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Resum
Els avanços en l’àrea del processament del llenguatge natural i l’aprenentatge automàtic
permeten l’anàlisi, la comprensió i la generació de textos de forma cada vegada més
precisa. Aquest treball de final de grau es marca com a objectiu la generació de text que
tracte de simular l’estil d’un membre del parlament de Regne Unit. Per a això s’haurà de
recopilar i analitzar les transcripcions dels debats en el parlament anglés des de 2016. A
partir d’aquestes dades s’entrenarà un model estadístic que genere text imitant l’estil dels
membres del parlament més rellevants. Finalment, es realitzarà una avaluació a diferents
nivells dels textos generats.

Paraules clau: Aprenentatge Automàtic, Aprenentatge Profund, Processament del Llen-
guatge Natural , Generació de Textos

Resumen
Los avances en el área del procesamiento del lenguaje natural y el aprendizaje automá-
tico permiten el análisis, la comprensión y la generación de textos de manera cada vez
más precisa. Este trabajo final de grado se marca como objetivo la generación de texto
que intente simular el estilo de algún miembro del parlamento de Reino Unido. Para ello
se deberá recopilar y analizar las transcripciones de los debates en el parlamento inglés
desde 2016. A partir de estos datos se entrenará un modelo estadístico que genere texto
imitando el estilo de los miembros del parlamento más relevantes. Finalmente, se reali-
zará una evaluación a diferentes niveles de los textos generados.

Palabras clave: Aprendizaje Automático, Aprendizaje Profundo, Procesamiento del Len-
guaje Natural, Generación de Texto

Abstract
Advances in the field of natural language processing have lead to the ever increasing
precision of automatic text analysis, understanding and generation processes. This work
has as an objective the generation of text in the style of speakers in the United Kingdom’s
houses. To this end debate transcripts from 2016 onward will be collected and analyzed.
An statistical model will then be trained from the resulting text corpus that will generate
text in the style of different speakers. To conclude, the generated texts then be evaluated
with several metrics.

Key words: Machine Learning, Deep Learning, Natural Language Processing, Text Gen-
eration
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CHAPTER 1

Introduction

1.1 Motivation

The generation of coherent language even in text form has proven to be a challenging
task. Thanks to recent advances we might soon see applications that rely on custom text
generation come to life. The recent raise in popularity of massive language models, i.e
statistical models pre-trained with extremely large generic corpora like wikipedia, and
their public availability is an extremely important event. Applications of text natural
language processing (NLP) can be rapidly experimented on without the need of weeks
worth of training or the allocation extremely high amounts compute resources. This low-
ered barrier to entry means research groups with lower amounts of resources develop-
ment of NLP related functionality by fine-tuning a pre-trained model to make is suitable
for a given task.

The implications of these advances are still largely unknown. Being able to produce
convincingly human-like works of text can prove to be useful in the form of chatbots or
extremely detrimental in the form of automated generation of misinformation.

Before releasing their new language model architecture [1] openAI[2] documented their
concerns in their article “Better Language Models and their Implications”[3] and tem-
porarily refrained from publicly releasing the full-scale 1.5 billion parameter pre-trained
model until further research into the effects of such models not only in the field of artifi-
cial intelligence but also in the context of lawmaking.

Since that statement, a number of reasonably competent detectors using similar architec-
tures have been created and the generator model has been released. In one such solution
created by openAI, they encouraged research on the impacts of detection rates in models
fine-tuned with different datasets[4]. These detectors in the past have mostly been eval-
uated in best case scenarios where training and evaluation datasets both originated from
the exact same model. The concern is that slightly modified model weights may render
the detectors ineffective.

1.2 Objectives

As a follow up to these concerns this work aims to assess the accuracy of the GPT-2
output detectors released by open-AI for a fine-tuned model.

The specific objectives of this work will be the creation of:
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2 Introduction

1. A consolidated corpus composed by the United Kingdom’s post-2016 house of com-
mons transcripts. Instructions on how these texts are collected and processed will
be included in this same work.

2. A version of the GPT-2 1.5B parameter model fine-tuned with the political corpus
collected. The training of such a large model can be costly in terms of both time and
monetary resources. This model could be used to improve future performance of
detectors for purely political texts. The model weights will be made available upon
request.

3. A short evaluation comparing the performance of detectors prior to being fine-
tuned against prompted outputs from the model. The real responses will also be
tested to assess the false positive rate.

1.3 Essay structure

Chapter 2: Theoretical Background

Section 2.1, Machine Learning in Natural Language Processing (NLP) begins laying the ground-
work for basic machine learning concepts used in the evolution of natural language pro-
cessing such as gradients, optimisers and neural networks. The topics covered in this
introduction to the field are not only important to understanding the evolution of lan-
guage models but also form part of the state of the art techniques that will be covered
later on.

Section 2.2, Local and Distributed Representations in NLP focuses on the evolution of text
transformations for computer understanding and how problems of limited vocabulary
can be mitigated through algorithms like BPE. These representations are most essential
for use in any kind of machine learning application.

Section 2.3, Language Models (LM) covers the progression of models whose objective is to
comprehend the underlying structures and meanings of text. Several types of language
models are covered in chronological order of invention and compared. At the end of the
chapter a small section is dedicated to techniques for better generation of text, one of the
possible downstream tasks of a language model.

Section 2.4, The Transformer dives into the current start of the art architecture commencing
by the paper that started it all Attention is all you need. The intuition behind the attention
concept is explained and is used as a stepping stone to cover the basic building blocks
that compose the different variations of the transformer. The inner workings of the GPT-
2 and BERT architectures, the transformers used in the experimental component of this
work, are compared with each other and their predecessors.

Chapter 3: Design

Section 3.1, Chosen approach introduces how a large model like the 1.5B parameter version
can be trained and served using cloud resources.

Section 3.2, Compute Resources describes the resources that were used to train the genera-
tor model.

Section 3.3, Tensor Processing Units (TPU) for Deep Learning explains what tensor process-
ing units are and how TPU and GPU computing differ.

Section 3.4, Environment does a breakdown of all the software used during the training of
both the generators y detectors.
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Chapter 4: Case-study

Section 4.1, Corpus creation: cleaning and web-scrapping details the techniques used to ex-
tract data from crawling through websites when the information is not directly obtain-
able from its source code. The specific process and requests used to collect the House-
of-commons corpus are detailed. In addition this chapter includes steps on how to ade-
quately prepare a GPT-2 input for training.

Section 4.2, Testing Methodology sets down the procedure used to evaluate the detectors
including the parameters and sampling methods used.

Section 4.3, Results and evaluation assesses the performance of the detection models used
and compares the results with other studies done by the creators.

Section 4.4, Costs and efficiency provides a breakdown of the costs of fine-tuning the GPT-
2 model on TPUs. Inefficiencies in the code implementation are explained. A basic cost
comparison is made with GPUs taking into account the pricing of two cloud compute
providers.

Chapter 5: Relation with studies

This chapter names specific degree subjects relevant to the topics covered in this work as
well as some of the transversal competencies that played a role in its making.

Chapter 6: Conclusions

In this chapter conclusions are drawn on the viability of the detectors as a tool for the
automatic detection of computer generated political discourse. Additionally, number of
possible follow-up questions resulting from this work’s findings are posed for further
study.





CHAPTER 2

Theoretical background

2.1 Machine Learning in Natural Language Processing (NLP)

2.1.1. Pattern recognition and machine learning

Pattern recognition is the field “concerned with the automatic discovery of regularities
in data through the use of computer algorithms” (p.21) [15] and the use those patterns
to take different actions like estimation or classification of data. This can be through
explicitly written instructions or the use of machine learning (ML) techniques.

The process of learning in ML can be broadly described as occurring whenever a model
“changes its structure, program, or data (based on its inputs or in response to external in-
formation) in such a manner that its expected future performance improves” [16]. Due to
similarities in the objectives of both areas, pattern recognition and ML are often regarded
“as two facets of the same field” (p.7)[15]. The resulting combined field’s objective is the
automated taking of decisions that maximize or minimize a defined utility function.

Through the decades the combined fields have surpassed a large variety of ground-
breaking milestones ranging from self-driving cars[17] to generation of machine designed
art [18]. NLP has in grand part, but not exclusively, been forwarded by advancements
in ML techniques and hence it is necessary to introduce a number of common machine
learning concepts to adequately explain the current state of the field.

2.1.2. Classification and regression

The process of learning revolves around the estimation of a function f given a value or a
set of features x. A simple example of this would be estimating the gradient m of a linear
function where f (x) = mx so as to minimize a given cost function C that is calculated
using the output of f (x). In a supervised regression problem a set of features X and true
value Y pairs are used to minimize the error for the cost function by changing f (x).

y′ = f (m, x) = mx

C(y′, y) = (y′ − y)2

The best value for m is the one that minimizes the sum of the cost function for N number
of x, y value pairs.

m∗ = argminm

N+1

∑
i=1

C( f (m, xi)), yi)

This value m of our simple linear regressor is called a weight. The weights of a ML model
are those values in f that are modified in order to improve how the function models the
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6 Theoretical background

relationship between the x, y value pairs. These weights are modified using an opti-
mization algorithm like gradient descent using a learning rate α to converge to a local
minimum or maximum for the given cost/loss function.

At its most basic gradient descent is an algorithm that computes the derivative of a cost
function given a set of weights and modifies the weights using a step of size α in a down-
wards trajectory so as to minimize the original function.

In a classification problem the objective is to predict the correct label y given a set of
values X. Unlike regression, labels in classification problems are discrete and often non-
numerical. As a result, it is first necessary to encode classes into vectors using one hot
encoding. E.g when we have two classes (Tall, Small) they can be encoded as [1, 0] and
[0, 1] respectively.

This can now be split into two simpler classifications: The likelihood of X being Tall p1
and the likelihood of X being Small p2 where p1, p2 ∈ [0, 1].

The class chosen is the one with the highest activation, i.e output value, of the two. In
this case, the cost function can be calculated using categorical cross entropy for the model
which is defined as such:

Y = (y1, ..., yn) : yi ∈ {0, 1}, ∀i ∈ {1, ..., n}

Y′ = (y′1, ..., y′n) : y′i ∈ {0, 1}, ∀i ∈ {1, ..., n}

C(Y′, Y) = −
n

∑
i=1

yi ∗ log y′i

Using this modified cost function or one similar facilitates the usage of an optimizer like
gradient descent to update the weights with the objective of reducing the cost function
for subsequent examples.

Quite often, the softmax function is applied to the outputs of a classification model to
transform them into a probability distribution of the same size. This not only scales the
output of the model between 0 and 1 aiding in the learning of the class representation
but also makes the output far more readable as each node corresponds to the estimated
probability of the class for a given input. The softmax function for a given output y′i is
calculated as follows:

y′i = So f tmax(xi) =
exi

∑
j=n
j exj

The cost function C may now be used compare the costs between the probability distri-
bution and the one-hot label as detailed above.

2.1.3. Gradient and optimizers

Machine learning models are mostly used in non-convex optimization problems. These
present a number of issues due to the nature of the resulting gradients. The presence of
local minima and maxima makes training the weights significantly more challenging.

Finding the global optimum of the weights that minimize the cost function of a complex
model like a neural network has been shown to be an NP-complete problem. [21]

It is therefore why optimizers in machine learning revolve around converging to local
minimums while balancing exploration of new parts of the gradient that might lead to
an even lower cost. This poses a number of issues to overcome. Notably:
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• Failure to converge

• High training cost

• Low performance

Over time a number of different optimizers and techniques have been applied to alleviate
some of the problems suffered but for simplicity we choose to only cover a simple version
of the stochastic gradient descent algorithm (SGD).

