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Abstract
We present a constructive algorithm able to solve a wide variety of variants of the two-dimensional irregular
bin packing problem (2DIBPP). The aim of the 2DIBPP is to pack a set of irregular pieces, which may have
concavities, into stock sheets (bins) with fixed dimensions in such a way that the utilization is maximized. This
problem is inspired by a real application from a ceramic company in Spain. In addition, this problem arises in
other industries such as the garment industry or ship building. The constructive procedure presented in this paper
allows both free orientation for the pieces, as in the case of the ceramic industry, or a finite set of orientations as in
the case of the garment industry. The algorithms presented in this paper are the first to consider free rotation and
one of the few to address the bin packing problem with irregular pieces. We propose several Integer Programming
models to determine the association between pieces and bins and then we use a Mixed Integer Programming model
for placing the pieces into the bins. The computational results show that the algorithm obtains high quality results
in sets of instances with different properties. We have used both real data and the available data in the literature of
2D irregular strip packing and bin packing problems.
Keywords: Cutting and packing; Two-Dimensional irregular bin packing; Integer Programming.

1 Introduction
A Spanish company in the ceramic tile sector, Butech Building Technology, by PORCELANOSA Group, has
developed a new solid surface which, due to its properties of strength, durability, and color stability, can be used
for ventilated facades, among many other applications. The material, whose commercial name is Krion R©, is
produced in plates of 366.6 by 75 centimeters. Particular to this product is the possibility to cut it into pieces
of any polygonal shape, convex or not, following the design developed by the architects. This is a significant
departure from the classical tiles used in ventilated facades, which are always of rectangular shape. The problem
is, then, to determine how the demanded pieces are cut from the plates so as to minimize the number of required
plates. As this new material is quite expensive and the number of pieces in a project can be very large, reducing
the number of plates to a minimum can produce substantial savings. At the time undertaking this research, the
company manually designed the cutting patterns, where each order could take up to four person weeks.

The above cutting problem is a two-dimensional bin packing problem with irregular (non-convex) pieces
(2DIBPP). According to the typology proposed by Wäscher et al. (2007), the 2DIBPP problem can be classified
as a two-dimensional Irregular Single Bin Size Bin Packing Problem (SBSBPP) where pieces to be cut from the
bins (plates) are simple polygons. There are no restrictions on the angle of rotation, making the problem more
difficult to solve efficiently. Further, the pieces cannot be reflected because each side of the plate has a different
texture and only one side can face outwards. The objective is to minimize the total number of bins needed to cut
all the pieces.

The most studied packing problem involving irregular shapes that can be found in the literature is the two-
dimensional strip irregular packing problem, also known as the Nesting Problem (see Bennell and Oliveira (2009)
for a survey). There are few publications considering the bin packing problem with irregular pieces and, to our
knowledge, there is no publication allowing items to be continuously rotated. Terashima-Marin et al. (2010)
propose a hyper-heuristic algorithm which combines several placement heuristics. They combine the Bottom-Left
algorithm developed by Jakobs (1996) and an improved version proposed by Liu and H.Teng (1999). For both
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procedures Terashima-Marin et al. (2010) add the possibility of rotating the pieces at specific angles. Furthermore,
they include different modifications of the constructive approach presented by Hifi and M’Hallah (2002). The
hyper-heuristic is embedded into a Genetic Algorithm and it is tested basically on jigsaw puzzle instances with
convex pieces. Lopez-Camacho et al. (2013) propose an adaptation of the Djang and Finch heuristic (DJD),
proposed by Ross et al. (2002) for the one-dimension bin packing problems, to the two-dimensional irregular bin
packing problems. Despite the fact the algorithm proposed by Lopez-Camacho et al. (2013) consider non-convex
pieces, in the computational experiments they only report results involving pieces with convex shapes.

Another interesting application of bin packing problems with irregular pieces arises in the glass industry. Since
the cutting process forces the use of guillotine cuts, the pieces have to be convex, but they are not restricted to
take rectangular shapes. Bennell et al. (2012) propose two constructive heuristics and report results on some real
data. More recently, Martinez-Sykora et al. (2015) present several MIP-based constructive procedures in which
they improve the best known solutions in all the instances and, furthermore, they obtain competitive results on
rectangular bin packing problems. Another study that considers multiple bins and irregular pieces is that of Song
and Bennell (2013), who propose a column generation procedure for solving the irregular shape cutting stock
problem. The authors use the beam search algorithm proposed in Bennell and Song (2010) for generating the
patterns and study three solution approaches: column generation, adapted column generation and a sequential
heuristic procedure. In the computational experiments the authors build eleven instances obtained from well-
known 2D irregular strip packing instances by fixing the length and multiplying the demand of each shape by 100.
Therefore, despite the fact the instances are non-convex and in some of the instances they have quite complex
shapes, the problem is a cutting stock problem, which is slightly different than the two-dimensional bin packing
problem considered in our study.

This paper describes a constructive algorithm which makes decisions iteratively. The distinctive feature of the
algorithm is that some of the decisions concerning the positions of the pieces are flexible and can be modified
during the constructive procedure. The algorithm is divided into two phases. The first phase determines the subset
of pieces assigned to the next bin. We have developed and tested several strategies, ranging from simple priority
rules based on the dimensions of the pieces, to solving variants of the one-dimensional Bin Packing Problem. In
a second phase, the pieces of the selected subset are taken one at a time and attempted to be cut from the new bin.
This phase consists of two steps. First, we determine a set of promising rotations for the piece and then, for each
rotation, we determine if the piece fits into the bin by solving a Mixed Integer Programming (MIP) model.

The paper is organised as follows: in Section 2 we define the problem and some notation. In Section 3 and
Section 4 we give, respectively, the mathematical formulation to be solved in order to determine the assignment of
pieces to bins and the placement of items into each bin. Section 5 contains two local search procedures designed
to improve the solutions obtained. In Section 6 we describe the implementation of the constructive algorithm,
including how the rotations of the items are calculated, and in Section 7 we present the computational results in
different subsections: the instances obtained from the real data, the existing instances available in the literature,
and some complex instances we have built from the instances available for the Nesting Problem.

2 Problem description and algorithm outline
We denote by P = {1, . . . , n} the set of n pieces to be placed into identical rectangular bins. The number of available
bins can be considered large enough to pack all the items and the objective is to minimize the total number of bins
needed to cut all the pieces in P. The width and length of the bins are denoted by W and L respectively. The
pieces can be rotated continuously. We denote by IBPP(P, L,W) the problem which minimizes the number of
bins needed to pack all the pieces in P into bins whose length and width are L and W, respectively.

A solution of IBPP(P, L,W) is given by a set of bins B = {b1, . . . , bN}. Each bin bi(Pi,Oi, Xi,Yi), ∀i = 1, . . . ,N,
is composed of a set of pieces Pi ⊆ P, a vector Oi = {o1, . . . , oni }, defining the orientation of the pieces, where
ni = |Pi|, ok ∈ [0, 2π[, k = 1, . . . , ni, and two vectors Xi and Yi which are the X-coordinate and Y-coordinate of the
reference point of each piece. We define the reference point of the piece i ∈ P in the orientation oi as the bottom
left corner of the enclosing rectangle (see Figure 1). In addition, we consider that the bottom-left corner of each
bin is placed at (0,0), so that the coordinates of the reference points are always positive. Note that, since all the
pieces have to be placed, then P = ∪N

i=1Pi.
Despite the fact that the objective of minimizing the total number of bins is quite straightforward, we are going

to consider a secondary objective in order to compare solutions that use the same number of bins. The idea is to
apply a vertical or a horizontal cut in order to separate the non-utilized part of the bin for future use. The cut is
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Figure 1: Reference point of a piece in two different orientations

applied to the least utilized bin only. We define the fractional number of bins as follows:

K = N − 1 + R∗ (1)

where R∗ is the proportion of utilized area of the whole bin after applying the vertical and horizontal cuts. Figure
2 shows two different solution of instance Han (in class Nest-MB), taken from Nesting Problems. Though in both
solutions N = 3, using the secondary objective solution (b) is better because the fractional number of bins after
saving the un-utilized part of the last bin is Kb = 2.20, which is less than for solution (a), Ka = 2.35. In these two
cases the cuts are vertical rather than horizontal because this gave the lower fraction bin.

