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Abstract

Fruits and seeds are the major food source on earth. Both derive from the gynoecium and,

therefore, it is crucial to understand the mechanisms that guide the development of this

organ of angiosperm species. In Arabidopsis, the gynoecium is composed of two congeni-

tally fused carpels, where two domains: medial and lateral, can be distinguished. The medial

domain includes the carpel margin meristem (CMM) that is key for the production of the

internal tissues involved in fertilization, such as septum, ovules, and transmitting tract. Inter-

estingly, the medial domain shows a high cytokinin signaling output, in contrast to the lateral

domain, where it is hardly detected. While it is known that cytokinin provides meristematic

properties, understanding on the mechanisms that underlie the cytokinin signaling pattern in

the young gynoecium is lacking. Moreover, in other tissues, the cytokinin pathway is often

connected to the auxin pathway, but we also lack knowledge about these connections in

the young gynoecium. Our results reveal that cytokinin signaling, that can provide meriste-

matic properties required for CMM activity and growth, is enabled by the transcription factor

SPATULA (SPT) in the medial domain. Meanwhile, cytokinin signaling is confined to the

medial domain by the cytokinin response repressor ARABIDOPSIS HISTIDINE PHOSPHO-

TRANSFERASE 6 (AHP6), and perhaps by ARR16 (a type-A ARR) as well, both present in

the lateral domains (presumptive valves) of the developing gynoecia. Moreover, SPT and

cytokinin, probably together, promote the expression of the auxin biosynthetic gene TRYP-

TOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 (TAA1) and the gene encoding the

auxin efflux transporter PIN-FORMED 3 (PIN3), likely creating auxin drainage important for

gynoecium growth. This study provides novel insights in the spatiotemporal determination of
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the cytokinin signaling pattern and its connection to the auxin pathway in the young

gynoecium.

Author summary

Most of our food comes from fruits and seeds, derived from a fertilized gynoecium.

Therefore, understanding the mechanisms that control gynoecium development is of cru-

cial importance. The Arabidopsis gynoecium has two fused carpels, with a medial domain

between them, and a lateral domain consisting of the carpel walls. All the tissues that are

involved in reproduction arise from the carpel margin meristem in the medial domain.

The phytohormone cytokinin provides meristematic activity to cells, and interestingly, in

a young gynoecium, the medial, but not the lateral, domain presents strong cytokinin sig-

naling. One question that comes to mind is how this pattern is defined. This work demon-

strates that the transcription factor SPATULA enables cytokinin signaling at the medial

domain, while cytokinin signaling repressors are present in the lateral domain. A second

question is whether and how cytokinin in the medial domain communicates with auxin,

an important phytohormone for tissue differentiation. We found that cytokinin and SPT

activate auxin biosynthesis and transport genes. The integration of these findings gives the

first gene regulatory network acting during early gynoecium development. This network

is most likely conserved in flowering plants, and can provide insights of molecular pro-

cesses that are key for food production.

Introduction

Angiosperms (flowering plants) are the most successful group of land plants on earth. In these

species, flowers are formed, which normally produce a pistil or gynoecium, the female repro-

ductive part of the flower, in their inner floral whorl. The gynoecium is responsible for fruit

production and the formation, protection and dispersal of the seeds. Fruit and seeds are a

major food source. Therefore, understanding the mechanisms that control gynoecium devel-

opment in angiosperm species is of crucial importance.

In Arabidopsis, the gynoecium is composed of two congenitally fused carpels and from top

to bottom we identify the stigma and style, the ovary and the gynophore (in the apical-basal

axis; Fig 1A). A tissue with meristematic properties forms along the fused carpel margins (the

so-called medial domain), which is called the carpel margin meristem (CMM). The lateral

region of the carpel will eventually develop into valves. The CMM gives rise to all medial tis-

sues, including the replum, placenta, ovules, septum and transmitting tract (Fig 1A) [1–3]. All

these tissues are crucial for the reproductive success of the plant; however, our knowledge on

the early events controlling CMM activity and medial tissue formation is fragmentary [1,4–6].