For a model function f and a cost function C defined as:

y′ = f (m, x) = mx

C(y′, y) = (y′ − y)2

SGD calculates the derivative of the cost function for a single data point as follows:

δC
δm = 2 ∗ (y′ − y) ∗ δ

δm (y′ − y)

= 2 ∗ (y′ − y) ∗ δ
δm (mx− y)

As the data point X and label Y are constants the resulting gradient is:

δ
δm = 2x

Once this is calculated the direction of the step to be taken is known and the magnitude
can be adjusted using a learning rate hyper-parameter commonly referred to as α.

mi+1 = mi − 2 ∗ (y′ − y) ∗ x ∗ α

The new model weight m is then used with the next set of values. Iterating on these
calculations takes small steps towards a local minimum.

Figure 2.1: Step by step optimisation of a weight for a given gradient [19].

In most real world applications, several weights are used to increase the expressiveness
of the model. Partial derivatives are used to update additional weights to be considered
and to update them separately, e.g:

y′ = f (m, x) = mx + b
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C(y′, y) = (y′ − y)2

δC
δm = 2 ∗ (y′ − y) ∗ δ

δm (y′ − y)
δC
δm = 2 ∗ (y′ − y) ∗ δ

δm (mx + b− y)

δC
δb = 2 ∗ (y′ − y) ∗ δ

δb (y
′ − y)

δC
δb = 2 ∗ (y′ − y) ∗ δ

δb (mx + b− y)

δ
δm (y′ − y) = 2x

δ
δb (y

′ − y) = 1

mi+1 = mi − 2 ∗ (y′ − y) ∗ x ∗ α

bi+1 = bi − (y′ − y) ∗ α

A number of variants of this algorithm exist that increase speed and stability of training
by adding features like momentum, clipping and accumulation of costs along several
data points. Some notable examples of algorithms that include some of these features are
batch gradient descent[22], Adam [23] and RMSprop [24].

2.1.4. Artificial Neural Networks (ANN)

Neurons in artificial neural networks are in many ways similar to the linear regressor
introduced in the previous section. Both techniques multiply their input by a weight and
optionally add a bias to produce an output [25]. The main distinguisher is that neurons
are organized in layers and those layers can be stacked in a variety of ways to increase
the expressive power of the model.

The input of a neuron in a standard multi-layered perceptron is the sum of the outputs of
all the neurons in the previous layer. This allows neural networks to express non-linear
discriminant functions and, as a result, to model more complex systems. These outputs
are often fed through an activation function G to solve problems with exploding/vanish-
ing gradients and accelerate the speed of convergence.

The output of a neuron j in a fully connected layer Li takes all Ni−1 outputs from the
previous layer Li−1.

Li−1 = (xi−1,1, ..., xi−1,Ni−1) : xi−1,k ∈ R ∀ k ∈ {1, ..., Ni−1}

The weights Wi and bias bi connecting the neurons in two fully connected layers are
defined as follows:

Wi = (wi,1,1, ..., wi,Ni−1,Ni) : wi,j,k ∈ R , ∀ j ∈ {1, ..., Ni} , ∀ k ∈ {1, ..., Ni−1}
bi ∈ R

The vectorial representation of all weights connected to the neuron in layer i in position
j is defined as:

Wi,j = (xi,j,1, ..., xi,j,Ni−1) : xi,j,k = Li−1,k ∗ wi,j,k ∀ k ∈ {1, ..., Ni−1}
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Figure 2.2: Depiction of an Artifcial Neuron.

Xi = (xi,1, ..., xi,Ni) : xi,j = (
Ni−1

∑
k=1

Wi,j,k) + bi ∀ j ∈ {1, ..., Ni}

For this sample layer G will be the commonly used sigmoid activation function defined
as:

G(x) =
1

1 + e−e

As such, the outputs for Li can be generalised as:

Li = (xi,1, ..., xi,Ni) : xi,j = G(Xi,j) ∀ j ∈ {1, ..., Ni}

These series of operations constitute only the feed-forward part of the model which is
in charge of inference. Using the outputs and a given cost function a gradient can be
computed with the objective of updating the weights of the network in a similar way
to what is done with simpler models. Commonly referred to as back-propagation, this
approach is quite computationally intensive as it requires the calculation of the partial
derivative for every single weight in the network.

This step is why while the concept of an artificial neural network dates back to 1958[26]
with the creation of single layer perceptrons the idea wouldn’t popularize until much
later when backpropagation of errors through the network, first introduced in 1974[27],
became much more feasible thanks to improvements in computational technology.

2.1.5. Backpropagation

This approach propagates the errors of the output layer backwards through the network.
The backwards pass begins by calculating the partial derivatives of the errors for each
output neuron.

The cost function C previously used is calculated for every single node in the output
layer. The cost for a given sample Cs is defined as:

Cs = (Cs1 , ..., CsNi
) : Csj = (Li,j − yj)

2 , ∀ j ∈ {1, ..., Ni}
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The computed loss using a cost function C for a given training sample S is defined as the
sum of all the square differences Cs

δCsj

δwi,j,k
= (

δCsj

δLi,j
)(

δLi,j

δXi,j
)(

δXi,j

δwi,j,k
)

If the weight for which the partial derivative is being calculated is in the last layer Lm
then the gradient for the loss with respect to that weight only takes into account itself.
However if the weight is not in the output layer it is first necessary to calculate the ef-
fect the weights in the later layers have on the loss function. In this model layers are
fully connected. As such, a node must sum the effects of all the nodes for which it is
responsible.

δCsj

δwi,j,k
= {2(Li,j − yj) i f i = m,

Ni+1

∑
k=1

(
δCsj

δLi+1,k
)(

δLi+1,k

δXi+1,k
)(

δXi+1,j

δwi,j
) i f i = m− 1}

δXi,j

δwi−1,k
= wi,j,k

δLi+1,k

δXi+1,k
= g(Xi,j)(1− g(Xi,j))

δXi,j

δwi,j,k
= Li−1,k

δCsj

δwi,j,k
= 2(Li,j − yj)g(Xi,j)(1− g(Xi,j))Li−1,k

2.1.6. Recurrent Neural Networks (RNN)

Recurrent Neural Networks are in many ways similar to standard ANNs with one small
architectural change that allows them to propagate its values through inputs.

As detailed in section 2.1.4 cells in a standard ANN only take its values from the previous
layers. As such, the output is only ever a function of the current forward-pass input.
This comes with a several limitations. One of the main limitations, being the network’s
inability to deal with variable length inputs and outputs.

In RNNs this limitation is solved by propagating network values through forward-passes.
This propagation through time means that the output of a recurrent cell is not only a func-
tion of the values provided by it at a given time t but also of its own state at a time t− i
where i corresponds to the amount of passes the connection bridges.

y′t = ft(x, y′t−i)
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Figure 2.3: Unfolded recurrent neural network.

As the output of a cell changes based on its previous forward passes it is necessary to
take into consideration how the network outputs affect themselves through time at the
back-propagation stage. While it is still possible to generate an output at every forward-
pass of the network, back-propagation and weight updating in most cases only occurs
at the end when the complete result is obtained. For exceptionally long sequences, this
approach can prove to be too memory intensive and fail to converge. As a result these
sequences may be broken down into truncated sections at the end of which the network’s
weights are updated but the states are still carried through to the next piece.

A major computational drawback of recurrent models is that the loss for the hidden states
must be calculated sequentially as there’s a dependency through time t. Modern hard-
ware like GPUs or TPUs typically excel at neural network training because of their vast
multiprocessing capabilities. This lack of parallelism makes RNN backpropagation sig-
nificantly slower.

Another issue inherent to recurrent units are exploding and vanishing gradients [29].
This gradient instability is caused by the repeated multiplication of the network’s weight
matrix W at every single step t in the backpropagation stage. These issues may prevent
the models from learning relevant information over long training sequences.

Refinements over time led to the creation of long short term memory (LSTM) Networks
in 1997[28] which included several connections that allowed models to retain fading long
term dependencies for longer. These LSTMs featured the addition of several gates that
control how the flow of information through time.

The first one, often referred to as the forget gate decides which information to discard by
taking into consideration yt−1 and xt. A second gate called the input gate takes the same
values and considers which candidates are worth updating. These modifications are then
used to update the cell state. The main advantage of these cells is that the forgetting and
replacing of previous states can be trained to the task hence learning what to forget and
what to remember.

The multi-input and multi-output capability of RNNs made encoder (many-to-one) and
decoder (one to many) architectures possible. When both were combined the result was
the birth of the sequence-to-sequence model architecture. This many-to-many model
type is essential to many NLP tasks including, but not limited to, machine translation
and text generation.
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Figure 2.4: A Sequence to Sequence architecture. [34]

2.1.7. Convolutional Neural Networks (CNN)

CNNs are most frequently used in the realm of computer vision where 2 dimensional
convolutions are applied to a pixel array. A convolution in machine learning is the ap-
plication of a filtering function f over a series of activations given by another function g.
The filters of size h are applied to a series of windows of the same size. These windows
are subsections of the input shifted by a given amount for every time step until all the
input is represented. The parameters of the filtering function are learnt through back-
propagation of errors as any other weight in a neural network. The next figure illustrates
how 2D convolutions work:

Figure 2.5: Two dimensional convolution with kernel size 2 and windows placed every 1 step.
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A seen in Figure 2.5, for a given window the dot product between the context of the sub-
matrix and the filter is calculated. The output of this calculation is the similarity between
the two vectors. Kernel weights are learnt so they may specialise on picking up certain
local characteristics of the data. As the same kernel weights w are used for all windows
for a given input size n and filter size h, each kernel produces a feature vector as follows
where g is an activation function:

c = {c1, ..., cn−h+1} : ci = g(wTxi:i+h−1 + b)

Each kernel used produces a separate feature vector c. Different filters may have dif-
ferently sized windows even within the same layer. This helps to capture a wide range
of different features. Using these kernels as they are provides information on each of
the windows taking into account their position. This approach restricts sequence length
which is problematic when dealing with inputs like sentences. To solve this flaw we use
a technique called pooling.

Several kinds of pooling exist but the two most used are max and average pooling. As the
name suggests, max pooling takes the feature of maximum value while average pooling
conducts the mean of the features. The choice of which one to use has special repercus-
sions for gradient flow at the back-propagation stage.

In max pooling, as only one of the features is responsible for the loss, the kernel weights
w are only updated taking into consideration the window with the highest similarity.
The average pooling gradient flow updates the weights taking into consideration the
contribution from every window.

(a) Pooling a 4x4 matrix.

(b) Pooling a 6x6 matrix.

Figure 2.6: Effect of pooling on feature dimensions.
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In either case, this allows a convolutional neural network to take a variable length input
as the amount of windows calculated, i.e the length of c, may vary. The advantage con-
volutional layers have over its traditional feed-forward counterparts is their capability to
take such variable lengths much like recurrent networks. However, unlike RNNs convo-
lutions may be calculated in parallel. This greatly speeds up training and allows the use
of bigger models. Additionally, the amount of steps required for two different parts of an
input to interact is reduced as the convolution size increases. This path shortening can
sometimes translate to better dependency modelling between sections.

A significant drawback of these kinds of layers is that by default the features produced
have no way of knowing their relative position. As such, order is only taken into account
within the same convolution. This can be an issue in NLP as word order is critical in
capturing meaning. That said, CNNs can also produce good results. The convolutions
in such applications are 1 dimensional but work in the same way. Instead of pixels, each
window contains the distributed representations of a series tokens.

