare to the performance of the baseline for different query types?

RQs: Is the difference in performance between the objective configura-
tions and the baseline significant?

RQj3: Does the type of query have an impact on the performance of the
different objective configurations?

4.4.2 Baseline

In order to put the performance of FROM in perspective and to relate our
work to previous works, we compare it to a baseline for fragment retrieval
in models. Traditionally, fragment retrieval in models has been performed
through model comparisons among models (D. Wille, Sénke Holthusen,
et al. 2013a; Sonke Holthusen et al. 2014a; X. Zhang, Qystein Haugen,
and Moller-Pedersen 2011; X. Zhang, ). Haugen, and Mgller-Pedersen
2012; Jabier Martinez et al. 2015a; J. Martinez et al. 2015). These works
classify the elements based on their similarity and identify the dissimilar
elements as the model fragments. The predominant technology of choice
to implement their approaches is EMF Model Compare, which relies on
Model Matching to perform the comparisons. Hence, the baseline is
our implementation of the algorithms to retrieve fragments presented in
(X. Zhang, Oystein Haugen, and Moller-Pedersen 2011), which also uses
EMF Model Compare to perform the model comparisons as the previous
works.
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4.4.3 Experimental Setup

FROM and the baseline are executed taking as input the query and
the models provided by our industrial partner. Our industrial partner
provided us with: 103 natural language requirements, 121 feature de-
scriptions and 42 bug descriptions of their railway solutions. The models
of 23 trains are specified through an average of 8250 model elements.

We executed 30 independent runs for each query and approach (the four
configurations of FROM and the baseline) for FROM (as suggested by
(Arcuri and Fraser 2013)), i.e., 103 (natural language requirements) x
5 (approaches) x 30 repetitions + 121 (feature descriptions) x 5 (ap-
proaches) x 30 repetitions + 42 (bug descriptions) x 5 (approaches) x 30
repetitions = 39900 independent runs.

Once the four configurations of FROM and the baseline are executed,
we obtain as result a ranking of model fragments. Next, we take the best
solution of the ranking (the model fragment at position 1) to compare
it with an oracle, which is the ground truth. Once the comparison is
performed, a confusion matrix is calculated.

A confusion matrix is a table often used to describe the performance of
a classification model on a set of test data (the best solutions) for which
the true values are known (from the oracle). In our case, each solution
obtained is a model fragment composed of a subset of the model elements
that are part of the product model. Since the granularity is at the level
of model elements, each model element presence or absence is consid-
ered as a classification. The confusion matrix distinguishes between the
predicted values and the real values classifying them into four categories:

e True Positive (TP): values that are predicted as true (in the solution)
and are true in the real scenario (the oracle).

e False Positive (FP): values that are predicted as true (in the solu-
tion) but are false in the real scenario (the oracle).

e True Negative (TN): values that are predicted as false (in the solu-
tion) and are false in the real scenario (the oracle).
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e False Negative (FN): values that are predicted as false (in the solu-
tion) but are true in the real scenario (the oracle).

Then, some performance measurements are derived from the values in the
confusion matrix. In particular, we create a report including three per-
formance measurements: recall, precision, and F-measure for the baseline
and configurations for each type of query.

Recall measures the number of elements of the solution that are correctly
retrieved by the proposed solution and is defined as follows:

TP

RGCG” = m—m

Precision measures the number of elements from the solution that are
correct according to the ground truth (the oracle) and is defined as fol-
lows:

TP

P . _
recision —TP T FP

F-measure corresponds to the harmonic mean of precision and recall and
is defined as follows:

Precision * Recall
F — measure = 2 %

Precision + Recall

Recall values can range between 0% (no single model element obtained
from the oracle is present in any of the model fragments of the solution) to
100% (all the model elements from the oracle are present in the solution).
Precision values can range between 0% (no single model fragment from
the solution is present in the oracle) to 100% (all the model fragments
from the solution are present in the oracle). A value of 100% precision
and 100% recall implies that both the solution and the oracle are the
same.
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At this point, it is important to highlight that the fitness objective Con-
figuration 1 (Similitude) is a Single-Objective Evolutionary Algorithm
(SOEA), whereas the other three configurations are MOEA. For this
reason, other common MOEA measures such as hypervolume (Zitzler
and Thiele 1998) are not necessarily suitable for comparing solutions by
MOEAs with solutions by SOEAs as the work in (Ishibuchi, Nojima, and
Doi 2006) shows.

Therefore, in order to compare the results, we first take the best solution
of Configuration 1 for its single-objective (similitude with the query).
Second, we take the best solution of each of the other configurations with
regard to the objective of Configuration 1 (similitude with the query) as
described in (Ishibuchi, Nojima, and Doi 2006).

4.-4.4 Oracle Preparation

The oracle was provided by our industrial partner, since the model frag-
ments that realize each of the 103 requirements, 121 features and 42 bugs
were already documented. It is also worth noting that the oracle has not
been created for this evaluation, and that many of the provided model
fragments were created by engineers who are currently not working in
the company. We checked both that there were no queries without model
fragments, and that the model fragments were in the models provided
for the evaluation.

4.-4.5 Implementation Details

FROM? is based on NSGA-II (Deb et al. 2002), one of the most frequently
used Multi-Objective Evolutionary Algorithms. Given a population of
model fragments where each model fragment has up to three fitness values
(see Subsection 4.3.4), NSGA-II orders these model fragments by means
of non-dominated sorting. A model fragment is non-dominated when
there is no other model fragment that improves any fitness value without
worsening other fitness value. As a result, NSGA-II finds pareto-optimal
model fragments.

2https://bitbucket.org/svitusj/from

106


https://bitbucket.org/svitusj/from

4.4 Evaluation

The rest of the settings such as population size, crossover probability,
and mutation probability are detailed in Table 4.1. For those settings,
we have chosen values that are commonly used in the literature (Sayyad
et al. 2013). The values are 100, 0.9, and 0.1, respectively.

Table 4.1: Parameter settings

Parameter description Value
Size: Population Size 100
p: Number of Parents 2
A: Number of offspring from p parents 2
r: Solutions replaced at population size 2
Derossover: Crossover probability 0.9
Pmutation: Mutation probability 0.1

In general, there are two atomic performance measures for evolutionary
algorithms: one regarding solution quality and one regarding algorithm
speed or search effort. In this paper, we focus on the solution quality
(i.e., obtaining a solution that is more similar to the one from the oracle
in terms of precision and recall). After running some prior tests for each
fitness configuration to determine the time to converge (and adding a
margin to ensure convergence), we allocated a fixed amount of wall clock
time (80 seconds) to stop the execution. During that time, our algorithm
is capable of executing an average of 7307 generations (with an standard
deviation of 1500 generations). We performed the execution of FROM
using an array of computers with processors ranging from 4 to 8 cores,
clock speeds between 2.2 GHz and 4GHz, and 4-16 GB of RAM. All of
them were running Windows 10 Pro N 64 bits as the hosting Operative
System and the Java(TM) SE Runtime Environment (build 1.8.0 73-b02).

We have used the Eclipse Modeling Framework to manipulate the mod-
els and the Common Variability Language (CVL) (Qystein Haugen et al.
2008) to manage the model fragments. The NLP techniques used to pro-
cess the language have been implemented using OpenNLP (Apache 2016)
for the POS Tagger (accounting for an 88% precision (Horsmann, Erbs,
and Zesch 2015)) and the English (Porter 2) (Porter 2016) stemming
algorithm. LSI has been implemented using the Efficient Java Matrix
Library (Abeles n.d.). The genetic operations are built upon the Watch-
maker Framework for Evolutionary Computation (Dyer 2016).
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The available implementation presented in FROM is limited by confiden-
tiality agreements in force with our industrial partner, since the approach
is currently in use, and the trains of the case study are currently operating
and under maintenance contracts.

4.4.6 Research Question 1

To answer how is the performance of the configurations and the baseline,
this subsection presents the results of performance. Figure 4.6 shows the
charts with the recall and precision results for the configurations and
the baseline (rows of the figure) and the type of query (columns in the
figure). A dot in the graphs represents the average result of recall and
precision for the 30 repetitions.
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Figure 4.6: Mean Recall and Precision values for FROM and the baseline
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RQ; answer. Table 4.2 shows the mean values of recall, precision and F-
measure of the graphs for the four configurations and the baseline (rows)
in Traceability Links Recovery, Feature Location and Bug Localization
(columns).

In Traceability Links Recovery, Configuration 1 obtains the best results
in recall and precision, providing and average value of 54.33% in recall
and 59.93% in precision.

In Feature Location, Configuration 2 obtains the best results in recall and
precision, providing and average value of 73.29% in recall and 70.60% in
precision.

In Bug Localization, Configuration 4 obtains the best results in recall and
precision, providing and average value of 84.91% in recall and 79.94% in
precision.

Table 4.2: Mean Values and Standard Deviations for Recall, Precision and F-Measure

Recall £ (o)
TLR FL BL

Configuration 1 54.33£14.23 70.95£13.59 35.95+14.49
Configuration 2 35.21+17.05 73.29£13.65 39.47+£14.73
Configuration 3 38.72422.14 25.04%15.06 83.09+11.28
Configuration 4 29.07+19.66 27.85+15.05 84.91+11.85

Baseline 36.14£15.55 58.20£15.66 24.87£17.81
Precision + (o)
TLR FL BL

Configuration 1 59.93£16.94 67.68+£13.43 28.12+15.45
Configuration 2 33.69+13.69 70.60+£14.08 30.54+14.91
Configuration 3 33.934+20.85 27.97+15.22 72.77£11.19
Configuration 4 29.10+17.84 32.81+£17.37 79.94+10.19

Baseline 30.99+16.25 41.90+16.16 20.13+18.61
F-measure + (o)
TLR FL BL
Configuration 1 54.87£11.61 67.87£9.82 27.55+£12.13

Configuration 2 30.62£12.49 70.67£10.78 30.51£12.43
Configuration 3 30.27£18.24 21.50£12.17 76.62£7.13
Configuration 4 23.51£16.50 25.38+12.52 81.59£8.15
Baseline 29.39£12.94 45.98£13.44 15.09+12.36
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4.4.7 Research Question 2

To answer whether there are significant differences in performance among
the different configurations of our FROM approach and the baseline in
Traceability Links Recovery, Feature Location, and Bug Localization, the
results should be properly compared. To do this, all of the data result-
ing from the empirical analysis was analyzed using statistical methods
following the guidelines in (Arcuri and Briand 2014).

The goals of our statistical analysis are: (1) to provide formal and quan-
titative evidence (statistical significance) that the configurations and the
baseline do in fact have an impact on the comparison metrics (i.e., that
the differences in the results were not obtained by mere chance); and (2)
to show that those differences are significant in practice (effect size).

To enable statistical analysis, all configurations should be run a large
enough number of times (independently) to collect information on the
probability distribution for each type of query. A statistical test should
then be run to assess whether there is enough empirical evidence to claim
that there is a difference between the two configurations. In order to do
this, two hypotheses are defined: (1) the null hypothesis Hy is typically
defined to state that there is no difference among the configurations and
the baseline, and (2) the alternative hypothesis H; states that at least
one configuration differs from another. A statistical test aims to verify
whether Hj should be rejected.

The statistical tests provide a probability value, p —value, which obtains
values between 0 and 1. The lower the p — value of a test, the more
likely that Hy is false. It is accepted by the research community that a
p —value under 0.05 is statistically significant (Arcuri and Briand 2014),
and so Hy can be considered false.

The test to follow depends on the properties of the data. Since our data
does not follow a normal distribution, our analysis requires the use of non-
parametric techniques. There are several tests for analyzing this kind of
data; however, the Quade test shows is more powerful when working with
real data (Garcia et al. 2010).
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In addition, according to Conover (Conover 1999), the Quade test has
shown better results than the others when the number of algorithms is
low (no more than 4 or 5 algorithms).

RQ, answer. The p — Values and statistics of the Quade test are
shown in the upper part of Table 4.3. Since the p — Values shown in
this table are smaller than 0.05 in all cases, we reject the null hypothesis.
Consequently, we can state that there are significant differences in the
configurations and the baseline of Traceability Links Recovery, Feature
Location and Bug Localization for all the performance indicators (recall
and precision).

Table 4.3: Results of the statistical analysis

Quade test statistic and p — Values

Traceability Links Recovery Feature Location Bug Localization
Recall Precision Recall Precision Recall Precision
p — value 5021071 <« 222107 <« 222107 <« 22210710 <« 22710710 < 2.271071¢
Statistic 21.38 40.42 145.06 110.99 60.81 63.24

Holm’s post hoc p — Values

Traceability Links Recovery Feature Location Bug Localization

Recall Precision Recall Precision Recall Precision
Clvs C2 2.721071° < 2710716 0.2 0.15 0.26 0.33
C1vs C3 2.72107%% < 2210716 < 2710716 < 2210716 3.1x10~1 3.1z10~1
Clvs C4 < 22107 <« 2210716 < 221071 <« 221071 4121071 4.121071
C1 vs Baseline  4.3z107'¢ < 2710716 2210710 < 2210716 0.002 0.025
C2 vs C3 0.27 0.8 < 2210716 < 2210716 9.4x10~1 3.1z10~1
C2 vs C4 0.02 0.03 < 2210716 < 2x10716 4121071 3.1z1071
C2 vs Baseline 0.73 0.26 2.4x1071 < 2210716 9.9x10~% 0.005
C3 vs C4 0.002 0.15 0.22 0.03 0.28 0.003
C3 vs Baseline 0.36 0.52 < 2210716 9.6210712 3.1x1071 5421071
C4 vs Baseline 0.002 0.46 < 2710716 6.62107%° 3.1zx10~1 3.1z10° 1

/112 statistic for each pair

Traceability Links Recovery Feature Location Bug Localization

Recall Precision Recall Precision Recall Precision
C1 vs C2 0.7982 0.8811 0.4456 0.4358 0.4563 0.4388
C1vs C3 0.7105 0.8312 0.9868 0.9701 0.0006 0.0130
Clvs C4 0.8433 0.8893 0.9807 0.9381 0.0045 0.0028
C1 vs Baseline 0.8024 0.8873 0.7275 0.8867 0.7018 0.6590
C2vs C3 0.4487 0.5212 0.9905 0.9736 0.0130 0.0040
C2vs C4 0.6040 0.5932 0.9839 0.9473 0.0130 0.0005
C2 vs Baseline 0.4812 0.5554 0.7639 0.9066 0.7415 0.6910
C3 vs C4 0.6284 0.5613 0.4555 0.4198 0.4453 0.3226
C3 vs Baseline 0.5378 0.5277 0.0678 0.2653 0.9972 0.9858
C4 vs Baseline 0.3793 0.4627 0.0890 0.3474 0.9949 0.9977
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4.4.8 Research Question 3

To answer whether a configuration has a significant impact in perfor-
mance, the performance of the configuration should be statistically com-
pared against all others. In order to do this, we perform an additional
post hoc analysis (pair-wise comparison among configurations, also in-
cluding the baseline). The middle part of Table 4.3 shows the p— Values
of Holm’s post hoc analysis for pair-wise comparison of configurations
and the baseline for the performance indicators in Traceability Links
Recovery, Feature Location and Bug Localization. The majority of the
p — Values shown in this table are smaller than their corresponding sig-
nificance threshold value (0.05), indicating that the differences of perfor-
mance between the configurations are significant. However, some values
are greater than the threshold, indicating that the differences between
those configurations are not significant.

