

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/149551

Vidal-Ferràndiz, A.; González Pintor, S.; Ginestar Peiro, D.; Verdú Martín, GJ.; Demazière,
C. (2017). Schwarz type preconditioners for the neutron diffusion equation. Journal of
Computational and Applied Mathematics. 309:563-574.
https://doi.org/10.1016/j.cam.2016.02.056

https://doi.org/10.1016/j.cam.2016.02.056

Elsevier

Schwarz type preconditioners for the neutron diffusion equation

A. Vidal-Ferràndiza, S. González-Pintorb, D. Ginestard,∗, G. Verdúa, C. Demazièrec

aInstituto de Seguridad Industrial: Radiofı́sica y Medioambiental,
Universitat Politècnica de València,

Camino de Vera s/n, 46022, València, Spain
bDepartment of Mathematical Sciences

Chalmers University of Technology,
Maskingränd 2, 412 58 Göteborg, Sweden

cDivision of Nuclear Engineering,
Department of Applied Physics

Chalmers University of Technology,
Maskingränd 2, 412 58 Göteborg, Sweden

dInstituto Universitario de Matemática Multidisciplinar,
Universitat Politècnica de València,

Camino de Vera s/n, 46022, València, Spain

Abstract

Domain decomposition is a mature methodology that has been used to accelerate the conver-
gence of partial differential equations. Even if it was devised as a solver by itself, it is usually
employed together with Krylov iterative methods improving its rate of convergence, and provid-
ing scalability with respect to the size of the problem.

In this work, a high order finite element discretization of the neutron diffusion equation is
considered. In this problem the preconditioning of large and sparse linear systems arising from a
source driven formulation becomes necessary due to the complexity of the problem. On the other
hand, preconditioners based on an incomplete factorization are very expensive from the point of
view of memory requirements. The acceleration of the neutron diffusion equation is thus stud-
ied here by using alternative preconditioners based on domain decomposition techniques inside
Schur complement methodology. The study considers substructuring preconditioners, which do
not involve overlapping, and additive Schwarz preconditioners, where some overlapping between
the subdomains is taken into account.

The performance of the different approaches is studied numerically using two-dimensional
and three-dimensional problems. It is shown that some of the proposed methodologies outper-
form incomplete LU factorization for preconditioning as long as the linear system to be solved
is large enough, as it occurs for three-dimensional problems. They also outperform classical di-
agonal Jacobi preconditioners, as long as the number of systems to be solved is large enough in
such a way that the overhead of building the preconditioner is less than the improvement in the
convergence rate.

Keywords: Neutron Diffusion, Finite Element Method, Substructuring, Schwarz Preconditioner

∗Corresponding author
Email addresses: anvifer2@upv.es (A. Vidal-Ferràndiz), sebastian.gonzalez-pintor@chalmers.se (S.

Preprint submitted to Journal of Computational and Applied Mathematics March 2, 2016

1. Introduction

Domain decomposition methods were first proposed by Schwarz [1] as an analytical tool. A
renewed interest in this kind of methods was noticed with the appearance of parallel comput-
ers [2]. These methods were first proposed to solve partial differential equations on complex
domains and later these techniques were extended to solve linear equations (see [3] and refer-
ences therein). The algebraic Schwarz methods are based on partitioning the vector of unknowns
into subsets, which correspond to a partition of the coefficients matrix, typically associated with
different subdomains in the continuous problem. The solution of the whole system is achieved
by solving the systems associated with the different blocks of the partitioned matrix, which are
simpler problems than the original one. Schwarz methods to solve linear systems are not as com-
petitive as other alternative methods such as multi-grid solvers, but they can be used as efficient
preconditioners of Krylov methods, at the cost of a few more iterations.

Domain decomposition methods in nuclear engineering have been receiving increasing atten-
tion for the last years due to their potential to solve large problems by using a divide-and-conquer
strategy. For example, a Schur complement is used to accelerate the core solver in [4]. In [5, 6] a
method based on the Schwarz iterative algorithm is studied to solve the mixed neutron diffusion
and the simplified spherical harmonics neutron equation. Finally, the response matrix method
that implements a two-level model, a global and a local level, was analysed in [7, 8]. The local
level is defined on a mesh fine enough to provide accurate results while the global level is defined
on a coarse mesh which accelerates the convergence of the method. The methodology for linking
the local and global solutions is the key aspect of the response matrix method.

The neutron diffusion equation is an approximation of the neutron transport equation [9].
This equation describes a balance between generation and loss of neutrons by a generalized
differential eigenvalue problem. The dominant eigenvalue and its corresponding eigenfunction
describe the steady state neutron distribution, thus, these quantities should be determined for
most of the reactor analyses. The problem is discretized by a high order Galerkin Finite Element
Method (FEM), thus transforming it into an algebraic eigenvalue problem. Different methods
can be used to solve this eigenvalue problem, while the common bottle-neck of all of them is the
solution of a large number of linear systems for a few different coefficient matrices.

Because of the discretization with a FEM, the matrices of the systems are large and sparse
their related linear systems are symmetric and positive definite. Thus, these systems are well
suited to be solved with an iterative Krylov subspace method, where a classical approach for
preconditioning these linear systems is by using an incomplete factorization of the coefficient
matrices [10]. Nevertheless, the computation of such preconditioner requires to store the coef-
ficients matrices in the computer memory, in addition to the preconditioner itself, which results
in large requirements of memory resources. These memory requirements can be lowered by
different fill-in or threshold criteria for the preconditioner, although the the minimum memory
requirement remains large if a fast preconditioner is used. In this work, we study alternative
preconditioning techniques for these systems based on the domain decomposition methodology,
aiming at lowering the memory requirements when high order Finite Element Methods are used
for the spatial discretization.

The rest of the paper is organized as follows. In Section 2, the high order finite element
method (FEM) that discretizes the problem using Lagrange polynomials is briefly reviewed.