2.2 Local and Distributed Representations in NLP

Machine Learning can be applied to many domains, including ones where the subject
matter being treated is not typically represented numerically. Understanding and gen-
erating text is one such domain where inputs and outputs need to be transformed into
numeric representations that aren’t human-readable in order to apply statistical models.

A number of options exist on how to transform the written word into a single or series of
numbers while retaining the original meaning. In a local representation a concept such
as a word is represented by a single node. Meanwhile, in a distributed representation,
the same concept can be expressed as a pattern in the activation seen throughout a series
of numerical representations.

2.2.1. Local Representation: Bag of words (BOW)

Assuming the vocabulary for a given problem is finite, each division of text, which can
range from letters to whole sentences, can be considered a possible class in a classification
problem.

A one-hot encoding representation of a word with an assigned index Wid in a problem
with a limited vocabulary of size N can be encoded as a zero vector of that size with a
one in the position Wid e.g:

W1 = the|Vthe = [1, 0]

W2 = car|Vcar = [0, 1]

This approach, while simple, has several problems. The first one being its poor scaling
with vocabulary size. Due to the nature of local representations each word has to be
represented by a single activation. For a model to have the same basic vocabulary as a
native English speaker each vector representing a word would be of size 20000. With
most of the numbers in those vectors being 0 this sparse representation is very memory
inefficient.

Another of its issues lies in its inability to represent the semantics of a word. Each vecto-
rial representation of a word is as distant from any other without taking into account the
context. All of the relationship building is left to the model and has to be learnt again for
each application.
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Furthermore, this approach is unable to deal with unknown tokens, i.e words or symbols,
outside its vocabulary and has no way of learning them.

Some of BOW shortcomings can be addressed by changing what each node represents.
N-grams combine N number of tokens together in an attempt to better contextualize
the words. This approach acknowledges that sentences are more than the sum of the
meaning of its words by paying attention to combinations of them in a certain order.
This approach, however, has one notable shortcoming. The higher the number of N, the
more context it can capture but this comes at a steep cost as the vector size needed to
encode all combinations of words is VN .

So, following the example above, using 3-grams for a model with the average basic vo-
cabulary of a native English speaker the vectorial representation of each word would be
of size 200003.

2.2.2. Distributed Representations: Word2Vec

Over the years neural networks have been proposed as a solution to the dimensionality
problems stemming from large vocabulary sizes. These solutions often vaguely resem-
bled the training of a fixed window feed-forward language model 2.3.2 with the notable
difference that the objective of such process was instead the hidden layer representations
of the network for each word.

Feeding the resultant word vectors to a model dedicated to an unrelated task can be seen
as an exercise in transfer learning.

While several other architectures with the same objective exist, Word2vec’s strengths lie
in its comparatively fast training time, low memory use and simplicity. Word2vec uses a
single shallow neural network to generate word embeddings.

Two tasks are often seen in the training of these kind of distributed representations: Con-
tinuous bag-of-words (CBOW) and Skip Gram.

In CBOW, the network receives the words surrounding the target wt to predict. The
context provided as input is comprised of words [wt−2, wt−1, wt+1, wt+2]. The Skip Gram
task is similar but works in the opposite way. Given a word the model tries to predicts
its context.

(a) CBOW (b) Skip-gram.

Figure 2.7: Word2Vec architectures [30]
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The resulting N-dimensional vector activations contain the syntax and semantics of the
word it corresponds to. These vectors have an interesting property that allows for the
subtraction and addition of words to form analogous ones. In the following example it
is shown how subtracting the singular word from its plural counterpart and adding an
unrelated singular noun approximately yields the plural of said noun.

Figure 2.8: Vector operations with word2vec embeddings. [30]

Using the resulting embeddings solves the issues stemming from large vocabularies as its
size is unrelated to the amount of words in it. Additionally any model fed such vectors
may better generalise previously unseen words contained in the vocabulary using the
semantic information contained in the representations.

A problem still remains when an out of vocabulary word is presented. Many of these
methods assign a dedicated unknown token for said occasions. While the model may
still be able to predict correctly from its context, no amount of training would improve
its performance is such cases as the word meaning is lost at the moment of conversion.

2.2.3. Sub-word Representations: Byte Pair Encodings (BPE).

BPE[31] was originally conceived as a data compression technique which worked by re-
placing the most frequent byte pairs with a single byte. In the context of NLP, the same
principle may be applied to individual or series of characters to achieve an automated
corpus-specific vocabulary selector.

The token vocabulary commences as the unique character list of the text. All token pairs
are iterated upon and counted. Once this is done the most frequent pair is replaced
by a token representing the couple combined. The space character is often treated as a
delimiter so that tokens won’t comprise several words. This is often done for the sake of
efficiency. This process is repeated until the desired vocabulary size is reached. E.g

Token vocabulary Sentence tokenization
{s, h, e, l, a} S-h-e s-e-l-l-s s-e-a-s-h-e-l-l-s
{s, h, e, l, a, sh} Sh-e s-e-l-l-s s-e-a-sh-e-l-l-s
{s, h, e, l, a, sh, he, se} Sh-e se-l-l-s se-a-sh-e-l-l-s
{s, h, e, l, a, sh, he, se, ll} Sh-e se-ll-s se-a-sh-e-ll-s
{s, h, e, l, a, sh, he, se, ll, she} She se-ll-s se-a-she-ll-s

Table 2.1: Trace of 5 iterations of the BPE algorithm.

As the token vocabulary is only ever added to, the smaller sequences are maintained.
This makes possible the tokenization of sentences not contained in the original text e.g
He-ll, S-a-l-e. Being able to recognise out of vocabulary words by combining smaller
tokens is essential in some NLP tasks like machine translation where the vocabularies
are often open and full of rarely occurring words.
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Alternatives to the algorithm explained above exist and may sometimes perform better.
Some state-of-the-art models use slightly different approaches to achieve the same objec-
tive. Wordpiece, for instance, prefers grouping by the likelihood given by a pre-trained
language model instead of pair frequency count.

Once the tokenization is concluded the vocabulary might be fed to algorithms like word2vec
to generate distributed representations for other models to use or alternatively can be di-
rectly fed to a language model at training time.

2.3 Language Models (LM)

A language model’s purpose is the estimation of the probability distributions of tokens
in a vocabulary for a given context. These models are often trained with conditioned
next token prediction tasks with the objective of forming an understanding of language
through the processing of large amounts of written text. This task is selected because
of written text’s sequential nature and the lack of need for supervised samples. These
language models may then be used as is for next-token prediction, as seen in predictive
text keyboards, or may be used as a base for a model trained to perform another task
such as summarisation or text classification.

At its most basic a language model’s task is to compute de probability distribution of next
word pt+1 given a sequence of words x1, x2, ..., xt where xt is any token in a vocabulary
V.

P(xt+1 | xt, ..., x1)

These kinds of models may also assess the probability for a given sequence of text of
length T by multiplying the probability of each of its tokens given the previous ones.

P(x1, . . . , xT) = P(x1)× P(x2 | x1)× . . .× P(xT | xT−1, . . . , x1) =
T

∏
t=1

P(xt | xt−1, . . . , x1)

2.3.1. N-gram based Language Models

Before the advent of neural networks, count-based language models were considered
the norm. The likelihoods described above were determined by the amount of times a
token was observed after a given context. For a 3-gram language model the probability
distribution would be calculated in the following way:

p(w3 | w1, w2) =
count(w1, w2, w)

count(w1, w2)

This approach has one main flaw. If a combination is not seen at training time the LM will
always predict the likelihood of that sequence as 0. These combinations with 0 probability
are often numerous, specially as the amount of context tokens increase. This sparsity
problem may be attempted to be solved with smoothing techniques. Smoothing gives
every combination at least a small likelihood of occurring, even combinations that are
not be grammatically correct. Another flaw of this approach is that window which the
model views is always the same size as the N-gram length. This makes language models
unable to identify long-term dependencies in text even with n-gram overlapping.

In addition, this method much like other local representations is unable to assess the
semantic similarity of sequences that might partially share meaning e.g "The child ran
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towards its mother" and "The infant sprinted in the direction of her parent" are seen as
equally distant as "The quick brown fox jumps over the lazy dog".

2.3.2. Feed forward Neural language models

In 2003, neural probabilistic language models [32] were proposed as a way to simul-
taneously solve the curse of dimensionality stemming from large vocabularies and the
inability of other methods to express relationships between words. The representations
resulting from such approach serve both as distributed representations of words and
probability functions for word sequences.

Every word i in a vocabulary V is associated with a unique feature vector C(i) of size M
unrelated to the vocabulary size. This function C is in fact a weight matrix of size VxM
where the row i corresponds to word i in the vocabulary. When the tokens {wt−n+1, ..., wt−1}
are fed into the model their corresponding vectorial representations {C(wt−n+1), ..., C(wt−1)}
are retrieved and concatenated in the next layer.

The concatenated vectors are multiplied by the neural network’s weights and fed through
a tanh activation function. The resulting vector of size V contains the statistical distribu-
tion of for every word in the vocabulary given the context provided.

Figure 2.9: Diagram of model proposed in Neural Probabilistic Language Models paper. [32]

This final output is compared to the one-hot representation of the word it was attempting
to predict. The loss is then calculated and backpropagated through the network including
the weight matrix C containing the distributed representations.

These improvements over the LM covered in 2.3.1 help solve the sparseness problem
faced by it. The feature vectors which contain the words semantics allow it to better
generalize to rare examples. As it only uses a feed forward network, the amount of
parameters used is proportional to the context window to be considered. This is why
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this system still struggles to capture long term dependencies outside the N-token context
given to it.

2.3.3. Recurrent Neural Network Language Models

RNNs ability to retain information throughout feed-forward steps improves the long-
term dependency learning of language models without increasing the size of the net-
works. As detailed in section 2.1.6, recurrent networks can deal with variable length
contexts which are a common occurrence when dealing with text data.

The recurrent language model may be fed pre-trained distributed representations of words
or localized one-hot vocabulary vectors one at a time. For every step, the model may at-
tempt to predict the word that follows. As hidden layer states are propagated through
time previous tokens are remembered at the time of prediction to the best of the network’s
ability. The models capability to detect long term dependencies may change depending
on the kind of recurrent cell used in the architecture.

Figure 2.10: Simplified Recurrent Language model diagram. [34].

While a significant improvement over fixed-window language models, it is important
to keep in mind the limitations and issues of RNNs covered in section 2.1.6. Their slow
training and gradient problems limit their size and keep them from being as effective and
scalable as transformers.

2.3.4. Convolutional Language Models

In 2016, a CNN based language model achieved better performance than a classic RNN
architecture. This model was proposed in the paper Language Modeling with Gated Con-
volutional Networks[35] and, while it fell behind in performance compared to state of the
art LSTM models, it reduced the compute time needed to train a language model signifi-
cantly.

These kinds of convolutional models over text depend in great part on word embeddings
like word2vec to train the filter weights. For a convolution that spans h words and uses
embeddings of size m, the weight matrix is w ∈ Rmh. The window step is always a
multiple of the size of the word embedding so as to not split a word mid representation.

This work also modifies how convolution context windows capture data. Normal con-
volutional windows take the context around a given input. E.g for the sentence "The
quick brown fox jumped" the context captured for the word "fox" would be "brown fox
jumped". This is an issue in language models as the objective is to predict the next word
in a sentence. To avoid including the next token in the input causal convolutions are
used. This window version captures the previous h tokens instead.
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Figure 2.11: Illustration of a standard convolution (top) versus causal convolution (bottom)[36].