(a)

(b)

Figure 2: Two solutions of instance han (Nest-MB) obtained by CA-PBP-20 and CA-PBP-20-LS2. a) K = 2.35; (b) K = 2.20.

Lopez-Camacho et al. (2013) propose an alternative measure of performance based on the percentage usage
of each bin as follows:

F =
∑N

i=1 U2
i

N
(2)

where Ui is the utilization ratio of each bin i ∈ 1 . . . ,N. The idea is to maximise F. This measure also avoids the
ties among different solutions with the same number of bins, but F and U are not equivalent. While improving
the value of U will improve the value of F, a solution with a better F does not necessarily lead to a better U.
In our case, we consider that minimizing the usage U is more relevant because the aim is to keep as much raw
material as possible for future use. However, we employ this measure of performance for comparing with the
results presented in Lopez-Camacho et al. (2013).
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pieces to bins
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be cut?

ENDno

yes

no

yes

Figure 3: Scheme of the constructive procedure

The constructive procedure is organized as shown in Figure 3. In S.1, we decide which pieces are assigned to
each bin by using a variety of strategies including solving an IP formulation of the one dimensional bin packing
problems (1DBPP). Given the assignment, S.2 attempts to place the pieces into the next bin by solving a MIP
model for the insertion of each piece previously ordered by non increasing area. In Section 4 we describe the
MIP models to obtain the coordinates of the pieces and the procedure to obtain promising rotations. If a feasible
solution for the bin is found, e.g, all the pieces fit into the bin with no overlap, then we add the bin to the solution
(S.4) and we build the next bin (S.2) unless all pieces are packed. If all the MIP models built for placing a piece
into the bin are infeasible, we assume that the piece does not fit into the bin. Therefore, we go to step (S.3) for
reassigning the pieces into the bins.

3 Assignment models
In this section we describe a number of approaches for assigning pieces to bins. This includes a two-phase exact
procedure and then some relaxation strategies leading to different heuristic procedures.

Let N be an upper bound on the total number of bins required to pack all the pieces, obtained by using the First
Fit Decreasing (FFD) algorithm (Johnson et al. (1974)). We define the following binary variables: si, ∀i = 1, . . .N,
which take value 1 if bin bi is used in the solution and 0 otherwise, and zi j, i = 1, . . . ,N, j = 1, . . . , n, which take
value 1 if piece j is assigned to bin i and 0 otherwise. An integer programming model for assigning pieces to bins
can be formulated as a 1DBPP as follows:

Min.
∑N

i=1 si, (3)∑n
j=1 a jzi j ≤ LW, 1 ≤ i ≤ N, (4)∑N

i=1 zi j = 1, 1 ≤ j ≤ n, (5)

zi j ≤ si, 1 ≤ j ≤ n, 1 ≤ i ≤ N, (6)

si ∈ {0, 1}, zi j ∈ {0, 1} 1 ≤ j ≤ n, 1 ≤ i ≤ N. (7)

The objective function minimizes the total number of bins used in the solution. Constraints (4) ensure that the
total area of the pieces assigned to bin bi does not exceed the area of the bin. Equalities (5) force each piece to be
assigned to one bin. Inequalities (6) guarantee that if any piece is placed into a given bin, then the corresponding
bin is used in the solution. Finally, constraints (7) force the variables to be binary.

Note that, if this IP model is solved to optimality and we pack all the pieces assigned to each bin successfully,
the solution would be optimal. This is highly unlikely because area is a poor approximation of a 2D shape,
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particularly when they are irregular. It is for the purpose of assignment, each piece is approximated by its area, ai,
and the problem becomes a 1DBPP. For the cases when we do not find a feasible solution for packing the subset
of pieces Q ⊆ P in a bin, an obvious solution to this problem is to add the following constraints∑

j∈Q

zi j ≤ |Q| − 1, 1 ≤ i ≤ N. (8)

to the IP model to ensure that not all the pieces in Q will be assigned to the same bin, and solve it again
to obtain a new assignment of the pieces. However, we do not follow this strategy because it leads to high
computational effort. Note that, while this procedure could be applied until the packing problem in each bin is
solved successfully, the number of inequalities added to the IP could be very large leading to high computational
times. For this reason we propose several simplifications of this procedure. The first relaxation could be solving
the packing problem associated to each bin in a heuristic way. That would reduce the computational time, although
the solution obtained would not necessarily be optimal if the numbers of required bins is increased. Nevertheless,
even with this simplification the iterative procedure could take very long for large instances. Other strategies, with
more adjusted computing time, are described below. In all of them the pieces assigned to a bin are ordered by
non-increasing area and the packing procedure takes one piece at a time and tries to place it in the partially filled
bin.

3.1 Bin Packing with Greedy Decisions (BPGD)
This strategy is based on the observation that the packing procedure usually fails having packed most of the
assigned pieces and attempting to insert the few remaining pieces. If we solve the assignment problem again, the
effort in packing the placed pieces would be wasted. The BPGD strategy is based on solving the model described
above at most once per bin. When trying to pack the pieces assigned to a bin, there are two possible outcomes:

a) The packing algorithm finds a feasible placement for all the pieces. Move to S4 (see scheme in Figure 3).

b) The packing algorithm fails when placing a given piece. In this case, instead of only packing the rest of the
assigned pieces. We try to fill up the bin considering all unpacked pieces initially assigned to other bins. We
take all the pieces not yet placed, except the one for which the packing failed, order them by non-increasing
area and try to place them one at a time in the partially packed bin. When all the pieces have been tried, the
bin is closed and we solve the assignment model again for the unpacked pieces.

The IP model has to be solved each time case (b) occurs, because the set of remaining pieces has been modified:
one or more pieces assigned to the bin are still unpacked and possibly some pieces assigned to the next bins have
already been packed. Note that each time the IP model is solved at least one bin has been closed and the number
of the remaining pieces has been reduced. Therefore N is updated and the number of binary variables is reduced.

3.2 Partial Bin Packing (PBP)
This strategy is based on the idea that there is no need to assign all the pieces to the bins if we are almost sure
that sometime the packing will fail and the assignment will have to be recalculated. Therefore, we focus on the
assignment of the pieces to just one bin. Then, the binary variables in that case, q j, j = 1 . . . , n, take the value 1
when piece j is assigned to the bin and 0 otherwise. The IP model can be formulated as follows:

Max.
∑n

j=1( a j

amax
)κ q j, (9)∑n

j=1 a j q j ≤ LW, 1 ≤ j ≤ n, (10)
q j ∈ {0, 1}, 1 ≤ j ≤ n. (11)

where amax is the area of the biggest piece and κ ∈ [1,∞). When κ = 1, this objective function maximizes
the assigned area of the bin. The problem with κ = 1 is that it is possible that solutions where only small pieces
are assigned to the bin if together they attain the best utilization. This could produce bad global results because
the biggest pieces would be assigned to latter bins and it is more difficult to combine big pieces in a bin. Then,
packing the big pieces as soon as possible seems to be a good strategy in the constructive procedure. On the
other hand, if κ takes a large value, only the biggest pieces will be placed into the bin. We consider κ = 2, as an
acceptable balance between the utilization of the bin and the assignment of the biggest pieces.
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If one of the assigned pieces, j, does not fit into the bin, we solve a similar model in order to reassign the
pieces to the current bin, but forcing the pieces already placed by the packing procedure to be assigned to the bin
and not including piece j.

3.3 First Fit Algorithm (FF)
An alternative to solving IP models to optimality described above is the use of a known heuristic algorithm such
as the First Fit Algorithm (FF) (Johnson et al. (1974)). The FF takes an ordered list of pieces and assigns them
iteratively to the bins. In order to assign one piece it checks if it fits in any of the bins in the order they were
created until a feasible assignment is found. If the piece does not fit into any existing bin, a new bin is created
and the piece is assigned to this new bin. This algorithm is very fast and depends critically on the initial ordering
of the pieces. Therefore, in order to obtain a good assignment we run it many times (for instance, 5000), starting
from random permutations of the pieces, and keep the solution with the minimum number of bins. Ties are broken
by the minimum used area of the least utilized bin.