González-Pintor), dginesta@mat.upv.es (D. Ginestar), gverdu@iqn.upv.es (G. Verdú), demaz@chalmers.se
(C. Demazière)

2

These polynomials provide a partition of the shape functions set into vertices, edges, faces and
interior functions. Using this natural partition, the linear systems of equations associated with
each energy group can be solved with a Schur Complement method that algebraically decouples
the interior degrees of freedom from the other ones. This method, also called static condensation
method, is presented in Section 3. This method is advantageous when a high polynomial degree,
p, is used in the FEM discretization. To precondition the resulting Schur complement system
two different strategies are described in this work. First a substructuring block Jacobi precon-
ditioner is studied in Section 4, where the coupling between the different elements is neglected.
Also, a domain decomposition algorithm with overlapping between subdomains, like the additive
Schwarz method, is considered in Section 5. Several benchmarks are studied in Section 6 to test
numerically the performance of the different approaches proposed. Finally, the main conclusions
of the paper are summarized in Section 7.

2. Neutron diffusion equation and its high order FEM discretization

The neutron diffusion equation is an approximation of the neutron transport equation relying
on the assumption that the neutron current is proportional to the gradient of the neutron flux
by means of a diffusion coefficient. This approximation is analogous to Fick’s law in species
diffusion and to Fourier’s law in heat transfer [9]. For a given configuration of a nuclear reactor
core, it is always possible to force its criticality dividing the neutron production rate by a positive
number, λ, obtaining a neutron balance equation. This equation is known as the Lambda modes
problem, and is of the form

L Φ =
1
λ
M Φ , (1)

where L is the neutron loss differential operator andM is the neutron production operator. This
problem is a generalized eigenvalue problem, and its fundamental eigenvalue (the largest one)
is called the multiplication factor of the reactor core, keff. This eigenvalue and its corresponding
eigenfunction describe the steady state neutron distribution in the core, thus, these quantities
should be determined for most of the reactor analyses.

This equation has a well-defined block structure due to the neutron energy discretization of
the problem, where the equation for the energy group g ∈ {1, . . . ,G}, has the following form

LggΦg =

G∑
h,g

LghΦh +
1
λ

G∑
h=1

MghΦh, (2)

where

LggΦg := −~∇Dg~∇Φg + Σr,gΦg, (3)
LghΦh := Σs,h→gΦh, (4)
MghΦh := χgνΣ f ,hΦh, (5)

Here Φg is the neutron flux for the g-th energy group, Dg is the diffusion coefficient, Σr,g is the
macroscopic removal cross section (absorption plus out-scattering), Σs,h→g is the macroscopic
scattering cross section from group g to h, νΣ f ,g is the fission cross section, χg is the neutron
energy spectrum of fission and λ is the he multiplication factor defined before. The cross sec-
tions and the diffusion coefficient are space dependent functions, usually defined as piecewise
constants because of a previous homogenization procedure [11].

3

2.1. The Eigenvalue Problem
In the most general case, this eigenvalue problem is traditionally solved using a source iter-

ation method with a combination of inner and outer iterations [12]. The inner iterations update
the neutron flux, from fast to thermal energy groups, using a fixed source from a previous outer
iteration that considers the fissions and the out-scattering from other groups, as follows

LggΦ(i)
g = Q(i−1)

g , (6)

where the source for group g, Qg, is generated using the updated neutron flux for the up-scattering
terms, and the previous neutron flux for the down-scattering and for the fission terms

Q(i−1)
g =

g−1∑
h=1

LghΦ
(i)
h +

G∑
h=g+1

LghΦ
(i−1)
h +

1
λ(i−1)

G∑
h=1

MghΦ
(i−1)
h . (7)

Once the inner-iteration has finished, by performing either one single loop through the energy
groups or iterating until convergence, the outer iteration updates the eigenvalue by using the
actual flux and the previous flux with the previous eigenvalue, as follow

λ(i) = λ(i−1) ||MΦ(i)||

||MΦ(i−1)||
, (8)

where || · || is a norm in (L2(Ω))G :=

G︷ ︸︸ ︷
L2(Ω) × . . . × L2(Ω). For this general scenario, the solution

of equation (6) is the most demanding step from the computational point of view. Thus, the
preconditioning of a finite element discretization of equation (6) is essential in order to accelerate
the whole algorithm.

Nevertheless, another situation might be accounted where the Lambda modes problem is
approximated using only two energy groups, assuming that the neutrons are born in the fast
group and there is no up-scattering, thus obtaining a block lower triangular form of the operator
that can be used to solve the system more efficiently. This scenario is widely considered because
it provides a good approximation, at low cost, for simulating standard LWR type reactor cores.
In this particular situation, equation (1) can be expressed in the more compact form (see [9]) by
equation (9) (

L11 0
−L21 L22

) (
Φ1
Φ2

)
=

1
λ

(
M11 M12

0 0

) (
Φ1
Φ2

)
, (9)

which can be formally expressed, due to the block lower triangular form of the system, as an
ordinary eigenvalue problem of the form

L−1
11

(
M11 +M12L

−1
22L21

)
Φ1 = λΦ1 . (10)

This eigenvalue problem can be solved, after proper spatial discretization of the differential
operators, by the source iteration method as before, or in a more efficient manner by, for example,
a Krylov-Schur method using the library SLEPc [13]. This method for solving the eigenvalue
problem, as well as the source iteration method, requires the solution of linear systems associated
to a discretized form of the following equation

Lgg Φg = Qg. (11)

It is worth pointing out that, when using the Krylov-Schur method, the term on the right hand
side, Qg, is not the same as when using the source iteration, because the former is generated
within the Krylov subspace and does not have a physical meaning.