However, when comparing configurations with a large enough number
of runs, statistically significant differences can be obtained even if they
are so small as to be of no practical value (Arcuri and Briand 2014). It
is important to assess, through effect size measures, if a configuration
is statistically better than another one, and if so, the magnitude of the
improvement.

For a non-parametric effect size measure, we use Vargha and Delaney’s
Ay (Vargha and Delaney 2000; Grissom and J. J. Kim 2005). Ajy mea-
sures the probability that running one configuration yields higher values
than running another configuration. If the two configurations are equiva-
lent, then A12 will be 0.5. For example, A12 = 0.7 means that the first of
the pair of configurations would obtain better results in 70% of the runs,
and Ajp = 0.3 means that the second of the pair of configurations would
obtain better results in 70% of the runs. We record an A, value for every
pair of configurations as well as for every configuration and the baseline
in Traceability Links Recovery, Feature Location and Bug Localization.

The lower part of Table 4.3 shows the values of the effect size statis-
tics between the configurations and the baseline in Traceability Links
Recovery, Feature Location and Bug Localization.
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4.5 Discussion

In Traceability Links Recovery, the largest differences were obtained in
comparisons that entail Configuration 1, where the largest difference is
obtained when compared with Configuration 4 (0.8433 for recall and
0.8893 for precision). Therefore, Configuration 1 outperforms Configu-
ration 4 for recall and precision with a pronounced superiority (84.33%
of the times for recall and 88.93% of the times for precision). In Feature
Location, Configuration 1 and Configuration 2 show a pronounced superi-
ority over Configuration 3, Configuration 4 and the baseline. The largest
difference is obtained when comparing Configuration 2 with Configura-
tion 3 (0.9905 for recall and 0.9736 for precision). In Bug Localization,
Configuration 3 and Configuration 4 show a pronounced superiority over
Configuration 1 and Configuration 2. The largest differences are obtained
when comparing Configuration 1 with Configuration 3 for recall (0.0006)
and when comparing Configuration 2 with Configuration 4 for precision
(0.0005).

RQ3 answer. From the results, we can conclude that the configuration
against the type of query has an actual impact in performance.

4.5 Discussion

The results of our approach show that the configuration of fitness objec-
tives that provides the best result in Traceability Links Recovery, Bug
Localization and Feature Location is different for each of them. As de-
scribed in Section 4.4.5, the parameters of the evolutionary algorithm
in use have been chosen according to the literature values. However, as
suggested by (Arcuri and Fraser 2013) and confirmed in (Kotelyanskii
and Kapfhammer 2014), tuned parameters can outperform default val-
ues, but are far from optimal in individual problem instances. Since the
objective of this paper is to evaluate the different configurations, we do
not tune the values to improve the performance of our algorithm.

By analyzing the impact on the results for Traceability Links Recov-
ery, Bug Localization and Feature Location of the four configurations of
fitness objectives, our findings suggest that:
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1 From the four configurations, there is not a unique combination of
objectives that retrieves the best results for all the types of queries.

2 Model Similitude, by itself, obtains the best results in the queries
for Traceability Links Recovery but it is not powerful enough to
achieve the best results in the queries for Feature Location and Bug
Location.

3 Model Understandability, which is a desirable objective (since it
allows for an easier comprehension of model fragments by software
engineers) cannot be systematically applied to Traceability Links
Recovery. The configurations where it is applied (2 and 4) yield
worse Traceability Links Recovery results than those where it is not
applied.

4 Model Timing is only useful for Bug Localization, not contributing
to improve the results in Traceability Links Recovery or Feature
Location.

5 Requirements, bugs, and features can all be described through NL,
but are of different nature. Different fitness configurations guide
the Evolutionary Algorithm better, depending on the task (Trace-
ability Links Recovery, Bug Localization, Feature Location) that
is being carried out: Configuration 1 (Similitude) for Traceability
Links Recovery, Configuration 4 (Similitude + Understandability +
Timing) for Bug Localization, and Configuration 2 (Similitude +
Understandability) for Feature Location.

The results of evaluating our approach show that Traceability Link Re-
covery achieves the worst results. We detected that this happens because
when requirements are written, part of the domain knowledge related to
the requirements is assumed to be known by all the domain experts, so
it is not formalized. For example, given the requirement: At all stations,
the doors are automatically opened, the engineers understand that the
doors have to be opened in all the stations without being requested by a
passenger.
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However, this requirement embodies tacit knowledge that is obvious to
the domain engineers: The train has doors on both sides, but only the
doors on the side of the platform will be opened while the doors on the
side of the tracks will remain closed, and all the doors of one side will be
opened, except the driver’s door in the cabin.

Tacit knowledge is not reflected in the text of the requirements, since it
is shared between the engineers who write and read the requirements. As
a result, the models are built through both the text of the requirements,
and the tacit knowledge of the engineers, leading to models that contain
elements built according to the text of the requirements, and elements
built through tacit knowledge.

However, since part of the knowledge is not reflected in the text of the
requirement, the similitude objective is negatively influenced. The simili-
tude objective establishes the similarity between the query and the model
fragment according to the co-occurrences of terms between both. Config-
uration 1 (similitude objective only) achieves worse results for Traceabil-
ity Link Recovery than for Feature Location. Feature descriptions are
less vulnerable to the tacit knowledge issue since they are written in a
different style, in a different moment of the software life cycle, and with
a different goal in mind. Requirements play a key role in the contracts
between our industrial partner and their clients, but feature descriptions
are for internal use only.

Model understandability does not pay off in the particular case of Trace-
ability Link Recovery. Configurations 2 and 4 (which include the under-
standability objective) achieve worse results than Configuration 1 (simil-
itude objective only). Model understandability favors model fragments
that involve a lower number of model elements. In the face of (1) a model
fragment (that includes model elements related to the tacit knowledge),
and (2) a model fragment that is a subset of the former (without the
model elements related to the tacit knowledge), the first model fragment
not only does not achieve a better result for the similitude objective,
but it is also penalized by the understandability objective because of its
higher model elements count.
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Also, our results confirm the relevance of the Defect Principle (Zimmer-
mann et al. 2004) in model fragment retrieval since the configurations
that include Model Timing (Configuration 3 and 4) obtained the best re-
sults in Bug Location. This is because the majority of bugs (about 90%)
provided by our industrial partner are related to recent modifications. In
contrast, Model Timing negatively influenced the results in Traceability
Links Recovery and Feature Location. Given either a requirement or a
feature description, it is not safe to assume than in most of the cases it
is related to a model fragment modified recently.

Vocabulary mismatch is a phenomena that occurs when when distinct
words are used to refer to the same concept in both query and models.
This happens most when the engineer in charge of defining the query
(requirement, feature description, or bug description) has not been in-
volved in the construction of the model, and when different engineers are
in charge of working with the queries and the models.

Even though we use Natural Language Processing (NLP) to unify the
language of the terms shared by queries and models, vocabulary mis-
match remains an issue that must be taken into account: the in-house
terms are often not recognized as eligible synonyms, and are therefore
excluded from NLP, leading to vocabulary mismatch. For example, the
terms PLC and system may be recognized as synonyms, but the terms
PLC and COSMOS? are definitely not known to be synonyms, because
COSMOS is an in-house term that is used exclusively by our industrial
partner to refer to the term PLC. To minimize the vocabulary mismatch
issue, NLP should be extended in order to include a list of in-house syn-
onyms.

Finally, our approach takes as input a query to provide a ranking of solu-
tions that the engineer can inspect instead of having to look for solutions
manually. This helps engineers since they do not have to inspect large
and complex models manually each time that a software maintenance
activity needs to be carried out. The engineers can also consider the
solutions of the ranking as a starting point from where solutions can be
manually refined.

Shttp://www.cafpower.com/en/systems/control-communication/tcms-system-cosmos
p p y y
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4.6 Threats to validity

Furthermore, after inspecting the solutions, the user may refine the query
and iterate the process to obtain different solutions. Our findings are
encouraging and indicate that we should further research this field.

4.6 Threats to validity

We follow the guidelines suggested by De Oliveira et al. (Oliveira Barros
and Neto 2011) to identify the threats to the validity of our work.

Conclusion validity threats: The first threat of this type is not ac-
counting for random variation. To address this threat, we considered 30
independent runs for each query and configuration. The second threat
is the lack of a formal hypothesis and statistical tests. In this paper
we employed standard statistical analysis following accepted guidelines
(Arcuri and Fraser 2013) to avoid this threat. The third threat is the
lack of a good descriptive analysis. In this work, we have used the recall,
precision and F-measure measurements to analyze the confusion matrix
obtained; however, other measurements could be applied. Some works
argument that the use of the Vargha and Delaney A;5 measurement can
be miss-representative (Arcuri and Fraser 2013) and that data should be
pre-transformed before applying it. We did not find any use cases for
data pre-transformation that applied to our case study.

Internal validity threats: The first identified threat of this type is the
poor parameter settings threat. In this paper we used standard values for
the algorithms. As suggested by Arcuri and Fraser (Arcuri and Fraser
2013), default values are good enough to measure the performance of
location techniques. These values have been tested in similar algorithms
for Feature Location (Lopez-Herrejon et al. 2015). In addition, the tuning
of the 'k’ value in the application of SVD can affect the results of LSI,
and should be further studied (Thomas et al. 2013; Borg, Runeson, and
Ardd 2014). Nevertheless, we plan to evaluate all the parameters of our
algorithm in a future work. The second threat is the lack of real problem
instances. The evaluation of this paper was applied to an industrial case
study.
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Construct validity threats: The identified threat is the lack of as-
sessing the validity of cost measures threat. To address this threat we
performed a fair comparison among the configurations by allocating a
fixed amount of wall clock time for each run of the algorithm in order to
set the same amount of time to traverse the search space.

External validity threats: In order to mitigate the lack of a clear
object selection strategy, our approach uses an industrial case study,
which instances are collected from real world problems.

Moreover, our approach has been designed to be generic and applicable
not only to the domain of our industrial partner but also to other different
domains: the fitness function can be applied to any model conforming
to MOF, and the text elements associated to the models are extracted
automatically by the approach using the reflective methods provided by
the Eclipse Modeling Framework. The requisites to apply our approach
are that the set of models conform to MOF, and the query is provided in
NL. However, our approach should be applied to other domains before
assuring its generalization.

4.7 Related Work

Works related to this one comprehend Traceability Links Recovery, Bug
Localization, and Feature Location. Through this section, some of these
related works are analyzed and compared with ours.

4.7.1 Traceability Links Recovery

There are several approaches to Traceability Links Recovery, being NLP
and LSI the most common. The role of NLP in requirements engineering
is vital to the Software Engineering community (Ryan 1993). NLP has
been applied to tackle Traceability Links Recovery at several levels of
abstraction and specific problems and tasks in works like (Sultanov and
Jane Huffman Hayes 2010; Senthil Karthikeyan Sundaram et al. 2010)
or (Duan and Cleland-Huang 2007). In (Falessi, Cantone, and Canfora
2013), NLP is used to identify equivalence between requirements, and a
series of performance evaluation principles to do so are defined.
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The authors conclude that the performance of NLP is determined by
the properties of the studied dataset. They measure the properties as
a factor to adjust NLP, and apply their principles to an industrial case
study. The work presented in (Arora et al. 2015) uses NLP to study how
changes in requirements impact other requirements. The authors ana-
lyze Traceability Links Recovery between requirements, and use NLP to
determine how changes in requirements must propagate. The work pre-
sented in (J. H. Hayes, S. K. Sundaram, and Dekhtyar 2006) uses LSI
and analyst feedback to trace code to requirements. Finally, the authors
of (Eder et al. 2015) consider the possible configurations of LSI when us-
ing the technique for Traceability Links Recovery between requirements
and test cases, and state that LSI configurations depend on the datasets.
They look forward to automatically determining said configuration.

Our work differs from (Ryan 1993; Sultanov and Jane Huffman Hayes
2010; Senthil Karthikeyan Sundaram et al. 2010; Duan and Cleland-
Huang 2007), since we do not use NLP as a means of Traceability Links
Recovery analysis. We do not evaluate its performance nor the tweak-
ing of NLP as (Falessi, Cantone, and Canfora 2013) does. Instead, we
use NLP to unify the input for LSI. In addition, our work also differs
from (Arora et al. 2015), since we do not tackle changes in requirements
nor Traceability Links Recovery between requirements, but rather study
Traceability Links Recovery between requirements and a set of evolving
model fragments. Moreover, our work also differs from (J. H. Hayes,
S. K. Sundaram, and Dekhtyar 2006) since we do not use feedback from
humans in the tracing process and we target models instead of code. In
contrast with (Eder et al. 2015), we do not tackle LSI configurations or
their impact on Traceability Links Recovery, but rather analyze how dif-
ferent fitness objectives configurations affect the Evolutionary Algorithm
when recovering traceability links.
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4.7.2 Bug Localization

In recent years, many Bug Localization approaches have been proposed.
Lukins et al. (Lukins, Kraft, and Etzkorn 2010) used Latent Dirichlet
Allocation (LDA) for predicting the location of a newly reported bug
through source code comments and identifiers as information resources.
Zhou et al. (Zhou, H. Zhang, and Lo 2012) proposed a revised Vector
Space Model (VSM) approach for improving the performance of bug lo-
calization, based on the idea that bugs are more likely to appear in larger
files, also using the similarity between the text of new bug reports and
previously fixed bugs. Thomas et al. (Thomas et al. 2013) evaluated
the performance of combinations of IR-based classifiers for bug location
in code. Saha et al. (Saha et al. 2013) presented BLUIR, which uses a
TF-IDF model baseline. They believe code constructs improve the accu-
racy of bug localization, so the source code is syntactically parsed into
four document fields: class, method, variable, and comment. The sum-
mary and the description of a bug report are considered as query fields.
Textual similarities are computed for each of the eight document-query
pairs, and summarized into a ranking. Kim et al. (D. Kim et al. 2013)
propose a one-phase and a two-phase prediction models to recommend
files to fix. In the one-phase model, they create features from textual
information and meta-data, apply Naive Bayes to train the model using
fixed files as classification labels, and use said model to assign source
files to a bug report. In the two-phase model, they apply their one-phase
model to classify a new bug report as "predictable" or "deficient", and
then make predictions for "predictable" reports. These approaches target
code, while our approach targets models to locate the bug realizations.
Moreover, these approaches rely on IR techniques only, while ours uses an
Evolutionary Algorithm that generates possible solutions. In addition,
we tackle how different combinations of objectives affect the results of
our approach. Zamani et al (Zamani et al. 2014) proposed an approach
to rank source code locations, based on textual similarity with change re-
quests and the use of time meta-data. This approach gives better results
than IR techniques, however, it is applied at the source code level. We
use a Evolutionary Algorithm to address the location of bugs in models.
In our case, the Defect principle is one of the three computed objectives,
activated depending on the configuration.
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4.7.3 Feature Location

Approaches related to Feature Location comprehend feature and require-
ment location techniques. Typechef (Késtner et al. 2011) provides an
infrastructure to locate code associated to a given feature by analyzing
#ifdef directives. Trace analysis (Eisenberg and Volder 2005) is a tech-
nique that indicates the executed code at run-time. Some approaches
related to feature location use LSI to extract code associated to a feature
(Poshyvanyk et al. 2007; D. Liu et al. 2007). These techniques have been
generally applied to search code. In contrast, our approach searches for
model fragments.