We have previously shown that the CMM shows a high transcriptional response to the phy-

tohormone cytokinin [7], a plant hormone that has been shown to promote cell division and

maintain an undifferentiated cell state in aerial meristematic tissues [8,9]. Consistent with this,

reduced cytokinin levels diminish gynoecium cell proliferation, whereas elevated cytokinin

levels promote the proliferation of the medial tissues of the gynoecium [7]. Furthermore,

mutations in the cytokinin catabolic genes CYTOKININOXIDASE/DEHYDROGENASE
(CKX), result in larger floral organ size and increased seed yield owing to an increase in meri-

stem size and ovule-forming placenta activity, respectively [10,11].
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Fig 1. Overview of the gynoecium and SPT is necessary for cytokinin signaling in the young

gynoecium. (A) Schematic overview and false-coloured transverse section of a stage 8 and of a stage 12

Arabidopsis thaliana gynoecium (pistil). The medial (M) and lateral (L) domains of the gynoecium are

indicated. The CMM in the medial domain (stage 8 gynoecium; left side) is indicated and its derived structures

can be seen in a stage 12 gynoecium (right side). L, lateral domain; M, medial domain. Orange, abaxial valve
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The cytokinin signal is perceived and transduced by a multi-step two-component signaling

pathway, where the binding of the hormone causes the autophosphorylation of the mem-

brane-bound cytokinin receptors ARABIDOPSIS HISTIDINE KINASES [AHK2, AHK3 and

AHK4 (aka CRE1)], followed by a phosphorelay cascade [12–14]. The phosphoryl group gets

relayed from the receptors to the ARABIDOPSIS HISTIDINE PHOSPHOTRANSFERASE

proteins (AHP1-AHP5), with AHP6 competing for the phosphotransfer (i.e., interfering with

cytokinin signaling). The AHP1-AHP5 proteins, which shuttle between the cytosol and the

nucleus, phosphorylate the ARABIDOPSIS RESPONSE REGULATOR (ARR) proteins in the

nucleus. Phosphorylated type-B ARR proteins work as transcription factors activating cytoki-

nin-responsive genes, including the type-A ARR genes, which form a feedback loop negatively

regulating cytokinin signaling responses [12–14].

The importance of cytokinin is clear in the shoot apical meristem (SAM), where the gene

encoding for the homeodomain transcription factor SHOOTMERISTEMLESS (STM) is

expressed [15]. STM is required for SAM initiation and maintenance, in part by activating

cytokinin biosynthesis ISOPENTENIL TRANSFERASE (IPT) genes [16–18]. The cytokinin

produced is important for the formation and maintenance of stem cell niches [19–21]. Lack of

STM results in SAM abortion whereas increased expression enlarges the meristem producing

more organs [18,22,23], which also occurs when cytokinin signaling decreases or increases,

respectively [18,24].

In the young gynoecium, while a high cytokinin signaling output is detected at the medial

domain of the ovary, this output is hardly detected at the lateral domain [7]. However, our

understanding about the molecular components that contribute to this pattern of cytokinin

signaling in specific regions in the young ovary is far from complete.

Previous studies have shown the key role that auxin plays during gynoecium and fruit

development (reviewed in: [5,6,25–27]). Altered or impaired auxin signaling responses lead to

dramatic gynoecia and fruit apical-basal and medio-lateral patterning defects, incomplete

gynoecial apical fusion, altered style and stigma, apical-basal axis gynoecial patterning defects,

the block of fruit growth or pod shattering alterations [28–39].

Recently, auxin and cytokinin have been referred as the ‘yin and yang‘of plant development

[13], as they are often regarded as having opposite functions, but act synergistically together

producing an output that is more than the sum of each of their independent actions. This is

evidenced in meristem development [9,40], root vasculature development [41,42], and in vitro
organogenesis [43,44], among others. In this scenario, it is thus expected that cytokinin-auxin

interplay actively participates in early gynoecium development [6]. However, we lack knowl-

edge on whether and how the cytokinin signaling pathway is integrated with the auxin path-

way in the young ovary.

In this work, we investigated molecular elements that contribute to the pattern of cytokinin

signaling regions in the young ovary, and the connection of the cytokinin signal to the auxin

pathway at the medial domain. Our results support that the competence for cytokinin response

in the medial tissue is provided by the bHLH transcription factor SPATULA (SPT), known

to be important for early gynoecium development [45–47]. On the other hand, the negative

(abv); blue, adaxial valve (adv); white, abaxial replum (abr); pink, adaxial replum (adr); green, ovule

primordium (op); red, septum primordium (sp); CMM, carpel margin meristem; septum (S); replum (R);

transmitting tract (TT); ovule (O); funiculus (F). (B-M) Expression of the cytokinin response reporter TCS::