4

2.2. Finite Element discretization.

In what follows we focus on a generic equation similar to equation (11) with zero flux bound-
ary conditions in order to simplify the derivations, even if the results obtained can be easily ex-
tended to more realistic boundary conditions, as albedo boundary conditions. Using standard
notation for the finite elements discretization, this problem reads as follows

−~∇(D~∇)u + Σru = f on Ω, (12a)
u = 0 on ∂Ω, (12b)

where Ω is the spatial domain and ∂Ω is the boundary of the domain and u is the solution for the
neutron flux. Problem (12) can be expressed in variational form as follows. Find u ∈ H1

0(Ω) such
that

a(u, v) = b(v) ∀v ∈ H1
0(Ω), (13)

where H1
0(Ω) is the Sobolev space of admissible functions vanishing at the boundary, and the

bilinear and linear forms a(·, ·) and b(·) are defined by

a(u, v) = (D∇u,∇v)Ω + (Σru, v)Ω , and b(v) = (f , v)Ω . (14)

The scalar product is defined as the volume integral over the whole domain Ω. Now a conforming
triangulation is chosen, Th, splitting the original domain Ω into subdomains T ∈ Th. Then, after
integrating by parts, and using the boundary conditions (12b), we obtain

(D∇u,∇v)Th + (Σru, v)Th = (f , v)Th , v ∈ Vh,p, (15)

where the inner product over the triangulation is defined as the sum of the inner products over
each element T ∈ Th as follows

(f , g)Th =
∑
T∈Th

(f , g)T (16)

and Vh,p is the discrete space of polynomials up to degree p over each element T , being continu-
ous across the interfaces.

The shape functions used here to span the space of polynomials up to degree p are Lagrange
polynomials defined on a set of Gauss-Lobatto Legendre quadrature points [14]. The finite el-
ement method has been implemented using the open source finite elements library deal.II [16].
With the help of this library, the code proposed is dimension independent and can manage dif-
ferent cell sizes and different types of finite elements. More details on the spatial discretization
used can be found in [15].

3. Schur Complement and Preconditioning

Domain decomposition methods were first proposed by Schwarz [1] as an analytical tool, and
one noticed an increased interest in this kind of methods in the last decades with the appearance
of parallel computers [2]. For the neutron diffusion equation, the continuous method is based

5

on solving the problem in different domains, while connecting the different solutions through
appropriate interface conditions, i.e.,

−~∇(Dk~∇)uk + Σrkuk = fk, in Ωi ∀k (17a)
uk = 0, on Ωi ∩ ∂Ω ∀k (17b)

uk = u j, on Γk j ∀k, j (17c)
Dk∇uk = D j∇u j, on Γk j ∀k, j (17d)

where uk is defined as the restriction of the function u to the subdomain Ωk, i.e., uk := u|Ωk , and
the interfaces are defined as the intersection of the subdomains without considering the Dirichlet
boundary, i.e., Γk j := ∂Ωk ∩ ∂Ω j.

As it has been already mentioned, the neutron diffusion equation is assumed to have piece-
wise constant coefficients on different subdomains, due to a previous homogenization procedure
in order to reduce the problem to this form. Thus, here we consider the mesh to be defined as the
equation having constant coefficients over each element. Therefore, the accuracy of the method
is increased by raising the degree of the polynomial expansion inside such a cell

We also make use of the fact that the Lagrange polynomials used in the high order finite
element method provide natural partition of the set of degrees of freedom (DoFs) into vertices,
edges, faces and interior shape functions as can be seen in Figure 1. Figure 1 shows a repre-
sentation of the substructuring decomposition for a two-dimensional domain using polynomials
of degree 3. Thus, after the spatial discretization, the local problem above can be expressed in
matrix form as

Ak xk :=

Ak,ii Ak,iv Ak,ie Ak,i f

AT
k,iv Ak,vv Ak,ve Ak,v f

AT
k,ie AT

k,ve Ak,ee Ak,e f

AT
k,i f AT

k,v f AT
k,e f Ak, f f

xk,i

xk,v

xk,e

xk, f

 =

fk,i
fk,v
fk,e
fk, f

 =: fk , (18)

where the subscript i refers to the degrees of freedom related to the interior of the cells, and the
subscripts v, e and f refer to the degrees of freedom related with the vertices, edges and faces,
respectively.

x x

x

x xx

x x

x

x x

x

x

xx

x

x

xx

x

x

x x

x

x

x

x

x Vertices
Edges

Interior

Figure 1: A model of a reactor and the representation of the different degrees of freedom using cubic polynomials in a
two-dimensional problem.

6

3.1. Schur Complement Method

We notice here that the interior DoFs of the previous local system (18) are decoupled from
the interior DoFs of the other local system. It allows us to apply the Schur complement method.
After assembling the global matrix for the problem by putting all the local problems (18) together,
we obtain a linear system as follows

Ax :=
(
AII AIB

AT
IB ABB

) (
xI

xB

)
=

(
fI

fB

)
=: f , (19)

where the block AII is a block diagonal matrix, every block being the block matrix of the local
interior nodes, i.e,

AII = diag{A1,ii, . . . , Ak,ii, . . . , AK,ii}, (20)

and the matrix ABB is composed of the matrices for the interfaces, connecting the local matrices.
In other words, the matrix contains the terms related with the vertices, edges and faces. Then
we solve the system for the interior DoFs, which is block diagonal and thus easy to invert using
a complete Cholesky factorization, and obtain a system for the boundary degrees of freedom,
which is written as

S xB = fS , (21)

where

S = ABB − AT
IBA−1

II AIB , fS = fB − AIBA−1
II fI .

Once the Schur complement system (21) is solved, the interior unknowns can be obtained by
simple matrix multiplication,

xI = A−1
II (fI − AT

BI xB) .

