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Abstract 
 
The ideal protein concept is based on the idea that to achieve optimum performance and 

maximum growth at a given stage of life, birds need specific amounts and ratios of amino acids. 

However, these amino acids must be obtained from feed, and their utilization efficiency 

(proportion, digestion and metabolization) is generally low, leading to high losses of nitrogen in 

excreta. Ideally, it should be possible to synthesise a protein that will meet the requirements of 

all amino acids (without excess or defect) while being fully digested and metabolised. The aim 

of this work was to develop a novel process to design an ideal protein completely digestible and 

usable in broilers from 0 to 21 days. To do so, we conducted a research on the net requirements 

of amino acids and the functioning of the digestive system at enzymatic level of chickens of that 

age. From these data, we designed possible primary structures of the polypeptide. Then, tertiary 

structure and its physicochemical properties were predicted by means of computational 

methods. The obtained proteins were evaluated based on their digestibility, physicochemical 

characteristics and future projections of synthesis and production. This procedure can be 

applied for obtaining proteins in other vital stages of the animal based on the knowledge of its 

specific nutritional requirements. The sequential method proposed presents a first approach for 

the design of proteins in precision feeding and is susceptible to improvement and 

implementation with progress in the field of Protein Engineering and Design. 
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Diseño de novo de una proteína ideal para la alimentación de 
pollos de carne de 0 a 21 días. 

 

 
Resumen 

 

El concepto de proteína ideal esta basado en la idea de que para alcanzar su rendimiento 

óptimo y máximo crecimiento en una determinada etapa vital las aves necesitan unas 

cantidades y ratios específicos de aminoácidos. Sin embargo, dichos aminoácidos deben 

obtenerlos de alimentos, cuya eficacia de utilización (proporción, digestión y metabolización) no 

es elevada, llevado a unas elevadas pérdidas de nitrógeno en las deyecciones. Lo ideal sería 

poder sintetizar una proteína que cubriera las necesidades de todos los aminoácidos (sin 

excesos, ni defectos) y que fuera totalmente digerida y metabolizada. El objetivo de este trabajo 

es desarrollar un proceso de diseño de una proteína ideal completamente digestible y 

aprovechable en pollos de engorde de 0 a 21 días. Para ello realizamos una investigación sobre 

los requerimientos netos de aminoácidos y el funcionamiento del sistema digestivo a nivel 

enzimático de los pollos de dicha edad. A partir de estos datos diseñamos posibles estructuras 

primarias del polipéptido. A continuación, predecimos su estructura terciaria y sus propiedades 

fisicoquímicas mediante métodos computacionales. Las proteínas obtenidas se valoran en base 

a su digestibilidad, características fisicoquímicas y proyecciones futuras de síntesis y producción. 

Este procedimiento es aplicable para la obtención de proteínas en otras etapas vitales del animal 

partiendo del conocimiento de las exigencias nutricionales específicas. El método secuencial 

planteado presenta una primera aproximación para el diseño de proteínas en alimentación de 

precisión y es susceptible de mejora e implementación con los avances en el campo de la 

lngeniería y Diseño de Proteínas. 
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Disseny de novo d'una proteïna ideal per a l'alimentació de 
pollastres de carn de 0 a 21 dies. 

 

 

Resum 
 

El concepte de proteïna ideal esta basat en la idea que per a aconseguir el seu rendiment òptim 

i màxim creixement en una determinada etapa vital les aus necessiten unes quantitats i ràtios 

específics d'aminoàcids. Dits aminoàcids han d'obtenir-se d'aliments, l’eficàcia d'utilització dels 

quals (proporció, digestió i metabolització) no és elevada, portat a unes pèrdues considerables 

de nitrogen en les dejeccions. L'ideal seria poder sintetitzar una proteïna que cobrís les 

necessitats de tots els aminoàcids (sense excessos, ni defectes) i que fóra totalment digerida i 

metabolitzada. L'objectiu d’aquest treball és desenvolupar un procés de disseny d'una proteïna 

ideal completament digestible i aprofitable en pollastres d'engreixament de 0 a 21 dies. A 

conseqüència, realitzem una investigació sobre els requeriments nets d'aminoàcids i el 

funcionament del sistema digestiu a nivell enzimàtic dels pollastres de dita edat. A partir d'estes 

dades dissenyem possibles estructures primàries del polipèptid. A continuació, prediem la seua 

estructura terciària i les seues propietats fisicoquímiques per mitjà de mètodes computacionals. 

Les proteïnes obtingudes es valoren basant-se en la seua digestibilitat, característiques 

fisicoquímiques i projeccions futures de síntesi i producció. Este procediment és aplicable per a 

l'obtenció de proteïnes en altres etapes vitals de l'animal partint del coneixement de les 

exigències nutricionals específiques. El mètode seqüencial plantejat presenta una primera 

aproximació per al disseny de proteïnes en alimentació de precisió i és susceptible de millora i 

implementació amb els avanços en el camp de l’Enginyeria i Disseny de Proteïnes. 

 

 

 

Paraules clau 
 

Aminoàcids, proteïnes, enzims, digestible, modelat computacional, disseny. 

 

 

 

 

 

 

 

 
Author: Clara María Lledó Morell 

Academic tutor: Prof. D. Juan José Pascual Amorós 
Academic cotutor: Prof. Dña. María Cambra López 

Valencia 6th July 2020 

 



ACKNOWLEDGEMENTS 
 

 I would first like to express my sincere thanks to my project tutor and cotutor Juanjo and 

María, who gave me the opportunity of participating in such a challenging project. For teaching 

and guiding me with patience and, most important, showing me how is to enjoy making science. 

 

 To my family, my greatest supporters in these four years. Specially my parents, who 

have taught me that hard work and effort pays off. For always being by my side and give me the 

strength to endure the most critical moments. To my little sister Maria José, for her unparalleled 

encouragement and her gift to make me laugh at any difficult situation.  This accomplishment 

would not have been possible without you. 

 

 Finally, I also wish to thank all the people who have contributed directly or indirectly to 

this four-year road and this last research.  

  



INDEX 
 

1.  INTRODUCTION ............................................................................................. 1 

1.1. The poultry meat sector ......................................................................... 1 

1.2. The ideal protein concept ...................................................................... 1 

1.3. Computational protein design and protein structure prediction ........... 5 

2. OBJECTIVES ................................................................................................ 9 

3. MATERIALS AND METHODS ..................................................................... 10 

3.1. Sequence design (primary structure) ................................................... 10 

3.1.1. Amino acid composition and Minimal ideal protein profile ............ 10 

3.1.2. Evaluation of avian digestive enzymes function ............................. 10 

3.1.3. Approaches for primary structure modelling .................................. 13 

3.1.4. Improvement and refinement ......................................................... 14 

3.2. Structure prediction ............................................................................. 14 

3.3. Assesment and comparisons of the predicted structures .................... 17 

3.4. Final model evaluation ......................................................................... 18 

4. RESULTS AND DISCUSSION ....................................................................... 19 

4.1. Sequence design (primary structure) ................................................... 19 

4.1.1. Sequence construction (approaches assessment) .......................... 19 

4.1.2. Improvement and Refinement ........................................................ 20 

4.1.3. Protein length .................................................................................. 22 

4.2. Protein Structure Prediction ................................................................. 23 

4.2.1. Evaluation of the secondary structure models ............................... 23 

4.2.2. Summary and final protein evaluation ............................................ 29 

5. CONCLUSIONS .......................................................................................... 31 

6. REFERENCES ............................................................................................. 32 



INDEX OF TABLES 
 

Table 1. Amino acids requirements for chickens from 0 to 21 days. ............................. 11 

Table 2. Main proteases from the avian digestive system involved in protein              
digestion ........................................................................................................................ 12 

Table 3. Number of peptides and free aminoacids from in silico digestion of initial design 
sequences. ..................................................................................................................... 20 

Table 4. Quality and reliability traits for the secondary and tertiary structure of the Top 
1 I-TASSER predicted models for the different protein sequences. ............................... 24 

Table 5. Function prediction parameters from Top 1 I-TASSER predicted models for the 
final sequences. ............................................................................................................. 28 

 
  



INDEX OF FIGURES  
 
Figure 1. Protein digestion dynamics workflow in chicken. ............................................. 4 

Figure 2. Optimization approaches flow chart. ............................................................. 14 

Figure 3. The I-TASSER protocol for protein structure and function prediction.. .......... 16 

Figure 4. Flowchart of QUARK structure assembly simulations .................................... 17 

Figure 5. Results from in silico digestion of initial designed sequences for primary 
structure with different approaches.. ............................................................................ 19 

Figure 6. Final 112 residues sequences improve for complete digestion.. .................... 21 

Figure 7. Number of extra aminoacids (standardised to x1 size) needed for complete 
digestion according to protein length. ........................................................................... 22 

Figure 8. Predicted secondary and tertiary structure of sequence Round 3.3 by I-
TASSER.. ......................................................................................................................... 25 

Figure 9. Secondary structure motifs as percentage of total protein length in I-TASSER 
predicted Top 1 Models.. ............................................................................................... 26 

Figure 10. Secondary structure motifs as percentage of total protein length QUARK 
predicted models. .......................................................................................................... 27 

Figure 11. Round 3.1 protein 3D structure cartoon model.. ......................................... 29 

Figure 12. Model validation plots.. ................................................................................ 30 

 

 
  



 

1 
 

1. INTRODUCTION 

1.1. The poultry meat sector 

Poultry (for meat and eggs) is one of the most relevant sectors in the agricultural 

industry nowadays. It is based on the breeding, care and commercial exploitation of different 

domesticated birds being Gallus gallus (including chickens and hens) the most important specie 

from an economical point of view. According to FAO (2017) chickens reared for meat production 

accounted for 92% of the world's total poultry population, providing 89% of meat production. 

Chicken reared for meat are called broilers. There are different lines which have been genetically 

selected for their high growth rate, which has led to a considerable increase in meat production. 

 

Worldwide, Europe ranks fourth and accounts for 12% of total chicken meat production. 

In Europe, Spain is the second-largest producer of chicken meat behind the United Kingdom. 

Within Spain, the chicken meat-producing sector accounts for 15% of the final livestock 

production and 6% of final agricultural production. In the last decade, the number of poultry 

farms has increased considerably from 14,252 in January 2010 to a total of 19,633 register in 

January 2020, being 40% of Spanish farms devoted to chicken (MAPA, 2018). In Spain, it should 

be noted that although the consumption of fresh chicken meat has followed a downward trend 

since 2012, export demand continues increasing, which explains the growing effort to increase 

meat production.  