Each time the packing fails we have a set of bins in which the packing has been successfully applied, one bin
bi in which a piece j cannot be placed, and the rest of bins where the packing has not been applied yet.

All the successfully packed bins are kept and their pieces removed from consideration. The pieces in the par-
tially packed bin, bi, that where successfully placed remain assigned to bin bi. All remaining pieces are reassigned
to bins using FF with the constraint that piece j cannot be assigned to bi again.

All the pieces already placed in the bins are eliminated and the remaining pieces are assigned into new bins
by applying the FF algorithm again. Note that there is one bin partially built, bi, which corresponds to the last bin
where the packing failed to add piece j. Then, we do not allow piece j to be assigned to bin bi because we know
that this piece will not fit into that bin.

3.4 Hybrid Bin Packing (HBP)
In order to combine the quality obtained by an exact procedure as the PBP and the efficiency of the FF we study
a hybrid approach. The idea is to apply first the PBP with a time limit. If optimality is proved within this limit,
we use the assignment given by PBP in the packing procedure. If the time limit is reached and the solver used
(CPLEX) is not able to prove optimality, FF is run several times and the best solution obtained by both procedures
is used. The time limit is denoted by TiLim, and the number of runs of the FF is denoted by nruns. We will
consider TiLim = 45 seconds and nruns = 1000. In the previous strategies, the TiLim used to solve the IP models
is 50 seconds and nrun in the FF is 5000. Therefore, we reduce the computational time of the PBP strategy slightly
in order to run 1000 iterations of the FF algorithm and pick the best solution.

3.5 Two Phases Strategy (TPS)
This strategy is based on rearranging the pieces in a solution obtained by the BPGD algorithm. While the solution
obtained by the BPGD procedure provides the optimal number of bins required to pack all the pieces the solution
does not consider how small and large pieces are distributed. In generall it is better to have large pieces in the first
bins and use small pieces to fill the gaps. Therefore, we propose another IP model to reassign pieces into bins. Let
zi j, i = 1, . . . ,N′, j = 1, . . . , n be the binary variables which take value 1 if piece j is associated with bin i. Note
that in that case the total number of bins N′ is given by the solution of BPGD algorithm.

Min.
∑N

i=1
∑n

j=1( a j

amax
)2 2(N′−i)

N′2+N′ zi j, (12)∑n
j=1 a jzi j ≤ LW, 1 ≤ i ≤ N′, (13)∑N′

i=1 zi j = 1, 1 ≤ j ≤ n, (14)
zi j ∈ {0, 1}, 1 ≤ i ≤ N′, 1 ≤ j ≤ n. (15)

The objective function (12) forces the assignment of large pieces into the first bins while minimising the total
number of bins is minimized. Note that ( a j

amax
)2 takes a greater value when p j has more area and 2(N′−i)

N′2+N′ takes a
greater value for the first bins. The constraints (13) and (14) ensure, respectively, that the pieces associated to one
bin does not exceed the area of the bin and that each piece is assigned to one bin.
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4 Packing model
In this section we describe the model that determines the exact location and orientation of the pieces in a bin.
We assume that a set of pieces Pb ⊆ P, ordered by non-increasing area, has been assigned to the current bin, b.
The MIP model places one piece in the bin in order to minimise the weighted rectangle of the partial solution.
Although, the pieces can be rotated continuously, but the MIP we use to pack the pieces requires that each piece
has a fixed orientation. As a result, the MIP model is run several times for each piece solving a model for each
orientation we want to consider. This idea was first proposed in Martinez-Sykora et al. (2015).

In order to obtain promising rotations for placing the next piece, we consider the edges of the pieces already
placed in the bin and the edges of the bin. We calculate the angles of rotation in such a way that one edge of the
piece being placed matches with either one edge of a piece already placed or one edge of the bin. If we obtain
more than three different rotations, we sort the angles by the following criteria (GR):

• Non-increasing number of matches between the edges of the polygon obtained by applying the given rota-
tion to the piece, and the edges of all the pieces already placed in the bin and the edges of the bin.

• Ties are broken by the total length of the edges of all the matchings.

If the number of rotations is not specified, we consider the first three rotations for the insertion of each piece.
If in a given instance, only some fixed orientations are allowed, we use these orientations.

In what follows we give a description of the MIP model. For the sake of clarity, we first describe the model
for the insertion of the first piece, then the second piece and finally the general case. The placement model for the
first piece has a linear programming formulation, in which the variables x1 and y1 correspond to the coordinates
of the reference point of piece 1:

Min. ωLu + (1 − ω)Wu, (16)
Lu ≤ L, (17)
Wu ≤ W, (18)
x1 ≤ Lu, (19)
y1 ≤ Wu. (20)

Lu and Wu denote the used length and width of the bin when placing the first piece and ω is a coefficient which
depends on the dimensions of the bin. In order to balance the used length and width when adding pieces we fix
ω = 1

(W/L)+1 . Therefore, with this objective function the pieces will be placed in such a way that the dimensions
of the enclosing rectangle are proportional to the dimensions of the bin. Constraints (17) and (18) ensure that the
used length and width do not exceed the dimensions of the bin and constraints (19) and (20) force piece 1 to be
inside the enclosing rectangle (Lu,Wu).

We solve this linear programming formulation once for each different orientations we consider for the piece.
In this step we determine and fix the orientation of the piece for which the objective function is minimized. In
Figure 4, the first two rotations are considered because two edges of the piece are parallel to the edges of the bin.
The values of x1 and y1 given by the LP solution are not fixed in the following models but the orientation is. The
third rotation, which happens to be the best, is considered because the largest edge of the piece is parallel to one
edge of the bin.

When inserting the second and later pieces, the main difficulty is to ensure that they do not overlap. We use the
MIP model, proposed by Alvarez-Valdes et al. (2013), in which non-overlapping constraints are obtained using
No-Fit Polygons (NFP). The NFP is a polygon derived from every pair of pieces in such a way that its interior
represents all the overlapping positions between the pieces, and its boundary represents all the touching positions.
Figure 5 gives an example of the NFP, corresponding to pieces 1 and 2 (NFP12), where the orientation of piece 1
is fixed in the previous step and piece 2 was the same shape as piece 1 and is rotated 900. Deriving the NFP is not
the topic of this paper, see Bennell and Oliveira (2008) for a review of procedures. Given the correct placement of
piece 1, the reference point of piece 2 must be placed outside NFP12 to avoid overlapping. Alvarez-Valdes et al.
(2013), following the idea proposed by Fischetti and Luzzi (2008), who divide the outer region into horizontal
slices and define a binary variable for each slice so that it takes value 1 if the reference point is in this slice and 0
otherwise.

In the example in Figure 5 we need 13 binary variables. The notation we use to write the formulation is a
three-index notation in which the two first indexes represent the pieces, and the third index enumerates the slices
(for the sake of clarity in Figure 5 we show only the third index). In general, if pieces have complex shapes, the set
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Figure 4: Three rotations for the first piece (instance poly3a-x2). Rotation 3 is selected and fixed

1

2

NFP12

v1

v2v3

v4

v5

v6
v7

v8

v9

v10

v11

v12

v13

Figure 5: NFP12

of points not belonging to the NFP may have a structure more complex than that of the Figure 5. In these cases,
before defining the slices and their associated variables, a preprocess is required and additional binary variables
are associated with the subsets of the region not included in the slices (see Alvarez-Valdes et al. (2013) for a
complete discussion).

Let m12 be the total number of binary variables, i.e, the number of slices we derived from NFP12 (m12 = 13
in Figure 5). We denote by t12i the total number of inequalities required to describe slice S i associated with v12i,
i = 1, . . . ,m12. Despite the fact that in Figure 5 t12i = 4, ∀i = 1, . . . ,m12, it might be possible that t12i takes
different values if the NFP12 has a more complex shape. In what follows we describe first the non-overlapping
constraints and then the containment constraints.

If, for some slice k of the NFP12, v12k = 1, the constraints defined by the sides of the slice:

α
k f
12(x2 − x1) + βk f

12(y2 − y1) ≤ δk f
12 f = 1, ..., t12k (21)

where αk f
12 and βk f

12 are the coefficients defining the slope of the inequality and δk f
12 the intercept, must be satisfied.