Inside a finite element partitioning the Schur complement matrix can be built locally as a sum of
the contribution in each cell, S k, as follows,

S =

K∑
k=1

S k =

K∑
k=1

(
Ak,bb − AT

k,ibA−1
k,iiAk,ib

)
, (22)

where Ak, is the corresponding local block matrix associated with the cell k. Then, the system
matrix A does not need to be built explicitly to construct its Schur complement matrix.

It is worth to notice here that since the Schur complement is the stiffness matrix associated
with a subspace of the space generated by the original basis, its condition number is bounded by
the condition number of the complete matrix A and is typically far better [17].

A disadvantage of this approach is the additional expense of constructing the Schur comple-
ment matrix. For a single system this expense can outweigh the advantage of solving a better
conditioned system for low order in the polynomial expansions [18]. However, for the resolution
of the Lambda modes problem each matrix has to be solved several times with different right hand
sides. Thus, the computational cost of constructing the Schur complement matrix is overcome
by the number of linear systems to be solved.

7

4. Substructuring preconditioners

In the same way as the original matrix, the Schur complement matrix has a structure that can
be algebraically separated into vertices, edges and faces degrees of freedom. The methods based
on this kind of partition of the high order finite element shape functions are called substructuring
methods. We use this partition of the DoFs to provide the Schur complement system (21) with
the following structure

S vv S ve S v f

S T
ve S ee S e f

S T
v f S T

e f S f f

xB,v

xB,e

xB, f

 =

 fS ,v
fS ,e
fS , f

 , (23)

Thus, a substructuring preconditioner for this system can be defined as,

P =

Bvv 0 0
0 Bee 0
0 0 B f f

−1

. (24)

where different substructuring preconditioners for the Schur complement matrix are defined in
the next sections by different choices for Bvv, Bee, B f f .

4.1. Preconditioner Pd

The simplest preconditioner for the Schur complement matrix is to use only use the diagonal
of the local matrices for preconditioning, i.e.,

Bvv = diag (S vv) ,
Bee = diag (S ee) ,

B f f = diag
(
S f f

)
,

implementing a Diagonal Jacobi preconditioner.

4.2. Preconditioner Pv

As with the original matrix, A, the preconditioner can be improved if the vertices sub-matrix
is solved in the preconditioner. This matrix is also explicitly assembled and Cholesky factorized.
In this case, the preconditioner sub-matrices are defined as,

Bvv = S vv ,

Bee = diag (S ee) ,

B f f = diag
(
S f f

)
.

4.3. Preconditioner Pve f

Similarly to the original matrix, the sub-matrices S ee and S f f represent the whole set of edges
and faces degrees of freedom respectively. In the Schur complement preconditioner each edge
and each face is considered independent. Thus, Bee and B f f also have a block diagonal structure.
The preconditioner blocks are defined by,

Bvv = S vv ,

Bee = block-diag (S ee) ,

B f f = block-diag
(
S f f

)
.

8

5. Restricted Additive Schwarz preconditioner

Another possibility of preconditioning consists of introducing overlapping between the sub-
domains by including the degrees of freedom related to the vertices and edges in the different
blocks, referred as Additive Schwarz preconditioner. This preconditioner is an extension of the
classical alternating Schwarz method at the continuous level [19], formulated by Schwarz in
1870. This method sequentially solves the Laplace equation in two continuous subdomains. The
projection interpretation of the alternating Schwarz method led to the Additive Schwarz pre-
conditioner defined at the matrix level. It should be noted that the Additive Schwarz will not
converge in general, but nevertheless can be efficiently used to accelerate a Krylov subspace
method [10].

In this work, a Restricted Additive Schwarz (RAS) [20] is used to accelerate the Schur com-
plement system of equation (21). In [21] it is studied from a theoretical point of view why this
preconditioner usually has better convergence properties than the unrestricted Additive Schwarz.
The RAS is defined as,

PRAS =

K∑
k=1

RT
k Xk

(
RkS RT

k

)−1
Rk, (25)

where the subdomain k is the complete union of two finite element cells, Rk denotes the restric-
tion operator from the global domain to the subdomain k, RT

k in the corresponding interpolation
operator and Xk is a partition of unity matrix that scales the contribution of each degrees of free-
dom depending on the number of subdomains where it is present. The partition of the unity
matrix is the key aspect which distinguishes the restricted version from the unrestricted version
of the additive Schwarz preconditioner [20]. It is important to note that the RAS preconditioner
yields to non-symmetric iterations even for symmetric matrices. Thus, iterative solvers capable
of dealing with non-symmetric system must be used, as the GMRES method.

The main difference between substructuring and the RAS preconditioners is the presence
of overlapping between subdomains in the RAS, building a preconditioner more complicated
than a simple block Jacobi preconditioner. Figure 2 shows the subdomain decomposition of the
block Jacobi preconditioner and the Additive Schwarz preconditioner for the Schur complement
matrix. This type of partitioning is similar to the one used in [22].

x x

x

x xx

x x

x

x x

x

x

x

x

x

x Dofs in Vertices
Dofs in Edges
Subdomains

x x

x

x xx

x x

x

x x

x

x

x

x

x

(a) (b)

Figure 2: Subdomains decomposition of (a) substructuring preconditioner and (b) the Additive Schwarz preconditioner.

For comparative reasons a classical ILU(0) decomposition, PILU , is also implemented.