Feature location approaches in product families (Xue, Xing, and Jarz-
abek 2012) center their efforts in finding the code that implements a
feature between different products through FCA (Ganter and R. Wille
2012) and LSI. In our approach, we are instead interested in locating
the most relevant model fragments for a feature. Other works (She et
al. 2011) focus on applying reverse engineering to source code to obtain
the variability model. In (Czarnecki and Wasowski 2007) the authors
use propositional logic to describe the dependencies between features. In
(Nadi et al. 2014) the authors combine Typechef and propositional logic
to extract conditions among features. These works engage the variabil-
ity of products, but do tackle the most relevant model fragments for the
development of features.

In (Lapena, Ballarin, and Cetina 2016), Lapena et al. use POS Tagging
along with an adapted two-step LSI to obtain rankings of methods for
the requirements of a new product in a product family. In the presented
work, we use a Multiple Objective Evolutionary Algorithm (MOEA) to
find model fragments that can be used to implement a particular feature,
and analyze how distinct fitness objective configurations affect the results
instead.

Some works (D. Wille, Sonke Holthusen, et al. 2013b; Sénke Holthusen
et al. 2014b; X. Zhang, Oystein Haugen, and Mgller-Pedersen 2011; X.
Zhang, QOystein Haugen, and Mgller-Pedersen 2012; Jabier Martinez et
al. 2015b) focus on the location of features over models by comparing
the models with each other to formalize the variability among them.
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The presented work differs from these works in that the aim is not to
formalize the variability, but to locate model fragments relevant to the
provided feature descriptions.

Font et al. (Font et al. 2016a) use a Single Objective Evolutionary Al-
gorithm (SOEA) to locate features among a family of models. Their
approach is refined in (Font et al. 2016b), where the authors use a SOEA
to find sets of suitable feature realizations. The authors cluster model
fragments based on their common attributes through FCA, and then LSI
ranks the candidates based on the similarity with the feature description.
The presented approach differs from (Font et al. 2016a) and (Font et al.
2016b) by leveraging a MOEA, with a fitness function that combines
three fitness objectives to determine the fitness scores of the evolving
model fragments.

In (Font et al. 2017), Font et al. performed a comparison between five dif-
ferent SOEAs (Evolutionary Algorithm, Random Search, Steepest Ascent
Hill Climbing with Replacement, Iterated Local Search with Random
Restarts, and Hybrid between Evolutionary and Hill-Climbing) for fea-
ture location in models, showing that the best results where achieved by a
hybrid between an evolutionary algorithm and a hill climbing. Cetina et
al. (Cetina et al. 2017) explored a new direction: taking advantage of al-
ready long-living software systems (designed with sustainability in mind)
to address the challenge of feature location. Specifically, they used com-
monality and modifications fitness though model retrospectives in order
to promote model fragments that suffered less modifications throughout
time. Through this work, we analyze the impact that different configu-
rations of objectives (four combinations of similitude, understandability
and timing) have over the results depending on the maintenance task
that is performed, which is something that (Font et al. 2016a; Font et al.
2016b; Font et al. 2017; Cetina et al. 2017) do not tackle.
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4.8 Concluding Remarks

Traceability Links Recovery, Bug Localization, and Feature Location are
amongst the most common tasks in the Software Engineering field. How-
ever, their application to conceptual models has not received enough
attention yet. We propose an approach, named Fragment Retrieval on
Models (FROM), that uses a Multi-Objective Evolutionary Algorithm to
retrieve the most relevant model fragments for different types of queries
(NL requirements for Traceability Links Recovery, bug descriptions for
Bug Localization, and feature descriptions for Feature Location). Our
approach is guided by four configurations that combine three different fit-
ness objectives: Model Similitude, Model Understandability, and Model
Timing. Through this work, we analyze the impact of each configura-
tion on the results of the Evolutionary Algorithm for Traceability Links
Recovery, Bug Localization, and Feature Location.

Our results show new findings that are relevant for general fragment re-
trieval approaches since none of the four configurations achieve the best
results for all the types of NL queries provided as input. Requirements,
bugs and features can be described using NL but depending on the task
that is being carried out (Traceability Links Recovery, Bug Localization,
Feature Location) different fitness configurations are better. For exam-
ple, model fragment similitude obtains the best results for Traceability
Links Recovery but it is not powerful enough to obtain the best results in
Bug Localization, in which model timing is useful to improve the results.

In future iterations of our work, we will perform parameter tuning of the
evolutionary algorithm and the dimensions 'k’ value of LSI. We also plan
to evaluate machine learning techniques, such as the ones of the learning
to Rank family (T.-Y. Liu et al. 2009), as fitness objectives that guide
the retrieval of model fragments for model maintenance tasks.
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Appendix A: Algorithms

Algorithm 1 Random Fragment Generation

: E < randomElement(model)
. F < newFragment(E)
: N < neighbor(E)
random < randomlInteger < modelSize
iterator <0
while iterator < random do
P+ FE
E+ N
F «+ add(E)
N < neighbor(E) # P
if N = ¢ then
exit while
end if
. end while
. return fragment

© X NPT RN

= = = =
A~ S v

Algorithm 2 Crossover Operation

. M « firstParent

: N < secondParent

. F < fragment(firstParent)

if '€ N then
I « individual(F, N)
return [

else
I < individual (F, M)
return /

: end if

© 0 NPT RN

—_
o
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Algorithm 3 Mutation Operation

1
2
3
4:
5:
6
7
8
9

: O <+ operation
. I + individual
. if operation = addition then

E < additionCandidate Element(1)
N < neighbor(E)
I < add(N)

. else

E < removalCandidate Element(I)
I <+ remove(E)

10: end if
11: return [

Appendix B: Metrics to measure the size of a model fragment

Ul

U2

U3

Counting the number of elements in a model: To do this,
(Storrle 2014) uses labels, shapes, and lines. Shapes refer to the
visual elements of the models, lines refer to connectors, and labels
refer to descriptive independent text. This metric neglects diagram
differences, implying that all elements contribute the same amount
of complexity and information to the diagram.

Weight factors per model element: In (Storrle 2014), the au-
thor uses the findings of (Koffka 2013) to classify the elements in the
models into three complexity levels, assign weights accordingly, and
computing the diagram size as the weighed number of elements.
This metric does not take in account the inherent differences be-
tween diagrams.

Weight factors per model element per diagram type: The
author of (Storrle 2014) computes the information content of dia-
gram elements (e) as the binary logarithm of the set of elements (E)
a modeler may choose from: weight(e) = log,(|E]).
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Chapter 5

Exploring New Directions in
Traceability Link Recovery in
Models: the Process Models

Case

Traceability Links Recovery (TLR) has been a topic of
interest for many years. However, TLR in Process Models
has not received enough attention yet. Through this work, we
study TLR between Natural Language Requirements and Pro-
cess Models through three different approaches: a Models spe-
cific baseline, and two techniques based on Latent Semantic
Indexing, used successfully over code. We adapted said code
techniques to work for Process Models, and propose them as
novel techniques for TLR in Models. The three approaches
were evaluated by applying them to an academia set of Pro-
cess Models, and to a set of Process Models from a real-world
industrial case study. Results show that our techniques re-
trieve better results that the baseline Models technique in both
case studies. We also studied why this is the case, and iden-
tified Process Models particularities that could potentially lead
to improvement opportunities.
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5.1 Introduction

Traceability Link Recovery (TLR) has been a subject of investigation
for many years within the software engineering community (Gotel and
Finkelstein 1994; Spanoudakis and Zisman 2005). Research has shown
that affordable Traceability can be critical to the success of a project
(Watkins and Neal 1994), and leads to increased maintainability and re-
liability of software systems by making it possible to verify and trace
non-reliable parts (Ghazarian 2010). Specifically, more complete Trace-
ability decreases the expected defect rate in developed software (Rempel
and Mader 2017).

In recent years, TLR has been attracting more attention, becoming a sub-
ject of both fundamental and applied research (Parizi, Lee, and Dabbagh
2014). However, most of the works focus on code (Rubin and Chechik
2013), and the application of Traceability Links Recovery techniques to
Process Models is a topic that has not received enough attention yet.

Through this work, we study TLR between Natural Language Require-
ments and Process Models through three different approaches. Given a
query Requirement and a Process Model, the three techniques use differ-
ent means to extract a Model Fragment from the Model, being said Model
Fragment relevant to the implementation of the query Requirement. The
first technique is a Linguistic technique based on Parts-of-Speech (POS)
Tagging and Traceability rules (Spanoudakis, Zisman, et al. 2004). The
technique was designed specifically for TLR in Models, and is used as
a baseline against which the proposed techniques are compared. The
other two techniques (named ’Aggregation’ and "Mutation Search’) are
based on Latent Semantic Indexing and Singular Value Decomposition, a
well-spread Information Retrieval technique that has been applied previ-
ously to TLR in code, obtaining good results in the process (Rubin and
Chechik 2013). None of the two LSI-based techniques have been applied
to extract TLR between Requirements and Process Models previously.
Therefore, we adapted them to work for Process Models and propose
them as novel techniques in the field.

136



5.1 Introduction

The three approaches were evaluated through the Camunda BPMN for
Research case study', as well as through a real-world industrial case
study, provided by our industrial partner, CAF? (Construcciones y Aux-
iliar de Ferrocarriles), a worldwide provider of railway solutions.

Results show that the Mutation Search technique achieves the best re-
sults for all the measured performance indicators in both case studies,
providing a mean precision value of 63%, a mean recall value of 77%, a
combined F-measure of 68%, and an MCC value of 0.60 for the Camunda
BPMN for Research case study, and a mean precision value of 79%, a
mean recall value of 72%, a combined F-measure of 74%, and an MCC
value of 0.69 for the CAF case study. In contrast, the Linguistic base-
line and the Aggregation technique present worse results in these same
measurements in both case studies.

The overall findings of our paper suggest that adapting techniques that
have provided good results in code is beneficial for TLR between Re-
quirements and Process Models, since their results outperform those of
a technique created specifically with Models in mind. Moreover, studied
why this is the case, and identified Process Models particularities that
could potentially lead to improvement opportunities.

The rest of the paper is structured as follows: Section 5.2 describes our
Approach, that is, our proposed techniques and how to apply them to
TLR between Requirements and Process Model fragments. Section 5.3
details the baseline technique and the designed Evaluation. Section 5.4
presents the obtained results. Section 5.5 discusses the outcomes of the
paper. Section 5.6 presents the Threats to Validity of our work. Section
5.7 reviews the works related to this one. Finally, Section 5.8 concludes
the paper.

Thttps://github.com/camunda/bpmn-for-research
2http://www.caf.es/en
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5.2 Approach

Through the following paragraphs, we give an introduction on Latent
Semantic Indexing, the technique upon which we base the two novel
techniques proposed for TLR between Requirements and Process Models.
Afterwards, we describe said techniques, providing insight on their steps,
application, and outcomes.

5.2.1 Latent Semantic Indexing

Latent Semantic Indexing (LSI) (Landauer, Foltz, and Laham 1998) is
an automatic mathematical/statistical technique that analyzes relation-
ships between queries and documents (bodies of text). LSI has been
successfully used to retrieve Traceability Links between different kinds
of software artifacts in different contexts, specially among Requirements
and code (Rubin and Chechik 2013). This is due to the fact that code
often encodes domain knowledge in the form of domain terms, which are
also encoded in the Requirements, hence causing LSI to detect similitude
between both.

So far, the technique has not been transported to Process Models. We
propose two techniques that use LSI for TLR between Requirements and
Process Models. In particular, both techniques use LSI to produce a
Model Fragment from the Process Model that serves as a candidate for
realizing the Requirement. The following sections give more details on
the process.

5.2.2 Aggregation

The first of the two proposed techniques receives a query Requirement
and a Process Model as input, and generates a ranking of Model Elements
through LSI. From the ranking, a Model Fragment is generated. To that
extent, the Process Model is firstly split into Model Elements, represented
through the text they contain, which is extracted and used as input for
LSI.
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Figure 5.1: Aggregation Technique Example

The top part of Fig. 5.1 shows this process, having the example input
Process Model on the left, and the resulting Model Elements on the right,
including: (1) lanes ’Inhibition’, "Human’, and '"PLC’ (ME1, ME2, ME3);
(2) the start and end events (ME4, ME10, ME14); (3) the exclusive
gateway 'Are the doors open?’ (MES); (4) the 'Push the doors button’
and 'Open the doors’ tasks (ME6, ME12); and (5) the sequence flows of
the diagram (ME5, ME7, ME9, ME11, ME13).

The text of the Requirement and the Model Elements is then treated
through Natural Language Processing techniques. To that extent, gen-
eral phrase styling techniques, Parts-Of-Speech Tagging (Hulth n.d.), and
Lemmatizing (Plisson, Lavrac, Mladenic, et al. n.d.) are applied.

Finally, the Requirement and the Model Elements are fed into L.SI, which
ranks the Model Elements according to their similitude to the Require-
ment. The bottom left part of Fig. 5.1 shows an example term-by-
document co-occurrence matrixz, with values associated to our running
example. In the following paragraph, an overview of the elements of the
matrix is provided.
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Each row in the matrix (term) stands for each of the words that appear
in the processed text of the Requirement and the Model Elements. In
Fig. 5.1, it is possible to notice a subset of said words such as 'Door’ or
'Button’ as the terms of each row. Each column in the matrix (document)
stands for each of the Model Elements extracted from the input Process
Model. In Fig. 5.1, it is possible to notice identifiers in the columns such
as 'ME3’ or 'ME12’, which stand for the documents of those particular
Model Elements (namely, the processed text of 'ME3’ and '"ME12’). The
final column (query), stands for the processed input Requirement. Each
cell in the matrix contains the frequency of each term in each document.
For instance, in Fig. 5.1, the term 'Door’ appears once in the '"ME12’
document and once in the query.

Vector representations of the documents and the query are obtained by
normalizing and decomposing the term-by-document co-occurrence ma-
trix using a matrix factorization technique called Singular Value De-
composition (SVD) (Landauer, Foltz, and Laham 1998). SVD is a form
of factor analysis, or more properly the mathematical generalization of
which factor analysis is a special case. In SVD, a rectangular matrix is
decomposed into the product of three other matrices. One component
matrix describes the original row entities as vectors of derived orthog-
onal factor values, another describes the original column entities in the
same way, and the third is a diagonal matrix containing scaling values
such that when the three components are matrix-multiplied, the original
matrix is reconstructed.

In Fig. 5.1, a three-dimensional graph of the SVD is provided, on which it
is possible to notice the vectorial representations of some of the columns.
For legibility reasons, only a small set of the columns is represented.
To measure the similarity degree between vectors, the cosine between
the query vector and the documents vectors is calculated. Cosine values
closer to one denote a high degree of similarity, and cosine values closer
to minus one denote a low degree of similarity. Similarity increases as
vectors point in the same general direction (as more terms are shared
between documents). Through this measurement, the Model Elements
are ordered according to their similarity degree to the Requirement.
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The relevancy ranking (which can be seen in Fig. 5.1) is produced ac-
cording to the calculated similarity values. In this example, LSI retrieves
'ME12’, 'ME6’, and "MES’ in the first, second, and third position of the
relevancy ranking due to their query-documents cosines being ’0.9343’,
’0.8524" and ’0.7112’, implying high similarity between the Model Ele-
ments and the Requirement. On the opposite, the 'ME4’ Model Element
is returned in a latter position of the ranking due to its query-document
cosine being -0.8736’, implying a low similarity degree.