However, if v12k = 0, these constraints must be relaxed. This can be done by using big-M constants:

α
k f
12(x2 − x1) + βk f

12(y2 − y1) ≤ δk f
12 + (1 − v12k)M f = 1, ..., t12k (22)
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Fischetti and Luzzi (2008) describe a procedure for building these constraints avoiding the big-M constants.
Since exactly one slice is used in any feasible solution, this equality holds:

m12∑
i=1

v12i = 1 (23)

Then a tighter constant could be written for each slice, eliminating the big-M and including on the right hand
side of the inequality all the binary variables, defined by NFP12, multiplied by a given constant. These constants
are obtained by solving the following problem:

δ
k f h
12 = maxp2∈S h α

k f
12(x2 − x1) + βk f

12(y2 − y1) (24)

which corresponds to the maximum value of the left hand side when piece 2 lies on slice h, h ∈ {1, . . . ,m12}.
Then, the non-overlapping inequalities can be written as follows:

α
k f
12(x2 − x1) + βk f

12(y2 − y1) ≤
m12∑
h=1

δ
k f h
12 v12h k = 1, ...,m12, f = 1, ..., t12k (25)

The containment constraints ensure that each piece does not exceed the limits of the bin (as with inequalities
(19) and (20) in the formulation for one piece). Alvarez-Valdes et al. (2013) describe a lifting procedure for these
inequalities, adding some of the binary variables of the corresponding NFP, associated with slices on which one
piece protrudes either horizontally or vertically from the other. Let us denote by y12k and y

12k
(y12k and x12k) the

maximum and minimum value of y2 − y1 (x2 − x1), respectively, when slice k is used. Let X12 and Y12 be the
minimum X-coordinate and Y-coordinate value of NFP12 respectively. We define the following classification of
the binary variables:

• U12 := {v12k | y12k
≥ 0}, the set of binary variables whose associated slices do not allow piece 2 to protrude

from below piece 1. In Figure 5, U12 = {v1, v2, v3, v12}.

• R12 := {v12k | x12k ≥ 0}, the set of binary variables whose associated slices do not allow piece 2 to protrude
from the left of piece 1. In Figure 5, R12 = {v9, v10, v11, v12}.

• LS 12 := {v12k | λ12k > 0}where λ12k = l1−(x12k−X12) and l1 is the length of piece 1 in the current orientation.
Then, LS 12 is the set of binary variables whose associated slices force piece 1 to protrude from the right of
piece 2. In Figure 5, LS 12 = {v2, v3, v4, v5, v6, v7}.

• DS 12 := {v12k | µ12k > 0} where µ12k = w1 − (y12k − Y12) and w1 denotes the width of piece 1. Then, DS 12 is
the set of binary variables whose associated slices force piece 1 to protrude from above piece 2. In Figure
5, DS 12 = {v7, v8, v9}, variable v6 is not in DS 12 because µ126 = 0.

The containment constraints for piece 1 are:

∑
k∈R12

x12kv12k ≤ x1 ≤ Lu − l1 −
∑

k∈LS 12
λ12kv12k (26)∑

k∈U12
y

12k
v12k ≤ y1 ≤ Wu − w1 −

∑
k∈DS 12

µ12kv12k (27)

Similarly we can build the containment constraints for piece 2. In Figure 5, U21 = {v5, v6, v7, v8, v9, v10}, R21 =

{v2, v3, v4, v5, v6, v7}, LS 21 = {v9, v10, v11, v12}, and DS 21 = {v1, v2, v3, v4, v11, v12}. The containment constraints for
piece 2 can be written as follows:∑

k∈R21
λ21kv12k ≤ x2 ≤ Lu − l2 −

∑
k∈LS 21

x12kv12k (28)∑
k∈U21

y12kv12k ≤ y1 ≤ Wu − w2 −
∑

k∈DS 21
µ21kv12k (29)

where λ21k = l2 − (X
12
− x12k) and µ21k = w2 − (Y

12
− y

12k
).

The MIP formulation we consider to place pieces 1 and 2 has as objective function expression(16), subject to:

• Constraints (17) and (18) to ensure that Lu and Wu do not exceed the limits of the bin.

• Lifted containment constraints (26) and (27) for piece 1.
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Figure 6: Three rotations for the second piece. Rotation 3 is selected and fixed

• Lifted containment constraints (28) and (29) for piece 2.

• Non-overlapping constraints (23) and (21).

This MIP model is solved three times since we consider three orientations as illustrated in Figure 6. Each time
we solve the model for a given rotation and we obtain an improved feasible solution, the value of its objective
function is used as an upper bound for the following rotations. Therefore, only models producing improved
solutions are solved to optimality. If the orientation being tested cannot produce a better solution, the model is
quickly identified as unfeasible by the solve, speeding up the process. In the three solutions depicted in Figure 6
the orientation of piece 1 is fixed, as a result of the previous step, but is position is determined by the solution of
the current model.

There are 13 binary variables in each one of the models solved for the insertion of the second piece. Since this
number increases exponentially with the number of pieces already placed into the bin, it maybe necessary to fix
the relative position between the pieces already placed to reduce this number. If the computational time needed to
solve the MIP model to optimality exceeds a given threshold, θ, then we will fix the binary variables to the values
obtained in the previous model. Otherwise, we allow more flexibility by keeping the binary variables free.

For the general case, where the next piece to be inserted is piece j, j − 1 pieces have been inserted and now
have fixed orientation. The model for the insertion of j can be written as follows:

Min. ωLu + (1 − ω)Wu, (30)
Lu ≤ L, (31)
Wu ≤ W, (32)∑

k∈R x j1 j2kv j1 j2k ≤ x j1 ≤ Lu − l j1 −
∑

k∈LS j1 j2
λ j1 j2kv12k, j1, j2 ∈ {1, . . . , j} (33)∑

k∈U j1 j2
y

j1 j2k
v j1 j2k ≤ y j1 ≤ Wu − w j1 −

∑
k∈DS j1 j2

µ j1 j2kv j1 j2k, j1, j2 ∈ {1, . . . , j} (34)

α
k f
j1 j2

(x j2 − x j1 ) + βk f
j1 j2

(y j2 − y j1 ) ≤
∑m j1 j2

h=1 δ
k f h
j1 j2

v j1 j2h, 1 ≤ j1 < j2 ≤ j, k = 1, ...,m j1 j2 , f = 1, . . . , t j1 j2k(35)∑m j1 j2
i=1 v12i = 1, 1 ≤ j1 < j2 ≤ i (36)

v j1 j2k ∈ {0, 1}, j1, j2 ∈ {1, . . . , j} (37)
xl, yl ≥ 0, 1 ≤ l ≤ j (38)

Constraints (31) and (32) ensure that Lu and Wu do not exceed the dimensions of the bin. The containment
constraints (33) and (34) are required for all the pair of pieces taking into account the order ( j( j− 1) pairs) and the
non-overlapping constraints (35) and (36) are required for all the NFP ( j( j−1)

2 pairs).
In Figure 7 we show the insertion of piece 15. In this example the previous MIP model was difficult to solve

to optimality (the computation time was greater that the threshold θ). Therefore, the relative position of the pieces
already placed is fixed while piece 15 is being inserted. We can see that we obtain different solutions with the
same objective function value. In this case, the algorithm would solve the first MIP model to optimality (Rotation
1) obtaining a solution. This objective function value will be used in the next two MIPs as upper bound. As a
result, the second and third model will be quickly identified as infeasible. Their solutions appear in Figure 7 only
for illustrative purposes.
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Figure 7: Three rotations for the 15th piece. Rotation 3 is selected and fixed

5 Local search
In this section we present two different strategies for designing a local search procedure in which we consider that
a solution has been improved if its coefficient F is increased.

In this section we present two alternative local search procedures. Both use F, defined in (2), as the objective
function and both are first found improve strategies with no diversification element. Hence the procedures are
hill climbing and terminate when they hit a local optimum. F is useful to guide the search due to the following
properties: If a move leads to an increase in the total utilisation of the bins, then the value of F will increase
(see equation (2)); if a move leads to the same total utilisation staying the same, but the utilization of one bin
increasing, then the value of F will still increase. This is useful as it differentiates between solution with the same
number of bins and removes large plateaux regions from the solution space.