 

The relevance and growth of this sector in the last decades has been accompanied by 

modernization and constant search for improvements. Thus, the development of new high-

performance commercial broiler lines, the use of precision feeding and the automation and 

refinement of production techniques, with the ultimate goal of lowering costs without affecting 

productivity, have been promoted. Feed is a major input in broiler production and feed costs 

can reach 70% of production costs. Modern farmers face the need to feed the animals to achieve 

maximum performance maintaining the minimum expense.  

 

Feed cost is determined by its different nutrients (mainly energy and protein), as well as 

the main sources used to obtain these nutrients. In this respect, protein is one of the most 

expensive nutrients. However, average nitrogen (N) gain per unit of N intake in broiler intensive 

indoor production is 0.58, being higher to that obtained in free-range (0.49) and organic (0.38) 

production systems (Kratz et al., 2004). Thus, despite the fact that the broiler is one the most 

efficient animal in transforming protein into meat, almost half of the protein ingested by this 

animal is not retained and is excreted. The N lost in the excreta contributes to increasing the N 

environmental load and caused economic losses. Consequently, different scientific disciplines 

such as genetics, nutrition and biotechnology seek methods and alternatives to the current 

feeding model to improve the use of this macronutrient. 

 

1.2. The ideal protein concept 

Proteins are macromolecules involved in different functions of living organisms such as 

catalysis of metabolic reactions (enzymes), transport of molecules and metabolites, providing 

structural support to tissues, storage and energy functions, mechanisms of defence of the 

immune system and regulation of cellular functions (hormones) amongst others. 

 

The protein requirement of an animal is determined by its amino acid (AA) requirements 

that hinge on animal’s productive period, genetics, feed consumption and environmental factors 
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such as temperature. Insufficient protein input, to cover the specific requirements at a given 

time (related to animal’s age and weight), results in a reduction or cessation of growth, starting 

with nonessential functions. If animals are fed below-requirement levels of amino acids over 

time, vital functions can be highly affected, as well. 

 

Amino acids are the basic units that build proteins and same as for proteins, they have 

major roles in the body. In relation to their synthesis, AA can be classified into two groups: 

essential (EAA) and non-essential (NEAA). There are 11 AA that the broilers body is not able to 

synthesize by itself, known as EAA, therefore they should be provided in the diet. These are 

phenylalanine, lysine, threonine, tryptophan, leucine, isoleucine, valine, serine, arginine, 

histidine and methionine (Quentin et al., 2004). On the other hand, NEAA can be synthesized via 

body metabolic pathways. The NEAAs play a crucial role in several functions such as gene 

regulation, signalling, intestinal activity, etc. In any case, NEAAs must also be provided in the 

diet, since their supply cannot be exclusively based on their obtaining from ingested EAA. For 

example, cysteine and tyrosine have an indispensable role as precursors for polypeptides 

formation in cells from the intestinal mucosa and are produced from phenylalanine and 

methionine, therefore they are not traditionally considered EAA. However, not all animals can 

produce phenylalanine and methionine de novo, consequently, their inclusion in the diet is 

crucial for proper functioning of the intestine. 

 

In this framework, it has long been considered that including the necessary amounts of 

EAA in the diet was sufficient to achieve optimal growth as the body could stock up on the 

necessary amounts of NEAA. However, it has been shown that this assumption is flawed and to 

achieve maximum growth performance and proper organism functioning the synthesis of NEAA 

from EAA is not enough. In conclusion, all animals have requirements of all AA to develop their 

maximum genetic potential and the classification of AA into essential and non-essential is purely 

descriptive (Wu, 2014). 

 

When all EAA are provided to the animal, if there is one supply which does not meet the 

animal requirements it is called the limiting aminoacid and it prevents the animal from 

developing its maximal potential growth and performance because as long as this deficiency is 

not covered, the animal cannot use the other AA. Once this lack of the limiting aminoacid is 

covered in the feed then another aminoacid will become limiting (second limiting AA, third, 

fourth, and so on). The first limiting aminoacid is mostly determine by the type of diet. In poultry 

diets four essential AA dominate as limiting amino acids: lysine and threonine in most cereals, 

Methionine in legumes, and tryptophan in maize. First limiting AA are used as reference AA to 

ratio the needs of all the other AA in the animal diets. This method allows to calculate the exact 

requirement of the animal for every other EAA resulting in all AA being co-limiting for 

performance, what is called the ideal protein concept. In the broilers diet, as well as in swine 

(van Milgen and Dourmad, 2015), the most widely used AA for such purposes is lysine for three 

main reasons: (1) its use is practically limited to protein accretion and is not affected by other 

metabolic functions, (2) it does not interact with other AA and (3) its analysis is relatively simple 

and accurate.  

 

Therefore, one basic idea of the ideal protein concept is that animals need AA in a 

certain balance to ensure optimum performance. Any absorbed AA which is in excess (due to an 

excessive inclusion or the lack of a limiting AA) will be oxidised and N will be excreted. Therefore, 

adjusting the dietary supply of all AA according to the ideal protein helps to maximise N 

utilisation (Lemme, 2003).  

 

The ideal protein concept was first used in the late 1950s when Mitchell and Scott from 

Illinois University (United States of America) determined the optimal proportions of EAA in 
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poultry diets based on the AA composition of casein and egg. However, this first attempt failed 

due to an excess of EAA and not considering any NEAAs. In 1960, Scott and his team improved 

the considered requirements after studying EAA's content in the chicken carcass. It was in the 

60-70s that NEAAs began to be included in studies about protein content optimization in broiler 

diets, leading to the drafting of different versions of their standard AA requirements. In spite of 

their differences, all versions shared common features: they included all EAAs and some AAs 

synthesized from them; they did not contain alanine, aspartic acid, glutamic acid nor serine; and 

they considered lysine as the reference AA (Wu, 2014). 

 

Amino acid requirements can be determined through different methods, either with 

feeding experiments as the dose-response or deletion studies, or by mathematical modelling as 

the factorial approach based on the N balance by measuring of the net change in total body 

protein (Lemme, 2003). Thus, the ideal profile for each AA, related to each other by ratios 

emerges from these studies focused on the AA requirements in broilers. Although the needs of 

the bird can vary in different situations, the AA ratios remain relatively constant through age 

and therefore it is easy to adjust the quantities of the rest of AA from a single known reference 

AA value.  

 

There are numerous studies which have determined lysine requirements in broilers at 

different ages (Wecke et al., 2016). Combining this information together with the 'Ideal Amino 

Acid Ratio' (IAAR), the ideal protein profile is designed, which provides the right amount and 

proportion of AA needed for maximum growth and optimal performance without any 

deficiencies or excesses. Thanks to this balance it is possible to reduce the amount of protein in 

feed, optimize its use and reduce N excretions derived from the deamination of over-consumed 

AA and its excretion as uric acid in the urine. As indicated above, this can contribute to reducing 

feed costs and limiting the amount of raw material imports needed for feed can mitigate 

deforestation and reduce its transportation. 

 

For these reasons the optimization of protein intake in diets is a current topic in poultry 

production world based on the pursuit of providing the ideal protein to the animal. However, 

there exists no traditional feed source with the ideal protein profile. The efficiency of the use of 

ingested dietary protein by broilers depends on the digestibility and the AA content and balance 

relative to the animal requirements. In the field of nutrition this efficiency is usually referred as 

apparent digestibility coefficient and in chicken it is around 50%, although it is tightly bound to 

the food source (Bryan et al, 2019) among other factors. Several efforts have been made to 

overcome the poor protein digestibility of traditional feeding methods. Increasing the crude 

protein (CP) content has proof to entail negative effects in chicken health, environmental and 

production cost. (Esmail, 2016). On the other hand, low CP level diets with the addition of 

crystalline AA neither constitute a suitable solution because it reduces chicken growth 

performance. Supposedly, crystalline aminoacids are absorbed faster causing an imbalance of 

AA availability to support protein synthesis (Bryan et al., 2019). In this way, the “perfect” diet in 

terms of protein supply could be feeding with low level inclusions of highly purified and 

digestible proteins.  

 

 Protein digestibility depends not only on the molecular features of the protein but also 

on the action of enzymes (i.e. proteases) involved in the digestion process. This process is known 

as the ‘Protein digestion dynamics’ (Figure 1). In order to allow absorption by enterocytes in the 

small intestinal mucosa, proteins must be broken down into dipeptides, tripeptides or free 

amino acids, the specificity of enzymes and their enzyme:substrate ratio will determine the final 

level of protein hydrolysis achieved. 

In poultry, the first enzyme responsible for the initiation of protein digestion is pepsin. It is 

released by the chief cells in the proventriculus, which auto-activates in an acidic environment 
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and cleaves full dietary proteins producing smaller peptides that enter the duodenum. Further 

hydrolysis is performed by pancreatic proteases, mainly trypsin and chymotrypsin 

endopeptidases (Recoules et al., 2019), as well as elastase exopeptidase and prolidase 

dipeptidase. (Recoules et al., 2017). Each enzyme has a particular specificity for a substrate 

cleaving peptide bonds differently, however the activation of some enzymes relies on others 

such as the activation of chymotrypsin and most pancreatic proteases which is dependent on 

the presence of trypsin. The final stage of protein digestion occurs at the brush border 

membrane of the small intestinal mucosa by carboxypeptidases and aminopeptidases (Erickson 

and Kim, 1990). Particularly in chickens, this last step if performed by carboxypeptidases A and 

B (Zelikson et al., 1971), and aminopeptidase N (Jamadar et al., 2003). 

 

 
Figure 1. Protein digestion dynamics workflow in chicken. 

 

Our objective is thus to design the exact polypeptide in terms of AA composition and 

fitting the ideal characteristics for the avian digestion process, a novel issue that certainly implies 

biotechnology. Until recently, biotechnology has contributed to the field of animal nutrition 

scope in four main ways: i. biosynthesis of nutrients, including the own synthetic AA and some 

vitamins; ii. biosynthesis of additives addressed to animal efficiency and health, including 

enzymes, antibiotics and phages; ii. value-addition to feedstuffs by bioprocessing; iv. 

biosynthesis of gut microbiota modulators for improving animal performance, including 

probiotics and prebiotics.  