Using this modified convolution on the example above yields a context window contain-
ing the words "quick brown fox" which does not include the next word "jumped" which
is to be predicted.

The convolutional language model featured in the 2016 paper[35] used gates to manage
the flow of information through the network. Some recurrent neural network architec-
tures had in the past used gates to control the flow of information between time steps.
One such example are the LSTM models mentioned at the end of section 2.1.6 that used
remember and forget gates. This gate implementation differed because it controlled the
flow of information within the same timestep using a set of convolutional filters V dedi-
cated to the gating of other filters W which contained the information carried.

Both sets of filters receive the same input but have different roles. The result is that
the gating convolution weights B learn to assess the relevance of the filters carrying the
information A. This relevance is calculated with the tensor product of A and the sigmoid
of B. The sigmoid is used to scale inputs between 1 and 0. This way, filters that produce
highly relevant activations for a given sentence will have a corresponding value in the
gating matrix B close to 1 while irrelevant sections will have lower values.

H = (X ∗W + b)⊗ σ(X ∗V + c)

These layers can be stacked to increase model complexity and produce better results.
Models can be made larger and trained faster than recurrent neural networks thanks to
the parallel nature of convolutions. However, larger networks face a vanishing gradient
problem. To solve this skip-connections are placed between layers to aid in gradient flow.

It is worth noting that as in the architecture described no pooling was used the context
window is fixed unlike RNNs so there is hard upper limit on the length of the dependen-
cies it can capture.
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Figure 2.12: Gated convolutional language model architecture. [35].

2.3.5. Language Model Sampling

A LM’s output for a given context is the probability distribution for the new token. If
the objective of the LM is to generate human-like text just selecting the token with the
maximum likelihood might cause problems. These problems stem from the model’s at-
tention being primarily centered on the last tokens given as a prompt. This deterministic
approach to token sampling can easily get stuck in loops, go off-topic or just produce
sentences that are easily identifiable as computer generated.

A solution to these problems has been found with different methods of controlled ran-
dom sampling. Using a purely random approach is ill-advised as it might cause the
model to go off-topic frequently. This is in part because in a vocabulary of 10 thousand
tokens, even if the bottom 80% of tokens are extremely unlikely they might still have a
high combined probability. Choosing one of those numerous poor next token predictions
would derail the topic of the generated output.
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Temperature sampling allows fine control over the randomness of predictions in a model
and it used to solve high repetition in generated text. Inspired by statistical thermody-
namics, the intuition revolves around how higher temperatures make low energy states
more likely to be encountered. This translates to a smoothing of the softmax function
which makes high probability predictions less likely and assigns a higher probability to
poorer predictions. This modified softmax function is equivalent to the one covered in
section 2.1.2 when the temperature τ = 1.

So f tmax(xi) =
e

xi
τ

∑j e
xj
τ

In top k sampling all probabilities for tokens that are not in the k most likely are set to
0. This method of solving the problem caused by vast amounts of very unlikely tokens
works at its best when there is a narrow distribution of probabilities and the number of
good options is lower than the value selected for k. When the model encounters a broad
selection of equally likely tokens this sampling approach might limit the variety in the
models output.

Figure 2.13: Example of broad and narrow distributions. Using k = 3 would perform favourably
in the narrow distribution but limit the range of options in the broad one. [37]

Nucleus sampling [37], also commonly know as top-p sampling, takes into account the
cumulative distribution instead of a fixed number of top samples. The most likely tokens
are selected until their cumulative distribution exceeds the parameter. In the example
above, for p = 0.5 nucleus sampling would select around 8 tokens from the broad distri-
bution and only the top one from the narrow example.
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2.4 State of the art results: Transformers

2.4.1. Attention is all you need

The transformer was first proposed in 2017 in a paper by the name "Attention is all you
need"[38]. This model for use in sequence to sequence tasks forwent recurrent layers in
favour of attention.

These attention heads in neural networks produce a vector which is a linear combination
of others. In the context of sentences this unit may be described as deliberately ignor-
ing some words in favour of others by adjusting in what proportions their embeddings
feature in the resulting layer. This is conceptually similar to how gates operated in sec-
tion 2.3.4 which described the gated convolutional model architecture.

Figure 2.14: Illustration of the attention concept in neural networks. Line thickness and darkness
indicate more importance.

Several heads are used within the same layer with the objective of capturing more than
one aspect of a sentence. In the example given above the attention of the model is cap-
tured by nouns and their articles while the second one fixates on subjects and the adjec-
tives that accompany them. It is important to note that which tokens the head assigns a
higher importance is learnt as the model trains. The model needs no prior knowledge of
grammatical rules.

The attention function is fed three different parameters: Key K, value V and query Q
matrices. The keys index the value matrix, the values correspond to the data being carried
and the queries can be thought of as a question to be answered. The relevance of each
key to a query must be ascertained in order to assess which of the values is more relevant
to Q. This is done by calculating the dot product between the two matrices which results
in a vector containing the cosine of the angle between them for every key. The relevance
vector is then multiplied by the value matrix which provides the linear combination of
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weights mentioned above. The "Scaled Dot-Product Attention" function described in the
paper is as follows:

A(Q, K, V) = so f tmax(
QKT
√

dk
)V

The dot product of Q and K are divided by the square root of K’s dimension to counter-
act an effect seen for larger dimensions of K. In such cases, the large magnitude of dot
product may push the softmax function to the extreme values where gradients are small
and hence hinder learning.

2.4.2. Encoder blocks

The attention mechanism covered in section 2.4.1 forms part of an encoder block. The
output of the function is concatenated and normalised before being received by a stan-
dard feed forward network.

Figure 2.15: Transformer encoder block. [39]

Residual connections are placed between every pair of layers to better allow the flow of
information through the net. Blocks without such connections lose accuracy in part be-
cause of the loss of the positional information which is added to the word representations
at the beginning of model[40]. This is expected as positional encodings are essential to
modelling the word order in transformers. Without these locators, the model just per-
ceives an unordered set of tokens. These locating features can be learnt or fixed, both
approaches have been observed to perform equally well.

In the paper introducing the transformer, the authors propose using a set of sine and
cosine functions with different frequencies. The location representations for tokens in
position i of a model of size dmodel are encoded as follows:

PEpos,2i = sin(pos/100002i/dmodel )
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PEpos,2i+1 = cos(pos/100002i/dmodel )

This method ensures the model is able to understand the relative positions of the tokens
given to it without the need of recurrent architectures.

2.4.3. Decoder blocks

The decoder, in charge of generating the models output, greatly resembles the encoder
but with a couple of differences. Two attention functions are stacked on each other with
the second only providing the query Q and receiving its keys K and values V from the
encoder.

Figure 2.16: The Transformer - model architecture. Encoder to the left, decoder to the right. [38]

When generating text all of the context is fed through the encoder and the decoder is left
blank. To ensure each input to be ignored does not affect the output, they are masked
by assigning highly negative values to its relevance in the attention function. As words
are predicted, they are placed as inputs and the position occupied is unmasked so that
it may affect the next output. This masking and unmasking of different inputs is how
transformers may handle varying lengths of tokens up to a maximum dimension.

2.4.4. Transformer scaling

In the section introducing recurrent neural networks 2.1.6, this work mentions scaling
problems inherent to the serial computation the architecture requires. The following table
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compares the complexity of the three kinds of layers covered in terms of the sequence
length n and the representation dimension d.

Layer Type Complexity per
Layer

Sequential
Operations

Maximum Path
Length

Self-Attention O(n2 · d) O(1) O(1)

Recurrent O(n · d2) O(n) O(n)

Convolutional O(k · n · d2) O(1) O(logk(n))

Table 2.2: Comparison of layer properties. [38]

As can be seen, there is a trade off between the size of the model states and the context the
model can handle. The transformer’s complexity scales quadratically with the length of
its context window, i.e maximum token length it can process. As this kind of model has
a fixed window size, it may not capture any context beyond said n tokens. Poor scaling
in this area severely limits how long can dependencies be.

While these statements are true, the reality of modern hardware is that it favours vastly
parallelisable tasks. Self-attention layers can have each of their outputs calculated inde-
pendently. This means vast quantities of compute resources can be leveraged at the same
time making even 175 billion parameter models with n = 2048 trainable by high per-
formance clusters[41]. Convolutional neural network based architectures have similar
strengths in terms of parallel computation and scale much better with context size n. Un-
fortunately, it has been shown to fall far behind LSTMs based architectures in accuracy
[35].

These computational strengths are in stark contrast with recurrent networks which, while
potentially having the capacity to carry dependencies indefinitely, the serialised nature
of the computation makes memory requirements and lack of parallelism an important
bottleneck.

This is not aided by the fact that this potential for long term dependency modelling is not
fulfilled in current architectures. This is due to the amount of steps information must be
propagated through the network and gradient based problems covered in 2.1.6. In RNNs,
the path length between two tokens in positions i, j is | i− j | while in transformers any
two tokens may interact directly not matter how far apart they are.

2.4.5. Generative Pretrained Transformer 2: (GPT-2)

The encoder-decoder architecture seen in the original transformer paper was well suited
to machine translation tasks. Later iterations on the transformers had different objectives.
GPT-2’s goal, for instance, was the generic training of a LM for multiple tasks including
text generation. To this end, the creators forwent the encoding part of the original design
and constructed a transformer exclusively formed from stacked decoder blocks like the
ones seen in section 2.4.3.
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Figure 2.17: GPT-2 released model architectures.[42]

The way sentences are generated is identical to how previous decoders worked. Inputs
are progressively unmasked as the outputs are generated and placed in the next position
of the input. The extra-large model used in the experimental part of this work has a
context window n of size 1600 which is shared between the prompt as the text as it is
being generated.

The original GPT-2 model is trained on a 40GB corpus named WebText [14]. While the
corpus is still unreleased, it is safe to say that the dataset contains a great variety of text
structures which results in the model’s ability to perform several different tasks without
any further training. As can be seen in the table below, the model is shown to have the
capability to do zero shot translation from French to English if an appropriate prompt is
given. Additional zero shot performance numbers for other tasks are given in Language
Models are Unsupervised Multitask Learners[1].

”I’m not the cleverest man in the world, but like they say in French: Je ne suis
pas un imbecile [I’m not a fool].

In a now-deleted post from Aug. 16, Soheil Eid, Tory candidate in the riding
of Joliette, wrote in French: ”Mentez mentez, il en restera toujours quelque
chose,” which translates as, ”Lie lie and something will always remain."

“I hate the word ‘perfume,”’ Burr says. ‘It’s somewhat better in French: ‘par-
fum.’
If listened carefully at 29:55, a conversation can be heard between two guys
in French: “-Comment on fait pour aller de l’autre cote? -Quel autre coté?”,
which means “- How do you get to the other side? - What side?”.

If this sounds like a bit of a stretch, consider this question in French: As-tu
aller au cinéma?, or Did you go to the movies?, which literally translates as
Have-you to go to movies/theater?

“Brevet Sans Garantie Du Gouvernement”, translated to English: “Patented
without government warranty”.

Table 2.3: GPT-2 zero shot translations quoted in Language Models are Unsupervised Multitask
Learners[1]
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2.4.6. BERT and RoBERTa

In the paper BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing[43], the authors propose a modified transformer architecture which consisted on
stacking encoder blocks similar to those seen in section 2.4.2. In addition to this, the
training tasks proposed differed from the previous iteration of the transformer. Instead
of predicting tokens sequentially and building a directional understanding of language,
the BERT team proposed using token masking and next sentence prediction (NSP) to
build a bidirectional encoder.