5.1 LS1
Let s be a solution whose set of bins B = {bs

1, . . . , b
s
Ns
} is sorted by non-decreasing utilization, i.e, U s

1 ≤ U s
2 ≤

· · · ≤ U s
Ns

. Local search procedure (LS1) is based on combining pieces from a pair of bins, bs
i and bs

j with i < j, in
such a way that either only one bin is needed to pack all the pieces (and the number of bins is reduced) or U s

j is
increased and consequently U s

i is decreased, i.e. same number of bins but better F.
The way to combine two bins is described in Algorithm 1, denoted as Mov1. For the sake of simplicity we

have omitted superscript s. The idea of this movement is to remove one piece p j ∈ b j from the fullest bin and try
to place into it all the pieces of bi into b j before trying to place again p j. This move will produce a new bin b′j. If
it has a better utilization than b j, we try to place the unpacked pieces into the other bin, producing a new bin b′i .
If it contains all the pieces not packed into b′j, we have obtained an improved solution. Note that b′i is built from
scratch because the set of pieces is quite different from the set of pieces originally packed in bi. In Algorithm 1 we
include the cases where we fail to build b′i (in this case, no movement is performed and we go on to study the fol-
lowing pieces in b j) and the case in which all the pieces fit in b′j (then only one bin is needed to pack all the pieces).
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Data: bi and b j such that ui ≤ u j

Result: bi′ and b j′ such that ui′ ≥ ui and u j′ ≤ u j

b′i = bi;
b′j = b j;
for each piece p j in b j do

Set areaout = areap j , areain = 0, Unplaced = ∅;
Remove p j from b′j;
List: Sort pieces in bi by non-increasing area;
Add p j to the end of List;
for each piece p in List do

Obtain rotations piece p described in Section 4;
Solve the corresponding MIP models (one per rotation);
if piece p fits then

Update b′j;
areain+ = areap;

else
Unplaced = Unplaced ∪ {p j};

end
end
if areain > areaout then

if Unplaced , ∅ then
Sort Unplaced by non increasing area;
Build b′i trying to place all the pieces into the bin (see Section 4);
if All pieces fit then

return b′i and b′j;
else

Set b′i = bi and b′j = b j;
end

else
return b′j and b′i as an empty set (all the pieces fits only in one bin);

end
else

Set b′i = bi and b′j = b j;
end

end
Algorithm 1: Improving the partial solution with two bins (Mov1)

Local search procedure LS1 calls Mov1 for each pair of bins starting with the bins with the lowest utilization.
Each time an improvement is found we start again from the new solution studying the pairs of bins with lowest
utilization which have not been considered in the previous move.

5.2 LS2
This local search aims to extend the scope of the search in LS1. The idea is to consider one bin, say bi, of a solution
s with N bins, and try to empty it as much as possible by either moving to or swapping pieces with a set of r bins
B′ = {b j1 , . . . , b jr }, r < N, B′ ⊆ B \ {bi}, where all B′ have greater utilization that bi.

12



Data: bi, b j1 , . . . , b jr such that ui ≤ u j1 ≤ · · · ≤ u jr
Result: r or r + 1 new bins packing the same set of pieces with better coefficient F
Copy pieces of bi in List ;
bi = ∅;
Copy bins b′j1 = b j1 , . . . , b

′
jr
= b jr ;

while movements do
movements=false;
for k = 1 to r do

for each piece p jk in b′jk do
Set areaout = areap jk

, areain = 0;
Remove p jk from b′jk ;
Copy List2 = List;
Add p jk to the end of List;
for each piece p in List2 do

Obtain rotations for piece p as described in Section 4;
Solve the corresponding MIP models (one per rotation);
if piece p fits then

Update b′jk ;
areain+ = areap;
Remove p from List2;

else
Study next piece;

end
end
if areain > areaout then

if List2 , ∅ then
List = List2 and sort the list by non-increasing area;
b jk = b′jk ;
movements=true;

else
return b′j1 , . . . , b

′
jr

(a solution with one bin less have been found);
end

else
b′jk = b jk ;

end
end

end
if List has been modified then

Try to place all the pieces from List into bi, building a new bin b′i ;
if All pieces fit then

Improvement is found: return bi and bins b′j1 , . . . , b
′
jr

;
else

return (no improvement is found);
end

else
return (no improvement is found);

end
end

Algorithm 2: Improving the partial solution with r + 1 bins (Mov2)

This movement has some similarities with Mov1. The main idea of both movements is that we try to increase
the usage of one bin b j by removing one of its pieces and trying to pack the pieces of a less used bin bi. The main
difference is that while in Mov1 once we have built a new bin b′j we try to rebuild bi, in Mov2 we consider r ≥ 2
bins in such a way that the weakest bin is not rebuilt until no improvement is found in the r bins. If we fail to
pack all the pieces from the list of unpacked pieces in the new bin b′i , the whole movement fails and we return
to the previous solution. Compared with Mov1, Mov2 is a larger neighborhood move, which involves a greater
computational effort, but it can find new improving moves.

6 Implementation
In this Section we describe different variants of the constructive procedure obtained by varying:

• The strategy to assign pieces to bins.

• The strategy to obtain the rotations.
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• The threshold θ, which defines when a MIP model is difficult to solve by the current solver (CPLEX
12.5.0.0).

In Section 3 we present five different approaches for assigning pieces to bins, BPGD, PBP, FFD, HBP and TPS,
each one based on solving a variant of the one dimensional bin packing problem. In addition we consider another
greedy approach based on sorting the pieces by non-increasing area and then applying the First Fit Decreasing
(FFD) algorithm (Johnson et al. (1974)). We denote this assignment procedure as SAR.

For instances in which the pieces can rotate freely, their orientation will be obtained by the criteria described
in Section 4. We denote by GR1 the criterion in which only the best rotation is considered and by GR3 the case in
which the best three rotation are studied.

For instances in the literature in which the orientations of the pieces are limited, usually 0o and 180o, or 0o,
90o, 180o, and 270o, instead using GR we study all the allowed orientations of each piece.

Taking into account the strategy to assign pieces to bins and the threshold θ in the packing procedure, we pro-
pose seven variants of the constructive algorithm. The algorithms are denoted CA− I− J, where I indicates the as-
signment strategy and J denotes the value of the threshold θ. Then, I ∈ {SAR, BPGD, CBP, PBP, FFD, HBP, TPS}
and J is given in seconds. In all the assignment strategies we consider J = 20, with a time limit of 50 seconds per
MIP solved. In addition, we have considered a more ambitious approach, the constructive algorithm CA−T PS−80,
in which the time limit is increased to 100 seconds for the MIPs considered in the packing and the IP model used
in the TPS is limited to 20 seconds.

In Section 5 we have described two local search procedures. Although they can be applied to the solutions
obtained by any constructive algorithm, we have tested them only in combination with the constructive algorithm
CA − PBP − 20, because it is the fastest algorithm and the quality obtained is competitive with the other variants.
We denote by CA − PBP − 20 − LS 1 and CA − PBP − 20 − LS 1 the algorithms which include local search.

7 Computational results
The constructive algorithms proposed in the previous sections were coded in C++ and implemented using Visual
Studio 2008. We use CPLEX, version 12.5.0.0, for solving both the Integer Programming models in the assignment
strategy and the Mixed Integer Programming models in the packing strategy, and the computational tests were run
on a PC with core i7 2600 processor and 4 GB memory.

The computational experiments are divided into four parts with respect to the source of the data instances. First,
we compare the strategies described in Section 6 using two set of jigsaw puzzle instances, a set of 540 instances
with irregular convex shapes and 480 instances with concave shapes. These instances have been proposed by
Lopez-Camacho et al. (2013) and in line with this paper results are reported by using coefficient F as a measure
of performance (see Section 2).

Second, we report the solutions we obtain in three real instances for the ceramic industry provided by a Spanish
company located in Castellon, BUTECH-PORCELANOSA. The instances have 209, 340 and 484 pieces. Two of
the instances have pieces with concavities and one instance has only convex pieces. There is no restriction on the
orientation of the pieces.