From the ranking, of all the Model Elements, those that have a similarity
measure greater than x must be taken into account. The heuristic that
we adopted, and that is used in other works, is = 0.7 (Marcus et al.
2004; Salman, Seriai, and Dony 2014). This value corresponds to a 45°
angle between the corresponding vectors. Nevertheless, the selection of
this threshold is an issue still under study, and its proper parametrization
has not been tackled in Process Models yet.

Following this principle, the Model Elements with a similarity measure
equal or superior to x = 0.7 are taken to conform a Model Fragment,
candidate for realizing the Requirement. Through the example provided
in Fig. 5.1, '"ME12’, 'ME6’ and 'MES8’ are the Model Elements that
conform the Model Fragment for the Requirement, due to their cosine
values being superior to the 0.7 threshold. The Model Elements below
the threshold, except for 'ME4’, are not shown in the ranking for space
and understandability reasons. The Model Fragment generated in this
manner is the final output of the Aggregation technique.

5.2.83 Mutation Search

The second of the two proposed techniques receives a query Requirement
and a Process Model as input, generates a population of Model Frag-
ments, and ranks said Model Fragments through LSI. From the ranking,
the first Model Fragment is taken as the proposed solution. In order to
generate the Model Fragments population, algorithm 4 is followed. In the
algorithm, an empty population and a seed Fragment (chosen randomly
from the input Process Model) are created.
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Then, until the algorithm mets a stop condition (for instance, a certain
number of iterations), the Fragment is mutated and each new mutation
is added to the population, avoiding the addition of repeated Fragments.

In the algorithm, a mutation in a Fragment can be caused by: (1) adding
one new event, gateway, or task that is connected to an already present
event, gateway, or task (the flow that causes the connection is also added
to the Fragment), (2) removing an Element with only one connection
(and the flow that causes said connection), or (3) adding or removing a
lane from the Fragment. The performed mutation is chosen randomly on
each iteration.

Algorithm 4 Mutation Search Algorithm

1 P+ > Initialize the population
2. F < randomFragment(inputModel) > Create an initial seed Fragment
3: while !(StopCondition) do > While the stop condition is not met
4: F <+ mutateFragment(F) > Mutate the Fragment
5: if I(F € P) then > If the new Fragment is not in the population
6: P+~ P+ F > Add the new mutation to the population
7 end if

s8: end while

9: return P > Return the population

The top part of Fig. 5.2 shows this process, having the example in-
put Process Model on the left, and some example Model Fragments on
the right, generated through the usage of the algorithm. The generated
Model Fragments are represented through the text contained in all their
elements. The text of both the input Requirement and the generated
Model Fragments is then processed through general phrase styling tech-
niques, Parts-Of-Speech Tagging, and Lemmatizing.

Finally, the Requirement and the Model Fragments are fed into LSI,
which ranks the Model Fragments according to their similitude to the
Requirement. The bottom left part of Fig. 5.2 shows an example term-
by-document co-occurrence matriz, with values associated to our running
example.
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Figure 5.2: Mutation Search Technique Example

The technique works exactly as it does in the Aggregation technique,
except that each column in the matrix (document) stands for each of
the Model Fragments (MF1 to MFn) generated through the algorithm
instead of standing for a single Model Element.

Vector representations of the documents and the query are obtained
by normalizing and decomposing the term-by-document co-occurrence
matriz using SVD, and the vectorial similarity degrees are calculated
through the cosines. The relevancy ranking on Fig. 5.2 is produced
according to the calculated similarity degrees. In this example, LSI re-
trieves "MF9’ in the first position of the relevancy ranking due to its
query-documents cosine being ’0.9791’. On the opposite, the 'MF6’
Model Fragment is returned in the last position of the ranking due to
its query-document cosine being ’-0.9384’.

From the ranking, the first Model Fragment is considered as the candidate
solution for the Requirement, and consequently taken as the final output
of the Mutation Search technique.
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5.3 Evaluation

Through the following paragraphs, we introduce the experimental setup
and the case studies used to evaluate the baseline and our two proposed
approaches, present the oracles used in the evaluation, and detail the
design and implementation of said evaluation.

5.3.1 Ezxperimental Setup

The goal of our work is to perform TLR between Requirements and Pro-
cess Models through the two proposed techniques, and to compare the
results obtained by said techniques against those of a Models specific
baseline. Fig. 5.3 shows an overview of the process that was followed to
evaluate the Linguistic baseline and our two proposed techniques. The
top part shows the inputs, which are extracted from the documenta-
tion provided in the case studies: Requirements, Process Models, and
approved Traceability between Requirements and Process Models. Each
case study comprises a set of Requirements, a Process Model, and an Ap-
proved Requirements to Model Fragments Traceability document, which
conforms the oracle of our evaluation.

For each case study, the Linguistic baseline and the Aggregation tech-
nique take the mentioned inputs, and generate a single Model Fragment
for each Requirement. The generated Model Fragments are compared
with the oracle Model Fragment. The Mutation Search technique gen-
erates a ranking of Model Fragments per Requirement instead. Since
the rankings are ordered from best to worst Traceability, the first Model
Fragment in each ranking is picked for comparison against its correspond-
ing oracle. Once the comparisons are performed, a confusion matrix is
calculated for the baseline and for each technique separately.

A confusion matrix is a table that is often used to describe the perfor-
mance of a classification Model (in this case the Linguistic baseline and
both of our techniques) on a set of test data (the solutions) for which
the true values are known (from the oracle). In our case, each solution
outputted by the three techniques is a Model Fragment composed of a
subset of the Model Elements that are part of the Process Model.
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Figure 5.3: Experimental Setup

Since the granularity is at the level of Model Elements, the presence or
absence of each Model Element is considered as a classification. The
confusion matrix distinguishes between the predicted values and the real
values, classifying them into four categories: (1) True Positive (TP),
values that are predicted as true (in the solution), and are true in the real
scenario (the oracle); (2) False Positive (FP), values that are predicted as
true (in the solution), but are false in the real scenario (the oracle); (3)
True Negative (TN), values that are predicted as false (in the solution),
and are false in the real scenario (the oracle); and (4) False Negative
(FN), values that are predicted as false (in the solution), but are true in
the real scenario (the oracle).

Then, some performance measurements are derived from the values in
the confusion matrix. In particular, a report including four performance
measurements (Recall, Precision, F-measure, and Matthews Correlation
Coefficient) is created for the case studies, for each of the three tech-
niques.
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Recall measures the number of elements of the solution that are correctly
retrieved by the proposed solution. Precision measures the number of
elements from the solution that are correct according to the ground truth.
F-measure corresponds to the harmonic mean of Precision and Recall

(Salton and McGill 1986).

However, none of these previous measures correctly handle negative ex-
amples (TN). The MICC is a correlation coefficient between the observed

and predicted binary classifications that takes into account all the ob-
served values (TP, TN, FP, FN), and is defined as follows:

TP-TN—-FP-FN

MCC =
/(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

Recall values can range between 0% (which means that no single model
element from the realization of the requirement obtained from the or-
acle is present in the model fragment of the solution) to 100% (which
means that all the model elements from the oracle are present in the
solution). Precision values can range between 0% (which means that no
single model element from the solution is the oracle) to 100% (which
means that all the model elements from the solution are present in the
oracle). A value of 100% precision and 100% recall implies that both the
solution and the requirement realization from the oracle are the same.
MCC values can range between —1 (which means that there is no corre-
lation between the prediction and the solution) to 1 (which means that
the prediction is perfect). Moreover, a MCC value of 0 corresponds to a
random prediction.

5.3.2 Linguistic Rule-Based Baseline

Spanoudakis et al. (Spanoudakis, Zisman, et al. 2004) present a linguistic
rule-based approach to support the automatic generation of Traceability
Links between Natural Language Requirements and Models.
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Specifically, the Traceability Links are generated following two stages: (1)
a Parts-of-Speech (POS) tagging technique (Leech, Garside, and Bryant
1994) is applied on the Requirements that are defined using Natural
Language, and (2) the Traceability Links between the Requirements and
the Models are generated through a set of Requirement-to-object-Model
(RTOM) rules.

The RTOM rules are specified by investigating grammatical patterns in
Requirements. These rules are specified as sequences of terms, and define
relations between Requirements and Model Elements. For instance, a
rule may attempt to match a verb-article-noun pattern that appears in a
Requirement with the text that appears in a Model Element. The rules
are atomic: the matching succeeds if the Model Element contains the
same words in the same pattern.

In (Spanoudakis, Zisman, et al. 2004), the authors propose 26 rules,
applied to a Requirement and a Model in order to retrieve a set of Model
Elements from the Model that are related to the Requirement. These
Model Elements compose the Model Fragment as a result. We worked
with a set of rules adapted to work over Process Models.

5.3.3 Case Study

In order to perform the evaluation of the three approaches, we rely on
two different case studies: (1) the Camunda BPMN for Research aca-
demic repository, and (2) a set of Process Models provided by CAF, our
industrial partner.

Camunda BPMN for Research: The Camunda BPMN for Research
case study consists of four Process Modeling exercises. Each exercise
contains an associated textual description and the solution Model for the
provided description. In order to apply the three approaches to the Ca-
munda case study, a software engineer (with BPMN expertise, and who
is not related to the writing of this paper) derived a set of Natural Lan-
guage Requirements from the problem descriptions. On average, there
are around 15 Requirements per problem, with an approximate average
of 25 words per requirement. The Models in the case study contain an
approximate average of 25 elements per Model.
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CAF: For our evaluation, CAF provided us with Natural Language Re-
quirements and Process Models of five railway solutions from Auckland,
Bucharest, Cincinnati, Houston, and Kaohsiung. The functionalities are
specified through about 100 Natural Language Requirements each, with
an approximate average of 50 words per Requirement. Regarding the
Process Models, the distinct functionalities are specified through an av-
erage 850 total model elements.

5.3.4 Oracle

In order to obtain the performance results of the three approaches, their
outcomes must be compared against the correct solutions of the two case
studies.

Camunda BPMN for Research: In the case of the Camunda BPMN
for Research case study, each exercise has an associated solution Model
for the provided description. The same software engineer who derived
the Natural Language Requirements from the problem descriptions also
generated a set of Model Fragments from the solution Model, mapping
each Fragment to a single Requirement. Thus, we were provided with
a set of Requirements, the Model Fragments that implement them, and
the TLR mapping between both artifacts.

CAF': Regarding our industrial partner, CAF provided us with their
existing documentation on Requirements to Process Models Traceability,
where each requirement is also mapped to a single Model Fragment.

In both cases, we use the existing Traceability as the oracle for evaluating
the outcomes of each of the three approaches. To do so, we compare the
Model Fragments generated for each Requirement by the three of them
against the oracle Model Fragment (ground truth Model Fragment) for
said Requirements.
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5.3.5 Implementation details

We have used three libraries to implement the different approaches taken
in account through this work: (1) to load and process the Process Models
in both case studies, we used the Camunda BPMN Model API (Camunda
2017), (2) to develop the Natural Language Processing operations in our
approaches, we have used the OpenNLP Toolkit for the Processing of
Natural Language Text (Apache 2016), and (3) to perform the LSI and
SVD carried out in the Aggregation and Mutation Search techniques,
the Efficient Java Matrix Library (EJML) was used (Abeles n.d.). For
the evaluation, we used a Lenovo E330 laptop, with a processor Intel(R)
Core(TM) i5-3210M@2.5GHz with 16GB RAM and Windows 10 64-bit.

5.4 Results

Table 5.1 outlines the results of the three studied approaches. Each
row shows the Precision, Recall, F-measure, and MCC values obtained
through each technique.

The Mutation Search technique achieves the best results for all the per-
formance indicators in both case studies, providing a mean precision
value of 63%, a mean recall value of 77%, a combined F-measure of 68%,
and an MCC value of 0.60 for the Camunda BPMN for Research case
study, and a mean precision value of 79%, a mean recall value of 72%, a
combined F-measure of 74%, and an MCC value of 0.69 for the CAF case
study. In contrast, both the Linguistic technique and the Aggregation
technique present worse results in all the measurements.

The Linguistic technique attains a mean precision value of 40%, a mean
recall value of 35%, a combined F-measure of 33%, and an MCC value
of 0.25 for the Camunda BPMN for Research case study, and a mean
precision value of 35%, a mean recall value of 35%, a combined F-measure
of 33%, and an MCC value of 0.25 for the CAF case study.
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The Aggregation technique attains a mean precision value of 56%, a
mean recall value of 72%, a combined F-measure of 61%, and an MCC
value of 0.52 for the Camunda BPMN for Research case study, and a
mean precision value of 69%, a mean recall value of 66%, a combined
F-measure of 64%, and an MCC value of 0.58 for the CAF case study.

Table 5.1: Mean Values and Standard Deviations for Precision, Recall and F-Measure for
the three approaches

Precision Recall F-Measure MCC
Linguistic - Camunda 40%+£25% | 35%+22% | 33%+13% | 0.2540.19
Linguistic - CAF 35%428% | 35%£10% | 30%+£7% | 0.1840.13
Aggregation - Camunda 56%+18% | 72%+22% | 61%+17% | 0.52+0.24
Aggregation - CAF 69%+29% | 66%£17% | 64%+£17% | 0.58+0.21
Mutation Search - Camunda | 63%+21% | 77%+22% | 68%+19% | 0.60+0.24
Mutation Search - CAF 79%+19% | 72%+£19% | 74%+16% | 0.69+0.20

5.5 Discussion

The Linguistic technique depends strongly on the language of the Re-
quirements and Models: for a link to be produced between a Requirement
a Model Element, exact patterns of words must be atomically matched
through the rules. If a single word in a pattern found in a Requirement is
different (or missing) in the Model, the rule does not trigger and the link
is not produced. On the other hand, in the Aggregation and Mutation
Search techniques the atomicity of text patterns is abandoned in favor
of the semantic similitude of individual terms. This issue can be illus-
trated through an example. Consider the Requirement "The system will
open the doors’, and a Model where the term ’system’ has been swapped
for the more technical term ’PLC”. Due to the vocabulary mismatch,
the Linguistic technique would never find the pattern, and thus could
never generate the links between Requirement and Model. On the other
hand, our techniques would flag the occurrences of the terms ’open’ and
"doors’ in the corresponding Model Elements or Fragments, leading to a
potential finding of links.
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5.6 Threats to Validity

Moreover, Model Elements with little or no text appear often in Process
Models, mainly in the form of flows and sometimes in the form of events.
These elements can never be retrieved by the Linguistic technique: since
there are no words, there is no pattern that can be matched. They are
not retrieved by the Aggregation technique either: they tend to be at
the bottom of the ranking produced by LSI since for these elements, all
the term occurrences are equal to zero and thus, no correlation can be
found with the query Requirement. However, in the Mutation Search
technique, the algorithm does add these Elements to the candidate Frag-
ments. Moreover, the addition of these Elements does not penalize the
results technique, since the term occurrences are not altered in any way
by them. Therefore, the candidate Fragments are more correct and com-
plete, which leads the technique to better Precision and Recall results.