In the masked language model (MLM) task, 15% of all tokens in the corpus are selected
for replacement. Of this 15%, 80% are replaced by the "[MASK]" token, 10% are replaced
with other tokens and the final 10% are left unchanged. The objective of the transformer
is to correctly predict the sentence including the representations of the words covered in
the input.

Figure 2.18: Bert masking prediction.

The second task, next sentence prediction (NSP) samples 2 sequences of tokens. The
model acts as a binary classifier that determines if those sequences belong together, i.e
are found sequentially, or not. The negative and positive examples are sampled at the
same rate. The negative samples are each obtained from different documents. This task
is included to increase performance in downstream uses of the model that require under-
standing of the relationship between two sentences such as question answering.

This model architecture was later re-used in RoBERTa: A Robustly Optimized BERT Pre-
training Approach[44]. In this study, the authors modify the training procedure of the
model to achieve better results across multiple tasks.

The vocabulary was increased from BERT’s 30 thousand wordpiece embeddings to a total
of 50 thousand. These BPE encodings were made using character bytes instead unicode
symbols as seen in section 2.2.3. The model was also trained with a much larger cor-
pus, 160GB compared to the original 16GB. The training data was collected from several
different corpora and contained more variety than the original BERT training-set which
only included BookCorpus[45] and English wikipedia extracts. Roberta expanded this
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training set by adding the openwebtext[46], ccnews[47] and stories[48] corpora which
added articles linked on reddit, news and story-like texts respectively.

The training tasks were also slightly alterered. RoBERTa uses dynamic masking patterns
as opposed to BERT’s static approach. This means a given sequence will have different
masking patterns every time it is seen by the model. For NSP the sequences being com-
pared are much longer. Instead of sentences, the model takes 2 sequences of 512 tokens
unless the end of the document is reached at which case it is just sampled until the end.





CHAPTER 3

Design

3.1 Chosen approach

Training a 1.5 billion parameter model requires an extremely high amount of resources.
Memory consumption of the model at training time can easily exceed 84 GB of memory
with a low batch size of 2 as well as the use of GPUs to accelerate all of the floating
point operations involved in training such a large neural network. Originally the code
provided by OpenAI was meant to be used in systems using 4 to 8 high memory GPUs
to split the memory usage among them. This approach proved to be quite expensive
monetarily as free resources provided by research programmes often offer less compute
that would be needed.

Thanks to Tensorflow’s support of tensor processing units (TPU) a fork of the previously
mentioned GPT-2 project adds the ability to train on them. A TPU is a specialised type
of processor developed by Google used to accelerate neural network related computing.
These processors are structured in large pods and are made available through Google
Cloud Platform and Collab notebooks. The main benefit in our application is that said
compute units have a high amount of memory available for large models. Training can
also be faster than in GPUs if it is programmed taking every potential bottleneck into
account, ranging from data loading bandwidth to distributed compute strategies.

Leveraging Google’s Tensorflow Research Cloud (TFRC) programme that provides a
month of free TPU access for researchers, the large model was trained for approximately
11 days without GPUs using Google cloud platform.

PYTHONPATH=src python ./train.py --dataset plaintext_speaker_sep.txt.npz
--model_name 1558M --batch_size 4 --save_every 500 --sample_every 500
--init_tpu --n_ctx 1024 --sample_length 1023 --n_embd 1600 --n_head 25
--n_layer 48 --restore_from "latest" --run_name 'run2' --learning_rate
0.00002

↪→

↪→

↪→

↪→

Once model training subsided, volatile Google Collab notebooks powered by cloud TPUs
were used to load the model and produce text samples for testing. TPUs are still required
for generation as only performing the feed forward part still requires a significant amount
of compute power and memory.

31



32 Design

3.2 Compute Resources

The data preprocessing and experiments took place in virtual instances hosted by Google
Cloud Platform. Working with virtualized environments meant the compute power
available was largely flexible. As data preprocessing and BPE encoding are more CPU
intensive tasks a preset hardware configuration called ‘n1-standard-8’ with 8vCPU and
30 GB of RAM was used.

The instance was then powered down to a n1-standard-2 configuration with only 2 vC-
PUs and 7.5 GB of memory available. This hardware configuration was more than suffi-
cient for training as most of the computation takes place in the reserved TPU pods. The
instance only ever sees activity when a model checkpoint is saved.

The TFRC programme includes allocates several kinds of resources:

• 5 on-demand Cloud TPU v2-8 device(s) in zone us-central1-f

• 100 preemptible Cloud TPU v2-8 device(s) in zone us-central1-f

• 5 on-demand Cloud TPU v3-8 device(s) in zone europe-west4-a

The configurations made available allocate a maximum of 8 TPU cores as a single com-
pute resource but allow for several instances to run at a time. The specs for v2 and v3
pods of TPUs are provided by Google[51]:

• TPU v2:

– 8 GiB of HBM for each TPU core

– One matrix unit (MXU) for each TPU core

– Up to 512 total TPU cores and 4 TiB of total memory in a TPU Pod

• TPU v3:

– 16 GiB of HBM for each TPU core

– Two MXUs for each TPU core

– Up to 2048 total TPU cores and 32 TiB of total memory in a TPU Pod

The higher memory per core in v3 TPUs allow the model to train without running out of
memory. This allows for the model to train with a higher number of batches without the
need to use gradient accumulation. 8v3 TPU cores can handle up to a batch size of 4 for
this particular model before running into memory problems. The on-demand property of
the resource offered meant the training was able to continue uninterrupted for the entire
11 days.

This is in contrast with preemptible TPU v2-8 resources that are also available as part of
Google Collab notebooks. They have a maximum duration of 24 hours after which they
have to be spun up again. Preemptible instances are often offered at much a lower price
to make up for that fact. This type of instance is used in our case for the generation of
samples after training.

3.3 Tensor Processing Units (TPU) for Deep Learning

Domain specific hardware architectures trade the capability of handling general tasks in
favour of efficiency in a smaller subsection of them. This is the principle behind complex
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instruction set computer (CISC) architectures which utilize long instruction sets to speed
up computation on certain tasks.

The concept revolves around more directly implementing instructions that mirror ele-
ments of high level languages like a loop, instead of replicating the behaviour using a
larger amount of simple operations. Having specific instructions for elements such as
loops allowed the processor to execute those elements in a lesser amount of time. The
speed-up also came from overall lower memory access times as sometimes results would
be saved to the processors cache waiting for the next instruction. As memory speeds in
the 1970s were slower, even accessing level 1 cache imposed a significant performance
penalty.

These issues are still observed in applications that require large amounts of specific com-
plex instructions. CPUs struggle to keep up with large matrix operations as their instruc-
tion sets were primarily designed for general computing. Graphical processing units per-
form better in deep learning tasks thanks to their large amount of compute cores needed
for most of the tasks they are designed for (geometric calculation, polygon rendering,
texture mapping...) which involve matrix and vector operations.

When a GPU is used for deep learning the tensors are unfolded into 2D matrices. Typ-
ically, the host CPU provides kernel functions to the GPU which can then use a large
number of threads to compute the operations. For example, in GPU matrix multiplica-
tions the entire operation may be implemented as a function where each each thread is
used to compute one element of the output matrix. The smallest unit (compute primitive)
being used is a vector. Matrix multiplications require a large amount of multiply accu-
mulate operations which are typically the most time consuming part of deep learning.

Application-specific integrated circuits (ASICs) can provide higher performance as they
are purpose built for one application. TPUs are neural network ASICs designed by
Google to accelerate AI training and serving. One of the most important features of TPUs
is the use of systolic arrays for matrix operations.

A systolic array is a collection processing units arranged in a 2-dimensional grids. Each
core comprising the array is a multiply accumulate unit plus some additional logic that
can store and forward data. This hard-wire approach to matrix calculations allows TPUs
to reduce the amount of writing and reading from memory during computation, po-
tentially speeding up performance and being more energy efficient. This same matrix
calculation that comprises a great number of different processes with a GPU, is instead
done in a single very complex instruction. The compute primitive for these TPUs are en-
tire tensors. Another performance advantage of TPUs as a dedicated piece of hardware
is having hard-wired popular activation functions which make calculations much faster.

3.4 Environment

All instances where created using a Debian 9 standard image. Debian is a Linux distri-
bution composed of free and open-source hardware and forms the base for a number of
other forks such as Ubuntu.

Jupyter notebooks are interactive documents that are divided in cells. Each cell may
run code in processes called kernels which return the output of the code and maintain
variable states through cell executions. As the notebooks run on a web based interface,
the computation can run on a remote machine which in this case was the cloud instance.

As the scripting for all components of this work are written in Python, Anaconda an
open-sorce distribution of the language is used. It is often used for scientific computing
thanks to its simple package management system named conda. Virtual conda environ-
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ments can be created to isolate project requirements from one another. This greatly sim-
plified using the same machine for all three components: corpus creation, GPT-2 training
and detector training although the later two had some conflicting package dependencies.
While it is true pipenv can achieve the same goals and is bundled in with Python, Pip, its
package management has one key flaw that makes it not fit for purpose. Conda supports
binary packages whereas pip doesn’t, requiring the user to compile them. In compute
heavy Python libraries this is an issue as most of them implemented their underlying
calculations in compiled C code which is much faster than native Python which is an
interpreted language.

The main packages used in the practical component of this work are:

• Regex is a package for pattern matching that offers more features than the standard
regular expression package of python "re".

• Requests allows the sending of http requests in Python.

• Tqdm is a package that creates progress bars. Extremely useful when monitoring
the progress and performance of operations on large datasets.

• Tensorflow is an end-to-end open source platform for numerical computation and
machine learning. Its API is available for a variety of languages but most of its
code is executed in C++ binaries. Tensorflow works by building dataflow graphs
where each node represents a mathematical operation. The library offers a large
variety of high level abstractions that make the development of machine learning
models faster. The library facilitates the execution of code across different kinds of
compute resources. CPU and GPU code don’t require special adaptations and TPU
conversion is greatly accelerated. GPT-2 is implemented in Tensorflow.

• Tensor2Tensor. T2T is an an open-source system for training deep learning se-
quence to sequence models in Tensorflow. Its objective is to facilitate the creation of
state of the art models for a number of NLP tasks. It includes a library of datasets
and models that include the implementation of the transformer covered in sec-
tion 2.4.1. At the time of writing this library is in maintenance mode and use of
its successor Trax is encouraged.

• Torch is another open source machine learning library much like Tensorflow. One
of the key differences that distinguish both is that Torch’s dataflow graphs are dy-
namic whereas Tensorflow 1.X’s are static by default. The RoBERTa based detectors
are implemented with Torch.

• Tensorboard is a visualization toolkit that provides measurements and visualiza-
tions of a machine learning workflow.

• Transformers is an open-source package created by Huggingface that provides
state-of-the-art general-purpose architectures. These ready-made NLP models can
be used in both Torch and Tensorflow. This includes transformers such as the ones
used in this project. This library is only used for the detectors as the GPT-2 imple-
mentation used in this project is a fork of the original openAI code modified to run
on TPUs.

• Tokenizers is an package that offers python bindings to a very fast rust imple-
mententation of Bert’s WordPiece and other 3 common BPE versions.

• Fire is a package that automatically generates command line interfaces for Python
files.
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• H5PY is a python interface to the HDF5 binary data format. It is used to store large
amounts of numerical data in a way that it is easy to manipulate with packages like
numpy. It is used to save model weights.