The first set of instances are jigsaw puzzles, and therefore is not representative of real cases. While the
second set of instances obtained from BUTECH-PORCELANOSA, arise from a real application, the number of
instances is very small so it is clearly not enough to assess the performance of the algorithms. Therefore, a third
set of instances is obtained from the well-known instances for strip packing Nesting problems available online at
ESICUP web site (http://paginas.fe.up.pt/ esicup/tiki-index.php), which have a high variety of shapes (convex and
non-convex). We use the pieces from these instances to create three sets of 22 instances with different bin sizes.

Finally, the fourth set of instances have been obtained from Bennell et al. (2012) for the 2-Dimensional Bin
Packing Problem with Irregular convex Pieces and Guillotine Cuts (2DBPPIPGC). The authors proposed 8 in-
stances, 4 obtained from the real industry and the other 4 randomly generated.

7.1 Jigsaw puzzle convex instances used by Lopez-Camacho et al. (2013)
These 540 instances can be found on the ESICUP web site. They are divided into 18 types, differing in the number
of pieces per bin and the squareness of the pieces (see Terashima-Marin et al. (2010)). In all of them the optimal
solution consists in filling up all the bins, without any waste. The rotation of the pieces is restricted, considering
up to four orientations, 0o, 90o ,180o, and 270o. However, note that the known optimal solution of 100% utilization
arises from the original orientation (0o).
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Table 1: Results of the constructive algorithms on the jigsaw puzzle convex instances

CA-SAR-20 CA-BPGD-20 CA-PBP-20 CA-FFD-20 CA-HBP-20 CA-TPS-20 CA-TPS-80
F F F F F F F

A 0.605 0.583 0.609 0.581 0.578 0.607 0.601
B 0.684 0.865 0.781 0.648 0.654 0.807 0.902
C 0.702 0.584 0.720 0.603 0.583 0.707 0.688
D 0.596 0.564 0.579 0.578 0.578 0.579 0.586
E 0.581 0.476 0.524 0.513 0.513 0.524 0.538
F 0.515 0.489 0.504 0.492 0.492 0.505 0.509
G 0.719 0.708 0.724 0.631 0.625 0.736 0.732
H 0.751 0.758 0.766 0.655 0.658 0.799 0.905
I 0.627 0.617 0.628 0.624 0.623 0.629 0.625
J 0.672 0.654 0.669 0.655 0.655 0.670 0.671

K 0.763 0.643 0.757 0.613 0.608 0.747 0.753
L 0.595 0.499 0.558 0.517 0.524 0.553 0.544

M 0.673 0.543 0.628 0.539 0.543 0.596 0.593
N 0.519 0.499 0.513 0.503 0.503 0.513 0.515
O 0.823 0.877 0.823 0.600 0.584 0.832 0.929
P 0.738 0.624 0.710 0.618 0.611 0.699 0.694
Q 0.903 0.680 0.953 0.680 0.679 0.911 0.919
R 0.766 0.655 0.754 0.643 0.627 0.742 0.741

Av. 0.680 0.629 0.678 0.594 0.591 0.675 0.692
Av.Time 115 102 57 61 104 288 616

Figure 8 shows the solutions of two convex instances of different types. The size of the bins is the same (scaled
different in the picture). However, the shape of the pieces and the number of pieces per bin are strongly different.
Both solutions are obtained by algorithm CA-PBP-20. The top solution belongs to an instance of class L and
the solution depicted at the bottom is an instance of class O (in which the algorithm was able to find the optimal
solution).

Figure 8: Two solutions of different type instances.

In Table 1 we present the results of the seven variants of the constructive algorithm described in the previous
Section. For each variant of the constructive algorithm we report the average value of coefficient F obtained for
the 30 instances of each type. In this first computational test we allow pieces to be rotated freely and therefore the
algorithm would not depend on the initial angles of rotations of the pieces.

Comparing all the constructive algorithms we propose, the first algorithm CA-SAR-20, based on ordering
pieces by area, obtains the best average results in 8 of the 18 types (results in bold). However, the best average
results are obtained by CA-TPS-80, based on the two-phase assignment procedure, which obtains the best result
only in one class, but obtains a better average in 10 of the 18 classes. Finally, we want to emphasize that algorithm
CA-PBP-20, based on the partial assignment, improves the BKR average on 11 classes and requires less compu-
tational time than any of the other variants. The computational time used by the algorithms in the different classes
varies considerably. This behavior is explained by the number of pieces placed in each bin. When packing few
pieces in a bin, the MIP models used in the packing procedure are relatively simple. However, when this number
increases, the models are more complicated to be solved and more computational time is required.

Table 2 shows the computations results obtained by the previous best three variants of the constructive al-
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Table 2: Results of the best constructive algorithms allowing four orientations.

CA-SAR-20 CA-PBP-20 CA-TPS-80 BKR
F F F F

A 0.615 0.604 0.599 0.605
B 0.761 0.781 0.914 0.929
C 0.731 0.711 0.691 0.763
D 0.591 0.589 0.584 0.579
E 0.515 0.508 0.520 0.412
F 0.513 0.510 0.509 0.496
G 0.716 0.724 0.737 0.814
H 0.751 0.766 0.902 0.928
I 0.630 0.624 0.626 0.627
J 0.669 0.671 0.671 0.665

K 0.764 0.750 0.746 0.718
L 0.589 0.577 0.568 0.512

M 0.658 0.614 0.598 0.589
N 0.518 0.518 0.514 0.503
O 0.826 0.831 0.914 0.823
P 0.713 0.700 0.693 0.678
Q 0.941 0.916 0.918 1.000
R 0.757 0.745 0.741 0.771

Av. 0.681 0.674 0.691 0.690
Av.Time 60 52 622

Table 3: Results of the local search procedures limiting the rotation to four angles and fixing the rotation.

CA-PBP-20 CA-PBP-20-LS1 CA-PBP-20-LS2 CA-PBP-20-LS2(No Rot) BKR
F F F F F

A 0.604 0.611 0.612 0.642 0.605
B 0.781 0.858 0.878 0.973 0.929
C 0.711 0.736 0.722 0.775 0.763
D 0.589 0.591 0.590 0.578 0.579
E 0.508 0.525 0.529 0.449 0.412
F 0.510 0.520 0.564 0.512 0.496
G 0.724 0.797 0.809 0.775 0.814
H 0.766 0.868 0.810 0.921 0.928
I 0.624 0.637 0.652 0.632 0.627
J 0.671 0.675 0.701 0.667 0.665

K 0.750 0.763 0.707 0.758 0.718
L 0.577 0.590 0.619 0.617 0.512

M 0.614 0.639 0.592 0.660 0.589
N 0.518 0.520 0.668 0.504 0.503
O 0.831 0.848 0.796 0.945 0.823
P 0.700 0.712 0.852 0.757 0.678
Q 0.916 0.965 0.858 0.899 1.000
R 0.745 0.757 0.762 0.776 0.771

Av. 0.674 0.701 0.707 0.713 0.690
Av.Time 52 129 161 50

Impv. 3.75% 4.59% 5.46%

gorithm, CA-SAR-20, CA-PBP-20, and CA-TPS-80, when the orientations are limited to four angles, 0o, 90o

,180o and 270o. The last column, BKR, shows the best result obtained by the best of the 11 algorithms presented
in Lopez-Camacho et al. (2013), where the computational time ranges between 0.3 and 8.4 seconds. We can see
that the quality of the results is similar to the results presented in Table 1. In this type of problems, in which the
optimal solution requires that the pieces have the original orientation in order to recover the initial decomposition,
the possibility of rotating the pieces is only useful when the assignment of the pieces to bins has not been correct
but has just a limited, corrective effect.