9

6. Numerical Results

A two-dimensional and a three-dimensional problems in the approximation of two energy
groups have been considered to study the performance of the proposed preconditioners to accel-
erate the solution of the linear systems associated with the blocks L11 and L22. For this purpose,
the main quantities of interest are the largest eigenvalue λ, and the neutronic power density at
element i, i.e.,

Pi =
1
Vi

∫
Vi

(
Σ f 1Φ1 + Σ f 2Φ2

)
dV.

where Pi is the obtained neutronic power density in the i-th cell (cell averages), and Vi is the
volume of the cell. The neutronic flux is normalized in such a way that the average power in the
reactor is 1. The accuracy of the schemes will be studied by observing the error in the eigenvalue
and in the power density. For the eigenvalue, λ, the error will be measured in pcm units (10−5),
i.e., ∆λ = 105 |λ − λ∗|, where λ∗ is the reference value. Instead, the power density, the mean
relative error ε̄, and the maximum absolute error εmax, for the fission density with respect to the
reference value are considered,

ε̄ =
1
Vt

K∑
i=1

|Pi − P∗i |
|Pi|

Vi , and εmax = max
i
|Pi − P∗i | ,

where P∗i denotes the reference power in the i-th cell (cell averages), and Vt is the total volume
of the reactor.

To compare the performance of the different preconditioners the average number of iterations
needed to solve the systems associated with the linear systems L11 and L22 in the eigenvalue
calculation is used. Also the memory used by the matrix objects and the preconditioners is
shown.

We recall here that the code implementing the solution of the Lambda modes problem has
been written in C++ using the open source finite element library deal.II [16]. The eigenvalue
problem has been solved using the library SLEPc [13]. All the calculations have been performed
in a computer with an Intel R© i3-3220 CPU @ 3.30GHz processor with 8 GB of RAM running
Ubuntu GNU/Linux 14.04. A relative tolerance of 10−7 has been set for the Krylov-Schur eigen-
value solver in all the examples. Also a relative tolerance of 10−9 has been set for the linear
systems.

6.1. Two-dimensional problem: BIBLIS Reactor
First, a two-dimensional reactor example is considered, the BIBLIS 2D benchmark [23]. This

is a classical two-group neutron diffusion problem taken as a benchmark for different numerical
codes. It has 257 different assemblies including 64 cells modelling the reflector. The definition
of the 8 different materials and their cross sections are given in Figure 3 and Table 1. Reference
solution is extracted from [23].

Table 2 shows the size of the problem and the accuracy of the solutions obtained with different
degrees of the polynomials, p, used in the finite element method. It is observed that it is necessary
to use large degree polynomials in the finite element method to obtain solutions of the problem
with high accuracy, thus motivating the use of a preconditioner.

10

8

14

R

88

8

7

7

R8

6

1

6

R

4

1 8

4

2

2

1

8

1

4

2 R

8

4R

8

8

1

1

8

1

1

1

5

1

4

8

1

8

8

R

7

4

4

4

1

4

2 R

5

R

4

2

1 1

1

2

1

2

8R 2

2

8

4

8

8

R

2

8

1

1

1

2

1

2

4

R

RR

8

1

4

1

8

R

R

4

4 R

8

1

R

1

2

1

8

R

1

R

1

R

R

R

1

2

R

1

4

1 1

8

7

1

R

4

R4

1

1

18

5

2

1

4

R

4

1

4

2

2

7

1

1

4

R

8

4

1

4

1

8

5

5

2

8

7

1

1

4

8

R

1 44

7

1

1

11 1

8

2

R

R

R

8

R

1

8

R

R 7

1

1R

7

R R

R

4

18

4

6

4

R R

4

4

R RRR

R R

1

RR

1

4

1

4

4

4

1

5

6

8

1

R

2

4

R

R

R

4R 4

R

1

R

7

4

R

R

4

5

8

R

4

7

1

8 4

R

5

R

17

R

1

4

R

R

4

44

1

1

R

23.1226 cm

Figure 3: BIBLIS reactor materials definition.

Table 1: Macroscopic cross sections of the 2d problem: BIBLIS reactor.

Material D1 D2 Σa1 Σa2 Σ12 νΣ f1 νΣ f2
(cm) (cm) (1/cm) (1/cm) (1/cm) (1/cm) (1/cm)

1 1.4360 0.3635 0.0095042 0.075058 0.017754 0.0058708 0.096067
2 1.4366 0.3636 0.0096785 0.078436 0.017621 0.0061908 0.103580
R 1.3200 0.2772 0.0026562 0.071596 0.023106 0.0 0.0
4 1.4389 0.3638 0.0103630 0.091408 0.017101 0.0074527 0.132360
5 1.4381 0.3665 0.0100030 0.084828 0.017290 0.0061908 0.103580
6 1.4385 0.3665 0.0101320 0.087314 0.017192 0.0064285 0.109110
7 1.4389 0.3679 0.0101650 0.088024 0.017125 0.0061908 0.103580
8 1.4393 0.3680 0.0102940 0.090510 0.017027 0.0064285 0.109110

Table 2: Summary of size and accuracy results for the BIBLIS reactor for different polynomial degrees in the finite
element method.

Degree Number Number Eigenvalue Eigenvalue Neutronic Power
p of cells of DoF iterations λ1 ∆λ (pcm) ε̄ (%) εmax

1 255 290 48 1.021764 360 1.09e+1 6.43e-1
2 255 1089 48 1.025709 22 3.45e+0 1.92e-1
3 255 2398 48 1.025601 12 2.10e+0 9.15e-2
4 255 4217 48 1.025533 4.9 4.47e-1 2.31e-2
5 255 6546 48 1.02549 0.7 1.27e-1 5.57e-3
6 255 9385 48 1.025485 0.2 1.90e-2 9.42e-4
7 255 12734 48 1.025483 0.0 4.73e-3 1.87e-4

Reference 1.025483

11

Tables 3 and 4 display the performance of the different preconditioners for the Schur com-
plement matrix in terms of the average number of iterations, memory used by the matrix related
elements, and CPU time used to compute the solution for p = 3 and p = 5 degrees in the finite
element method. These numerical results show a decrease of the number of iterations as the
preconditioners become more complete. However, this improvement in the number of iterations
does not represent an improvement in the computational time. The reason is that this benchmark
is not big enough to show a time reduction in the Schwarz methodology, compensating the extra
overhead needed to assemble and decompose the different sub-matrices. The ILU(0) precondi-
tioner is not the best neither, due to the fact that the diagonal preconditioner Pd is very fast to
compute, so that the small reduction of the iteration counts is enough when considering the re-
duced cost of applying and computing the preconditioner. Moreover, it can be observed that the
reduction in the number of iterations for the matrix L11 is different from the reduction obtained
for L22, i.e., the preconditioners used here are sensitive to the coefficients of the equation.