 

However, the development and search of the Ideal Protein concept opens a new field of 

application for Biotechnology together with Protein engineering. At present, biotechnology is 

already in the protein production scope. The manufacture of protein products is nowadays a 

booming industry, mainly devoted to therapeutic proteins, diagnostic/analytical proteins, and 

industrial (bulk) proteins. In contrast to AA, chemical synthesis is not a viable option for protein 

production given its size and complexity, and that is why living cells and their cellular machinery 

are used as manufacturing factories (Thermo Fisher Scientific, n.d.) increasing the hinder at 

large-scale production. One of the main challenges of massive protein production, with room 

for improvement, is the product yield optimization, consequently continuous efforts are made 

to develop new organisms and look for the most suitable operational conditions to increase the 

yield. One of the promising ideas that will contribute to the productivity improvement is the use 

of industrial biodegradable wastes as a substrate for protein production (Spalvins et al., 2018), 

an economical and strategy that fits perfectly with the objective of this work, which aims at 

developing the perfect protein with the lowest possible environmental impact. 



 

5 
 

1.3. Computational protein design and protein structure prediction 

Computational protein design (CPD) is a multidisciplinary field established between 

basic and applied sciences. It can be considered as an evolution of the non-computational in 
vitro protein design including in silico methods to design a protein from aminoacidic level to the 

complex and functional structure conformation. The field has numerous applications in 

medicine and biotechnology highlighting rational drug design. 

 

The very beginning of CPD field was in the ‘60s when Christian B. Anfinsen developed 

the thermodynamic hypothesis supported with his research about ribonuclease A folding 

(Anfinsen and Haber, 1961; Anfinsen et al., 1961) and many other investigations in the protein 

field. He hypothesised that the three-dimensional structure of a protein in a normal 

environment is the one with the lowest overall Gibbs free energy that depends on interatomic 

interactions. Therefore, he stated that the final conformation of a protein is determined by its 

aminoacidic sequence through a merely physical mechanism. Due to this postulate, later in 

1972, Anfinsen was awarded with half Nobel prize for chemistry.  

 

From then on, the field has experimented an enormous evolution, especially in the last 

decades. One of the main drivers of such a dramatic improvement in this field in the last years 

is the advance in computing power and technological breakthroughs, creation of new software 

and the automatization of experimental procedures that have sped up the obtention of 

experimental data leading to the growth of protein data bank (PDB). In 2019, 10,581 protein 

structures were released in PDB almost triplicating the total number of entries available in 2009 

(PDB Statistics: Protein-only Structures Released Per Year, 

https://www.rcsb.org/stats/growth/growth-protein). 

 

Computational protein design is strongly linked with the field of Protein Structure 

Prediction (PSP), also raised from Anfinsen’s research, which aims to elucidate the folding of a 

protein from the knowledge of its primary structure. The framework of both disciplines is usually 

overlapped sharing common methods and facing similar limitations, as a matter of fact, PSP can 

be considered one stage in the CPD or as the target of CPD methodology itself. 

 

As a multidisciplinary field, CPD can pursue different goals: i. protein folding or inverse 

folding, above mentioned as PSP, ii. design of specific interactions, iii. search for proteins with 

stability for a particular environment, iv. optimization of natural existing proteins by synthetic 

biology and v. negative design. Among all the objectives previously mentioned, the problem of 

protein folding is the most recurrent and one of the biggest challenges that brings together 

biologists, chemists, engineers and physicists. 

 

There are four levels in the structure of proteins: the simplest level corresponds to the 

sequence and order of AA in the polypeptide chain giving rise to the primary structure. Amino 

acids establish joints by hydrogen bridges between them, acquiring certain positions in space 

that give rise to patterns that form the secondary structure. The most common structural motifs 

between proteins are alpha helixes and beta sheets, followed by loop regions.  Loop regions are 

irregular structures that act as interconnectors among other motifs of the secondary structure. 

The tertiary structure is the absolute spatial arrangement of polypeptide atoms through 

interactions of lateral chains and disulfide bonds between residues. The last level of organization 

occurs in proteins made up of more than one subunit, such as haemoglobin consisting of four 

subunits that form two heterodimers (Marengo-Rowe, 2006). The different polypeptides 

establish non-covalent joints and acquire their quaternary structure necessary to perform their 

biological functions. 
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In the scope of PSP, CPD can be applied at different levels. Size is one of the main 

structural features for classification. The smallest elements are rotamers and conformers 

determined by the polypeptide side chains. Nowadays, it is possible to find all feasible 

conformations for each side-chain in rotamer libraries, e.g. Dunbrak rotamer library. The next 

level is dedicated to the backbone and its critical flexibility that determines the geometrical 

constraints of the final structure. Working with fragments is another possibility, due to 

complexity and difficulties in finding proper homology levels between proteins it is possible to 

combine fragments of different proteins from data banks to solve the overall structure of the 

problem protein. Lastly, the biggest level implies geometrical general characteristics and 

application of analytical equations for universal features that can be useful in guiding de novo 

protein design. 

 

Since the beginning, PSP discipline has been divided into two schools of thought: the 

physics-based and the one based on evolution principles. The stream based on physical 

principles is rooted in the thermodynamic hypothesis and consequently the methods simulate 

all possible conformations seeking for the lowest energy state. The number of candidate 

structures to each aminoacidic chain is gigantic and it constitutes the protein energy landscape. 

Despite all the advances in the field, nowadays searching in such a vast space is a limitation to 

overcome but several approaches have been developed as optimized searching algorithms and 

specific models that increase the success of such methods. On the other hand, the school of 

thought based on evolution principles includes most methods used in PSP. It relies on the proven 

scientific theory which claims that evolutionary related proteins preserve common structural 

features, notwithstanding mutations acquired during divergence. Consequently, many methods 

rely on the alignment and comparison of a problem protein with other known as templates to 

infer a final conformation. 

 

The on-going progress in PSP and the emergence of new methods are compiled in the 

biennial Critical Assessment of Protein Prediction (CASP), a world-wide experiment founded by 

Mould and co-workers in 1994. Every two years, researchers have the opportunity to present 

their prediction methods for objective assessment by double-blind resolution of the structure 

of an aminoacidic sequence. Subsequently, the result presented by the participants is compared 

with the Nuclear Magnetic Resonance (NMR) spectroscopy or crystallography analysis of the 

problem protein. In this way, the results and methodology applied by each research group is 

ranked and all the new data regarding the field is gathered and published in the PSP Center web 

page (https://predictioncenter.org/index.cgi). 

 

On this basis, computational methods for structure prediction can be divided in four 

main groups, according to Floudas (2007): 

• Comparative modelling, also known as template-based or homology modelling, 

begins with the selection of a similar protein of known structure as a template, 

followed by the alignment with the target ending with the modelling to adjust 

mutations and gaps. The accuracy of the predictions depends on the homology 

level with target-template; it is considered that from a 30% identity the resulting 

conformation is mostly successful. Thus, such methods are exclusive for 

proteins that have a certain degree of homology with others from the PDB. For 

those proteins without global structural similarity, template-free methods, 

which do not involve a single template, are the choice.  

• Fold recognition or threading works on the basic premise that the number of 

sequences is much greater than folds, therefore it tries to find among all 

possible conformations the appropriate for a given sequence despite lacking a 

homologous template (Rost et al., 1997).  
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• Ab initio approach mixes databases with physic principles. It is mainly 

performed as a fragment assembly method, where several templates are 

selected to perform multiple alignments with the target, allowing to elucidate a 

structure from the combination of structural features from different known 

proteins (Bujnicki, 2006).  

• Finally, the prediction without previous data exclusively based on physical 

principles only relies on the Anfinsen dogma and the search of the lowest free 

energy structure.  

The results offered by template-free methods are less reliable yet suitable for each and 

every protein, that is why they should be always considered. 

 

While it is true that each method has its own mechanism, they all share a set of 

fundamental steps. The general scheme in predicting protein structures begins obtaining all 

possible 3D structures from a linear AA chain. Once we have the infinite possibilities, the guided 

simulation is launched through the landscape guided by a certain energy function. After the 

search, several candidate structures are generated, among which we will have to determine the 

final native structure. Because the structures obtained are simplified versions, after determining 

the shaping must be rebuilt to give higher complexity to both the backbone and the side chains. 

Once this step has been completed, the model is finished with a refinement that increases the 

quality of the results (Deng et al., 2018).  

 

But how accurate is the final model when using computational design or prediction of 

structures? Unlike experimentally obtained structures, where the certainty of the structure can 

be estimated from the experiment, models need to assess their validity through other 

alternatives. Such is the task of Model Quality Assessment (MQA) methods, that evaluate the 

model on the basis of features like solvent exposure, local-side chain and backbone interactions 

and bonding, molecular environment and secondary structure, and geometric packing. For this 

purpose, these methods include energy functions, statistical analysis, stereochemical tests and 

the help of machine learning techniques. The relevance of the aforementioned issue is 

demonstrated by the creation of a separate category in CASP to evaluate specifically the MQA 

methods available.  

 

CPB and the PSP problem has been nourishing from the development bioinformatics. 

Bioinformatics has contributed by providing new tools, servers and software aimed to deal with 

all aspects of protein modelling. Nowadays a world of possibilities opens up when it comes to 

modelling informatic tools, from highly complex software to on-line free user-friendly options. 

The choice is not simple as the software must be tailored to the research specific purpose and 

previous knowledge about the suitable method and the operating mechanism of the program is 

necessary as the manual intervention required depends on every single server. 

 

MODELLER software is used for comparative or homology design from an alignment 

provided by the user and it includes additional tasks to perform during the modelling (Šali and 

Blundell, 1993). I-TASSER software is an on-line server that predicts 3D-conformation and 

biological function of an AA sequence, it provides highly accurate results and has been ranked 

Top 1 server in CASP experiment several editions (Yang and Zhang, 2015). SWISS-MODEL 

generates a conformational model of a structure, but it is limited by the existence of a 

homologous in PDB. Conversely, X-RAPTOR is useful for elucidation of structures of non-

homology proteins. Higher complexity and deep understanding are needed to perform ROSSETA 

software. It works as a template-free method based on Monte Carlo algorithm (Zhang and Chou, 

1992). Its varied functional modules as Rosetta Design, Rosetta Docking, Rosetta Fragments and 

others (Kaufmann et al., 2010) allow performing a diverse set of modelling tasks. 
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The programs and servers mentioned above are just a minor example of the vast 

collection available, and in the same way, there are also tools devoted to protein optimization 

and validation (Samant et al., 2014). 