Tensorboard was used to monitor training progress through the web interface without
having to ssh into the machine. During the development of the scripts used in data
pre-processing, a jupyter server was started in the GCP instance and accessed through
a web browser in several local machines making the development environment location
independent.

At the end of the project, all trained model weights, scripts and corpora are stored in a
coldline GCP bucket. This kind of bucket is a cloud storage resource meant for archival
of files. Buckets are easily accessible from other GCP services and Collab notebooks.





CHAPTER 4

Case Study

The experimental part of this work will fine-tune the released 1.5 billion parameter lan-
guage model with a highly political and specialized setting. The outputs of this model
will be used to measure the effects of generator fine-tuning on the accuracy of the de-
tectors released[56]. The dataset used to fine-tune will be comprised of post 2016 British
House of Commons transcripts. [5]

This setting was chosen for several reasons. The proper etiquette of house of common
debates is quite different from most internet discourse in which GPT-2 is pre-trained on.
Furthermore, there exists a wide spread concerns that such automated models could be
used by politically inclined "malicious actors" [3]. The fine-tuning of such a model could
at a later day be used to train for this specific setting the same detectors being evaluated.
The final reason is that while all parliamentary debates can be found online [6] there
doesn’t seem to be a compiled source of recent texts for easy analysis.

4.1 Corpus creation: cleaning and web-scrapping

4.1.1. Source Data

The parliament of the United Kingdom of Great Britain and Northern Ireland has histori-
cally stored all the transcripts from 1771 in a collection called the ‘Hansard’. In its current
form, the British Hansard is available online in the form of a searchable website [6].

Debates can be searched for by keyword and filtered by chamber (Commons or Lords)
and dates. The search query is then encoded as shown in figure 4.1 where the words
between bracers correspond to variables.

https://hansard.parliament.uk/search/Debates
?endDate={end_date}
&house={houses}
&searchTerm={search_term}
&startDate={start_date}
&page={page_number}

Figure 4.1: Search Request

Once the search terms are introduced, a new skeleton page is loaded which is shortly
after populated with the search results by an AJAX request [9]. AJAX is a set of web de-
velopment techniques used for asynchronous loading of information in Javascript. This

37
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allows a webpage to be loaded in a browser while it is querying a server increasing the
responsiveness of the website.

These asynchronous requests mean that search result information is not present at the
time of request meaning web-scrapping libraries without Javascript execution can’t ac-
cess this information. After the AJAX table is populated by the search results, the user
can then click and navigate to the website that contains the transcript for the selected
debate. The link to said page adheres to the following format:

https://hansard.parliament.uk/Commons/{YYYY-MM-DD}/debates/{unique_id}/{Title}

Once the user navigates to the above mentioned link, the transcript of the debate can be
found within the contents of the website. More importantly, a download link for a “.txt”
file is available. This URL follows the format shown below with the variable unique_id
corresponding to the debate identifier.

https://hansard.parliament.uk/debates/GetDebateAsText/{unique_id}

4.1.2. Legality

Parliamentary archives can be used freely for non-commercial research and private study.
This work falls into both categories and as such the use of these archives is allowed.

“Parliamentary Archives copies : copies supplied by the Parliamentary Archives may
only be used for non-commercial research or private study and/or other exceptions to
copyright as outlined within the Copyright Designs and Patents Act 1988, as amended
and revised.” [8]

As detailed in the same page, any citation of the original records is also allowed as long
as the proper acknowledgements are made through the use of the catalogue reference
number e.g “Parliamentary Archives, HL/PO/PB/1/1605/3J1n23”. This work will cite every
transcript referenced and will clearly label model generated samples as requested by
Open-AI team.

4.1.3. Environment and technologies

Due to the variety of AJAX[9] techniques used in the presentation of data within the
Hansard website, commonly used Python HTML/XML scraping libraries like Beautiful
Soup [10] can’t be used. However, browser automation tools such as Selenium[11] and
libraries built on top of it allow Javascript code contained within the site to be executed.
Visiting a web page with Selenium is by design the same as accessing through a normal
web browser as the main use case for the library is the development of automated tests.

Selenium is compatible with a sizeable selection of different browsers called webdrivers[12].
The standard google chrome driver[13] is used as it allows for an easier debugging of au-
tomated actions thanks to its inclusion of a a graphical user interface (GUI). Headless
webdrivers i.e automated browsers without a GUI are supported by Selenium and could
be a potential performance improvement as they can retrieve data faster as long as the
request response latency isn’t a bottleneck.

4.1.4. Webcrawling

As observed in Figure 4.1, URLs used throughout the Hansard site are modular which
greatly simplifies its traversal. The first step is to obtain all of the debate_ids for a given
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search. To this end the crawler must save all ids it encounters as it iterates over the search
pages.

Our search parameters are as follows:

• Search_term: “***”

• House: Commons

• Start_date: 2016-01-01

• End_date: 2019-05-15

In information retrieval systems a wildcard ‘*’ is often used to indicate the retrieval of all
information matching the other constraints specified. 3 wildcards are used to get around
the minimum character length restriction in place by the browser.

Once the debate ids are obtained, these are subsequently used in the download link for
the retrieval of the text files using the ‘GetDebateAsText’ url type.

4.1.5. Corpus preparation

The webcrawling process results in a 757MB worth of unstructured text files. These
downloaded transcripts are then structured into a json file with the following schema.

• Debate_id: ID List

• Title: String

• Speakers: String List

• Votes: List

– Division Name: String

– Ayes: Integer

– Noes: Integer

• Interventions: list

– Speaker: String

– Text: String

Utilizing a JSON file with list objects inside allows the content to be structured while
still maintaining order between speaker’s interventions. The structuring of the data is
taken care of by a series of regular expressions that capture and clean relevant parts of
information.

Some shorthand commonly used in Hansard transcripts are replaced for better readabil-
ity e.g “hon.” is replaced by “honorable” and transcript notes are removed as they are not
part of the interventions by speakers and hence are of no use to the model to be trained.
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4.1.6. Text pre-processing

While GPT-2 has been shown to learn a wide variety of text structures at training time,
feeding the transcripts as they are found and not filtering irrelevant parts may lead to a
lower quality and noisier output. The responses generated could possibly include votes
and other undesired housekeeping statements. To increase the quality of the text, the
samples given to the model consist solely of the title of the debate followed by the in-
terventions of the speakers. Said interventions are delimited by a special token ’<nexts-
peaker>’ that will be learnt by the model and will aid it in recognizing the implicit struc-
ture of a political debate.

To further increase output quality the original 757MB corpus is combed with a series
of filters with the objective of discarding low quality samples. For this specific use the
quality of a transcript is defined by the proportion of transcribed dialogue versus noise
resulting from imperfect parsing of raw text.

Only sessions with a high amount of interventions are considered. The debate data to
be included is greatly narrowed down to a total around 262MB but the quality of it is
significantly increased. Other GPT-2 applications such as AI-dungeon have been shown
in the past that “a smaller amount of high-quality data is more valuable than a larger
amount of low-quality data.”[50]

4.2 Testing methodology.

This work will exclusively focus on the automatic detection of generated text. To this
end we will use a GPT-2 output detector released by openAI and based on huggingface’s
implementation of RoBERTa. This detector was trained on the outputs of the 1.5B gen-
erator model which is available online. Two different transformer sizes will be used for
detection: a 110M parameter model and a larger 340M one. In this evaluation, the detec-
tors have been trained to detect generic GPT-2 outputs and haven’t been fine-tuned with
outputs of the generator being evaluated.

The dataset these discriminators were trained on contained in equal parts real WebText
data, random samples generated with temperature 1 without truncation and samples
generated with Top-K 40 truncation. Open-AI’s report on output detection found that the
kind of sampling used to train the detectors greatly impacts its accuracy (See Figure 4.1).
A best case scenario is hence presented to our generator since the fake transcript samples
were generated using Top-P = 0.9 which has shown to be the most difficult to detect
unless the discriminator was also trained with examples using Top-P sampling.

In order to ensure a fair comparison of the evaluated texts, both the GPT-2 generated text
and the real text will have the same preceding text. This is to compensate for uncertainty
resulting from a difference in topic. The real interventions will also be sent for detection
to establish a baseline and to establish the rate of false positives.

The prompt used will contain the title of the transcript as well as the previous two inter-
ventions by other speakers. The prompt is only used to set the context for the generator
and at no point is it included in the text to detect. It is worth noting that at no point does
this evaluation take into account the coherency or veracity of the text generated; its sole
purpose is to measure the performance of the detection solution available.

The test corpus selected consists of transcripts recorded in late 2019 and early 2020 never
seen before by the generator model. These texts cover a range of different issues some
of which might include new terms never seen before as the training corpus used only
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Tr
ai

ne
d

on
:

Temp 1 96.6% 70.8% 77.2%

Top-K = 40 50.2% 99.1% 77.3%

Top-P = [0.8-
1.0]

94.4% 96.4% 96.0%

Temp 1 Top-K = 40 Top-P = [0.8-1.0]

Tested on:

Table 4.1: RoBERTa large accuracy with respect to three sampling methods (Temperature = 1 no
truncation, Top-K = 40, and nucleus sampling with the Top-P sampled uniformly between 0.8
and 1.0). Subsection corresponding to training with GPT-2 1.5B parameter model outputs. The
accuracy is obtained by testing 510-token test examples comprised of 5,000 samples from the
WebText dataset and 5,000 samples generated by a GPT-2 model, which were not used during the

training. [56]

includes transcripts until 15/05/2019. In total, 1366 samples are taken into account for
this evaluation as generating a large amount of outputs can easily take upwards of twelve
hours. A generation limit of 300 GPT-2 tokens per prompt is placed to accelerate the
process.

All relevant samples are placed in a folder. The code for sample generation contained
in the repository used until now for model training is modified to iterate through the
prompts contained within a folder. The python script is called with the next command:

PYTHONPATH=src python ./src/generate_samples.py --model_name 1558M --prompt
../HansardScrapping/prompts/context2 --top_p 0.9 --step 5 --length 1600
--maxlen 300 --restore_from ./checkpoint/run2

↪→

↪→

The context is explicitly cleared every time a new prompt is finished so as to not have
cross-contamination in samples. The model outputs are then saved labeled according
to which prompt they belong to so as to allow easy comparison between real and fake
samples.
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Prompt[61]
Gender Pay Gap 2019-10-17

Rachel Maclean (Redditch) (Con)
Does the Minister agree that the Conservatives have actually done more than any
other Government to tackle the issue of pay inequality at work? What more is she
doing to help women in the boardroom who do not earn as much as their male
counterparts?
<nextspeaker>

Victoria Atkins
I am extremely grateful to my honorable Friend, who has done so much work on
women and equalities and also on menopause. [Interruption.] I note that Opposition
Members are laughing and guffawing, but these issues have a real impact on women
who are the lowest paid. I am delighted if it means that the Labour party is supporting
gender pay gap regulations, because it was a Conservative coalition Government who
introduced the regulations and a Conservative Government who brought them into
force two years ago. We need to ensure that employers are treating female employees
correctly and properly, and that we are tackling that in the lowest paid sectors. That
is why we have the three priority sectors of retail, healthcare and education that are
working to bring action plans forward to ensure that we help the lowest paid.
<nextspeaker>
Real [61] Model Generated
Angela Crawley (Lanark and Hamilton
East) (SNP)
May I take this opportunity, Mr Speaker,
to congratulate you on your PinkNews
award, and your inspirational and out-
standing speech? Trans rights are human
rights.
In the previous Queen’s Speech, the right
hon. Member for Maidenhead (Mrs
May) pledged to make further progress
to tackle the gender pay gap, but that
was noticeably absent from this week’s
Queen’s Speech. Does that mean that the
current Prime Minister does not want to
reduce the gender pay gap?