Figures 4a and 4b show the average number of iterations for solving the system related to the
matrixL11 andL22, respectively using finite elements from degree 1 to degree 9. In these Figures
can be seen that the number of iterations grows as the finite element degree increases in an almost
linear way. This can be explained because when p is increased the number of non-zeros inside
the matrix is enlarged and thus its condition number. However the number of iterations show
a particular behaviour for low degree finite elements because of the relative importance of the
degrees of freedom related to the vertices in these matrices.

Table 3: Preconditioners performance for BIBLIS reactor with p = 3.

Preconditioner iterations iterations Memory Time
L11 L22 (MB) (s)

None 18.9 22.0 0.86 0.27
Pd 16.1 13.0 0.86 0.20
Pv 16.1 11.9 0.98 0.29

Pve f 15.1 11.0 1.1 0.51
PRAS 13.0 9.5 1.1 0.44
PILU 7.0 5.0 1.6 0.22

Table 4: Preconditioners performance for BIBLIS reactor with p = 5.

Preconditioner
iterations iterations Memory Time
L11 L22 (MB) (s)

None 25.0 23.3 3.9 0.80
Pd 23.0 13.0 3.9 0.69
Pv 23.2 13.0 4.1 0.74

Pve f 20.9 12.5 4.3 1.10
PRAS 17.8 10.0 4.4 0.92
PILU 9.0 6.0 6.0 0.75

12

1 2 3 4 5 6 7 8 9

FE degree p

0

5

10

15

20

25

30

35

40

It
er

at
io

ns
L

1
1

None
Pd

Pv

Pvef

PRAS

PILU

(a) Iterations for the L11.

1 2 3 4 5 6 7 8 9

FE degree p

0

5

10

15

20

25

30

It
er

at
io

ns
L

2
2

None
Pd

Pv

Pvef

PRAS

PILU

(b) Iterations for the L22.

Figure 4: Averaged number of iterations depending on the finite element degree used for BIBLIS reactor.

6.2. Three-dimensional problem: IAEA Reactor

As a second problem, a standard three-dimensional problem is considered. It is the IAEA
PWR 3D benchmark [24]. The core is composed by 241 rod assemblies including 64 assemblies
modelling the reflector. The definition of this reactor is given in Figure 5 and the cross sections
of the different materials are shown in Table 5. Albedo boundary conditions are used with a
extrapolation distance of 2.13 × Dg.

3
8

0
 c

m

1

12

R

11

1

1

1

R2

1

1

1

R

2

1 1

R

1

1

1

1

1

2

1 R

2

2R

1

1

1

1

2

2

2

3

2

1

2

1

3

1

1

1

R

2

2

1

R

2

1 R

2

R

2

1

3 1

1

3

1

3

1R 1

3

1

R

1

1

R

3

2

2

1

1

1

1

1

R

R

R

1

1

2

1

1

R

R

2

2 R

1

1

R

1

1

1

1

1

1

R

R

R

2

1

1

2

1 1

1

1

32

2

1

1

11

2

1

1

R

R

2

1

2

1

1

1

3

1

2

R

1

2

1

2

2

1

2

2

1

2

1

1

3

2

1

R

1 22

1

1

3

11 1

1

1

R

R

1 1

2

R

R 1

3

2R

1

R

R

R

31

R

1

2

R R

R

R

R RR

R R

1

RR

1

2

2

R

2

2

1

2

1

2

1

1

R

RR

RR 2

R

1

R

1

R

R

R

2

2

1

2

1

1

2 R

R

2 11

2

2

R

R

R

R2

1

1

20 cm

20 cm

1

3

3

1

1

3

3

1

2R

R

1R

3

1

1

1

2

1 1

3

1

R

3

R

3

1

11

1

3

4

3

3

2

11

1

R

1

1

1

3

3

1

1

33 1

1 2

2

R 4

3

1

RR

R

R

1

3

3

1

R

4

1

4

1

R 1

4 R

R

R

1

R

3

2

1

1 1

R

1

11

1 3

2

R

1

1 1

1

1

R

3

31 1

R 1

3

2

1

1

1

3

2

R

1

11

1

1

1

3

R

1

1 1

1

1 11

1

13

2

1R

1

1 3 3 111 2

2

1 1 R

3

1

1

1

1

1

11

1

3

1

2

3

3

2

3

1 1

1

1

R1

1

3

1

2

R

1 3

12 1

2

R 1

11

3

1

1

11

11R

R1

1

32

1

1

R

3

3

R 3

11

1

2

2

R

1

1

3

1

3

1

1

R

2

2 R

1

11

1

3

2

1

1

3

3

1

1

1 1

R

1

2

R R

1 1

RRR

3

R R

R

R

1 1

R

1

R

12

3

3

R

1

RR

21

1

2

1

1

13 R

3

31

1R

1

12 1

1

3

1

1 1

3

1

R

3

31

2

1 3

21

1

1

R

R

3

1

R

R

1

11 1

1

1

1

1

R

R

2

3

R

R

2

1

3

2

R

1

4

2

Figure 5: Geometry and material definition of the IAEA 3D reactor [24].

Table 6 shows a summary of the size of the problem and the accuracy of the solutions for
different degrees of the polynomials, p, used in the finite element method. The reference values
are extracted from [24]. As in the case of the previous benchmark, to obtain accurate solutions it
is necessary to use high degree polynomials in the finite element method.