 

In addition, within the framework of bioinformatics and proteins, tools based on the 

enzymatic activity of some proteins have been developed, from which we can predict the 

cleavage site and potential substrates on the basis of experimental data available. Online servers 

as PoPS (Boyd et al.,2005), PeptideCutter (Gasteiger et al., 2005) and CaSPredictor (Garay-

Malpartida et al, 2005) are used as in silico methods to predict and model proteases digestion 

of known peptides. In silico analysis with PeptideCutter have proven to be useful in the 

prediction of peptides generated by proteases (Chica and Manuela, 2017) before the in vitro 
activity confirmation. It has been used with different objectives mostly Proteomics studies 

(Chong et al., 2010). In the present work, PeptideCutter will be applied to simulate the 

gastrointestinal digestion of the proteins, following the applications described in Cavatorta et 

al. (2010) and Yang et al. (2019).  
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2. OBJECTIVES 
 

The main objective of the present study was to develop a novel process for the design 

and structure modelling of an ideal protein completely digestible and usable to meet nutritional 

requirements of broiler chickens from 0 to 21 days of age. The designed protein will provide the 

exact amount of each AA without any deficiency or excess for optimal performance and maximal 

growth of the animal. 

 

To achieve the overall goal, specific objectives are addressed: 

 

• To design protein primary structures containing the minimal AA quantities that can be 

fully digested by enzymes from avian digestive system. 

 

• To predict and model secondary and tertiary conformations of already designed 

polypeptides. 

 

• To examine and validate different protein quality evaluation measures to assess 

candidate proteins and select the most optimal based on digestibility and reliability of 

the predicted structure. 
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3. MATERIALS AND METHODS 
 

3.1. Sequence design (primary structure) 

 

3.1.1. Amino acid composition and Minimal ideal protein profile 
 

De novo protein design of a protein that fully meets the requirements of broilers, should 

be designed based on the net amino acid requirement at each age of the animal (maintenance 

needs + growth requirements). Although the UPV Animal Feeding research group is working to 

obtain this information, it is not yet available. For this reason, the present work has been based 

on the use of the closest available information to these net requirements, which corresponds to 

the true ileal digestible AA. 

 

Furthermore, total AA requirements can change with age. However, to define the 

frequency of these AA in the novel protein to be designed, only the relative requirements (with 

respect to lysine) are needed. These relative requirements do not change as much with age and 

they may not even differ too much from the net ones. In any case, the present work will focus 

on the design of a de novo protein to cover the requirements for true ileal digestible AA in 

broilers from 0 to 21 days. 

 

Table 1 shows different ideal AA profiles for broilers from 0 to 21 days, based on the 

available literature and recognized international nutritional guidelines: Canadian NRC (National 

Research Council, 1994), Spanish FEDNA (Fundación Española para el Desarrollo de la Nutrición 

Animal  (Santomá and Mateos, 2018), Dutch CVB (Veeroederbureau,2008), Brazilian Tablas 

Brasileñas para Aves y Cerdos (Rostagno et al., 2017), North American Texas AM University (Wu, 

2014), as well as amino acidic content analysis in 10-day chicken’s meat (Wu, 2014).  

 

Among all the collected data, Texas AM University recommendations (Wu, 2014) was 

selected to calculate the total quantity of each single AA to construct the “minimal ideal protein” 

containing a total of 108 amino acids (Table 1), and thereafter for larger versions of the protein. 

The main reasons were that these recommendations are not far from the current 

recommendations for most of the AA provided by FEDNA and NRC (main national and 

international benchmarks). Moreover, it is one of the only ones that provided recommendations 

for the 20 AA and it has been derived from true ileal digestibility AA contents, accounting for the 

proportion of AA in the whole body of broilers. 

 

3.1.2. Evaluation of avian digestive enzymes function 
 

A deep and comprehensive study of the avian digestive system and enzymes action was 

conducted. The choice of enzymes was based on experimental data from Recoules et al. (2017) 

about in vivo digestion of vegetable proteins in broiler. Thereupon pepsin, trypsin, 

chymotrypsin, elastase, prolidase, carboxypeptidase A and B and aminopeptidase were 

characterized in terms of substrate specificity and activity based on the available literature 

(Table 2). Because there is little information available regarding chicken digestive enzymes other 

species were included in the research ensuring that both considered enzymes from each specie 

present substantial homology and the main characteristics were conserved.
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Table 1. Amino acids requirements for chickens from 0 to 21 days. 
 

AMINOACIDS Mw (g/mol) Mw (g/molecule) 
NRC 

19941 

FEDNA 
2018 

2 

CVB 
2018 

3 

BRASIL 
2018 

4 

Texas AM 
University 
(Wu,2014) 

4 

10 days  
Chicken 

meat  

Texas AM - 
FEDNA 

TAMU/ 10d  
meat  

  

Sequence 
x 1 

Lysine 146,19 2,43E-22 100 100 100 100 100 100 0 1,00 6 
Alanine 89,09 1,48E-22     102 108  0,94 6 
Arginine 174,20 2,89E-22 114 105 105 108 105 111 0 0,95 7 

Asparagine 132,12 2,19E-22     56 59,3  0,94 4 
Aspartate 133,10 2,21E-22     66 70,1  0,94 4 

Cystein 121,16 2,01E-22 36 34 35 33 32 24,4 -2 1,31 2 
Glutamate 147,13 2,44E-22     178 135  1,32 11 
Glutamine 146,15 2,43E-22     128 82,1  1,56 8 

Glycine 75,07 1,25E-22 66,5 73,5 84 85,5 176 187 102,5 0,94 11 
Histidine 155,16 2,58E-22 32   37 35 34,3 3 1,02 2 

Isoleucine 131,17 2,18E-22 73 67 66 67 67 58,4 0 1,15 4 
Leucine 131,17 2,18E-22 101 107  107 109 113 2 0,96 7 

Methionine 149,21 2,48E-22 45 40 38 39 40 30,7 0 1,30 3 
Phenylalanine 165,19 2,74E-22 65,5   63 60 56,6 -5,5 1,06 4 

Proline 115,13 1,91E-22 54,5    184 195,6 129,5 0,94 12 
Serine 105,09 1,75E-22 47,5 52,5 60 61,5 69 73,2 16,5 0,94 4 

Threonine 119,12 1,98E-22 72 65 65 65 67 59 2 1,14 4 
Tryptophan 204,23 3,39E-22 18 17 16 17 16 18,9 -1 0,85 1 

Tyrosine 181,19 3,01E-22 56,5   52 45 43,3 -11,5 1,04 3 
Valine 117,15 1,95E-22 82 78,5 80 77 77 68 -1,5 1,13 5 

          Nº AAs: 108 
          Mw(g/mol): 12492,88 

 
Mw: Molecular weight, NRC: (National Research Council, 1994), FEDNA: Fundación Española para el Desarrollo de la Nutrición Animal, CVB: (Veeroederbureau,2008) , 
BRASIL: Tablas Brasileñas para Aves y Cerdos (Rostagno et al., 2017)  , TAMU/10d meat: Texas AM amino acid calculations divided by amino acid amount on ten days 
chicken meat , AAs: amino acids.   
1calculated from total amount in diet, 2calculated from real faecal digestibility, 3calculated from apparent faecal digestibility, 4 calculated from true ileal digestibility 
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Table 2. Main proteases from the avian digestive system involved in protein digestion  

Enzyme E.C. Type Substrate especificity 1 2 References 

Pepsin 3.4.23.1 Endopeptidase 

- P1 exerts the greatest influence on the cut 
- Cleavage occurs over 40% of the time after Phe or Leu and more than 30% Met (P1) 
- No cleavage after His, Lys, Pro, and Arg (P1) 
- Aromatic residues are favoured at position P1ʹ 
- Pro is forbidden at the P2 position 
- His, Lys, and Arg are disfavoured at the P3 position 
- Do not cleave dipeptides 

Baudys and Kostka 
(1983);  

Wang et al. (1995); 
Hamuro et al. (2008). 

Trypsin 3.4.21.4 Pancreatic 
endopeptidase 

- Cuts preferentially after Lys and Arg (P1) 
- Pro at P1’ hinders the cleavage 
- Arg, Ile, Leu, Lys or Phe at P2 decreases the activity 2 to 16-fold 
- Pro at position P3 decreases activity 3 to 9-fold. 

Zelikson et al. (1971); 
Olsen et al. (2004); 

Rodriguez et al. (2008). 

Chymotrypsin 3.4.21.1 Pancreatic 
endopeptidase 

- Preference cleaves after Trp, Tyr, Phe and Met (P1) 
- Cuts with less preference Leu and His on P1 
- Cut after Trp is prevented by Met or Pro in P1’ 
- Cut after Met is prevented by Tyr in P1’ 
- Cut after His is prevented by Met, Trp or Asp in P1’ 
- Pro at P1’ blocks the cleavage 

Zelikson et al. (1971); 
Schellenberg et al. (1991); 

Elastase 3.4.21.36 Pancreatic 
endopeptidase - Preference cleavage after Ala, Leu, Gly, Val or Ile (P1) Guyonnet et al. (1999); 

Prolidase 3.4.13.9 Pancreatic 
dipeptidase 

- Acts on X-Pro dipeptides 
- Cleaves Pro imino-terminal Davis and Smith (1957); 

Carboxypeptidases 
(CBPA, CBPB) 

3.4.17.1 
3.4.17.2 Exopeptidase 

- Splits C-terminal of di- and tripeptides 
- CBPA cleaves aromatic AA or long aliphatic side chains: Ile. Leu, Phe, Tyr, and Trp 
- CBPB cuts after Arg and Lys 

Barrett et al. (2012). 