Finally, we also identified certain Process Models particularities that, if
leveraged, would improve our Traceability techniques. Some examples of
these particularities are: (1) the usage of the term ’if” in a Requirement
almost always indicates the presence of an associated gateway in the
Process Model, (2) the usage of the terms ’start’ or ’end’ usually denote
events of the same type, (3) questions are often related with gateways
in the Models, (4) verbs appear mostly on tasks, or (5) a noun that is
often repeated at the start of multiple requirements may be the subject
that carries an action (and thus, may appear in the Model as a lane).
By studying the patterns of the Process Models language, it could be
possible to take in account these particularities in our techniques (by,
for instance, weighing the Model Elements accordingly or forcing their
appearance), leading them to enhanced Traceability results.

5.6 Threats to Validity

In this section, we use the classification of threats to validity of (Wohlin
et al. 2012) to acknowledge the limitations of our approach.

Construct validity: To minimize this risk, our evaluation is performed
using four measures: Precision, Recall, F-measure, and MCC. These
measures are widely accepted in the software engineering research
community.
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Internal Validity: The number of requirements and Process Models
presented in this work may look small, but they represent a wide
scope of different scenarios in an accurate manner.

External Validity: Both Natural Language Descriptions and Business
Process Models are frequently leveraged to specify all kinds of dif-
ferent Business Processes. The Camunda Process for Research case
study provides different examples from radically different domains.
In addition, the real-world CAF Process Models used in our research
are a good representative of the railway, automotive, aviation, and
general industrial manufacturing domains. Our approach does not
rely on the particular conditions of any of those domains. Neverthe-
less, our results should be replicated with other case studies before
assuring their generalization.

Reliability: To reduce this threat, the requirements and Process Models
used in our approach were taken from an open-source case study and
from an industrial case study. None of the authors of this work was
involved in the generation of said data.

5.7 Related Work

Related works focus on the impact and application of Linguistic tech-
niques to TLR problem resolution at several levels of abstraction. Works
like (Sultanov and Hayes 2010; Sundaram et al. 2010) or (Duan and
Cleland-Huang 2007), among many others, use Linguistic approaches to
tackle specific TLR problems and tasks. In (Falessi, Cantone, and Can-
fora 2013), the authors use Linguistic techniques to identify equivalence
between Requirements, also defining and using a series of principles for
evaluating their performance when identifying equivalent Requirements.
The authors of (Falessi, Cantone, and Canfora 2013) conclude that, in
their field, the performance of Linguistic techniques is determined by the
properties of the given dataset over which they are performed. They
measure the properties as a factor to adjust the Linguistic techniques
accordingly, and then apply their principles to an industrial case study.
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5.8 Conclusions

The work presented in (Arora et al. 2015) uses Linguistic techniques to
study how changes in Requirements impact other Requirements in the
same specification. Through the pages of their work, the authors analyze
TLR between Requirements, and use Linguistic techniques to determine
how changes in requirements must propagate.

Our work differs from (Ryan 1993; Sultanov and Hayes 2010; Sundaram
et al. 2010; Duan and Cleland-Huang 2007) since our approach is not
based or focused on Linguistic techniques as a means of TLR analysis,
but we rather propose novel techniques to perform TLR between Re-
quirements and Process Models, using a Linguistic technique only as
a baseline against which our work is compared. Moreover, we do not
study how Linguistic techniques must be tweaked for specific problems
as (Falessi, Cantone, and Canfora 2013) does. In addition, differing from
(Arora et al. 2015), we do not tackle changes in Requirements nor TLR
between Requirements, but instead focus our work on TLR between Re-
quirements and Process Models.

Finally, other works target the application of LSI to TLR tasks. De Lucia
et al. (De Lucia et al. 2004) present a tool based on LSI in the context
of an artifact management system. (Eder et al. 2015) takes in consid-
eration the possible configurations of LSI when using the technique for
TLR between Requirements artifacts. In their work, the authors state
that the configurations of LSI depend on the datasets used, and they
look forward to automatically determining an appropriate configuration
for LSI for any given dataset. Through our work, we do not study the
management of artifacts nor different LSI configurations or how LSI con-
figurations impact the results of TLR, but we rather study TLR between
Requirements and Process Models.

5.8 Conclusions
Traceability Links Recovery (TLR) has been a topic of interest for many

years, but its study is an issue that has not received enough attention
yet in the field of Process Models.
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Through this paper, we have studied TLR between Natural Language
Requirements and Process Models through three different approaches: a
Linguistic approach based on rules, specific from Models (which acts as
a baseline for our work), and two techniques (Aggregation and Mutation
Search) that we proposed and which we based on Latent Semantic Index-
ing, a technique that has been used successfully over code. The retrieved
TLR results can be utilized by software engineers as a starting point for
the development of their solutions.

The three approaches were evaluated by applying them to an academia
set of Process Models, and to a set of Process Models from a real-world
industrial case study with our industrial partner, CAF, a worldwide man-
ufacturer of railway solutions. Results show that our techniques retrieve
better results that the baseline Linguistic technique in both case stud-
ies. Through this work, we analyzed why this is the case, and identified
some particularities of Process Modeling that could be used in order to
improve our techniques in future iterations of our work.
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Chapter 6

Traceability Links Recovery in
BPMN Models

Traceability Links Recovery has been a topic of interest for
many years. However, Traceability Links Recovery in models
in general, and BPMN models in particular, has not received
enough attention yet. Through my work, I aim to fill this
research gap by studying Traceability Links Recovery between
requirements and BPMN models. So far, under the tutelage
of directors Carlos Cetina and Oscar Pastor, I adapted Trace-
ability Links Recovery code techniques to work over BPMN
models. The produced approach was applied to two different
case studies, an academic one and an industrial one. The out-
comes of the research outperformed the state of the art base-
line. Under the light of these novel findings, opportunities for
new research unfold.
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6.1 Introduction

Traceability Links Recovery (TLR) is defined as the software engineering
task that deals with the identification and comprehension of dependen-
cies and relationships between software artifacts. It has been a subject of
investigation for many years within the software engineering community
Gotel and Finkelstein 1994; Spanoudakis and Zisman 2005. Research
has shown that affordable traceability can be critical to the success of a
project Watkins and Neal 1994, and leads to increased maintainability
and reliability of software systems Ghazarian 2010, also decreasing the
expected defect rate in developed software Rempel and Méder 2017. In
recent years, TLR has been attracting more attention Parizi, Lee, and
Dabbagh 2014. However, most of the works focus on performing TLR
tasks in code artifacts Rubin and Chechik 2013, while TLR in process
models is a topic that has not received enough attention yet. Through
my work, I aim to fill this research gap by studying TLR between require-
ments and process models. So far, under the tutelage of directors Carlos
Cetina and Oscar Pastor, I adapted TLR code techniques to work over
process models (specifically, BPMN models). More precisely, through
the work presented in Lapena et al. 2018, we studied TLR between re-
quirements and process models through three different approaches, two
adapted code techniques and a models-specific baseline. Given a query
requirement and a process model, the three approaches used different
means to extract a fragment from the model, relevant to the implemen-
tation of the query requirement.

The three approaches were evaluated through the Camunda BPMN for
Research case study! and through a real-world industrial case study, pro-
vided by our industrial partner, CAF? (Construcciones y Auxiliar de
Ferrocarriles), a worldwide provider of railway solutions. One of the
adapted code techniques achieved the best results for all the measured
performance indicators in both case studies, outperforming the other two
techniques.

lgithub. com/camunda/bpmn-for-research
2www.caf.es/en
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The overall findings of our paper suggested that adapting code techniques
that provided good results in code was beneficial for TLR between re-
quirements and BPMN models, since the outcomes outperformed those
of a models-specific baseline. Under the light of these findings, a research
question arises, unfolding opportunities for novel research: How can we
further improve TLR in BPMN models?

The rest of the paper is structured as follows: Section 6.2 describes the
Approach that obtained the best results and how to apply it to TLR be-
tween requirements and BPMN models. Section 6.3 details the baseline
technique and the designed Evaluation. Section 6.4 presents the obtained
Results. Section 6.5 formulates the Research Question that arises from
our ongoing work. Section 6.6 discusses potential Future Work. Sec-
tion 6.7 mentions the research Methodology in use. Finally, Section 6.8
reviews the works related to this one.

6.2 Approach

This section describes the Mutation Search technique, the technique de-
signed in Lapena et al. 2018 that obtained the best results for TLR
between requirements and BPMN models, providing insight on its steps,
application, and outcomes.

6.2.1 Mutation Search

The Mutation Search technique receives one query requirement and one
BPMN model as input, generates a population of fragments, and ranks
said fragments through Latent Semantic Indexing. From the ranking,
the first fragment is taken as the proposed solution. In order to generate
the fragments population, algorithm 5 is followed. In the algorithm, an
empty population and a seed fragment (chosen randomly from the input
model) are created. Then, until the algorithm meets a stop condition
(for instance, a certain number of iterations), the fragment is mutated
and each new mutation is added to the population, avoiding the addition
of repeated fragments.
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In the algorithm, a mutation in a fragment can be caused by: (1) adding
one new event, gateway, or task that is connected to an already present
event, gateway, or task, (2) removing an element with only one connec-
tion, or (3) adding or removing a lane from the fragment. The performed
mutation is chosen randomly on each iteration.

Algorithm 5 Mutation Search Algorithm

P+ > Initialize the population
2: F' < randomFragment(inputModel) > Create an initial seed fragment
3: while !(StopCondition) do > While the stop condition is not met
4: F « mutateFragment(F') > Mutate the fragment
5: if I(F € P) then > If the new fragment is not in the population
6: P+« P+ F > Add the new mutation to the population
7: end if

8: end while

9: return P > Return the population

The top part of Fig. 6.1 shows this process, having the example input
BPMN model on the left, and some example fragments on the right, gen-
erated through the usage of the algorithm. The generated fragments are
represented through the text contained in all their elements. The text of
both the input requirement and the generated fragments is then processed
through general phrase styling techniques (lowercasing and tokenization),
Parts-Of-Speech Tagging Hulth n.d., and Lemmatizing Plisson, Lavrac,
Mladenic, et al. n.d.

Finally, the requirement and the fragments are fed into Latent Seman-
tic Indexing, which ranks the fragments according to their similitude to
the requirement. Latent Semantic Indexing (LSI) Landauer, Foltz, and
Laham 1998 is an automatic mathematical /statistical technique that an-
alyzes relationships between queries and documents (bodies of text). LSI
has been successfully used to retrieve Traceability Links between differ-
ent kinds of software artifacts in different contexts Rubin and Chechik
2013.

To that extent, LSI produces a term-by-document co-ocurrence matriz.
The bottom left part of Fig. 6.1 shows an example term-by-document
co-occurrence matriz, with values associated to an example.
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REQUIREMENT ’
The system will open the doors
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I " MF2
MODEL 1|8
< Are the doors open? :: 1] A ——— -
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Documents Query Singular Value Decomposition Scores
MF1 | MF2 MF9 MFn | Query Model Element Ranking
MFn
2 Inhibition 1 0 0 0 0 MF9 MF9 = 0.97
2 .
g Door 0 1 1 2 1 Q MFn = 0.52
5 Button 0 1 0 1 0 MF6
> Open 0 0 1 1 1
MF6 =-0.93

Figure 6.1: Mutation Search Technique Example

Each row in the matrix (term) stands for each of the words that appear
in the processed text of the requirement and the model elements. Each
column in the matrix (document) stands for each of the fragments (MF1
to MFn) generated through the algorithm. The final column (query),
stands for the processed input requirement. Each cell in the matrix
contains the frequency of each term in each document.

Vector representations of the documents and the query are obtained by
normalizing and decomposing the term-by-document co-occurrence ma-
triz using a matrix factorization technique called Singular Value De-
composition (SVD) Landauer, Foltz, and Laham 1998. In Fig. 6.1, a
three-dimensional graph of the SVD is provided, on which it is possible
to notice the vectorial representations of some of the columns. To mea-
sure the similarity degree between vectors, the cosine between the query
vector and the documents vectors is calculated. Cosine values closer to
one denote a high degree of similarity, and cosine values closer to minus
one denote a low degree of similarity.
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Through this measurement, the fragments are ordered according to their
similarity degree to the requirement, producing the relevancy ranking
shown on the bottom right part of Fig. 6.1. From the ranking, the first
fragment is considered as the candidate solution for the requirement, and
consequently taken as the final output of the Mutation Search technique.

6.3 Evaluation

The following paragraphs introduce the baseline, the experimental setup,
the case studies, and the oracles used to evaluate the baseline and Mu-
tation Search. This section also details the design of the evaluation.

6.3.1 Linguistic Rule-Based Baseline

Spanoudakis et al. Spanoudakis, Zisman, et al. 2004 present a linguistic
rule-based approach to support the automatic generation of traceabil-
ity links between natural language requirements and conceptual mod-
els. Specifically, the traceability links between the requirements and the
conceptual models are generated through a set of requirement-to-object-
model (RTOM) rules that specify sequences of terms and grammatical
patterns. The technique searches for matching patterns in the require-
ments and the conceptual models, producing a link per each found match.
We worked with a set of rules adapted so that the technique works over
BPMN models.

6.3.2 Ezxperimental Setup

Through Lapena et al. 2018, TLR between requirements and BPMN
models is performed. The results obtained by Mutation Search are com-
pared against those of a models-specific baseline. An overview evaluation
can be seen in Fig. 6.2. The top part shows the inputs, extracted from the
documentation provided in the case studies: requirements, BPMN mod-
els, and the approved traceability between both. The approved traceabil-
ity is a document that depicts the correct fragments that correspond to
the requirements. It is provided by software engineers from our industrial
partner, and conforms the oracle of the evaluation.
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Requirements BPM Model Approv'e'd Oracle
Traceability

Approaches
Input

nguustlc ‘ ’ Mutatlon Search ‘

Model Fragment
Model Fragment
(Ranking @ 1)
Precision, Recall, F-Measure, MCC |
Measurements & Report

Figure 6.2: Experimental Setup

For each case study, the linguistic baseline takes the mentioned inputs,
and generates a single fragment for each requirement. The generated
fragment is compared with the oracle fragment. The Mutation Search
technique generates a ranking of fragments per requirement instead.
Since the rankings are ordered from best to worst traceability, the first
fragment in each ranking is picked for comparison against its correspond-
ing oracle. Once the comparisons are performed, a confusion matrix is
calculated both for the baseline and for Mutation Search.

A confusion matrix is a table that is often used to describe the perfor-
mance of a classification model (in this case, the linguistic baseline and
Mutation Search) on a set of test data (the solutions) for which the true
values are known (from the oracle). The confusion matrix distinguishes
between the predicted values and the real values, classifying them into
four categories: (1) true positive; (2) false positive; (3) true negative; and
(4) false negative. Then, some performance measurements are derived
from the values in the confusion matrix. In particular, a report including
four performance measurements (recall, precision, f-measure, and MCC)
is created for each of the two case studies, both for the baseline and for
Mutation Search.
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6.3.3 Case Study and Oracles

In order to perform the evaluation of the approaches, we relied on two
different case studies: (1) the Camunda BPMN for Research academic
repository, and (2) a set of BPMN models provided by CAF, our in-
dustrial partner. In order to obtain the performance results of the ap-
proaches, we relied on the available correct solutions, provided in both
case studies.