Table 3 shows the benefit obtained by applying the two local search procedures, algorithms CA-PBP-20-
LS1 and CA-PBP-20-LS2, defined in Section 6. These algorithms are created by applying the two local search
procedures explained in Section 5 to CA-PBP-20. We can see that the improvement average is 3.76% and 4.59%,
respectively, over the constructive procedure. Furthermore, we can observe that the second local search (LS2)
produce better results than LS1. Column CA-PBP-20-LS2(No Rot) shows the result obtained by CA-PBP-20-LS2
in the case in which only one angle of rotation is allowed (the initial angle). In this case we obtain the optimal
solution on 83 instances over the 540 against 45 solutions obtained by the same algorithm when 4 angles of
rotations are allowed. Despite the fact that the problem is simplified because we fix the orientation to be the one
to reproduce jigsaw puzzle and therefore we eliminate a possible source of errors, the resulting problem is by no
means simple, as can be seen in the examples of Figure 9. In addition, since we try to insert the piece in each
angle of rotation, when there is only one angle the computational time is reduced because we try less number of
attempt when inserting the pieces.
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Figure 9: Two optimal solutions obtained by CA-PBP-20-LS2(Fix Rot) (instances TA001 and TL023).

Table 4: Results of the best constructive algorithms applied on non-convex jigsaw puzzle instances

CA-SAR-20 CA-PBP-20 CA-TPS-80 CA-PBP-20-LS1 CA-PBP-20-LS2
F F F F F

A 0.584 0.597 0.564 0.601 0.600
B 0.699 0.714 0.672 0.737 0.739
C 0.643 0.666 0.635 0.682 0.691
F 0.500 0.498 0.499 0.499 0.502
H 0.717 0.731 0.719 0.753 0.763
L 0.551 0.546 0.532 0.564 0.570

M 0.578 0.594 0.547 0.600 0.617
O 0.663 0.721 0.659 0.744 0.739
S 0.447 0.467 0.460 0.482 0.484
T 0.778 0.790 0.771 0.808 0.821
U 0.570 0.657 0.583 0.686 0.689
V 0.780 0.873 0.776 0.892 0.910
W 0.627 0.638 0.603 0.661 0.670
X 0.529 0.581 0.510 0.590 0.592
Y 0.671 0.694 0.648 0.721 0.734
Z 0.789 0.820 0.787 0.831 0.846

Av. 0.633 0.662 0.623 0.678 0.686
Av.Time 35 25 314 81 123

Imp. 2.41% 3.50%

7.2 Jigsaw puzzle non-convex instances
The 480 jigsaw puzzle non-convex instances can also be found in the ESICUP web site. The instances are divided
into 16 types (more details can be found in Terashima-Marin et al. (2010)). The authors only provide the results
for the set of convex instances, and to our knowledge, there is no publication reporting results for these instances.

The first three columns on Table 4 show the results obtained by the best three constructive algorithms when
pieces can be rotated continuously. We can observe that constructive algorithm CA-PBP-20 gives the best results
and CA-TPS-80 obtains worse results with much longer running times. The last two columns shows the improve-
ment obtained when the two local search procedures are applied on CA-PBP-20. We can observe that the second
local search produce more improvement than the second local search. In addition, the average results obtained in
this set of instances are slightly worse than the results obtained in the convex instances.

7.3 BUTECH-PORCELANOSA instances
BUTECH-PORCELANOSA provided three instances with a wide variety of pieces in terms of shape and size.
Pieces can be rotated continuously, while due to size, there are some pieces that can fit only with a specific angle
of rotation. In this case it is necessary to change the initial orientation of the piece in order to fit them into the
bins. Some of the the bins are built by placing just one piece while in some others several pieces can be packed
together. The instances are denoted as BPx, where x indicates the number of pieces. The results are shown in
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Table 5: Computational results for the real data instances

CA-SAR-20 CA-BPGD-20 CA-PBP-20 CA-FFD-20 CA-HBP-20
N U T N U T N U T N U T N U T

BP209 48 0.9157 320 52 0.8454 1280 48 0.9157 293 51 0.8577 589 51 0.8577 1786
BP340 204 0.9354 663 214 0.8918 4049 202 0.9455 234 210 0.9089 568 210 0.9089 4513
BP484 316 0.9732 22 388 0.7900 1827 316 0.9749 83 325 0.9471 527 321 0.9590 5658

Table 5.
We tried to solve these instances with all the constructive algorithms described in Section 6. For these in-

stances, the upper bound on number of bins and the number of pieces are very large. As a result, solving the
corresponding IP models many times, as required by CA-TPS-20 and CA-TPS-80, is computationally prohibitive.
These variants of the algorithm are therefore not included. However, algorithms CA-BPGD-20 and CA-HBP-20,
which solve a similar IP formulation but a much lower number of times, produce a solution in reasonable com-
puting time and are included. Nevertheless, the best algorithm in terms of computational time and quality of the
solutions is CA-PBP-20, that always provides an utilization greater than 90% and up to 97.49%. Note that this
variant only decides which pieces are selected into the current bin and does not take into account the impact on
later bins.

7.4 Nesting instances
In Nesting problems the length of the strip into which the pieces are packed is not limited and the objective is to
minimize the total required length needed to pack all the pieces. In order to adapt the nesting instances to our bin
packing problem, we have built three sets of instances defining bin sizes as follows. Let md be the maximum value
of either the length or the width of all the pieces in the initial rotation of a given instance. Then, by considering
the original set of pieces of each nesting instance and modifying the bin size (to a fixed dimensional square) we
build the following sets:

• Nest-SB (small bins). The bin dimensions are W = L = 1.1md

• Nest-MB (medium bins). The bin dimensions are W = L = 1.5md

• Nest-LB (large bins). The bin dimensions are W = L = 2md

Each one of these set of instances has 22 instances, corresponding to the different instances we have found for
the Nesting problem. Note that there are instances such as shapes0 and shapes1 in which the set of pieces is the
same and the rotation is different. As we allow free rotation of the pieces, we have built just one instance per bin
size. The idea of considering three different size is that, intuitively, in the set of instances Nest-SB the assignment
problem should be more important than in the instances of Nest-MB and Nest-LB because fewer pieces can fit into
one bin and the packing problem will be easier. Conversely, in the instances of Nest-LB, the packing phase will be
more important. Solving the packing problem more efficiently may lead to better solutions even if the assignment
is not very efficient.

According to the results of previous tests, Tables 1,2, and 4, we use only the constructive algorithm CA-PBP-
20 and the algorithms applying the local search procedures.

Table 6 shows the results obtained in each instance separately, and for each class of instances the total sum of
the fractional number of bins (denoted by K), the average using coefficient F, the average computational time in
seconds and the improvement obtained by applying the local search to the constructive algorithm.

The constructive procedure CA-PBP-20, the first column in each class, obtains similar results for the three
classes in terms of average utilization F (0.419, 0.415, 0.409). However, the computational effort increases when
the bin size increases (44, 93 and 195 seconds), because larger bins require solving packing problems with more
pieces.

When we apply the local search procedures we observe that the constructive solutions are clearly improved.
The improvement percentages are larger in small bins and decrease for larger bins. As it was expected, in the case
of small bins, poor piece assignments cannot be corrected in the packing phase, because very few pieces fit into one
bin. In these cases, the improvement moves, that move pieces between bins, can produce much better solutions.
This effect decreases for larger bins. The packing phase, though more time-consuming, is able to accommodate
adequately the pieces assigned to each bin and the effect of moving pieces between bins decreases. It can also be
observed that the computational times increased very sharply when the local searches are applied. This increase is
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Table 6: Results obtained by CA-PBP-20 applying LS1 and LS2 on Nesting instances