Aminopeptidase N 3.4.11.20 Exopeptidase 
- Splits N-terminal of di- and tripeptides 
- Preferentially hydrolyses Leu followed by Ala, Phe, Tyr and Gly (P1’) 
- Pro or Val residue at the P-1 or P-2 position are poorly or not hydrolysed 

Gal-Garber and Uni 
(2000);  

Damle et al. (2010) 

 

1Three letter aminoacid code: Ala: Alanine, Arg: Arginine, Asn: Asparagine, Asp: Aspartic acid, Cys: Cysteine, Glu: Glutamic acid, Gln: Glutamine, Gly: Glycine, His: Histidine, 
Ile: Isoleucine, Leu: Leucine, Lys: Lysine, Met: Methionine, Phe: Phenylalanine, Pro: Proline, Ser: Serine, Thr: Threonine, Trp: Tryptophan, Tyr: Tyrosine, Val: Valine. 
2General nomenclature of cleavage site positions by Schechter and Berger (1968): cleavage site between P1-P1', incrementing the numbering in the N-terminal direction 
of the cleavage (P2, P3, P4, etc..) and on the carboxyl side in the same way (P1', P2', P3' etc. ). 
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3.1.3. Approaches for primary structure modelling 
 

From the 108 AA described in Table 1, a first starting protein sequence was generated 
with randomized order of residues using RandSeq, a free-access program on the ExPASy online 
portal (SIB Bioinformatics Resource Portal). This sequence was named “blank” and was used as 
a control for comparison purposes in the present work. The online tool is frequently used to 
build randomly scrambled peptide libraries from a specific AA composition for different 
purposes (Grishaeva and Bogdanov, 2013; Singh et al., 2019). From the original random 
sequence, several primary structures were designed following three different approaches 
(Figure 2). These approaches are described below: 

 
1. Approach 1 - Sequential optimization exclusively based on Peptide Cutter software 

information about enzymes performance (ExPASy Bioinformatics Portal, Swiss 
Institute of Bioinformatics); step-by-step per individual enzyme. 

2. Approach 2 - Sequential optimization based on data on Peptide Cutter software 
information updated with our own collected data in the ‘Avian Digestive enzymes 
study’ (see 1.2; Table 2) about substrate specificity of each enzyme; step-by-step 
per individual enzyme. 

3. Approach 3 - Non-sequential direct optimization considering all enzymes at once on 
the overall sequence. 

 
In all three approaches, the optimization was made-by-hand, changing residue positions 

in order to maximize the number of cleavages by the enzymes in the linear polypeptide chain.  
 
During sequential optimization (Approaches 1 and 2) several runs of PeptideCutter 

digestion were performed. Beginning with pepsin, each run included one more enzyme 
following the theoretical order of action in the chicken protein digestion mechanism. In contrast, 
Approach 3 included several runs of PeptideCutter with all the possible enzymes at once, 
simulating digestion with all enzymes as a pool. The performance of Approach 3 included several 
assumptions: 

- The substrates of each enzyme are different and the ideal sequence to maximize 
the cleavage efficiency of one of them can reduce the ulterior efficiency of another, 
so that a global vision allows optimizing and ensuring that the most of each enzyme 
is obtained.  

- Although in vivo enzymes act sequentially many cuts are redundant, therefore the 
final result from making a pool or doing following a step-wise procedure will be 
similar. 

 
It was not possible to simulate digestion with all digestive proteins as some of them 

were not available in the program. Prolidase, carboxypeptidases and aminopeptidase N 
digestion simulation was manually performed. 

 
After the manual optimization approaches (1 to 3), three different primary sequences 

were obtained named as ‘Round 1’, ‘Round 2’ and ‘Round 3’ (Figure 2). Subsequently, complete 
digestion of these three sequences (rounds) plus the original blank random sequence were 
simulated to show the maximum digestibility of the linear polypeptides and asses the most 
convenient approach. Once the best methodology was chosen, it was used to obtain four extra 
sequences. The process of each sequence will begin with the generation of a random sequence 
and its subsequent optimization, so that finally we will obtain four new sequences with the ideal 
AA profile but different primary structures. These four new sequences will be considered as 
candidates for being the ideal protein. 
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Figure 2. Optimization approaches flow chart. Top-down: Blank Sequence (white), sequential optimization 
based on Peptide Cutter enzymes (purple), sequential optimization based on Peptide Cutter plus additional 
data on enzymes (green), all at once optimization (orange). **Grey box: unavailable enzymes on 
PeptideCutter server. 

 
3.1.4. Improvement and refinement 
 

All the final sequences obtained were subjected to a manual refinement step to increase 
their digestibility. In other words, increasing the number of free-AA in the final sequence by 
adding some extra specific AA that will break the remnants dipeptides. Such extra AA were 
chosen under two criteria: being the target AA of various digestive enzymes and having been 
rounded down in the proposed minimum ideal protein. 

 
After this step, a total of six primary structures (Round 2, Round 3 and the four extra 

sequences) that can be fully digested based on in silico methods were assessed as candidates of 
the perfect protein.  

 
Additionally, it was studied the possibility of producing the ideal protein increasing the 

length of its sequence up to ten-fold. Larger proteins sequences were compared to the minimal 
length (x1) considering how they fit chickens nutritional requirements, as well as the possible 
advantages and disadvantages from production point of view. 
 

3.2. Structure prediction 

Two on-line servers were used to predict the folding of the different sequences: I-
TASSER and QUARK, both developed in the Yang Zhang Lab at the University of Michigan, Ann 
Arbor. 
 

• I-TASSER 

Iterative Threading ASSEmbly Refinement is a hierarchical protocol for structure and 
functional prediction of AA sequences. It comprises three consecutive steps: threading, 
fragment assembly and iteration (Figure 3) (Yang and Zhang, 2015; Zhang, 2007). First, from the 
AA sequence, the program searched homologous templates from proteins in PDB library using 
a simple Profile-Profile Alignment (PPA) approach. The score of alignment of the problem 
protein with the template residues was calculated as described in Equation 1: 
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  (Equation 1) 
 
 
where Fquery (i, k) is the frequency of the kth amino acid at the ith position of the multiple 
alignments; Ptemplate(j, k) is the sum of the log-odds profile of template sequence in the PSI-BLAST 
search; Squery(i) is the secondary structure prediction from PSIPRED for the ith residue of the 
query sequence; and Stemplate(j) is the secondary structure assignment by DSSP  for the jth residue 
of the template. The weight factor c1 is an adjustable parameter for balancing the profile term 
and the secondary structure matches, and the shift constant c2 avoids the alignment of 
unrelated regions in the local alignment. 
 

Next, aligned fragments of templates were translated to construct several full-length 
models while the unaligned regions were built from scratch by ab initio modelling using Monte 
Carlo simulation (MC). The assembled models by MC were clustered by SPICKER and used to 
construct a representative model for each group. Further on, these models were refined by full-
atomic simulations in order to obtain the lowest-free-energy conformation. The server provided 
5 top-ranked models based on the confident score calculation (C-score) calculated as described 
in Equation 2: 
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   (Equation 2) 
 
where M/Mtot is the number of structure decoys in the SPICKER cluster divided by the total 
number of decoys from the I-TASSER simulations;〈RMSD〉 is the average root-mean-square 
deviation of the decoys to the cluster centroid; and Zi /Zcut,i  is the normalized Z -score of the best 
template gene, rated by the threading program. 
 

C-score value varied from -5 to 2 and is correlated with the proposed structure quality. 
A C-score >-1.5 can be considered as a reliable model. Finally, functional aspects were obtained 
from matching with proteins in BioLiP library (http://zhanglab.ccmb.med.umich.edu/BioLiP/). 
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Figure 3. The I-TASSER protocol for protein structure and function 
prediction. Adapted from Yang and Zhang (2016). PPA-I: Profile-Profile 
threading alignment, PDB: Protein data bank, COACH: function annotation 
program, BioLip: database for ligand-protein binding interactions. 

 
We support the election of this server on the world-wide CASP experiments, where I-

TASSER has been ranked as best server for structure prediction in the latest editions CASP7, 
CASP8, CASP9, CASP10, CASP11, CASP12 and CASP13; and also ranked as the best for function 
prediction in CASP9. Along the CASP contest, it has been shown that methods based on the 
combination of different techniques for the structural prediction provide better results. In this 
framework, I-TASSER is one example of a composite approach that has demonstrated to provide 
high accuracy models. Moreover, while many servers are limited to structural elucidation, I-
TASSER goes one step further and provides information about the possible biological functions 
of the model protein including ligand binding sites, Enzyme Commission (EC) and Gene Ontology 
(GO). The timing was a relevant factor in the conduction of the project, I-TASSER output 
generation takes ~36 hours for a medium-size protein (~200 AA) although it depends on the 
number of previous jobs submitted to queue and the query protein prediction difficulty. 
Compared to most online-servers available I-TASSER provides the best quality/time relation. 
 

• QUARK 
 

Quark was chosen as secondary server, it is based on ab initio folding, construction of 
protein structures by fragment assembly from unrelated proteins (W. Zhang, et al., 2016). The 
pipeline is described in Figure 4. It began with a compilation of continuously distributed 
fragments of 1 to 20 AA. 4000 structures were generated at each position based on gapless 
threading between the problem fragment and a library of 6023 high-resolution PDB structures. 
Next, a distance profile containing low-range interactions was obtained. In the next step, MC 
simulations were applied to obtain full-length models under a physics- and knowledge-based 
potential assembly. Finally, the decoys from the simulations were clustered by SPICKER and 
ranked by the size of the clusters. 
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Figure 4. Flowchart of QUARK structure assembly simulations (Zang et al., 2016) 

 
QUARK has also played successfully in CASP experiments ranked as the leader server in 

Free-modelling (FM) in CASP9 and CASP10. It provided a visual output which contains the 
information about secondary structure prediction, but unlike I-TASSER it does not provide 
information on biological function. It is considered as the best prediction method for short (<200 
AA) hard targets, in other words, for that short proteins without significant homologous 
templates in PDB. The time consumption of QUARK is higher than I-TASSER, depending on the 
structure complexity and the queue length of prior submitted jobs it takes from 2 to 5 days. 
While it is not the fastest ab initio modelling software, time is forsaken in favour of model 
accuracy (Yousef et al., 2019). 
 

3.3. Assesment and comparisons of the predicted structures 

The I-TASSER predictions for each structure were benchmarked on the basis of different criteria: 
 
1. Quality and reliability of the Top 1 model based on three main parameters: 

 
• C-score value: 

Confidence score that asses the estimated accuracy of the proposed model ranging from 
-5 to 2, increasing with high confidence. It is calculated based on the significance of threading 
template alignments and the convergence parameters of the structure (see above). 
 

• TM-score: 
Measuring of the structural similarity between the predicted model relative to the 

native structures based on C-score as described in Equation 3. Being a TM-score > 0.5 similar 
topology and TM-score< 0.3 random similarity. 
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  (Equation 3) 
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where LN is the length of the native structure; LT is the length of the peptides to the template 
structure; di is the distance between the ith pair of aligned residues; d0 is a scale to normalize the 
match difference; and ‘Max’ means the maximum value after optimal spatial superposition 
(Zhang and Skolnick, 2004a). 
 