GFP in transverse sections of gynoecia at stage 7, 8, 9, and 12 of wild-type (B-E), spt-2 (F-I), and 35S::SPT

(J-M).(N-U) Expression of the reporter TCS::GFP in transverse sections of gynoecia at stage 7, 8, 9, and 12,

after 48 hours of 6-benzylaminopurine (BAP; a synthetic cytokinin) treatment in wild-type (N-Q) and spt-2

(R-U). Scale bars: 20 μm (E, I, M, Q, U), 10 μm (B-D, F-H, J-L, N-P, R-T).

https://doi.org/10.1371/journal.pgen.1006726.g001
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cytokinin signaling regulators AHP6 and ARR16 are expressed at the lateral domain, where

cytokinin signaling is barely detected. Furthermore, both cytokinin and SPT activate TAA1
(an auxin biosynthesis enzyme) and PIN3 (an auxin transporter).

Results

SPATULA is required for cytokinin signaling output at the medial domain

We previously observed expression of the cytokinin signaling reporter TCS::GFP in the medial

tissues, such as CMM, septa primordia, septum, transmitting tract [7], and in cells where the

provasculature will arise (Fig 1), but could hardly detect expression in the lateral domain of

young gynoecia. Our first question was what determined this spatial pattern of cytokinin sig-

naling. To identify possible regulators of cytokinin signaling in gynoecia, we sought for pat-

terning genes important for early gynoecium development and whose expression pattern

overlapped with that of TCS::GFP.

Strikingly, we found that the expression pattern of the regulatory gene SPATULA (SPT)

largely mirrored that of TCS::GFP (Fig 1B–1E; S1 Fig) [7,47,48]. SPT encodes a bHLH tran-

scription factor, whose function is key in early gynoecium morphogenesis as it participates in

CMM, septum and the transmitting tract development [45–47]. SPT is expressed since early

stages in the CMM and its derived structures [47,48]. The single spt mutant shows a reduced

number of cells in the CMM, absence of the septum and of the transmitting tract, retarded

growth of the gynoecial tube and of vasculature, reduced number of ovules, and apical carpel

fusion defects, which finally results in poor seed production [45–47]. In this context, we

decided to investigate whether SPT was participating in the cytokinin signaling pathway dur-

ing early gynoecium development.

To do this we analyzed the activity of the TCS::GFP transgene in spt mutant gynoecia (Fig

1F–1I). We used confocal laser scanning microscopy to observe fluorescence signal in trans-

versely hand-sectioned gynoecia at stages 7, 8, 9, and 12; stages according to [49]. Remarkably,

during early gynoecium development (stage 7–9), no fluorescence signal was detected in the

CMM or septa primordia of spt mutants (Fig 1F–1H). On the other hand, TCS activity was

increased when SPT was constitutively expressed (Fig 1J–1M). Interestingly, whereas the fluo-

rescence signal from the TCS::GFP reporter was increased upon 48 hrs of exogenous cytokinin

treatment (Fig 1N–1Q), no GFP signal increase was observed in cytokinin treated spt mutant

gynoecia (Fig 1R–1U). Note that in the mature spt gynoecia (stage 12), TCS::GFP fluorescence

can be observed at the edges of the defective septa, strongly suggesting that this later signal is

non-SPT dependent (Fig 1I).

In summary, these results support a positive role for SPT in the cytokinin signaling pathway

at the CMM and septa primordia during early gynoecium formation.

The cytokinin signaling pathway is necessary for proper gynoecium development Taking

into consideration that the lack of SPT function causes severe gynoecial developmental defects

[45–47] (Figs 2I and 3C) and that, based on our results, it influences cytokinin signaling output

(Fig 1), we expected to observe gynoecium morphological alterations when genes in the cytoki-

nin signaling pathway are mutated.

The reporter line TCS::GFP has a synthetic promoter containing type-B ARR binding sites

[50], suggesting that type-B ARRs could be involved in CMM and septum development. We

thus analyzed plants with impaired type-B ARR function [13]. Out of the 11 type-B ARR

transcription factors present in Arabidopsis, ARR1, ARR10, and ARR12 are considered to

have the main roles, based on cytokinin response assays, studies on root meristem develop-

ment, and the severe reduction in cytokinin signaling [51–54]. Unfortunately, largely due to

gene redundancy, single or double loss-of-function mutants in type-B ARRs do not show
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obvious phenotypic alterations [52]. Indeed, we observed no obvious phenotypic differences

between wild type plants and the single loss-of-function mutants arr1, arr10, and arr12, nor

with the double loss-of-function mutants arr1 arr10, arr1 arr12, and arr10 arr12 (Fig 2 and

S2 Fig). In contrast, the type-B arr1 arr10 arr12 triple mutant plants are severely affected (Fig

2 and S2 Fig). General plant growth is strongly reduced and flower and fruit production is

drastically reduced, suggesting that the meristematic activity is affected in this triple mutant

(S2 Fig).