Nest-SB Nest-MB Nest-LB
CA-PBP-20 LS1 LS2 CA-PBP-20 LS1 LS2 CA-PBP-20 LS1 LS2

K T K T K T K T K T K T K T K T K T
albano 4.69 12 4.69 141 4.67 197 2.56 35 2.56 117 2.56 35 1.43 62 1.43 100 1.43 102

shapes2 19.73 5 19.73 17 19.73 19 9.93 7 9.93 280 9.93 55 4.8 19 4.8 102 4.4 146
trousers 4.75 171 4.79 361 4.77 553 2.56 316 2.56 704 2.56 869 1.5 541 1.5 984 1.5 989
shirts 15.77 132 15.63 747 15.63 577 7.1 216 7.1 1174 7.1 1769 4.11 480 4.11 1234 4.07 1223

shapes0-1 11.75 25 11.39 146 11.39 788 5.57 79 5.43 729 5.29 4967 2.93 183 2.93 922 2.93 1320
dighe2 2.43 1 2.39 4 2.43 4 1.29 2 1.27 18 1.31 183 0.76 15 0.75 25 0.75 26
dighe1 2.64 6 2.62 14 2.52 23 1.46 18 1.42 149 1.38 242 0.81 47 0.81 74 0.81 72

fu 7.58 1 6.7 2 7.57 2 3.57 1 3.57 3 3.57 4 1.71 5 1.71 8 1.71 10
han 4.2 8 4.2 26 4.2 33 2.35 20 2.2 227 2.2 178 1.26 29 1.26 45 1.26 49

jakobs1 7.6 4 7.6 15 7.6 14 3.33 20 3.3 236 3.24 315 1.78 40 1.78 65 1.78 83
jakobs2 6.45 8 6.42 86 6.42 1045 3.5 23 3.2 364 3.2 154 1.74 42 1.74 65 1.74 83

mao 3.95 10 3.93 464 3.84 236 2.17 18 2.17 85 2.17 86 1.13 43 1.13 58 1.13 57
poly1a 3.28 4 2.87 11 2.9 12 1.48 15 1.48 178 1.53 1161 0.8 45 0.8 75 0.8 83
poly2a 6.38 20 5.67 207 5.69 693 3.27 41 3.22 1274 3.21 4294 1.74 98 1.74 150 1.74 146
poly3a 9.38 42 8.95 196 8.36 426 4.8 106 4.56 3086 4.4 4094 2.55 200 2.48 351 2.52 385
poly4a 12.78 72 11.56 961 11.53 1182 6.25 155 5.97 4634 5.93 7053 3.41 318 3.41 583 3.35 525
poly5a 15.38 97 14.59 1745 14.74 911 7.77 270 7.74 2085 7.34 12804 4.37 450 4.3 2119 4.3 3004
poly2b 6.61 13 6.41 39 6.54 106 3.39 33 3.39 722 3.27 384 1.91 112 1.87 150 1.87 198
poly3b 8.6 31 8.49 109 8.47 278 4.52 79 4.47 1667 4.4 1941 2.53 165 2.5 321 2.5 365
poly4b 10.91 66 10.61 211 10.62 579 5.8 148 5.7 1202 5.61 2757 3.18 273 3.18 411 3.18 447
poly5b 12.92 113 12.39 1307 12.51 935 6.8 231 6.53 1853 6.63 985 3.88 511 3.76 842 3.88 1025
swimm 9.3 49 9.3 1220 8.62 2959 4.8 219 4.71 1445 4.71 3760 2.64 603 2.64 1412 2.62 1746

Total (K) 187.08 180.93 180.75 94.27 92.48 91.54 50.97 50.63 50.27
Av. F 0.419 0.443 0.445 0.415 0.430 0.436 0.408 0.409 0.410

Av. Time 40 365 526 93 1011 2186 195 459 549
Impr. 5.44% 5.82% 3.39% 4.90% 0.22% 0.55%

specially large for medium-size bins. The initial solution can be improved by significant percentages, 3.37% and
3.94%, but that involves many moves of pieces and many medium-size MIP models to be solved in the packing
phase. The times are not so large for small bins, because the packing problems are easier to solve, and for large
bins, because fewer improving moves are identified. Besides these general considerations, based on averages,
we can observe that the behavior of each algorithm varies for each instance. There are instances for which LS 1
outperforms LS 2 while in others LS 2 obtains much better results. The computational times also vary widely
among instances and algorithms.

7.5 Two Dimensional Bin Packing Problem with Irregular Pieces and Guillotine Cuts
(2DBPPIPGC)

Bennell et al. (2012) propose two different constructive algorithms to solve the 2DBPPIPGC problem. The authors
test their algorithms on 8 instances. 4 of these instances, called J40, J50, J60 and J70, are real data obtained by
a company in the glass cutting industry. The remaining 4 instances, called H80, H100, H120 and H149, were
generated randomly taking into account the main properties of the real data. The objective in this problem is to
reduce the fractional number of bins (K).

Note that the algorithms proposed in Bennell et al. (2012) have two important differences with the algorithms
we present in this paper:

• The algorithms proposed in Bennell et al. (2012) deal with guillotine cuts, i.e, all the pieces in each bin must
be obtained by applying only guillotine cuts. As a result all pieces are convex.

• The mirror transformation is allowed, i.e, pieces can be reflected potentially leading to better solutions.

The guillotine cuts are limiting the solution space so the solutions obtained by algorithms designed for those
problems are expected to produce lower quality solutions. However, the mirror transformation allows more,
possibly better, quality solutions. As a result it is not clear how a fair comparison of these algorithms with our
approach can be made.

Most recently, Martinez-Sykora et al. (2015) develop a constructive procedure that outperform the results
obtained by Bennell et al. (2012) in all of these 8 instances. The authors study different variants of the constructive
algorithm and show that there is an important benefit when the reflection (mirror transformation) of the pieces is
allowed. Here, we are going to compare our algorithms with the version of the constructive procedure described
in Martinez-Sykora et al. (2015) where reflection is not allowed; algorithm CA6. Given we cannot make a fair
comparison, the purpose of these experiments is to understand to what extent the guillotine cuts constraints the
solution quality on these instances.
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Table 7: Results obtained by CA-PBP-20 applying LS1 and LS2 on Nesting instances

CA-PBP-20 LS1 LS2 CA6
K T K T K T K T

J40 7.48 61 7.30 900 7.40 681 7.70 41
J50 9.28 72 9.22 631 9.16 497 9.53 24
J60 10.38 131 10.21 930 10.17 1664 10.68 65
J70 11.67 158 11.54 1135 11.42 1278 12.18 44
H80 9.31 254 9.25 2195 9.27 1094 9.34 117

H100 15.39 171 15.60 2879 15.28 1728 16.16 92
H120 15.62 439 15.55 2427 15.37 3705 16.39 158
H149 21.68 671 21.51 8555 21.46 2238 22.09 193
Total 100.81 100.18 99.52 104.07

Av. Time 245 2457 1611 92

Table 7 shows the fractional number of bins (K) obtained by constructive procedure CA-PBP-20 and both local
search apporaches LS1 and LS2. The last algorithm, CA6, is the variant that does not allow reflection and includes
guillotine cuts, presented in Martinez-Sykora et al. (2015). The algorithms developed in this study outperform
CA6 in all the test instances. The improvements obtained (3.13%, 3.74%, and 4.37%) can be considered as an
approximate measure of the effect of removing the condition of using guillotine cuts on these instances. However,
these improvements involve larger computing times, especially in the case of using local search.

8 Conclusions
In this paper we have addressed a new problem for which there is no specialized algorithm. Despite the fact that
the problem may arise in industries as the ship building or furniture, the main application in which we have focused
our efforts is in the ceramic tile sector, from which we have tested the algorithm in several instances provided by
BUTECH (PORCELANOSA group) in Spain. Due to the high cost of the material used, the main objective is to
obtain high utilization solutions.

The problem is the two dimensional bin packing problem with irregular and concave pieces in which there
is no limitation on the rotation of the pieces. As we stated before, this problem has clearly two components
(subproblems). First, the assignment problem, in which pieces are grouped to be placed into the same bin, and
secondly, the packing problem in which we need to find a feasible rotation and placement for the pieces assigned
to each bin. We have designed a two-phase constructive procedure and used several integer programming models
to solve the problems involved at each phase. Also, two local search procedures have been proposed, producing a
clear improvement over the constructive procedures.

In addition, in order to significantly extend the computational study, we have designed the algorithm in such a
way that it can be applied to the cases in which the rotation is either fixed or limited to certain angles. Therefore,
we have been able to test the algorithms on other sets of existing instances, obtaining solutions which are clearly
better than those reported in previous studies.

Concluding, the algorithm presented in this paper is able to solve the two dimensional bin packing problem
with convex and concave pieces, fixed rotation, limited rotation, or free rotation for the pieces and any combination
thereof. In the section of computational results we have used four different families of instances in which the
properties of the pieces and the bins vary considerably, including real world instances. In all the families the
algorithms proposed produce high quality results outperforming all competing approaches in the literature.
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