• Cluster density: 
The number of structure decoys from MC Simulation in the SPICKER cluster. Where 

higher cluster density means higher occurrence of the structure in the simulation trajectory and 
a better-quality model, calculates as Equation 4 shows: 

	
"8S3T%$	N%93'TU = 	 ;

(;&0& × 〈X;!Y〉) 
(Equation 4) 

 
where M is the number of decoys in the cluster; Mtot is the total number of decoys used by 
SPICKER; and <RMSD> is the average Root Mean Square Deviation (RMSD) of the decoys to the 
cluster centroid (Zhang and Skolnick, 2004b). 
 
2. Quantity and type of structural motifs: number of -helices (H) and ß sheets (S) obtained from 

the ‘Secondary Structure Prediction’ visual output, Considering the relation between 
digestibility and protein conformation based on experimental data (Carbonaro et al., 2012). 

 
3. Predicted function using COFACTOR and COACH which includes Ligand-Binding Site, EC 

number and GO term prediction. All three evaluated with its own C-score calculation in the 
range of [0,1], where a C-score of higher value signifies high confidence and vice-versa. 
Specific consideration is taken to GO-score, where a GO-score > 0.5 is considered reliable 
gene homology.  

 
After I-TASSER results assessment, QUARK predictions were used to support and 

complement the secondary structure predictions from I-TASSER. Finally, the conclusions of each 
structure were compared to select the best option to meet the final objective of the project 
 

3.4. Final model evaluation 

Once the ideal protein was selected its model was validated using different tools. The 
structure stereochemical evaluation was carried out by Ramachandran Plot via PROCHECK 
(Laskowski et al., 1993) measuring the torsion angles among the residues that make up the 
protein in the model which allows to determine which aminoacids are permitted or not in each 
position. Further validation of the protein folding energy was evaluated by using ProSA server 
(Wiederstein and Sippl, 2007) widely used to figure out possible errors in 3D protein models 
comparing the model with already registered structures of proteins with same sequence length 
in the PDB.  
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4. RESULTS AND DISCUSSION 
 
During the experimental procedure, many decisions were made through trial-and-error 

until defining the optimal methodology to design the ideal protein balancing results quality and 
time invested. 

 

4.1. Sequence design (primary structure) 

 
4.1.1. Sequence construction (approaches assessment) 
 

The three different approaches used for the obtention of the primary structure of our 
polypeptide were initially evaluated based on the digestion level of the final chain, as well as the 
difficulty and time devoted to the optimization. 

 
Figure 5 shows the final sequences after simulated digestion following each approach.  

The final number of peptides and free AA are described in Table 3. The blank sequence digestion 
only reached the theoretical release of around 48% of the AA that composed the polypeptide. 
The rest were found mainly as dipeptides, tripeptides and three notorious resistant polypeptides 
of more than three residues. Comparing these products of digestion with the ones from the 
three different approaches, where only some dipeptides remained undigested, it is clear that 
manual optimization of the sequences proved to be a useful procedure to optimize enzyme 
digestion and AA release in the avian digestive tract. Amino acid release using Rounds 1 to 3 
ranged from 91 to 93% (Table 3). 

 

 
Figure 5. Results from in silico digestion of initial designed sequences for primary structure with different 
approaches. Approaches: Blank, Sequence without optimization; Round 1, obtained by sequential optimization 
based on Peptide Cutter enzymes; Round 2, obtained by sequential optimization based on Peptide Cutter plus 
additional data on enzymes; Round 3, obtained by all at once optimization. One letter amino acid code: A: 
Alanine, C: Cysteine, D: Aspartic acid, E: Glutamic acid, F: Phenylalanine, G: Glycine, H: Histidine, I: Isoleucine, 
K: Lysine, L: Leucine, M: Methionine, N: Asparagine, P: Proline, Q: Glutamine, R: Arginine, S: Serine, T: Threonine, 
V: Valine, W: Tryptophan, Y: Tyrosine. 
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Table 3. Number of peptides and free aminoacids from in silico digestion of initial design 
sequences.  

Sequence Dipeptides Tripeptides >3 residues 
polypeptides Free  AA 

BLANK 14 (25.9%) 2 (5.6%) 3 (20.4%) 52 (48.1%) 
Round 1 5 (9.3%) 0 0 98 (90.7%) 
Round 2 4 (7.4%) 0 0 100 (92.6%) 
Round 3 4 (7.4%) 0 0 100 (92.6%) 

 

Values in brackets indicate the percentage represented in the total sequence. 
Approaches: Blank, Sequence without optimization; Round 1, obtained by sequential 
optimization based on Peptide Cutter enzymes; Round 2, obtained by sequential optimization 
based on Peptide Cutter plus additional data on enzymes; Round 3, obtained by all at once 
optimization. 

 
Looking into the results from the three different rounds, the most digestible sequence 

based on the action of the chicken digestive enzymes are those obtained by Rounds 2 and 3, 
because there is a slight improvement in the number of free amino acids compared to Round 1 
(Figure 5). These results were the expected as Round 2 was performed analogously to Round 3, 
with updated information on enzymes performance including the expansion of specific 
substrates. Likewise, Round 3 provided a broader perspective of the overall enzymes digestion 
(assumption referred above), what was assumed to be an advantage for optimization.  

 
Both Rounds 2 and 3, considered as the best candidates/approaches, were time-

consuming. The time invested to complete each approach from the random sequence to the 
final primary structure was considered as a relevant factor. Nevertheless, as illustrated in Figure 
2, the number of steps required to fulfil Round 3 were considerably lower. This fact is supported 
by researchers experience during the development of the present experiment. 

 
In summary, the approach followed in Round 3 to obtain the primary structure was the 

most suitable for AA sequence optimization based on digestion results with avian enzymes and, 
in consequence, it was used to generate four extra sequences (Rounds 3.1, 3.2, 3.3 and 3.4) in 
the improvement and refinement procedures addressed to obtain a complete digestible protein. 

 
4.1.2. Improvement and Refinement 

 
Round 2, Round 3 and the extra sequences generated in the last step (Figure 6) 

presented the same digestibility result pattern (93% of free AA release and four remnant 
dipeptides, Table 3). In order to improve the sequences by breaking the four remnant 
dipeptides, four extra AA were included in the composition taking into account the following 
considerations: 

- Choosing those AA that are a frequent target for digestive enzymes in chickens (arginine, 
isoleucine, leucine, lysine, phenylalanine, tryptophan and tyrosine). 

- The calculated AA requirements were round off to exact numbers and thus the ones 
rounded down could imply a risk of shortage. Therefore, it was more advisable to use 
those AA that had been rounded down. That was the reason why isoleucine and lysine, 
were chosen for the additional provision. Special attention was paid on lysine, due to its 
role as first limiting and as reference AA, being worthwhile to ensure its minimum 
requirement. 

- Lysine, sulphur amino acids (methionine and cysteine), Arginine and tryptophan have 
been described as the first limiting amino acids in chicken diets. Once their requirements 
were met, methionine and cysteine were avoided for being sulphur-containing amino 
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acids (risk of disulphide bonds, that difficult digestive enzymes efficiency), while arginine 
and tryptophan were chosen for extra inclusion. 

-  

 
Figure 6. Final 112 residues sequences improve for complete digestion. Round 2: obtained by sequential 
optimization based on Peptide Cutter plus additional data on enzymes; Round 3, Round 3.1, Round 3.2, Round 
3.3 and Round 3.4: obtained by all at once optimization. 

 
All things considered, the addition of the four extra AA resulted in increasing only slightly 

the amount of isoleucine by a 25.00%, lysine by 16.67% and arginine by 14.29%, but tryptophan 
by 100%. The most considerable increase is that of tryptophan since the initial sequence 
contained only one AA and in the refinement step its amount was doubled. Studying the nature 
and biological functions of tryptophan, no evidence indicating that an excess in the diet could 
result in considerable adverse effects on the animal was found. By contrast, tryptophan can be 
beneficial in as it participates in different biological essential functions (Mund et al., 2020). 
Tryptophan works as a precursor of different hormones including serotonin, which is related to 
diminishing stress before slaughter and can thus have a direct effect on production performance 
and final meat quality (Bai et al., 2017). Moreover, several experiments have shown the direct 
role of Tryptophan in humoral and cellular immune response (Emadi et al., 2011; Mund et al., 
2020). Therefore, tryptophan addition was considered as safe and beneficial. Emadi et al. (2011), 
in a study on infectious bursal disease in chickens, suggested that increasing two times the NRC 
level of tryptophan along with 2.5 times the NRC level of arginine in chickens basal diet could 
have positive effects for immune response. In this way, Wang et al. (2014) concluded that 
increasing 1.5 fold dietary tryptophan recommendations can improve chicken welfare and 
relieve oxidative stress.  

 
Regarding the other three extra AA, their amount was increased in much lower 

percentage compared with tryptophan. Therefore, we assumed that a priori there does not 
seem to be a counterproductive effect on the animal. This assumption is supported by 
experimental studies on the effects of excess lysine (Ghoreyshi et al., 2019), isoleucine (Farran 
et al., 2003) and arginine (Ebrahimi et al., 2014) in the diet, showing that when added above 
requirements, chicken growth was not affected.  

 
The decision to add extra AA involves moving away in greater or lesser extent from 

established chickens net requirements, and the effects of the imbalances can only be 
determined with certainty in in vivo trials. An alternative to the addition of AA is the removal of 
some of them, obtaining a protein with a shorter sequence while providing the removed AA in 
an isolated form through supplementation. Nowadays although all AA are commercially 
available synthetically produced or in the form of crystalline AA, only DL-methionine, L-lysine, L-
threonine, L-arginine and L-tryptophan are used in animal feeding.  
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Despite the large availability of AA, this strategy presents few constraints. Firstly, 
although the market price of AA has decreased in the last decade thanks to the development of 
biotechnology, synthetic AA are expensive and its supplementation is not economically 
profitable. Additionally, digestive dynamics of supplemental and protein-bound AA are 
different, considering rates and sites of absorption along the digestive tract (Selle and Liu, 2019), 
which could cause a lack of synchronization in the absorption to support protein synthesis 
leading to a reduction in chicken performance as reported by Bryan et al. (2019). 