Camunda BPMN for Research: The Camunda BPMN for Research
case study consists of four BPMN modeling exercises. Each exercise
contains an associated textual description and the solution model for the
provided description. In order to apply the approaches to the Camunda
case study, a software engineer derived a set of requirements from the
problem descriptions. Each exercise has an associated solution model
for the provided description. The same software engineer who derived
the requirements from the problem descriptions also generated a set of
fragments from the solution model, mapping each fragment to a single
requirement. Thus, we were provided with a set of requirements, the
fragments that implement them, and the TLR mapping between both
artifacts.

CAF: For our evaluation, CAF provided us with the requirements and
BPMN models of five railway solutions. They also provided us with their
existing documentation on requirements to BPMN models traceability,
where each requirement is also mapped to a single fragment.

6.4 Results

Table 6.1 outlines the results. Each row shows the obtained precision,
recall, f-measure, and MCC values. The Mutation Search technique
achieved the best results for all the performance indicators in both case
studies, providing a mean precision value of 63%, a mean recall value of
77%, a combined F-measure of 68%, and an MCC value of 0.60 for the
Camunda BPMN for Research case study, and a mean precision value of
79%, a mean recall value of 72%, a combined F-measure of 74%, and an
MCC value of 0.69 for the CAF case study.
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Table 6.1: Mean Values and Standard Deviations for Precision, Recall and F-Measure

Precision Recall F-Measure MCC
Linguistic - Camunda 40%+25% | 35%+22% | 33%+13% | 0.25+0.19
Linguistic - CAF 35%428% | 35%+£10% | 30%+£7% | 0.1840.13
Mutation Search - Camunda | 63%+21% | 77%+22% | 68%+19% | 0.604-0.24
Mutation Search - CAF 79%+£19% | 72%+£19% | 74%+16% | 0.69+0.20

6.5 Research Question

From the results of our work, a Research Question arises: How can we
further improve TLR in BPMN models? The following section will ad-
dress this question, briefly mentioning some of the possible future works
derived from a close inspection of the results.

6.6 Future Work

This section presents some ideas and opportunities for future work that
arose from the presented Research Question:

1. (Accepted - CAISE 2019) Tacit knowledge in the requirements
may have a negative impact on semantic-based techniques. How can
we minimize this impact?

2. (Currently under review - IS CAIiSE 2018 special issue)
BPMN models have some particularities that other models lack.
Could we take in account these particularities in our techniques in
order to lead them to enhanced results?

3. (Ongoing work) BMPN models have less text that other mod-
els. Could we enrich the text of BPMN models to improve TLR

techniques based on text search?
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6.7 Methodology

To perform this research, as well as our ongoing work, we have followed
the design science methodology guidelines presented in Wieringa 2014.

6.8 Related Work

Related works focus on the impact and application of linguistic tech-
niques to TLR problem resolution at several levels of abstraction. Works
like Sultanov and Hayes 2010; Sundaram et al. 2010 use linguistic ap-
proaches to tackle specific TLR problems. In Falessi, Cantone, and Can-
fora 2013, the authors use linguistic techniques to identify equivalence
between requirements. The work presented in Arora et al. 2015 uses lin-
guistic techniques to study how changes in requirements impact other
requirements in the same specification. Our work is not based or focused
on linguistic techniques as a means of TLR analysis, but we rather study
novel techniques to perform TLR between requirements and BPMN mod-
els. Other works target the application of LSI to TLR tasks. De Lucia
et al. De Lucia et al. 2004 present a tool based on LSI in the context
of an artifact management system. Eder et al. 2015 takes in considera-
tion the possible configurations of LSI when using the technique for TLR
between requirement artifacts. Through our work, we do not study the
management of artifacts nor different LSI configurations or how LSI con-
figurations impact the results of TLR, but we rather study TLR between
requirements and BPMN models.
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Chapter 7

Improving Traceability Links
Recovery in Process Models
through an Ontological
Expansion of Requirements

Often, when requirements are written, parts of the do-
main knowledge are assumed by the domain experts and not
formalized in writing, but nevertheless used to build software
artifacts. This issue, known as tacit knowledge, affects the per-
formance of Traceability Links Recovery. Through this work
we propose LORE, a novel approach that uses Natural Lan-
guage Processing techniques along with an Ontological Re-
quirements Expansion process to minimize the impact of tacit
knowledge on TLR over process models. We evaluated our
approach through a real-world industrial case study, compar-
ing its outcomes against those of a baseline. Results show
that our approach retrieves improved results for all the mea-
sured performance indicators. We studied why this is the case,
and identified some issues that affect LORE, leaving room for
improvement opportunities. We make an open-source imple-
mentation of LORE publicly available in order to facilitate its
adoption in future studies.

171



Chapter 7. Improving Traceability Links Recovery in Process Models through an Ontological

Ezpansion of Requirements

7.1 Introduction

Traceability Links Recovery (TLR) has been a subject of investigation
for many years within the software engineering community (Gotel and
Finkelstein 1994; Spanoudakis and Zisman 2005). Traceability can be
critical to the success of a project (Watkins and Neal 1994), leads to
increased maintainability and reliability of software systems (Ghazar-
ian 2010), and decreases the expected defect rate in developed software
(Rempel and Méder 2017). However, TLR techniques rely greatly on
the language of the studied documents. Often, when requirements are
written, parts of the domain knowledge are not embodied in them, or
embodied in ambiguous ways. This phenomena is known as tacit knowl-
edge. The tacit knowledge is assumed by all the domain experts, and
never formalized in writing. This behavior has been reported by pre-
vious works (Stone and Sawyer 2006; Arora, Sabetzadeh, Briand, et al.
2016). As aresult, both the text of the requirements and the tacit knowl-
edge are used to build software artifacts, which in turn contain elements
that are related to the text of the requirement, and elements that are
related to the tacit knowledge. However, since part of the knowledge is
not reflected in the text of the requirement, recovering the most relevant
software artifact for a requirement through TLR becomes a complex task.

Through this work, we propose LORE, a novel approach that minimizes
the impact that tacit knowledge has on TLR. To that extent, Natural
Language Processing (NLP) techniques are used to process the require-
ments, and then an ontology is used to expand the processed requirements
with concepts from the domain. Finally, TLR techniques are applied to
analyze the requirements and software artifacts in search for software
artifact fragments that match the requirements. We have evaluated our
approach by carrying out LORE between the requirements and process
models that comprise a real-world industrial case study, involving the
control software of the trains manufactured by our industrial partner.
Results show that our approach guides TLR to enhanced results for all
the measured performance indicators, providing a mean precision value
of 79.2%, a mean recall value of 50.2%, a combined F-measure of 66.5%,
and an MCC value of 0.62. In contrast, the baseline used for comparison
presents worse results in these same measurements.
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Through our work, we have also identified a series of issues related to the
ontology and the requirements that prevent our approach from achieving
better solutions. These issues could be tackled in the future to further
improve the TLR process between requirements and process models.

Through the following pages, Section 7.2 presents the background for our
work. Sections 7.3 and 7.4 provide details on our approach, and on the
leveraged Traceability Links Recovery technique. Section 7.5 describes
the evaluation of our approach. Section 7.6 introduces the obtained re-
sults. Section 7.7 discusses the outcomes of our work. Section 7.8 presents
the threats to the validity of our work. Section 7.9 reviews works related
to this one. Finally, Section 7.10 concludes the paper.

7.2 Background

In industrial scenarios, companies tend to have a myriad of products
with large and complex models behind, created and maintained over long
periods of time by different software engineers, who often lack knowledge
over the entirety of the product details. Through this section, we provide
an overview of the models in our case study, and of the problem that our
approach intends to mitigate.

7.2.1 Case Study Models

Fig. 7.1 depicts one example of a model, taken from a real-world train,
specified through a process model. The model has the expressiveness re-
quired to describe the interaction between the main pieces of equipment
installed in a train unit, and the non-functional aspects related to reg-
ulation. Specifically, the example of the figure presents the station stop
process, where a human sets the stop mode and the system opens the
platform passenger doors. The elements of Fig. 7.1 highlighted in gray
conform an example model fragment.
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Requirement: At all the stops, the driver will set the train in stop
mode. If the doors are closed, the system will open the doors.

Q—{ Set stop mode J

Are the station Yes
doors open?

Driver

PLC

No
{ Open platform passenger doors J—O

Figure 7.1: Example of Requirement, Model and Model Fragment

Station Stop Process

7.2.2 Tacit Knowledge in Requirements

However, the requirement in Fig. 7.1 is lacking important information,
known by the engineers and kept as tacit knowledge. A literal interpreta-
tion of the second sentence of the requirement implies that at all stations,
all the doors of the train will open. However, the sentence embodies tacit
knowledge that is not written but that is obvious to the domain engi-
neers: (1) the train has doors on both sides, but only the doors on the
side of the platform will open; and (2) not all the doors will open, the
door of the control cabin will remain closed for the safety of the driver
and the train. Thus, only the platform passenger doors will open.

7.3 Our Approach

7.83.1 Approach Overview

Through the presented approach, we tackle the tacit knowledge issue pre-
sented in the prior section, by expanding requirements through a domain
ontology. The approach runs in a two-step process:

1 First, we use Natural Language Processing (NLP) techniques to pro-
cess the requirement and the ontology. The NLP techniques unify
the language of the software artifacts, which facilitates the expan-
sion process.
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Figure 7.2: Approach Overview

2 Secondly, we propose an Ontological Requirement Expansion (ORE)
process that uses the processed requirement and ontology in order to
expand the requirement with related domain knowledge, diminishing
the amount of tacit knowledge in the requirement.

The expanded requirement is used along with the NLP-treated process
models from our case study as an input for Latent Semantic Indexing
(LSI) (Landauer, Foltz, and Laham 1998), a widely accepted TLR pro-
cess (Winkler and Pilgrim 2010). Through LSI, a model fragment, can-
didate solution for the requirement, is produced. Figure 7.2 depicts an
overview of the steps of the approach. In the figure, rounded boxes rep-
resent the inputs and outputs of each step, while squared boxes represent
each step. The highlighted boxes represent the initially available inputs
(requirement, ontology, and model) used for the different steps of our ap-
proach and for the TLR process, and the final output (the most relevant
model fragment for the requirement).

7.3.2 Natural Language Processing (NLP)

This section describes the NLP techniques taken in account for our ap-
proach. Fig. 7.3 is used to illustrate the whole compendium of tech-
niques, detailed through the following paragraphs.

Splitting: As seen in Section 7.2, the tacit knowledge lies within the
sentences of the requirements. Thus, in order to better isolate the
tacit knowledge issue, we split the text of the requirements into
the sentences that compose it. These smaller parts of text will help
expand the requirement more accurately further on in our approach.
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Fig. 7.3 depicts the two sentences that result from splitting the
running example requirement.

Syntactical Analysis: Syntactical Analysis (SA) techniques analyze
the specific roles of each one of them in the sentence and determine
their grammatical function. These techniques (referred to as Parts-
Of-Speech Tagging, or POS Tagging) allow engineers to implement
filters for words that fulfill specific grammatical roles in a require-
ment, usually opting only for nouns (Capobianco et al. n.d.). In
Fig. 7.3, it is possible to appreciate the SA process, with the POS
Tagged Tokens associated to each sentence of the requirement as
outcome.

Root Reduction: The technique known as Lemmatizing reduces words
to their semantic roots or lemmas. Thanks to lemmas, the language
of the NL requirements is unified, avoiding verb tenses, noun plurals,
and other word forms that interfere negatively with the TLR pro-
cess. The unification of the language semantics is an evolution over
pure syntactical role filtering, allowing for a more advanced filtering
of words in NL requirements. In Fig. 7.3, it is possible to appreciate
the RR process, with the Root-Reduced Tokens as outcome of the
semantic analysis of the POS Tags derived from the NL requirement
(keeping only nouns). This process is also applied to the ontology,
treating all the concepts as nouns, since domain terms always name
important characteristics of the trains.

Human NLP: The inclusion of domain knowledge through experts
and software engineers in the TLR process is regarded as beneficial.
Human NLP is often carried out through Domain Terms Extrac-
tion or Stopwords Removal. In our approach, domain terms are
checked for after splitting the requirement into sentences. We ana-
lyze each sentence in search for the domain terms provided by the
software engineers, and add the found domain terms to the final pro-
cessed sentence. On the other hand, stopwords are filtered out of
the Root Reduced sentences. Fig. 7.3 depicts the Human NLP pro-
cess, where a software engineer provides both lists of terms, which
are consequently introduced into the final query, or filtered out of
it.
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Sentences

S1: At all the stops, the driver - POS Tagged Tokens oo Root-Reduced Tokens
will set the train in stop mode. ;\nalysis S1: stops, driver, train, mode Reduction S1: stop, driver, train, mode

S2: If the doors are closed, the $2: doors, system, doors $2: door, system, door

system will open the doors.
\% Stopwords Removal
: Processed Requirement
e Domain Terms -
Extraction S1: stop, driver
S2: door, door

Figure 7.3: Natural Language Processing Techniques

7.3.3 Omntological Requirement Expansion (ORE)

The process that we propose in order to ontologically expand a require-
ment is detailed through the paragraphs of this section. The process
runs in two steps: (1) calculation of the Ontological Affinity Documents
associated to the requirement, and (2) expansion of the requirement.

1 Ontological Affinity: Ontological Affinity Documents (OADs) are

documents that contain a set of ontological concepts related to a
certain input. The first step of the Ontological Requirement Expan-
sion process is to calculate the OADs associated to the requirement.
We designed an algorithm that utilizes a processed domain ontology
and a processed requirement to generate the OADs. The algorithm
first selects one of the processed sentences generated through NLP.
Then, the algorithm takes one term in the sentence, searching for
it in the ontology. If the term matches a concept that is present
in the ontology, all the concepts directly connected to the concept
are added to an OAD. The algorithm iterates over all the terms in
the sentence, generating the OAD associated to the sentence. The
process is repeated for every sentence in the processed requirement,
generating one OAD per sentence.

This process is illustrated through our running example in Fig. 7.4.
In the figure, for space reasons, only a small part of the domain
ontology is represented. In the case of the first sentence, the term
‘stop’ appears both in the sentence and as an ontology concept. The
concepts that are directly related to the ’stop’ concept are ’station’
and 'door’.
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Ontology

platform
passenger

d

Processed
Requirement

S2 OAD

S1 OAD
station (x2)

door

platform passenger door (x2)

tati
station stop(x2)

S1: stop, driver
S2: door, door

passenger

Figure 7.4: Ontological Affinity Documents Calculation

These concepts are therefore included into the OAD of the sentence.
In our example, the term ’driver’ does not appear as a concept in the
ontology, providing no concepts for the OAD of the first sentence. In
the case of the second sentence, the term 'door’ appears as a concept
in the example ontology. The concept is connected to ’station’,
‘stop’, and "platform passenger door’. Since the term appears twice
in the sentence, the concepts are added twice to the OAD.