Fig 2. Phenotypes of the type-B arr mutants and of the spt mutant. (A) Mature gynoecium size of wild-

type, arr1, arr10, arr12, arr1 arr10, arr10 arr12, arr1 arr12, and arr1 arr10 arr12. (B) Mature fruit size of wild-

type, arr1, arr10, arr12, arr1 arr10, arr10 arr12, arr1 arr12, and arr1 arr10 arr12. (C-F) Phenotypes of the type-

B arr1 arr10 arr12 triple mutant compared to wild-type (WT): fruit length (C), ovule number (D), replum width

(E), and replum cell number (F). (G-I) Transverse sections of stage 12 gynoecia of wild-type (G), arr1 arr10

arr12 (with transmitting tract and septum fusion defects) (H), and spt-2 (I). Scale bars: 1 mm (A), 5 mm (B),

50 μm (G-I). Error bars represent SD. *P < 0.05 (Student-t test). Sample numbers: (C, D) WT, n = 14 and arr1

arr10 arr12, n = 19; (E, F) WT, n = 20 and arr1 arr10 arr12, n = 19.

https://doi.org/10.1371/journal.pgen.1006726.g002
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We then morphologically characterized the produced gynoecia in the type-B arr triple

mutant plants. The arr1 arr10 arr12 background exhibited reproductive defects such as reduced

gynoecium and fruit length, reduced replum width, and fewer ovules (Fig 2A–2F), phenotypes

not observed in single and double arr mutants (Fig 2A and 2B; S2 Fig). Furthermore, thin

Fig 3. SPT enables cytokinin responses during early gynoecium development and regulates type-B ARR gene expression. (A) Phenotypes of

wild-type, arr1, arr10, arr12, arr1 arr10, arr10 arr12, arr1 arr12, arr1 arr10 arr12, and spt-2 gynoecia three to four weeks after receiving BAP treatment for

five to ten days. (B-E) Scanning electron microscopy image of wild-type and spt-2 stage 12 gynoecia one day after either receiving mock (B, C) or BAP

treatment for only 48 hours (D, E). Insets show a transverse section of the ovary. (F) Expression analysis by qRT-PCR of ARR1, ARR10, and ARR12 in

wild-type and spt-12 dissected gynoecia. (G-J) In situ hybridization of type-B ARR1 mRNA in wild-type (G, H) and spt-2 (I, J) floral buds at stages 9 and

12. Arrowheads indicate the detected expression in wild-type and the absence in spt-2. (K) Luciferase reporter assay in N. benthamiana leaves co-

transformed with 35S::SPT and pARR1::LUC. Ratio of firefly luciferase (LUC) to Renilla luciferase (REN) activity. (L) ChIP experiments against the ARR1

promoter region (indicated by “a” in the scheme above) using a 35S::SPT-HA line and wild-type. ACT2/7 served as a negative control. For the LUC assays

and qRT-PCR experiments error bars represent the SD based on three biological replicates. ChIP results of one representative experiment are shown;

error bars represent the SD of the technical replicates. *P < 0.05 (LUC: Student-t test; qRT-PCR and qPCR: ANOVA). Scale bars: 500 μm (A), 100 μm

(B-E, H, J), 50 μm (insets in B-E, G, I).

https://doi.org/10.1371/journal.pgen.1006726.g003
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sections of arr1 arr10 arr12 triple mutant gynoecia showed septum fusion defects and a reduc-

tion of transmitting tract tissue in some gynoecia (Fig 2H), phenotypes that we did not observe

in thin sections of gynoecia of single or double arr mutants (S3 Fig), confirming the high level

of redundancy among type-B ARR transcription factors.

In summary, the analyzed phenotypes provided further evidence supporting the relevance

of cytokinin signaling in gynoecium development, and, since some aspects of the triple mutant

were reminiscent of the spt single mutant, also support the connection between SPT and the

cytokinin signaling pathway during gynoecium development.