 
4.1.3. Protein length 

 
After the definition of the best approach for sequence optimization and the sequence 

refinement using the minimum sequence to meet the broilers requirements, we considered 
increasing the size by repeating the minimum sequence. These proteins could equally meet the 
requirements of these animals, and perhaps could be obtained without the need for extra AA. 
Therefore, the defined overall procedure described previously was also used to obtain larger 
sequences from this minimum amino acidic sequence obtained (results not provided). 

 
Figure 7 shows the number of extra AA required to be expressed as a % of the AA 

requirements (standardised to a single size, x1) to obtain a full digestible protein in function of 
the sequence length. Our results showed that the number of standardised extra AA required to 
be included in the improvement and refinement steps increased linearly as the length of the 
sequence increased (from x1 to x4 sizes) and then, from x4 and beyond, remained more or less 
constant. In consequence, it seems that the best fitting sequence to meet the chicken’s 
requirements is the protein designed with the minimum number of sequence repetitions (i.e. 
size x1). 

 
 

 
Figure 7. Number of extra aminoacids (standardised to x1 size) needed for 
complete digestion according to protein length.  

 
As regards protein size, a likely event during protein production is denaturing and 

aggregation of proteins. This leads to the formation of inclusion bodies inside the expression 
system, mainly caused by cell stress produced by the overexpression of heterologous proteins 
(Kopito, 2000; Villaverde and Carrió, 2003). The probability of aggregation increases when the 
produced proteins are larger than those typical produced by the host, as in mammalian protein 
expression in Escherichia coli. While aggregation eases protein recovery by simply breaking the 
cells and centrifuging, it also reduces possible toxicity to the host. The refolding step is a high 
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inefficient process and the downstream operations in order to recover a soluble and well-folded 
protein can be very complicated and expensive (Clark, 2001). Whether a protein will form 
inclusion bodies or not in a specific expression vector and how difficult it will be to recover its 
native folding is very uncertain and difficult to predict. Therefore, a soluble protein is always the 
preferable choice, and that is why the ideal protein is designed with the minimum size (x1).  

 
In addition, during protein synthesis errors occur in the translation process, leading to 

wrongly placed AA on an estimated ratio of 6×10−4 to 5×10−3 per AA incorporated (Zaher and 
Green, 2009). This implies that as the size of the proteins increases, so does the probability of 
encountering errors in the AA chain. This fact does not always imply a detrimental effect, but in 
some cases, it may affect the subsequent folding and functionality of the protein. From the point 
of view of obtaining the ideal protein, these errors are very relevant since the amount of AA that 
make up the protein have been defined exactly to cover the minimum needs of the chicken and 
a mismatch would not meet the requirements and therefore the protein would not achieve the 
overall objective for which it was created. Therefore, the production of the ideal protein in its 
smallest form is beneficial as it also diminishes the possibility of AA misincorporations. 

 

4.2. Protein Structure Prediction 

 
4.2.1. Evaluation of the secondary structure models 

 
• Benchmarking I: Model quality and accuracy 

 
The final sequences (Round 2, Round 3, Round 3.1, Round 3.2, Round 3.3 and Round 

3.4) were provided as input in the I-TASSER on-line server which developed a Top 1 model for 
each sequence with its statistical parameters. Three main parameters (C-score, TM-score and 
cluster density) were considered to predict the absolute or relative quality of each protein model 
in order to select the best quality 3D model. The server also provided the root-mean-square 
deviation of atomic positions (RMSD) calculation but although this index can give an explicit 
concept of modelling errors, it was not considered as a main parameter for the conformation 
assessment because, in some cases, an isolated local error on template-sequence alignment can 
cause large RMSD value even though the global topology might be adequate (Kufareva and 
Abagyan, 2011). 

 
Table 4 shows the values of the main statistics used to evaluate the quality and reliability 

of the secondary structure models obtained with the different protein sequences. Protein 
structure predicted using Round 3.3 sequence showed the most reliable and quality model, as 
indicated by their C-score (accuracy) and TM-score (similarity to native structures) values higher 
than the other sequences (-1.08 and 0.58, respectively). However, Round 3.1 also had significant 
high C and TM scores (-1.99 and 0.48). The cluster density, related with higher occurrence and 
quality, was also higher for Round 3.3 sequence compared with the rest (0.42 in Round 3.3 vs. 
0.24 on average in the rest).  
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Table 4. Quality and reliability traits for the secondary and tertiary structure of the Top 1 I-TASSER 
predicted models for the different protein sequences. 

 

Protein 
Sequence 

Statistics parameters 

C-score TM-score RMSD Cluster density 

Round 2 -4.24 0.27±0.08 14.1±3.8 0.0212 
Round 3 -3.30 0.35±0.12 11.6±4.5 0.0525 

Round 3.1 -1.99 0.48±0.15 8.4±4.5 0.1945 
Round 3.2 -4.10 0.28±0.09 13.7±0.09 0.0281 
Round 3.3 -1.08 0.58±0.14 6.4±3.9 0.4161 
Round 3.4 -4.26 0.26±0.08 14.1±3.8 0.2300 

C-score: confident score, TM-score: template modelling score, RMSD: Root mean square 
deviation. 

 
The models presented as ‘Top 1’ by I-TASSER, i.e. those the program suggests as the 

most reliable models of each sequence, are those that present the highest values in the 
parameters mentioned above. Theoretically, this implies a higher reliability in predicting the 
actual 3D protein conformation. This assumption is consistent with many studies in which the 
predicted structure has been experimentally validated using computational methods before the 
native structure is available. For example, Kemege et al. (2011) studied a Chlamydia trachomatis 
protein CT296 in which I-TASSER was used for in silico structure prediction and was subsequently 
validated by X-ray chromatography. In this study, from the five models predicted by I-TASSER, 
Model 1 had the highest C-score (considerably higher value than the remaining four models) 
and X-ray crystallography showed significant overall structural similarity with the Model 1 I-
TASSER predicted structure.  

 
Only in some cases the differences between the C-scores of the five I-TASSER proposed 

models are not very significant and the Top 1 Model cannot be selected immediately. S.Zhang 
et al. (2016) studied Aspergillus niger N5-5 tannase and showed how I-TASSER Model 2 may be 
the closest-native structure model although its C-score value was slightly lower than Top 1 
Model C-score. In these situations, models must be studied on the basis of other characteristics. 

 
For all the sequences in this experiment the Top 1 Model were selected undoubtfully as 

they presented much higher C-score values than the other four proposed models (data not 
provided). Using the same criteria, a general valuation of all proteins in Table 4 can be done  
considering that, among all the Top 1 models of the different sequences presented by I-TASSER, 
the one with the highest values of quality and reliability parameters will represent the best and 
most reliable prediction among all the possible sequences. 

 
Obtaining an accurate model for the secondary structure is essential, since this structure 

will be closely related to protein physical (solubility, aggregation, secretion ability) and 
functional characteristics. As previously mentioned, protein solubility is very relevant regarding 
production processes, mainly affecting cell excretion and recovery downstream processes as it 
is directly related with the aggregation phenomena. Solubility is mainly defined as a function of 
solvent characteristics (pH, salt concentration, temperature, etc.) and protein structure. 
Solubility starts to be defined from the primary structure, each AA has its own and different 
solubility and water affinity depending on their molecular nature (Schein, 1990). The 
contribution of each AA to the polypeptide sequence, as well as their distribution, guides protein 
folding in order to acquire the most stable structure by burying the non-polar AA and exposing 
the soluble residues to interact with water in the molecular surface. This can directly affect 
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overall protein solubility (Trevino et al., 2007). Moreover, secondary structural motifs can also 
affect peptide solubility. Solubility can increase with the ratio of α-helix to β-sheet in in vitro 
experiments (Bai et al., 2016). Therefore, a model with higher reliability would allow us to have 
more solid information about the possible behavior and properties of the protein in order to 
anticipate future complications and develop accurate experimental trials and production plans. 

 
All these models have been obtained by I-TASSER, a homology modelling server that 

uses threading. Therefore, the quality is tightly determined by the existence of protein 
templates in PDB with significant sequence similarity to the problem sequence. In other words, 
sequences without homologous in PDB will be more difficult to model and the result will be 
based in less evidence leading to overall lower reliability results. In fact, as it can be seen in 
Figure 8, the secondary sequence predicted with the most reliable model obtained by I-TASSER 
(Round 3.3), includes many coil regions. These coil regions between α-helices and β-sheets may 
be true or a consequence of a lack of homologous information in the PDB. 

 

 
(a) 

 
(b) 

Figure 8. Predicted secondary and tertiary structure of sequence Round 3.3 by I-TASSER. (a) 3D structure cartoon 
model. In pink α-helices, in yellow β-sheets and in white coil regions. (b) Secondary predicted structure. H: α-helices, 
S:  β-sheets, C: Coil regions. 

 
Besides this, a unique protein, whose structure greatly differed from any known 

homologous, could be advantageous. Firstly, it could decrease the mimic phenomena that could 
lead to problems in the organism chosen for future production (whether bacteria, yeasts or any 
other choice organism). Secondly, it is more probable that, if it does not belong to any protein 
family, it will not have any relevant function itself.  

 
 

• Benchmarking II: Structural secondary motifs 
 
In terms of protein digestibility and solubility, it is crucial to consider the occurrence of 

two main structural patterns: α-helices and β-sheets. Carbonaro et al. (2011) studied in vitro the 
structure-digestibility relationship of different proteins from animal and plant origin and 
quantified the different structural motifs. Their results, consistent with other experiments 
(Gabriel et al., 2008; Yang et al., 2016), showed an inversely proportional decrease in hydrolysis 
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degree (HD) to the number of ß-sheets. The main explanation lies in the hydrophobic character 
of these structures that promotes aggregation and protein-protein interaction. 

 
Figure 9 shows the percentage of overall sequence covered by α-helices, β-sheet and 

random coil regions from I-TASSER models. This figure shows that the secondary structure of 
the protein simulated in Round 3.3 had the higher amount of β structures among all the 
candidates, and therefore it could be the less digestible protein. Following the same criteria, the 
secondary structure of Round 3.1 protein could have a higher HD as its structure contained the 
lowest percentage of β-sheet and simultaneously the highest number of α-helices among all the 
models. Regarding the amount of coil regions, as their conformational prediction is more 
intricate, these regions could raise unexpected folds in a future production phase. This is why 
defined structures and α-helices are preferable. The structure of the protein simulated in Round 
3.1 presented one of the lowest percentages of coil regions. 

 
 

 

 
Figure 9. Secondary structure motifs as percentage of total protein length in I-TASSER predicted 
Top 1 Models. H: α-helices, S: β-sheets. 