Mike Amesbury (Weaver Vale) (Lab)
We know from the London School of Eco-
nomics that girls from the poorest fam-
ilies in India get between 13% and 18%
less than boys for studying maths, which
means that it becomes increasingly diffi-
cult for them to stay in school and fall
in support. What will the Minister do to
help these girls not just reach their full po-
tential, but fulfil their potential to take the
jobs that we will have in our post-Brexit
world?

Table 4.2: Comparison between real and model generated responses for a given prompt. See
Appendix A for more model output examples.
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4.3 Results and evaluation

The results found it can be challenging to correctly detect if a given text was generated
by the model or a human when fine-tuning is used.

GPT-2 1.5B
Correct Detection
Rate

House of Commons Fine-tuned GPT2
Outputs

Average Accuracy

RoBERTa base
(117M)

30.0% 67.5% 48.8%

RoBERTa large
(340M)

81.4% 43.6% 62.5%

Table 4.3: Fine-tuned GPT-2 1.5B detection rate on publicly available pre-trained GPT-2 output
detectors

The large difference in size between the generator and discriminator models could con-
tribute to the low accuracies found. The base version of RoBERTa seems to have problems
generalising to the domain of house of commons discourse resulting in a large amount
of false positives and an averaged accuracy performing under chance.

A dramatic improvement in the amount of false positives is seen when using the larger
model. To observe the possible effect fine-tuning has had on the detection rate it is suf-
ficient to average out the accuracy for both the real interventions and the GPT-2 outputs
as both test sets have a 50-50 split between real and false samples.

The resulting accuracy on the house of commons test set is 62.5%. As seen in table 4.1
OpenAI used the same RoBERTa model trained on the 1.5B version of GPT-2 to achieve
up to 77.2% webtext accuracy with the sampling technique combination used.

Figure 4.2: In webtext the detection accuracy becomes higher for longer text. The figure also
shows that training on random-length training examples has significant positive effect on the

accuracy for short length texts[56]
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The fine-tuning could partially explain the decrease in accuracy observed but detec-
tor sample size might be a confounding factor. The samples used from the house-of-
commons dataset are of variable length while the ones used in the webtext test set are
510 tokens long. As 100 RoBERTa tokens roughly equate to 70 words, the average in-
put for the webtext benchmarks is around is around 1710 characters long given that the
average English word is 4.79 characters [57]. The average speaker intervention length
generated by the model is 480 characters long, much shorter than its real counterpart
which averages at 880.

In release strategies and the social impacts of Language models[56] it is shown how accu-
racy increases with the amount of RoBERTa tokens in a sample reaching the 90% thresh-
old at around 100 tokens (roughly 70 words or 335 characters) see Figure 4.2. The shorter
test samples used might partially contribute to the lower accuracy found.

4.4 Costs and efficiency

The usage of cloud computing platforms removes the upfront costs stemming from ac-
quisition of hardware which greatly lowers the barrier to creation of works such as this
one. A DGX-1 which is a prebuilt computer offered by Nvidia used in the creation of
AIDungeon, a project of which the model training section is largely similar to this work,
can cost up to $69,000. [50]

The upfront cost is instead replaced by a pay as you go scheme in which the end user
gets charged for the amount of time the virtualised hardware is reserved for use. Other
paying-schemes are often available at a discounted price. Google Cloud Platform, for
instance, offers up to 30% continued use discount depending on the amount of time the
instance is used for. Amazon web services also allows the use of on-demand compute
resources but largely favours yearly hardware reservations which may be partially or
entirely paid upfront for a discounted price.

Platforms incentivise these long-term plans to more accurately determine availability of
resources over long periods of time. The flexibility of on demand compute may result in
spikes of demand and even a resource shortage as can be occasionally observed in some
regions in Google Cloud Platform.

For this particular experiment, on demand compute was the most economical option as
the fine-tuning lasted just under 12 days so no discounts applied.

Figure 4.3: 1.5B GPT-2 model TPU fine-tuning on Hansard Transcripts. Loss over time.
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Google Cloud Platform TPU Pricing

Thanks to forming part of the TFRC programme the 8 v3 TPUs did not factor into the
costs. The only costs charged came from storage, virtualised cores and RAM and were
absorbed by promotional Google Cloud Platform credits.

The following cost breakdowns remove all promotions and programmes for comparison.
The training costs of the resulting model without taking into account the participation in
the TFRC programme are as follows:

GCP Resource Cost per hour Hours used Total

TPU v3-8 $8.80 285 $2508.00

N1-standard-2 (2 vCPU, 7,5 Memory, 100
GB disk)

$0.094 289 $27.17

$2535.17

Table 4.4: Potential costs of replicating the fine-tuning of the 1.5B GPT-2 model using TPUs in
GCP.

TPUs can be faster and more economical to use than GPUs in specific cases. For a model
as large as the 1.5B parameter version of GPT-2 8 v100 GPUs are needed. We will now
see the price needed for a comparable fine-tuning of the model on GPUs. It is important
to keep in mind that TPUs speedups highly depend on the operations being done for
example: TPU V3-8 achieves more than 3× higher throughput than Tesla V100 on CNNs,
while it has only about 1.5× on the original implementation of the transformer[53].

Costly Implementation issues.

The particular implementation of GPT-2 used in this work is known to suffer from some
performance issues[54] on TPU. As much as a 10 times slowdown is seen with the smaller
models on Collab. The root of the issue was diagnosed to be a severe slowdown in the
matrix multiplication operation. As TPUs come with a minimum of 8 cores, correctly
applying a parallelisation strategy is essential for performance. One possible explanation
for the slowdown observed is that only one of the cores is active when performing the
operations.

Debugging TPU code can only be done using the cloud-tpu-profiler plugin for Tensor-
board. With these tools the developer can see the operation and performance graphs that
may be used to assess bottlenecks in the model. These bottlenecks are quite frequently
the origin of poor TPU performance as it can be quite challenging to diagnose the whole
data pipeline including the storage medium. The operation graphs also offer a visual-
ization of TPU compatibility as not all Tensorflow operations run in a TPU by default
due to the specialised nature of the ASIC. Two tools available that can greatly help in
diagnosing poor performance are activity viewers and trace visualizations. While the
tpu profiler suite is quite helpful fixing these kind of performance problems, they can re-
quire in-depth knowledge on how TPUs operate to solve them which is difficult to obtain
online.
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(a) TPU Pod activity viewer.

(b) Tensorboard trace visualization.

Figure 4.4: Cloud TPU diagnostic tools. [55]

Cost comparison with GPU training.

In order to conduct a rudimentary price comparison, the number of hours trained will be
adjusted assuming the slowdown observed in the issue is equally prevalent on the larger
model and that the throughput statistic reported above directly translates to convergence
speed.

GCP Resource Cost per hour Hours used Total

Nvidia Tesla V100 x8 128GB Total $13.888 42.75 $593.71

8 vCPU, 30GB Memory, 100 GB disk $0.267 48.75 $13.02

$606.73

Table 4.5: Potential costs of replicating the fine-tuning of the 1.5B GPT-2 model using GPUs in
GCP.

The notable difference in total price indicates that if not for the TFRC programme, which
provided the TPUs for free, the usage of 8 Tesla V100s would not only have been more
economical but also faster. This does not necessarily reflect on the capabilities of dedi-
cated compute units like TPUs. Instead, it shows a weakness of the software used as a
high level of expertise is needed to adapt the models to run efficiently on such specialised
compute resources.

Comparison with Amazon Web Services. (AWS)

TPUs were designed by Google specifically for its platform as such, a TPU pricing com-
parison cannot be made between AWS and GCP. At the time of writing Amazon Web
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Services doesn’t offer a comparable custom machine learning accelerator. However, it
does offer instance templates with GPUs.

AWS approach to compute resources is wildly different from GCP’s. In the former, only
a range of preset machines can be booted up. This preset approach limits choice for users
and may end up having the user pay for resources it does not need. This is definitely the
case for this particular experiment as the cheapest machine with 8 Tesla V100 TPUs also
has 64 virtualised CPU cores and 488GiB of RAM most of which would go unused. This
lack of tailored sizing results in the following cost breakdown.

AWS Resource Cost per hour Hours used Total

p3.16xlarge preset (64 vCPU, 488GiB
RAM, 8x Tesla V100)

$24.48 42.75 $1046.52

100 GB SSD $0.10 Monthly cost $10.00

$1056.52

Table 4.6: Potential costs of replicating the fine-tuning of the 1.5B GPT-2 model using GPUs in
AWS.

GCP’s approach to resource management allows for more cost-efficient sizing. The amount
of virtualised CPU cores, RAM, GPUs and storage capacities assigned are decoupled
from each other and have no hard presets. A small machine can be spun up for setup
with no GPUs and then resized to precisely fit the needs of the problem.





CHAPTER 5

Relation with studies

The undertaking of this project wouldn’t have been possible if not for the fundamentals
learnt throughout the degree. Most of the subjects coursed have contributed in some way
to building the knowledge base that made this project feasible. However, a number of
them stand out for their direct relevance. Namely:

• "Sistemas de Almacenamiento y Recuperacion de información" (SAR). This sub-
ject teaches how to deal with the storage and retrieval of large quantities of data.
The course pays special attention to text. This proved to be quite useful as it in-
troduced many concepts like bag-of-words, tokenizers, regular expressions, em-
beddings and the practical use of dictionaries. Most of section 2.2 covering text
representations builds directly on the syllabus.

The practical component of this subject introduced Python, the language used for
all scripting in the project. The laboratory sessions featuring the infinite monkey
theorem for text generation has the students build a rudimentary language model
based on term-frequencies. The resulting application highly resembled the model
covered in the section on n-gram based language models.

• "Percepción" (PER). Teaches the basics of pattern recognition. The main takeaway
from this subject is how feature extraction is performed for different kinds of data.
This subject also introduces the basics of classification models.

• "Sistemas Inteligentes" (SIN). The later part of this subject fully introduces the
concept of machine learning for the first time in the syllabus. The introduction to
discriminant functions and markov models are the main topics of interest of the
subject that concern this particular work.

• "Aprendizaje Automático" (APR). Builds upon the knowledge obtained in the above
mentioned subjects. All of the topics covered in section 2.1 are taught in detail in
this course with the exception of recurrent and convolutional neural networks. The
practical component has students build a support vector machine classifier as part
of its laboratory tasks. This subject provides hands on experience with the imple-
mentation of basic machine learning models.

• "Estructure de Computadores" (ETC). This subject covers how processors work
at low level as well as the interaction between components. The topics covered in
ETC and its prerequisite courses provided much needed context to understand how
CPU, GPU and TPU computing differ at the hardware level.
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In addition to the specific knowledge attained in these courses the degree has also rein-
forced some transversal competencies that have been essential to the completion of this
project.

• CT-01 Comprehension and integration. This work summarises a long history of
advancements in the field of natural language processing, many of which are dis-
persed between several subjects. The early parts of the written component of this
work attempt to integrate the advancements together in a manner where the im-
provements over time can be easily understood.

• CT-02 Applied knowledge. In the completion of this work, theoretical concepts
taught at different stages of the degree have been put into practice. One such exam-
ple is the creation of the corpus in section 4.1 which heavily relied on the efficient
use of data structures as well as http requests.