2 Requirement Expansion: Through this step, our approach auto-

matically reformulates the processed requirement to expand it with
terms of the OADs using a technique that is based on Rocchio’s
method (Salton 1971), which is perhaps the most commonly used
method for query reformulation (Sisman and Kak 2013). Rocchio’s
method orders the terms in the OADs based on the sum of the
importance of each term of the documents using the following equa-
tion:

Rocchio =Y TF(c,d) - IDF(t, R) (7.1)

deR

Where R is the set of OADs, d is a document in R, and c is a
concept in d. The first component of the measure is the Term Fre-
quency (T'F'), which is the number of times the concept appears in a
document; it is an indicator of the importance of the concept in the
document compared to the rest of the concepts in that document.
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The second component is the Inverse Document Frequency (IDF),
which is the inverse of the number of documents that contain that
concept; it indicates the specificity of that concept for a document
that contains it. The I DF measurement is calculated as:

Bl
Hde R:ced}

IDF(t,R) = log (7.2)

Where |R| is the number of documents and [{d € R : ¢ € d}| is the
number of documents where the concept is present.

To illustrate this calculation, consider the processed requirement
from our running example. After calculating the OADs presented
in Fig. 7.4, Rocchio’s method is applied to the concepts of the doc-
uments in order to retrieve the importance of said concepts. Take
in account the concept 'platform passenger door’. In the first docu-
ment, the concept does not appear (T'F = 0), immediately leading
toa TF -IDF value of TF - IDF = 0. The concept appears twice
in the second document (T'F = 2) and appears in one of two doc-
uments (IDF = log2 ~ 0.3), which leads to a TF - IDF value of
TF-IDF =~ 0.6. The sum of both T'F'- I DF values leads to a total
Rocchio value of Rocchio ~ 0.6. Using Rocchio’s method, the con-
cepts of the OADs associated to the sentences of the requirement
are ordered from highest to lowest sum of importance into a single
document of concepts. Once ordered, we take in consideration only
the first 10 suggestions and discard the rest, as is recommended in
the literature (Carpineto and Romano 2012). The list of the 10 first
suggested concepts conforms the OAD associated to the require-
ment.

Since the objective of our approach is to mitigate the tacit knowledge
of the requirement, our aim is to find new domain knowledge to
include in the requirement, and therefore we refine the requirement
OAD by discarding those concepts in the OAD that already appear
in any sentence of the requirement.
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In our running example, this process would produce a requirement
OAD consisting of the terms 'station’ and ’platform passenger door’,
since both 'door’ and ’stop’ are already present in the sentences of
the requirement. The terms of the processed sentences and the
concepts on the refined OAD are then concatenated into a single
list of terms. This final list of terms is the ultimate goal that our
approach seeks to obtain: an expanded requirement, enriched with
ontological domain knowledge. The expanded requirement is the
final output of the Ontological Requirement Expansion process, and
is used as query for the Traceability Links Recovery process.

7.4 Traceability Links Recovery

LORE can be applied to any TLR technique that uses a requirement as
input. Through this work, we utilize Latent Semantic Indexing (LSI),
the TLR technique that obtains the best results when performing TLR
between requirements and software artifacts (Winkler and Pilgrim 2010).
Latent Semantic Indexing (LSI) (Landauer, Foltz, and Laham 1998) con-
structs vector representations of a query and a corpus of text documents
by encoding them as a term-by-document co-occurrence matriz. In our
approach, terms are each of the words that compose the expanded re-
quirement and NL representation of the input model (extracted through
the technique presented in (Meziane, Athanasakis, and Ananiadou n.d.)),
documents are the model elements in the input model, and the query is
the expanded requirement. Fach cell in the matrix contains the frequency
with which the term of its row appears in the document denoted by its
column. Once the matrix is built, it is normalized and decomposed into

a set of vectors using a matrix factorization technique called Singular
Value Decomposition (SVD) (Landauer, Foltz, and Laham 1998).

The similarity degree between the query and each document is calculated
through the cosine between the vectors that represent them. Fig. 7.5
shows an example matrix, built from our running example, the result
of applying the SVD technique to the matrix, and the resulting scores
associated to each document.
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Documents Query
ME1 ME2 MEN | Requirement
9 PLC 0 0 0 0
° platform passenger door 0 1 0 1
3 door 0 1 1 2
(]
h4
Singular Value Decomposition Scores
Model Fragment
MEN Similitude Scores
MEZ ME2 = 0.93
Q MEN = 0.85
ME1
ME1 =-0.87

Figure 7.5: Traceability Link Recovery through Latent Semantic Indexing Example

In our approach, we use the top ranked model elements to build a model
fragment that serves as a candidate for realizing the requirement. Of all
the model elements, only those that have a similarity measure greater
than x must be taken into account. A widely used heuristic is z = 0.7.
This value corresponds to a 45° angle between the corresponding vectors.
Even though the selection of the threshold is an issue under study, the
chosen heuristic has yielded good results in other similar works (Marcus
et al. 2004; Salman, Seriai, and Dony 2014).

7.5 Evaluation
This section presents the evaluation of our approach, including the ex-

perimental setup, a description of the case study where we applied the
evaluation, and the implementation details of our approach.
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Documentation from Industrial Partner

lRequirements H Product Models H Approved Traceability }—’{ Oracle Model Fragments

TLR (baseline) H TLR Model Fragments Calculation of
Measurements
Test Cases
LORE (our approach) H LORE Model Fragments

Figure 7.6: Experimental Setup

7.5.1 Experimental Setup

The goal of this experiment is to perform TLR between requirements and
models through LORE, comparing its results against the baseline. The
baseline against which we compare our work is the technique that ob-
tains the best results when recovering Traceability between requirements
and models according to the literature, TLR through LSI. The baseline
utilizes the processed requirement, without performing the ontological
expansion in use in LORE. Fig. 7.6 shows an overview of the process
followed to evaluate our approach (LORE) and the baseline (TLR). The
top part of the figure shows the inputs, as provided by our industrial
partner. The requirements and models are used to build the test cases
(one requirement and one model each) and the approved Traceability is
used to build the oracles against which the results of the approaches are
compared.

For each test case, both LORE and TLR generate one model fragment
each. The model fragments generated for each test case are compared
against their respective oracles (ground truth), and a confusion matrix is
calculated for each of the two approaches. A confusion matrix is a table
used to describe the performance of a classification model on a set of
test data for which the true values are known. In our case, the presence
or absence of each model element is considered as a classification. The
confusion matrix arranges the results of the classifications into four cat-
egories: (1) True Positive (predicted true, true in the real scenario), (2)
False Positive (predicted true, false in the real scenario), (3) True Neg-
ative (predicted false, false in the real scenario), and (4) False Negative
(predicted false, true in the real scenario). From the confusion matrix, it
is possible to extract some measurements that evaluate the performance
of the approach.
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We report four performance measurements for both LORE and TLR: Re-
call, Precision, F-measure, and MCC (Matthews Correlation Coefficient).
Recall measures the number of elements of the solution that are correctly
retrieved by the proposed solution, precision measures the number of el-
ements from the solution that are correct according to the ground truth,
and the F-measure corresponds to the harmonic mean of precision and
recall. The MCC is a correlation coefficient between the observed and
predicted binary classifications (Salton and McGill 1986; Marcus et al.
2004).

Recall values can range between 0% (no single model element from the
oracle is present in the retrieved model fragment) to 100% (all the model
elements from the oracle are present in the retrieved model fragment).
Precision values can range between 0% (no model elements from the re-
trieved model fragment appear in the oracle) to 100% (all the model
elements from the retrieved model fragment appear in the oracle). MCC
values can range between —1 (no correlation between the prediction and
the oracle) to 1 (perfect prediction). Moreover, an MCC value of 0 cor-
responds to a random prediction.

7.5.2 Case Study

The case study where we applied our approach was provided by our in-
dustrial partner, CAF (http://www.caf.es/en), a worldwide provider of
railway solutions. Our evaluation includes 140 test cases, with each test
case comprising one requirement, one model, and the approved Trace-
ability between the requirement and the model. The requirements have
about 25 words on average, and the models are formed through 650 ele-
ments on average. For each test case, we followed the experimental setup
described in Figure 7.6.

Regarding the domain ontology in use, it comprises 27 concepts and 176
relationships. The construction of an ontology is a major effort which
requires the study of the domain structure and terminology. We did not
try to address the creation of a new ontology in this paper but instead,
our industrial partner provided us with the ontology they use for training
new employees.
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The ontology is an important artifact and its quality, size, and complete-
ness may have an impact on the results. In a future work, we intend to
analyze the extent of this impact on the results of LORE.

7.5.3 Implementation details

For the development of the Natural Language Processing operations used
in both our approach and the baseline, we have used the OpenNLP
Toolkit (Apache 2016). To implement the LSI and SVD techniques,
the Efficient Java Matrix Library (EJML) was used (Abeles n.d.). For
the evaluation, we used a Lenovo E330 laptop, with a processor Intel(R)
Core(TM) i5-3210M@2.5GHz with 16GB RAM and Windows 10 (64-bit).
A prototype of LORE can be found at bitbucket.org/svitusj/lore.

7.6 Results

Table 7.1 outlines the results of the TLR baseline and our LORE ap-
proach. Each row shows the Precision, Recall, F-measure, and MCC val-
ues obtained through each of the two approaches. The LORE approach
achieves the best results for all the performance indicators, providing
a mean precision value of 79.2%, a mean recall value of 50.2%, a com-
bined F-measure of 66.5%, and an MCC value of 0.62. In contrast, the
TLR baseline presents worse results in all the measurements, attaining a
mean precision value of 59.3%, a mean recall value of 45.5%, a combined
F-measure of 52.4%, and an MCC value of 0.31. We also included the
values of the measurements for the top 20 and the bottom 20 results for
TLR and LORE, to better highlight how the results obtained by LORE
improve those obtained by the TLR baseline.

7.7 Discussion

The results presented in the previous section suggest that by embedding
domain knowledge into requirements the TLR process retrieves enhanced
results. Taking a closer look at the test cases, we found out that there
are many terms in the models that do not appear in the requirements.
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Table 7.1: Mean Values and Standard Deviations for Precision, Recall and F-Measure

Precision Recall F-Measure MCC
TLR 59.3%+29.6% | 45.5%+34.2% | 52.4%+31.9% | 0.31£0.13
LORE 79.2%+33.6% | 50.2%+30.6% | 66.5%+38.6% | 0.62+0.32
Top 20 - TLR 81.3%47.3% | 55.4%+3.2% | 68.3%+£5.2% | 0.41£0.03
Top 20 - LORE 93.4%+8.4% | 69.8%+4.6% | 81.6%+6.5% | 0.86+0.04
Bottom 20 - TLR 48.3%+6.9% | 19.8%+4.2% | 34.1%+5.5% | 0.224+0.04
Bottom 20 - LORE | 66.2%+5.7% | 41.2%+5.1% | 53.7%+5.4% | 0.3840.08

Through the ontological expansion of the requirements, they are enriched
with otherwise missing terms, retrieving more and better links. However,
we also noticed a series of facts that prevent LORE from achieving better
results than it does. We should tackle these issues in the future to further
improve our line of work:

1 Our analysis of the results raised awareness about the importance of

the quality and completeness of the ontology in LORE. If a partic-
ular concept does not have quality connections, the quality of the
expansion process is diminished, also affecting the quality of the
final outcome. Equally, if a concept is missing from the ontology,
the concept itself and its would-be related concepts cannot be in-
troduced in the expanded requirement. This issue leaves parts of
the domain knowledge out from the requirement, causing a decrease
in recall. In order to tackle this issue, we plan to automatically
identify words and patterns of words that occur repeatedly in the
requirements and models, and suggest their inclusion in the ontol-
ogy as concepts, entrusting the creation of their relationships to the
software engineers.

2 In the ontology, we identified some terms that have a large number of

connections to other terms. Matching one of those terms through
LORE leads to the inclusion of several unwanted ontological con-
cepts into the expanded requirement. This concatenation of events
reflects into LSI noise, strongly affecting in a negative manner the
precision of the results, since elements that are not part of the oracle
can be added to the proposed solution due to this issue.
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To tackle this issue, we plan to automatically identify the overly
connected ontological concepts and suggest their inclusion in the
stopwords list to the software engineers, so they can be kept out of
the LORE analysis.

3 Another possible consideration towards the obtained results is the pa-

rameter tuning of our approach. Many Information Retrieval ap-
proaches have parameters that can be tuned in order to improve the
results (such as the LSI similitude threshold), and our approach is
no exception. So far, we have considered only the directly related
ontological concepts when performing the expansion (one jump or
ontological affinity level 1). In the future, we plan to study how
using different levels of affinity may impact the results. We believe
this could help us further explore the ontology and the relationships
between the concepts, although at a risk of including noise into LSI.
Analyzing the tuning of this parameter and its implications and
impact on the outcomes of the LORE approach remains as future
work.

4 Regarding recall, we have inspected the results and have determined

that the low recall levels are not dependent solely on the techniques
under use, but are also affected by the quality of the received queries,
which in several occasions, are poorly formulated. Focusing only
on these particular cases, recall values obtained by TLR range at
20%, while recall values obtained by LORE range at 40%. However,
for better quality queries, TLR recall results range at 55%, while
those of LORE range at 70%. The point is, considering ontological
knowledge in the process helps improve traceability results. That is,
in the face of poor quality inputs, the results improve, but if we feed
LORE with better queries, the results improve as well. Studying the
quality of the inputs and how to ensure it remains as an interesting
research topic for a future work in which we might as well design
another experiment to research how LORE improves the results of
TLR for top-quality queries.
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7.8 Threats to validity

In any case, as a naive experiment and in order to ensure the use-
fulness of the obtained results, we have discussed them with one
of the software engineers working for our industrial partner, who
has confirmed that the model fragments obtained by LORE serve
as a better starting point for requirement-model tracing than those
obtained by plain TLR.

5 Finally, in many cases, different terms are used to reference the same
concept in the requirements, models, and ontology alike. In indus-
trial environments, the engineers in charge of writing requirements
may not be assigned with the building of the models or the ontology
in any ways, being those tasks left for different engineers. Moreover,
the artifacts can be manipulated by different engineers. This issue
is known as vocabulary mismatch. Even though LORE uses NLP to
homogenize the language between requirements and models, the vo-
cabulary mismatch continues to be a disregarded issue in our work.
The lack of awareness caused by the vocabulary mismatch makes it
impossible to locate the elements from the model that are relevant
to the requirement, which in turn negatively impacts both precision
and recall. To mitigate this issue, we plan on adding a third human-
made list, comprising in-house terms and their possible synonyms,
allowing us to further map ontology concepts and requirements.

7.8 Threats to validity

In this section, we use the classification of threats to validity of (Wohlin
et al. 2012) to acknowledge the limitations of our approach.

1 Construct validity: This aspect of validity reflects the extent to
which the operational measures that are studied represent what
the researchers have in mind. To minimize this risk, our evalua-
tion studies four measures that are widely accepted in the software
engineering research community: precision, recall, F-measure, and

MCC.
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2 Internal Validity: This aspect of validity is of concern when causal
relations are examined. There is a risk that the factor being inves-
tigated may be affected by other neglected factors. The number of
requirements and models presented in this work may look small, but
they implement a wide scope of different railway equipment.

3 External Validity: This aspect of validity is concerned with to what
extent it is possible to generalize the findings, and to what extent
the findings are of relevance for other cases. Both requirements and
process models are frequently leveraged to specify all kinds of differ-
ent software. LSI is a widely accepted and utilized technique which
has proven to obtain good results in multiple domains. The NLP
techniques studied through this work are also commonly used in the
whole of the SE community. Therefore, our experiment does not
rely on the particular conditions of our domain. In addition, the
real-world models used in our research are a good representative of
the railway, automotive, aviation, and general industrial manufac-
turing domains. Nevertheless, the experiment and its results should
be replicated in other domains before assuring their generalization.