 
 

The sequences were submitted to QUARK to evaluate its predicted models compared to 
I-TASSER. QUARK results shown in Figure 10 support the secondary structure of predicted Top 1 
Model from I-TASSER in all the sequences, in fact QUARK outputs showed an increase in the 
confidence score of single AA in the secondary structure prediction. 

 
Moreover, in Round 2, Round 3, Round 3.2, Round 3.3 and Round 3.4 the QUARK models placed 
few extra motifs on defined coil regions in the I-TASSER prediction, which can be visualized when 
Figures 9 and 10 are compared.  where a decrease in coil sequence length percentage was 
observed. The only model that remained constant for both software predictions was Round 3.1.  
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Figure 10. Secondary structure motifs as percentage of total protein length QUARK 
predicted models. H: α-helices, S: β-sheets 

 
 

• Benchmarking III: Predicted Biological Function 
 

As previously mentioned, another aspect to be taken into account when producing a 
new heterologous protein in an expression system, is that this protein does not have biological 
functions that could affect the normal functioning of the host organism.  

 
Function prediction is based on 3 subsections: Ligand-binding sites, EC and GO. Table 5 

shows the values of the parameters used for function prediction from the I-TASSER predicted 
Top 1 Models for each sequence. Virtually all proteins have negligible confidence scores below 
0.5 regarding Ligand Binding Site prediction and EC. This implies that none of the proteins is 
predicted to bind ligand neither to belong to an already existing enzyme classification. GO-scores 
of some of the proteins clearly differed from the rest. The most notable case was Round 3.3 
which consensus prediction of GO terms values were above 0.5 threshold. This indicated 
molecular function, biological process and cellular localization. Likewise, protein simulated in 
Round 3.1 showed a GO-score of biological process prediction lightly above the cut-off, 
corresponding to cellular catabolic process (GO:0044248). Nevertheless, given the low values of 
the other two prediction terms (molecular function and cellular component), it could be 
considered as a protein with low interaction with host metabolism. 
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Table 5. Function prediction parameters from Top 1 I-TASSER predicted models for the final 
sequences. 

Protein 
Sequence 

Function prediction parameters 
Ligand 

binding site 
C-score 

EC  
C-score 

Molecular 
function  

GO- score* 

Biological 
process  

GO-score* 

Cellular 
component 
GO- score* 

Round 2 0.10 0.085 0.37 0.07 0.37 
Round 3 0.07 0.084 0.10 0.32 0.10 

Round 3.1 0.11 0.153 0.47 0.53 0.15 
Round 3.2 0.09 0.066 0.24 0.37 0.07 
Round 3.3 0.17 0.279 0.71 0.81 0.56 
Round 3.4 0.09 0.065 0.47 0.07 0.07 

 

GO: gene ontology, EC: enzyme commission. 
*Consensus terms 

 
 
Despite I-TASSER is among the most reliable software for the forecast of proteins 

function and it was also ranked as the best for function prediction in CASP9, it must be noted 
that the prediction accuracy will never be absolute. Nowadays, there are many available 
methods for predicting function mainly based on protein sequence, three-dimensional structure 
or genome annotations (Watson et al., 2005). Nonetheless, some targets are still complicated 
to tackle by a single strategy and certain methods are only appropriate for a specific protein 
type. For example, COFACTOR consistently outperforms simple homology-based analysis so it 
depends on template availability and its accuracy will be lower for proteins with novel 
structures. The information provided by different methods can concur or can be different. 
However, inferred results will be never conclusive and the only way to verify protein's function 
is experimentally. Machine learning methods can provide clues about the future activity of 
proteins but only in vivo studies of the molecule and its cellular context, considering full 
complexity interactions and pathways, can provide absolute certainty. 

 
As we are not looking for a functional protein, it is better to avoid proteins prone to 

present any specific role. Functional proteins can be toxic when overexpressed in the host 
organism and, depending on the function of the expressed recombinant protein, it can have 
detrimental effects on the proliferation and differentiation of the host cell used as expression 
system, diminishing protein production yield. As toxicity is such a common phenomenon, there 
are many different strategies to overcome it (Ahmad et al., 2018). One of them is based on 
removing protein activity by expressing them as unfolded peptides that form inclusion bodies. 
As previously mentioned, this strategy entails an additional cost and difficulty in protein 
production as it requires downstream processes to purify and isolate the proteins (Mustafa et 
al., 2019) and then to return the protein to its native structure and function (Vallejo and Rinas, 
2004). This problem is avoided with completely dysfunctional proteins that will not be toxic to 
the host cell though they create metabolic burden for the host cell. 

 
With that in mind, protein Round 3.3 was not considered as the best candidate because 

its functional predictions made it prone to cause host cell toxicity and future problems when 
producing the molecule. In this framework, Round 3.1 could be considered as a protein with low 
interaction with host metabolism. 
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4.2.2. Summary and final protein evaluation 
 
From all the information obtained in this experiment (related to digestive release of AA, 

the precision and reliability of the proposed secondary structure and the possible interaction 
with the host) our aim was to define which of the models could be the most suitable to design 
a completely digestible protein that covered all nutritional requirements of broilers and that 
theoretically will allow us to produce it efficiently. Considering quality and reliability assessment 
of the structure obtained, the best model could be the sequence proposed in Round 3.3. 
However, based on the relationship between secondary structure – DH, Round 3.3 protein could 
be expected to have a low digestibility potential due to its higher richness in β-sheet structures. 

 
Regarding the digestibility potential based on structural motifs, the best protein was 

Round 3.1, as it contained the highest number of α-helices and the lowest of β-sheet. Moreover, 
it was ranked second in terms of reliability in the basis of C-score and TM-score showing an 
acceptable quality level. In addition, the scores related to potential biological functions that 
could affect the normal functioning of the host are clearly better in the protein obtained in 
Round 3.1 than in Round 3.3. 

 
The rest of the models seemed to have a lower reliability due to their higher proportion 

of coil regions. The coil regions correspond mostly to unaligned fragments, this happens because 
these sequences have no significant homologs in the PDB and therefore less evidence and 
templates to construct the final conformation.  

 
In view of the above, there is no point in selecting a reliable model if the desired protein 

characteristics are not met. We prefer to have a medium-quality prediction model of a protein 
that meets all the requirements. In conclusion, our choice was the protein sequence obtained 
in Round 3.1, considering its theoretical structural digestibility, meaningful quality of the 
predicted model, and reduced biological and functional predictions.  

 

 
Figure 11. Round 3.1 protein 3D structure cartoon model. (a) I-TASSER model, (b) 
QUARK model. 

 
 
Once the model corresponding to Round 3. 1 protein (Figure 11) has been selected, it 

was validated. Validation of three-dimensional models is a core aspect on PSP before structure 
deposition on PDB. It is also an essential subject in structural biology. Therefore, validation tools 
based in different criteria have been developed as PROCHECK and ProSA, which were used in 
this experiment. 
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Firstly, PDB file for Round 3.1 model 1 was downloaded and submitted to PROCHECK 
online server where Ramachandran plot is developed for the structure validation (Figure 12 (a)). 
Ramachandan plot which shows the overall residue by residue/structural geometry analysis, 
demonstrated that 43.7% of residues appeared in favoured regions, although other 48.3% of 
residues were laid in the allowed region; and 8.0% of residues fell in disallowed regions. These 
percentages from Ramachandran analysis of protein structure demonstrate that our displayed 
protein is predicted to be quite stable with a minor amount of AA in the disallowed regions. 
Compared with Beg et al. (2018), the residue percentage in totally favoured region is lower but 
the residues in not allowed regions is similar and is within the range of acceptable values. 
Therefore, a priori it is not a model of unstable nature. 

 
Protein folding energy was carried by ProSA server by comparing the model with 

structures of same size in relation to the AA chain registered in PDB. A Z-score value for the 
model indicates the overall quality. Protein Round 3.1 had a Z-score of −1.25, as shown in Figure 
12 (b) plot. This value is within the range of scores typically found for native proteins of similar 
size experimentally determined by Nuclear Magnetic Resonance (NMR) spectroscopy. 

 

 
(a) 

 
       (b) 

Figure 12. Model validation plots. (a) Ramachandran plot of Round 3.1 protein predicted structure model 
from PROCHECK. Dark dots represent amino acids, and red zones A, B, and L represent the most favoured 
regions. (b) Z-score of input protein Round 3.1 using ProSA. ProSA-web z-scores of all protein chains in 
PDB determined by X-ray crystallography (light blue) or Nuclear Magnetic Resonance spectroscopy (dark 
blue) with respect to their length. 

 
 
In light of the results obtained in the validation of the Round 3.1 model, we can conclude 

that this is a reliable model as it fits with existing data from other proteins of similar size. 
According to its geometry, it is relatively stable, although there is room for improvement. 
Consequently, we considered this choice as the de novo ideal protein. 
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and R-factor no greater than 20%, a good quality model would be expected 

to have over 90% in the most favoured regions.
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5. CONCLUSIONS 
 
The development of a novel process for the design and structure modelling of an ideal 

protein for broiler chickens from 0 to 21 days of age has been successfully achieved. From our 
research, the following main conclusions can be drawn:   

 
• Amino acidic sequences with full in silico digestibility, using the less time-consuming 

method, were obtained through a non-sequential direct optimization considering all 
enzymes at once on the overall sequence. 

• The protein primary structure composed exclusively by the AA net requirements of 
chickens from 0 to 21 age did not ensure complete protein digestion by proteases 
actions, despite all efforts on sequence optimization. Therefore, adding extra AA, 
initially rounded down, was necessary to obtain a perfect substrate based on digestion 
dynamics. 

• The most adequate size to produce the ideal protein was the minimal (x1, 112 AA), as it 
is the most proximal to the exact ideal AA profile and it can be beneficial regarding 
biological synthesis and industrial production. 

• Computational predicted models can be used to predict the most reliable future protein 
structure, being the α -helices, the most digestible motifs. 

• Secondary and tertiary structure modelling can give clues about the future protein 
functional features and behaviour. 

 
Finally, for our main goal, the ideal protein must be chosen combining structural 

digestibility, quality and reliability of the predicted model and reduced biological and functional 
predictions. In any case, more studies will have to be done in the future to improve the definition 
of this protein, taking into account the characteristics of the potential hosts, before carrying out 
the first pilot tests aimed at its biosynthesis. 
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