• CT-10 Knowledge of contemporary problems. This work started as a direct re-
sponse to a perceived issue created by state of the art language models.

• CT-11 Constant Learning. In the undertaking of this work, a great deal of time was
spent researching further material not covered in lectures. Such two examples are
the popularisation of transformers and the use of tensor processing units in a cloud
environment.

• CT-13 Practical tool selection. Without the exploration of the viability of TPUs as
a compute resource to train GPT-2 and the Tensorflow research cloud program it
would have been prohibitively expensive to train the largest model available.



CHAPTER 6

Conclusions

The detector accuracies found are far too low to be deployed as an automated moderation
system due to the high rate of false positives. While it might true that the shorter length
texts might have contributed to the poor performance of these detectors, the reality is
that false quotes or snippets of text such as short social media messages might be as
disruptive as longer form messages. As such, the performance at those sequence lengths
is still highly relevant and an area to improve on.

It is possible a larger transformer based language model such as the ones released since
GPT-2[41] would have seen better results than the ones observed here. These larger trans-
formers, however, are not only more costly to train but also to use for downstream tasks
due to the sheer amount of parameters to calculate and the prohibitively expensive mem-
ory requirements. Increasing LM size might not be a viable strategy since the amount of
text to verify generated per second might vastly exceed the capability of a moderation
system based on large detection models. Even if bandwidth problems are solved by
replicating instances in a flexible cloud computing environment it can still prove to be
quite costly.

Instead, it may actually be beneficial to increase diversity of text type at training time
to deal with more niche tasks such as this one. The results obtained might just be the
product of the lack of samples from debate transcripts in the corpora forming the training
set for the detectors 2.4.6. Training language models on a wider sets of document types,
including shorter ones 4.2, may increase performance for downstream tasks.

6.1 Further work

Several avenues of work are available to increase the lacking performance shown by the
detector models in this particular context. The first and most niche of them is to fine-tune
the detector models using the outputs of the generator trained. This would likely result
in an improvement for this specific context.

The second, more general, potential improvement would be to train the detectors with
standard GPT-2 outputs that use Top-P sampling in addition to the data available. Adding
these examples might increase general performance in situations like the one encoun-
tered in the evaluation of our model.

The generator model used could also be improved in a variety of ways, the first being
training the model for an extended period of time. As it can be seen in the plot containing
changes in the loss over time, the value still follows a generally downwards trend by the
time it is stopped. It is possible that the quality of the text generated might be increased
by resuming the training.
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In addition to this further training the corpus might be updated with data more recent
than 2016. The issues discussed in parliament vary with the concerns at the time. As
such, one might see improvements when generating text about recent events if such an
event has been included at the training stages at some point. This thought might even be
relevant to the training of the original GPT-2 model as it was trained using a corpus that
is dated at the latest to august 2019.

Expanding the training set past webtext to include further text types, similarly to what
was done in RoBERTa, could increase performance of both detector and generator mod-
els alike. A number of parliamentary transcripts originally conceived for other NLP
tasks[58] are available and could be repurposed to improve performance in niche down-
stream tasks like the ones covered in this work.
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APPENDIX A

Additional Language Model
Samples

Prompt[62]
Scotland 2019-07-24

Alison Thewliss (Glasgow Central) (SNP)
5. What recent discussions he has had with the Home Secretary on the potential
merits of establishing a medically supervised drug consumption room in Glasgow.
<nextspeaker>

The Secretary of State for Scotland (David Mundell)
The causes of drug misuse are complex and need a range of policy responses. I am
aware that the Home Secretary has offered to meet Scottish Government Public Health
Minister Joe FitzPatrick to discuss a broad range of issues around the tragic matter of
drug-related deaths in Scotland.
<nextspeaker>
Real [62] Model Generated
Alison Thewliss
I am glad that the Home Secretary is fi-
nally going to meet the Scottish Govern-
ment on this. When NHS Greater Glas-
gow and Clyde published its proposals
for a supervised drug consumption in
2016, the number of drug-related deaths
stood at 257; last year, it was 394. So
I ask the Secretary of State for Scotland,
how many people would still be alive
in the NHS Greater Glasgow and Clyde
area if the Home Office had not blocked,
for ideological reasons, drug consump-
tion rooms in Glasgow?

Alison Thewliss
The UK Government have spent £2.4 bil-
lion on their failed war on drugs, which
has resulted in the death of 2,000 people
and 1,000 babies. Will the UK Govern-
ment now support medically supervised
drug consumption rooms in Glasgow?

Table A.1: Comparison between real and model generated responses for a given prompt.
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Prompt[7]
Coronavirus 2020-03-03

Matt Hancock
We have extensive stockpiles of personal protective equipment. We are not dis-
tributing that at this moment because we have to distribute it at the right time. Each
individual case can be dealt with at the moment, because they are relatively few, by
those who are expert in using that kit. Of course community staff, as well as primary
care staff and hospital staff, will be involved in the distribution of that equipment as
and when appropriate.
<nextspeaker>

Robert Largan (High Peak) (Con)
Last week there was a confirmed coronavirus case in Buxton, which led to the
temporary closure of a medical centre and a school. Unfortunately, several national
newspapers inaccurately reported that Buxton was a town on lockdown. Several local
hotels have now reported booking cancellations as a result. Does the Secretary of
State agree that the situation calls for responsible journalism and calm reporting of the
facts? Will he join me in encouraging people to visit Buxton, Britain’s best spa town?

<nextspeaker>
Real [7] Model Generated
Matt Hancock
Yes. I do not have to check with the
chief medical officer before telling you,
Mr Speaker, that I love going to Buxton,
which is a great place to visit. My hon-
orable Friend makes a serious point. As
I said in my statement, there is scientific
advice against moving too soon or over-
reacting, as there is against moving too
slowly or not reacting strongly enough.
We need to take the measures that are nec-
essary to protect the public. On taking
measures that do not protect the public,
the advice is that all of us in a position
of responsibility whose communications
are heard widely, whether we are Mem-
bers of this House or members of the me-
dia, have a duty of responsibility, because
how this is communicated will have a di-
rect impact on how well we as a country
cope with this outbreak.

Matt Hancock
Yes. My honorable Friend is a keen
sportsman, and it would be great if he
could get his summer on, but if he reports
the facts, we will ensure that the facts are
accurate. We need to get the facts straight.

Table A.2: Comparison between real and model generated responses for a given prompt.
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Prompt[59]
Northern Ireland Protocol_ UK Approach 2020-05-20

Mr William Wragg (Hazel Grove) (Con) [V]
The way the UK and the EU seek to address “Ireland’s unique geographic situation”
in the negotiations could have constitutional and practical implications for Northern
Ireland’s status within the UK. Could my right honorable Friend reassure me that
he can square that circle, or is it, on the current trajectory of the talks, an impossible
objective?
<nextspeaker>

Michael Gove
That circle can be squared using an exercise of what I believe in the EU is known as
variable geometry. The truth of course is that Northern Ireland’s position within the
UK is constitutionally secure and unchanged.

Sir Jeffrey M. Donaldson (Lagan Valley) (DUP) [V]
The Minister will be aware that we voted against the withdrawal agreement because
of the Northern Ireland protocol, but we welcome the clarity that this statement
brings—that Northern Ireland will remain part of the UK customs territory, that there
will be no new customs infrastructure, that there will be no tariffs on goods flowing
between Great Britain and Northern Ireland and that Northern Ireland businesses
will have unfettered access to the Great Britain market. Will the Minister and his team
continue to work with us and the business community in Northern Ireland to ensure
that these matters are taken forward and that Northern Ireland remains an integral
part of the UK single market?

<nextspeaker>
Real [59] Model Generated
Michael Gove
Yes, we absolutely will. Our whole ap-
proach is about making sure that the pro-
tocol, which of course was unwelcome in
many quarters in Northern Ireland, is im-
plemented now that it is law, but in a
way that goes with the grain of Northern
Ireland opinion and reflects the interests
of Northern Ireland’s peoples, whom the
right hon. Gentleman so eloquently de-
fends.

Michael Gove
My honorable Friend is entirely right.
Those are the maximum achievable objec-
tives and the withdrawal agreement al-
lows for them to be reached, and in my
conversations with the Taoiseach, I have
been clear about the Northern Ireland-
Ireland aspect of that. We have been
clear in our objective to keep Northern
Ireland in the single market and the cus-
toms union, which is in the economic in-
terests of both sides. We intend to pur-
sue that objective and the Bill will do pre-
cisely that.

Table A.3: Comparison between real and model generated responses for a given prompt.
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Prompt[60]
Education 2020-03-02

The Parliamentary Under-Secretary of State for Education (Vicky Ford)
Every child should receive a world-class education, no matter what their needs.
That is why we are investing £7.2 billion this coming year to support those with the
most complex needs—an increase of £780 million. Local performance varies across
the country, so we are reviewing the entire SEND system and working closely with
stakeholders and parents.
<nextspeaker>

Fleur Anderson
I am glad to hear that the system is being reviewed. Cuts to council funding for
special educational needs and disability services mean that children in Wandsworth
are waiting too long for a diagnosis and for an education, health and care plan. Then,
too many do not receive the support they need that is outlined in that plan. This
common experience of parents and children was backed up by a recent Ofsted report
that said that Wandsworth’s EHC plans were of poor quality and that there were
significant concerns. There is a cost to cuts. Will the Secretary of State ensure that there
is significant additional funding for councils in the Budget for special educational
needs and disability services?
<nextspeaker>
Real [60] Model Generated
Vicky Ford
The London Borough of Wandsworth will
receive £47.8 million in high-needs fund-
ing in the next year, which is an increase
of 8.6%. The performance of local areas
in producing education, health and care
plans is variable, but some 30 areas do
get more than 90% of plans done within
the 20-week period which, I note, is a re-
duction from the 26-week period under
the previous Labour Government. Per-
formance does vary across the country.
Where it is not good enough, we support
and challenge local areas to improve.

Vicky Ford
It is incredibly important that young peo-
ple with special educational needs get the
support that they need, and the national
funding rate is increasing by £2.5 billion
by 2019-20. We have also announced £250
million in flexible capital funding, which
local authorities can use to improve their
children’s special educational provision.

Table A.4: Comparison between real and model generated responses for a given prompt.


	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Essay structure

	Theoretical background
	Machine Learning in Natural Language Processing (NLP)
	Pattern recognition and machine learning
	Classification and regression
	Gradient and optimizers
	Artificial Neural Networks (ANN)
	Backpropagation
	Recurrent Neural Networks (RNN)
	Convolutional Neural Networks (CNN)

	Local and Distributed Representations in NLP
	Local Representation: Bag of words (BOW)
	Distributed Representations: Word2Vec
	Sub-word Representations: Byte Pair Encodings (BPE).

	Language Models (LM)
	N-gram based Language Models
	Feed forward Neural language models
	Recurrent Neural Network Language Models
	Convolutional Language Models
	Language Model Sampling

	State of the art results: Transformers
	Attention is all you need
	Encoder blocks
	Decoder blocks
	Transformer scaling
	Generative Pretrained Transformer 2: (GPT-2)
	BERT and RoBERTa


	Design
	Chosen approach
	Compute Resources
	Tensor Processing Units (TPU) for Deep Learning
	Environment

	Case Study
	Corpus creation: cleaning and web-scrapping
	Source Data
	Legality
	Environment and technologies
	Webcrawling
	Corpus preparation
	Text pre-processing

	Testing methodology.
	Results and evaluation
	Costs and efficiency

	Relation with studies
	Conclusions
	Further work

	Bibliography
	 Additional Language Model Samples