13

Table 5: Macroscopic cross sections of the IAEA 3D reactor [24].

Material D1 D2 Σa1 Σa2 Σ12 νΣ f1 νΣ f2
(cm) (cm) (1/cm) (1/cm) (1/cm) (1/cm) (1/cm)

1 1.500 0.400 0.010 0.085 0.020 0.000 0.135
2 1.500 0.400 0.010 0.130 0.020 0.000 0.135
3 1.500 0.400 0.010 0.080 0.020 0.000 0.135
4 2.000 0.300 0.000 0.055 0.040 0.000 0.000
R 2.000 0.300 0.000 0.010 0.040 0.000 0.000

Table 6: Summary of size and accuracy results for the IAEA 3D reactor for different polynomial degrees in the finite
element method.

Degree Number Number Eigenvalue Eigenvalue Neutronic Power
p of cells of DoF iterations λ1 ∆λ (pcm) ε̄ (%) εmax

1 4579 5520 48 1.044942 1603 6.4e+1 1.84e+0
2 4579 40287 48 1.030340 123 7.6e+0 2.17e-1
3 4579 131776 48 1.029139 6.9 1.4e+0 4.10e-2
4 4579 307461 48 1.029085 1.0 1.6e-1 4.64e-3
5 4579 594816 48 1.029070 0.5 3.7e-2 1.12e-3
6 4579 1021315 48 1.029077 0.2 2.9e-3 8.60e-5
7 4579 1614432 48 1.029074 0.1 7.9e-4 2.30e-5

Reference 1.029075

Tables 7 and 8 display the performance of the different preconditioners in terms of the average
number of iterations, memory used by the matrix related elements and the CPU time needed to
solve the eigenvalue problem when the degrees p = 3 and p = 5 are used in the finite element
method. These Tables show a decrease of the number of iterations as the preconditioners become
more complete. However, this improvement in the number of iterations does not always represent
a decrease in the computational time because of the extra overhead needed to build and apply
the preconditioner. Also, it can be seen that the partial preconditioner including the vertices, Pv,
do not present significant improvement with respect to the previous preconditioners Pd, which is
much faster to build and apply. However when the preconditioner includes the terms related with
the vertices edges and face, Pve f , a significant improvement is achieved.

Nevertheless, for this benchmark, the fastest preconditioner is the proposed PRAS , where the
gain in CPU time is larger for the highest polynomial degree used. Here, although the number
of iterations needed by the preconditioner based on the ILU(0) decomposition is smaller, the
time used to construct this preconditioner and to apply it, is larger than for the preconditioner
based on the Schwarz method. It means that the saving in the memory usage is also improving
the calculation time, because a smaller preconditioner is not only much faster to build, but also
faster to apply.

Figures 6a and 6b show the average number of iteration for solving the system related to
the matrix L11 and L22, respectively using finite elements from degree 1 to degree 6. In these
Figures can be seen that the number of iterations grows as the finite element degree increases in
an almost constant way. This can be explained because increasing p enlarges the number of non-

14

zeros inside the matrix and thus its condition number. However, the number of iterations show a
particular behaviour for low degree finite elements, p = 1 and p = 2, because these matrices are
almost composed of degrees of freedom related to the vertices.

Table 7: Preconditioners performance for IAEA 3D reactor using p = 3.

Preconditioner iterations iterations Memory Time
L11 L22 (MB) (s)

None 36.6 42.6 220 130
Pd 23.0 17.3 220 60
Pv 22.4 16.6 230 63

Pve f 21.9 15.0 240 63
PRAS 16.0 11.2 290 53
PILU 8.0 6.0 500 72

Table 8: Preconditioners performance for IAEA 3D reactor with p = 5.

Preconditioner
its its Memory Time
L11 L22 (MB) (s)

None 48.7 47.6 2500 1500
Pd 35.1 25.1 2500 1200
Pv 34.8 24.8 2500 1200

Pve f 29.0 22.1 2500 890
PRAS 23.9 17.9 2800 800
PILU 11.0 8.9 4600 1280

15

1 2 3 4 5 6

FE degree p

0

10

20

30

40

50

60

It
er

at
io

ns
L

1
1

None
Pd

Pv

Pvef

PRAS

PILU

(a) Iterations for the L11.

1 2 3 4 5 6

FE degree p

0

10

20

30

40

50

60

It
er

at
io

ns
L

2
2

None
Pd

Pv

Pvef

PRAS

PILU

(b) Iterations for the L22.

Figure 6: Averaged number of iterations depending on the finite element degree used for the IAEA 3D reactor.

7. Conclusions

Different preconditioning strategies for the system matrices arising in a high order finite ele-
ment discretization of the neutron diffusion equation are studied for two-dimensional and three-
dimensional problems. These preconditioners are based on domain decomposition techniques,
making use of a partition of the degrees of freedom on vertices, edges, faces and interiors, ob-
tained through the identifications of the different shape functions with collocation points over
each element. No improvement is observed in two-dimensional problems over traditional Jacobi
preconditioners, due to the fact that the overhead cost of building and applying the preconditioner
is not compensated by a significant enough improvement of the convergence ratio. Nevertheless,
for large enough linear systems, as is the case for three dimensional problems, the precondition-
ers show an improvement of the convergence time for the studied linear systems, as well as for
the memory usage, outperforming classical and widely used preconditioners as the Incomplete
LU decomposition.

An additional feature studied here is that the linear systems have been preprocessed with the
Schur complement method, in order to reduce the memory usage and the CPU time for conver-
gence, and these Schur matrices have then been preconditioned. We recall that this preprocessing
technique, also known as static condensation, already represents an improvement in convergence
rates over the classical methodology used for this problem. It is due to the fact that many linear
systems have to be solved with the same coefficient matrices and different right hand sides during
the application of the eigenvalue solver, thus easily compensating initial cost of setting the Schur
complement system.