4 Reliability: This aspect is concerned with to what extent the data
and the analysis are dependent on the specific researchers. To reduce
this threat, all the software artifacts were provided by our industrial
partner.

7.9 Related Work

Some works focus on the impact and application of Linguistics to TLR
at several levels of abstraction. Works like (Sultanov and Hayes 2010;
Sundaram et al. 2010) or (Duan and Cleland-Huang 2007) use Linguistic
approaches to tackle specific TLR problems and tasks. In (Falessi, Can-
tone, and Canfora 2013), the authors use Linguistic techniques to iden-
tify equivalence between requirements, also defining and using a series of
principles for evaluating their performance when identifying equivalent
requirements.
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The authors of (Falessi, Cantone, and Canfora 2013) conclude that, in
their field, the performance of Linguistic techniques is determined by the
properties of the given dataset over which they are performed. They
measure the properties as a factor to adjust the Linguistic techniques
accordingly, and then apply their principles to an industrial case study.
The work presented in (Arora, Sabetzadeh, Goknil, et al. 2015) uses Lin-
guistic techniques to study how changes in requirements impact other
requirements in the same specification. Through the pages of their work,
the authors analyze TLR between requirements, and use Linguistic tech-
niques to determine how changes in requirements must propagate.

Our work differs from (Sultanov and Hayes 2010; Sundaram et al. 2010)
and (Duan and Cleland-Huang 2007) since our approach is not based on
Linguistic techniques as a means of TLR, but we rather use an ontological
expansion process to enrich requirements before performing TLR, using
NLP techniques only as a preprocess in our work. Moreover, we do not
study how Linguistic techniques must be tweaked for specific problems
as (Falessi, Cantone, and Canfora 2013) does. In addition, differing from
(Arora, Sabetzadeh, Goknil, et al. 2015), we do not tackle changes in
requirements nor TLR between requirements, but instead focus our work
on TLR between requirements and models.

Other works target the application of LSI to TLR tasks. De Lucia et al.
(De Lucia et al. 2004) present a Traceability Links Recovery method and
tool based on LSI in the context of an artifact management system, which
includes models. (Eder et al. 2015) takes in consideration the possible
configurations of LSI when using the technique for TLR between require-
ments artifacts, namely requirements and test cases. In their work, the
authors state that the configurations of LSI depend on the datasets used,
and they look forward to automatically determining an appropriate con-
figuration for LSI for any given dataset. Through our work, we do not
focus on the usage of LSI or its tuning, but rather expand requirements
with ontological domain knowledge before carrying out TLR between
said requirements and the models.
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7.10 Conclusions

Through this work, we propose a novel approach (LORE), based on an
Ontological Requirement Expansion process, that can be used to min-
imize the impact that tacit knowledge has on TLR. We evaluated our
approach by carrying out LORE between the requirements and process
models that comprise a real-world industrial case study. Results show
that our approach guides TLR to the best results for all the measured per-
formance indicators, providing a mean precision value of 79.2%, a mean
recall value of 50.2%, a combined F-measure of 66.5%, and an MCC
value of 0.62. In contrast, the baseline used for comparison presents
worse results in these same measurements. In addition, we identified a
series of issues that prevent our approach from achieving better solutions,
and that should be tackled in the future in order to further improve the
TLR process between requirements and process models. To facilitate the
adoption of LORE, we made a reference implementation freely available
for the Eclipse environment.
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Discussion

Through the pages of this chapter, we discuss the ratio-
nale for the development of the thesis. We also discuss the
results of our work by connecting the research questions posed
at the start of the thesis with the research articles that conform
the compendium included in chapters 1 to 7. In addition, we
describe our ongoing research and the ideas for future works.
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Thesis Development Rationale

Before the start of the thesis, through the experiences and expertise of
other authors in the same research environment, and through a thorough
study of the available literature, we came to know of Traceability Links
Recovery and its importance within the Software Engineering community.

However, we could also identify a shortcoming with regards to the avail-
able research on the topic within artifacts other than code. In particular,
we identified a lack of research with regards to model-based software ar-
tifacts in general, and more specifically, within the context of BPMN
models.

Therefore, our first efforts were aimed at transforming the state-of-the-
art approaches in code-based software artifacts, so that they could be
transported to model-based software artifacts. We published this work
in CAiSE Forum 2017, chapter 1, which served as an approximation to
the research world and community, and as a great learning experience in
terms of presentation and networking.

While our initial work was substantially successful, we identified a series
of problems related to the natural language of the artifacts in use. In
particular, we had some issues that stemmed from the transformation
of models to natural language (a necessary step for the application of
the developed Traceability Links Recovery approaches), and from the
processing of the natural language in the requirements.

We deliberated on whether to tackle both issues at once or to do so
separately. We came to the conclusion that isolating the problems would
help reduce the costs and risks of development, and that it would also
help explain the issues themselves and the obtained results in written
research. In addition, we wanted to explore how each of the issues was
affecting the context problem. Hence, in the end, we decided to deal
with those issues one at a time. These studies were embodied into two
research papers for ER Forum 2017, chapter 2, and GPCE 2017 (GGS
class 3, CORE:B), chapter 3.
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These two experiences confirmed the adequacy of the direction of the
research, and contributed to the development of very valuable research
skills, leading to improvements in written expression and structuring and
presentation of information.

At this point, we recapped our work, integrating the latest research im-
provements to the Traceability Links Recovery approaches that we first
developed. At the same point of time, an opportunity arose for incor-
porating the novel enhancements to the research that stemmed from the
work of other authors in the same research environment in the fields
of Feature Location and Bug Location, two other Software Engineering
tasks that pursue different goals than those of Traceability Links Recov-
ery, but which still rely on Information Retrieval to do so. The results
of this research, to which the Traceability Links Recovery component
was provided by the work achieved as part of this thesis, were published
in 2018 in an article for volume 103 of the Information and Software
Technology Journal (2°¢ quartile in its category), chapter 4 of this the-
sis. This particular research experience improved other valuable skills,
such as teamwork in research, or understanding the differences between
conferences and journals and the involved research processes.

Afterwards, we knew it was time to leave the generalist level of model-
based software artifacts, and dive into the specifics of BPMN models. To
that extent, we applied our newfound knowledge to develop an approach
for Traceability Links Recovery in the BPMN models context. The re-
sults of this work were published in CAiSE 2018 (GGS class 2, CORE:A),
chapter 5 of this thesis. This work not only shaped the remainder of the
thesis, but also provided a certain degree of visibility and very valuable
feedback from the research community.

However, as it had occurred at the beginning of the thesis, we iden-
tified a set of issues and problems that were negatively impacting the
developed approaches, this time due to the particularities inherent to
the BPMN models context. In particular, we were able to identify that
the requirements in use tend to present high levels of tacit knowledge,
and that BPMN models contain very little text (and in turn a very small
amount of language payload) when compared to other software artifacts,
including other model-based software artifacts.
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We also identified a set of BPMN model particularities that could be
leveraged to lead the approaches to enhanced results. We reflected on
these issues in a paper for the CAiSE PhD Consortium 2019, chapter 6 of
this thesis, which helped us to gather more feedback from the community,
and to address the future directions of our work.

However, prior to the publication of the aforementioned CAiSE 2019
PhD Consortium paper, we were already deliberating on the identified
issues and which one to tackle. We recalled that one of the authors in
the research environment had been working towards requirement expan-
sion techniques for her own research challenges, and realized that it was
possible to adapt those techniques and leverage them to build a require-
ment expansion approach based on a domain ontology, which would help
us bridge the gap between the artifacts. We developed this work and
published the results in another article in the main track of CAiSE 2019
(GGS class 2, CORE:A). This particular work honed and matured the
prior skills taught by previous experiences.

In the final stages of the thesis, I participated in a research stay program
within another research entity (LIP6, Paris) under the tutelage of Prof.
Dr. Tewfik Ziadi. There, we developed several ideas and built bridges for
working together in the near future. This international experience helped
me understand how other research environments organize and function,
and the similarities and differences for international PhD programs and
students around the world.

Finally, I built this book, and commenced working towards the rest of
the ideas and issues exposed by my previous research.

Research Questions

The two research questions posed at the introduction of this thesis have
been tackled throughout the research works presented in chapters 1 to 7.
In the following paragraphs, we present how each of the research articles
has contributed to the study of the research questions:
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RQ1 Is it possible to adapt state-of-the-art Information Retrieval ap-
proaches in order to make them available for Traceability Links Re-
covery between natural language requirements and BPMN models?

CAIiSE Forum ’17, chapter 1 : This article is focused on trans-
forming state-of-the-art Traceability Links Recovery techniques
so that they can be leveraged for the context of requirements
and generic model artifacts.

IST ’18, chapter 4 : This article is aimed at retrieving the most
relevant model fragments for different types of input queries,
coming from three different Software Engineering tasks: Trace-
ability Links Recovery, Bug Location and Feature Location. As
a part of this thesis, we fully developed the part of this work
that delves on Traceability Links Recovery.

CAISE ’18, chapter 5 : This article takes the techniques for Trace-
ability Links Recovery between requirements and models, plus
the enhancements proposed in other works in this thesis, and
builds an approach for Traceability Links Recovery between re-
quirements and BPMN models.

Response to RQ1 : The results of the aforementioned papers propose
approaches for Traceability Links Recovery between requirements
and BPMN models, through the adaption of existing techniques
that worked for Traceability Links Recovery between requirements
and code-based artifacts. In addition, the results of both articles
prove, with the usage of measurements widely accepted by the sci-
entific Software Engineering community, that these approaches and
techniques can be successfully adapted for the context under study.

RQ2 If so, how can we refine the proposed approaches in order to im-
prove the Traceability Links Recovery process between natural lan-
guage requirements and BPMN models?

ER Forum ’17, chapter 2 : This article studies the process of
transforming the models into natural language with the aim of
improving the Traceability Links Recovery process.
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GPCE ’17, chapter 3 : This article studies the processing of the
natural language of the artifacts in use, with the aim of achiev-
ing further improvements on the Traceability Links Recovery
process.

CAIiSE PhD Consortium ’19, chapter 6 : This article recaps
the Traceability Links Recovery process between requirements
and BPMN models, and theorizes on potential further improve-
ments of the process.

CAIiSE ’19, chapter 7 : This article builds on the ideas presented
by the prior paper, and enhances the Traceability Links Re-
covery process by palliating tacit knowledge in requirements,
expanding them through the usage of a domain ontology.

Response to RQ2 : The results of the aforementioned papers tackle
diverse aspects of the artifacts in use, identifying particularities of
the requirements, the models, and the natural language in use alike.
The possibilities posed by the inherent flaws of the artifacts are
leveraged to build enhanced approaches for Traceability Links Re-
covery between requirements and BPMN models.

By acknowledging and incorporating these particularities, the ap-
proaches are better equipped to deal with the challenge under study,
and thus obtain better results, again in terms of widely accepted
measurements, than those baseline approaches that do not take in
account this novel knowledge. Hence, our research proves that these
approaches and techniques can be successfully refined to improve the
task under study.
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Future Work

This section presents some of the ideas and opportunities for future work
that arose from our latest research:

1. Through a thorough analysis of the results of our work, we have iden-
tified a set of particularities of BPMN models, or in other words,
a set of characteristics that differentiate BPMN models from other
kinds of models, and which may be negatively affecting the Trace-
ability Links Recovery process. Thus, a novel research question
arises: Could we take in account these particularities in the devel-
oped approaches in order to lead them to enhanced results?

To that extent, it would be necessary to devise mechanisms for in-
corporating those particularities into the developed approaches, and
to analyze the impact of the novel approaches to check whether
acknowledging these particularities leads the approaches to signifi-
cantly enhanced results.

2. Through an analysis of the artifacts, we have realized that BMPN
models have less text that other kinds of models, in particular those
models that are built with code generation purposes in mind. The
following research question arises: Would it be possible to enrich
the text of BPMN models to improve TLR techniques based on text
search?

To that extent, it would be necessary to devise a mechanism that
allowed us to expand the BPMN models, perhaps by leveraging
other software artifacts that we have not taken into consideration
so far, such as BPMN run-time execution traces, which may contain
relevant information about the models, and which could be utilized
to expand the amount of natural language in the BPMN models
prior to performing the Traceability Links Recovery process.

These ideas constitute the seed for a yet uncharted but clear path towards
future improvements, and allow us to keep working in a topic that is still
an open, interesting, and relevant issue for the Software Engineering
community.
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Conclusions

This chapter presents the final concluding remarks of the
thesis, summarizing the challenge, scope, and outcomes of our
work.
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Traceability Links Recovery (TLR) is defined as the software engineer-
ing task that deals with the identification and comprehension of depen-
dencies and relationships between software artifacts. It is an important
support activity during activities related to development, management,
and maintenance of software, leading to increased maintainability and
reliability of software systems, and decreasing the expected defect rate
in developed software. However, establishing and maintain traceability
links has proven to be a time consuming, error prone, and person-power
intensive task, and has therefore become a subject of investigation for
many years within the software engineering community. However, the
application of TLR techniques to models in general, and BPMN models
in particular, is a topic that has not received enough attention yet.

Through this thesis, we have analyzed and improved the TLR process
between natural language requirements and BPMN models. To that
extent:

1. In the first stages of the thesis, our first efforts were aimed at trans-
forming the state-of-the-art approaches in code-based software ar-
tifacts, so that they could be transported to model-based software
artifacts.

2. As a result of our initial work, we identified a series of problems
related to the natural language of the artifacts in use. In particular,
we had some issues that stemmed from the transformation of mod-
els to natural language (a necessary step for the application of the
developed Traceability Links Recovery approaches), and from the
processing of the natural language in the requirements. We stud-
ied these particularities and how to leverage them to enhance the
Traceability Links Recovery process.

3. Afterwards, we incorporated the novel enhancements to the research
that stemmed from the work of other authors in the same research
environment in the fields of Feature Location and Bug Location,
two other Software Engineering tasks that pursue different goals
than those of Traceability Links Recovery, but which still rely on
Information Retrieval to do so.
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4. Then, we dived into the specifics of BPMN models by applying
our newfound knowledge to develop an approach for Traceability
Links Recovery in the BPMN models context, and identified certain
particularities of the research challenge in the context.

5. In the final stages of the thesis, we worked towards towards incor-
porating the particularities of the BPMN models case into the TLR
approaches, improving the results of the approaches and studying
potential future works in the field.

Our research has been validated through real-world case studies, both
industrial and academical. In addition, our research has contributed to
several national and international projects. Partial results of our research
have been published in several scientific articles in workshops and con-
ferences, relevant in the field of our studies. Overall, the results of our
research have concluded that: (1) it is possible to design approaches that
perform TLR between natural language requirements and BPMN mod-
els, and (2) approaches for TLR between natural language requirements
and BPMN models can be enhanced, although many improvements are
yet to be researched. This uncharted territory leaves room for future
work in such an interesting and relevant topic.

To close this book, we reflect that, while there is still much work to do in
the field, we have conclusively developed a PhD thesis that successfully
contributes to advancing the available research knowledge in Traceability
Links Recovery in BPMN models.
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