SPT and type-B ARRs are required for the cytokinin induced proliferation

We next investigated the functional relevance and nature of the relationship between SPT

and cytokinin signaling in the gynoecium using a pharmacological assay to evaluate the cyto-

kinin response competence of the gynoecium. The repeated application of cytokinin to wild-

type Arabidopsis inflorescences results in tissue overproliferation, causing ectopic out-

growths from the medial domain of the gynoecium; observed three to four weeks after the

treatment [7] (Fig 3A). However, this response was affected in the type-B arr mutants and in

spt (Fig 3A).

Single arr1 and arr12 mutants presented a very reduced response to the exogenous cytoki-

nin treatments, while arr10 presented only a mild reduction (Fig 3A). Some proliferation was

observed in the double arr1 arr10, which resembled the single arr1 mutant. Some proliferation

was also observed in the double arr10 arr12 mutant, which was a little less than in the single

arr12 mutant. However, no ectopic tissues were produced in the double arr1 arr12 mutant nor

the triple arr1 arr10 arr12 mutant (Fig 3A). Interestingly, 14 out of 16 spt gynoecia (87.5%)

also did not show a cytokinin response in the medial domain (Fig 3A), and only a minor pro-

liferation effect was detected in the other two (12.5%) spt gynoecia examined (S4B Fig). It is

worth noting that, as recently observed by others [55], the cytokinin response of the style and

stigma of wild-type and spt gynoecia was different to that of the internal ovary. In summary,

based on the pharmacological assay, type-B ARR redundancy is observed, with ARR1 and

ARR12 playing the major role in the cytokinin response competence of the gynoecium. More-

over, SPT is also a major player in this response. Interestingly, during normal gynoecium

development, i.e., no exogenous cytokinin application, morphological defects only become

visible when three type-B ARR genes are not functional anymore (Fig 3; S2 and S3 Figs), dem-

onstrating that the developmental program active during early gynoecium development is

robust. However, the pharmacological assay indicates that the full competence of the gynoe-

cium to respond to the artificial high level of cytokinin needs all type-B ARR proteins to be

active, because a decreased response is already visible by removing one type-B ARR (Fig 3A).

We also asked whether an exogenous cytokinin treatment could rescue the developmental

defects observed in the spt mutant. This mutant has two clear fusion defects: at the apex of

the gynoecium and in the internal ovary region [45–47] (Fig 3C). Cytokinin was applied to

inflorescences during a 48-hour period only. We observed a virtually complete rescue of the

apical closure defect in 20 out of 26 spt gynoecia (76.9%), 24 hours after this treatment (Fig

3B–3E; S4C–S4K Fig). However, the spt septum defects were not rescued (Fig 3E; S4K Fig).

This suggests that the internal spt fusion defects in the ovary were most likely not due to

reduced cytokinin biosynthesis, and that SPT could be acting at a different level of the cytoki-

nin pathway.

In conclusion, the data together clearly indicate that SPT is necessary for positive cytokinin

signaling output (both visualized by the TCS reporter, and as the proliferation response to

exogenous cytokinin treatments) in the young gynoecium.
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SPT regulates type-B ARR expression

Given that the internal fusion defects of spt were not rescued by exogenous cytokinin, together

with the resemblances between the spt and the type-B arr1 arr10 arr12 triple mutant pheno-

types, and the alteration of cytokinin signaling in the spt mutant, we hypothesized whether one

of the ways in which SPT could be connected to the cytokinin pathway could be through the

regulation of the type-B ARR genes.

To test this possibility, we assayed the transcript levels of ARR1, ARR10 and ARR12 using

quantitative real-time reverse transcriptase-mediated polymerase chain reaction (qRT-PCR)

from dissected wild-type and spt gynoecia, respectively. Whereas this experiment did not

reveal clear changes in the expression level of ARR10, transcript abundance for ARR1 and

ARR12 was reduced in spt when compared to wild-type (Fig 3F), and both showed a higher rel-

ative expression than ARR10 in wild type gynoecia (S5 Fig). Note, the gynoecium is a very com-

plex structure with many different tissues. Therefore, we cannot exclude that the changes in

expression levels in specific tissues of the gynoecium are not well reflected in this assay. There-

fore, we performed an in situ mRNA hybridization on ARR1 in wild-type and spt gynoecia,

because ARR1 transcript abundance showed the most conspicuous reduction in dissected spt
gynoecia. In wild-type, ARR1 transcripts are present in the CMM, ovule primordia, and in the

style region, overlapping with SPT expression pattern (Fig 3G and 3H; S6 Fig). However, in the

spt mutant, ARR1 messenger was either not detected or detected at very reduced levels, sug-

gesting that SPT was required for ARR1 expression (Fig 3I and 3J). These results support a

role for SPT positively regulating the cytokinin signaling pathway by modulating the expres-

sion of at least two type-B ARR genes, ARR1 and ARR12. On the other hand, since the qRT-