As possible extensions, the application of these preconditioners for matrix-free algorithms
can be studied. A matrix-free application should consider the extra cost of applying the Schur
complement system at each iteration and the problem of building the preconditioner without
explicitly building the matrix. This method can be used to efficiently accelerate the procedures
of the neutron transport equation. Moreover, the construction of a preconditioner that performs
equally well for different configurations of the same problem is of interest. The improvement for
the convergence could be estimated a priory for the particular system in function of its size, thus
choosing the optimal preconditioner for the particular situation.

16

Acknowledgements

The work has been partially supported by the spanish Ministerio de Economı́a y Competi-
tividad under projects ENE 2014-59442-P and MTM2014-58159-P, the Generalitat Valenciana
under the project PROMETEO II/2014/008 and the Universitat Politècnica de València under the
project FPI-2013. The work has also been supported partially by the Swedish Research Coun-
cil (VR-Vetenskapsrådet) within a framework grant called DREAM4SAFER, research contract
C0467701.

References

[1] H. A. Schwarz, Über einen grenzübergang durch alternierendes verfahren, Vierteljahrsschrift der Natur-
forschenden Gesellschaft in Zürich 15 (1870) 272–286.

[2] B. Smith, P. Bjorstad, W. Gropp, Domain decomposition: parallel multilevel methods for elliptic partial differential
equations, Cambridge university press, 2004.

[3] M. J. Gander, Schwarz methods over the course of time, Electronic Transactions on Numerical Analysis 31 (2008)
228–255.

[4] M. Barrault, B. Lathuiliere, P. Ramet, J. Roman, Efficient parallel resolution of the simplified transport equations
in mixed-dual formulation, Journal of Computational Physics 230 (5) (2011) 2004–2020.

[5] E. Jamelot, P. C. Jr, Fast non-overlapping schwarz domain decomposition methods for solving the neutron diffusion
equation, Journal of Computational Physics 241 (2013) 445 – 463.

[6] A.-M. B. Erell Jamelot, J.-J. Lautard, Domain decomposition for the spn solver minos, Transport Theory and
Statistical Physics 41 (7) (2012) 495–512. doi:10.1080/00411450.2012.694827.

[7] G. Cossa, V. Giusti, B. Montagnini, A boundary element-response matrix method for critical-
ity diffusion problems in xyz geometry, Annals of Nuclear Energy 37 (7) (2010) 953 – 973.
doi:http://dx.doi.org/10.1016/j.anucene.2010.03.012.

[8] J. A. Rathkopf, W. R. Martin, The finite element response matrix method for the solution of the neutron transport
equation, Progress in Nuclear Energy 18 (1) (1986) 237–250.

[9] W. M. Stacey, Nuclear Reactor Physics, John Wiley & Sons, 2007.
[10] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd Edition, Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA, 2003.
[11] K. Smith, Assembly homogenization techniques for light water reactor analysis, Progress in Nuclear Energy 17 (3)

(1986) 303 – 335.
[12] D. Ferguson, K. Derstine, Optimized iteration strategies and data management considerations for fast reactor finite

difference diffusion theory codes, Nuclear Science and Engineering 64 (2) (1977) 593–604.
[13] V. Hernandez, J. E. Roman, V. Vidal, SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems,

ACM Trans. Math. Software 31 (3) (2005) 351–362.
[14] O. C. Zienkiewicz, R. L. Taylor, J. Z. Zhu, The finite element method: its basis and fundamentals, Butterworth-

Heinemann, 2005.
[15] A. Vidal-Ferrandiz, R. Fayez, D. Ginestar, G. Verdú, Solution of the lambda modes problem of a nu-

clear power reactor using an h-p finite element method, Annals of Nuclear Energy 72 (2014) 338–349.
doi:http://dx.doi.org/10.1016/j.anucene.2014.05.026.

[16] W. Bangerth, R. Hartmann, G. Kanschat, deal.II – a general purpose object oriented finite element library, ACM
Trans. Math. Softw. 33 (4) (2007) 24/1–24/27.

[17] S. J. Sherwin, M. Casarin, Low-energy basis preconditioning for elliptic substructured solvers based on unstruc-
tured spectral/hp element discretization, J. Comput. Phys. 171 (1) (2001) 394–417. doi:10.1006/jcph.2001.6805.

[18] D. Pardo, J. lvarez Aramberri, M. Paszynski, L. Dalcin, V. Calo, Impact of element-level static condensation
on iterative solver performance, Computers & Mathematics with Applications 70 (10) (2015) 2331 – 2341.
doi:http://dx.doi.org/10.1016/j.camwa.2015.09.005.

[19] H. A. Schwarz, Ueber einen Grenzübergang durch alternirendes Verfahren, Zürcher u. Furrer, Zrich, 1870.
[20] X.-C. Cai, M. Sarkis, A restricted additive schwarz preconditioner for general sparse linear systems, SIAM Journal

on Scientific Computing 21 (2) (1999) 792–797.
[21] E. Efstathiou, M. Gander, Why restricted additive schwarz converges faster than additive schwarz, BIT Numerical

Mathematics 43 (5) (2003) 945–959. doi:10.1023/B:BITN.0000014563.33622.1d.
[22] L. M. Carvalho, L. Giraud, P. Le Tallec, Algebraic two-level preconditioners for the schur complement method,

SIAM Journal on Scientific Computing 22 (6) (2001) 1987–2005.

17

[23] E. Müller, Z. Weiss, Benchmarking with the multigroup diffusion high-order response matrix method, Annals of
Nuclear Energy 18 (9) (1991) 535 – 544.

[24] Computational Benchmark Problems Committee, Benchmark Problem Book, American Nuclear Society, Argonne
National Laboratory, 1977. doi:10.2172/5037820.

18