PCR experiment did not show a reduction of ARR10 in the spt mutant, we cannot conclude

that it is also positively regulated by SPT as ARR1 and ARR12. Therefore, it is highly likely that

SPT affects, besides ARR1 and ARR12, other components of the cytokinin signaling pathway.

The ARR1 promoter fragment contains a G-box, a cis-regulatory motif targeted by bHLH

transcription factors (as SPT) for gene regulation [39,56,57]. ARR10 and ARR12 have also

bHLH binding motifs in their promoters, but do not have the G-box version. It has been

reported that SPT binds only to the G-box version [39,57]. Therefore, the positive regulation

by SPT on ARR12 expression is most likely indirect or performed by a complex where SPT

participates.

To determine whether SPT is able to positively regulate ARR1 directly, we performed lucif-

erase transient reporter assays in Nicotiana benthamiana leaves [58,59]. We observed that tran-

siently expressed SPT protein was able to activate an ARR1::LUC reporter construct (Fig 3K).

To further determine whether this regulation could be due to direct binding to ARR1 regula-

tory regions in the DNA, we performed chromatin immunoprecipitation assays followed by

qPCR (ChIP-qPCR) using 35S::SPT-HA and wild-type Arabidopsis inflorescence tissue (Fig

3L). When compared to wild-type, ChIP-qPCR results from the 35S::SPT-HA line showed a

significant enrichment of the ARR1 promoter fragment that contains the G-box, reported to

be targeted by SPT [39,56,57].

In summary, all these results together are consistent with SPT being able to activate ARR1
expression in gynoecia, possibly in a direct manner. Furthermore, SPT likely regulates ARR12
as well, but in an indirect manner. Moreover, this regulation would also explain the lack of

response to exogenous cytokinin application in spt and in the arr1 arr12 double mutant and, at

least partly, the reduction of cytokinin-induced signal response in the CMM and septa primor-

dia in spt gynoecia. However, we cannot discard the possibility of indirect effects of SPT on

type-B ARR expression and it is highly likely that SPT affects, besides ARR1 and ARR12, also

other components of the cytokinin signaling pathway.
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Cytokinin signaling activates an auxin biosynthetic gene in a SPT-

dependent manner

The next question was whether and how the cytokinin signaling pathway interacts with the

auxin pathway in gynoecia. It has been previously described that the cytokinin signaling pathway

and SPT can interact with several genes in the auxin signaling pathway [13,28,31,38,39,55,60].

We therefore explored whether interactions between them were also taking place during the for-

mation of medial tissues in the gynoecia.

Interestingly, TCS::GFP, SPT, and the auxin biosynthesis gene TRYPTOPHAN AMINO-
TRANSFERASEOF ARABIDOPSIS 1 (TAA1) are co-expressed in the CMM (Fig 4) [36,61],

and mutant combinations of TAA1 with its paralog TAR2 (TRYPTOPHAN AMINOTRANS-
FERASE RELATED 2) resulted in plants with severely affected gynoecium development,

indicating the importance of local auxin biosynthesis for correct gynoecium morphogenesis

[61].

To test whether cytokinin had an effect on TAA1 expression, we applied cytokinin to

TAA1:GFP inflorescences and observed a strong increase in the GFP signal in the medial

domain of stage 8 and 9 gynoecia, indicating that cytokinin induces TAA1 expression (Fig

4B). Moreover, a microarray data meta-analysis has also identified TAA1 as a cytokinin-

responsive gene [62].

We then aimed at exploring the molecular mechanism involved in this induction. Since

type-B ARRs are important positive regulators of cytokinin transcriptional response, we inves-

tigated whether ARR1 could activate TAA1. We found that transiently expressed ARR1 is able

to activate a TAA1::LUC reporter construct in transient assays in N. benthamiana leaves (Fig

4E). We next performed ChIP-qPCR assays using the dexamethasone (DEX) inducible gluco-

corticoid receptor (GR) fusion line 35S::ARR1ΔDDK-GR. In this line, upon DEX induction,

ARR1 is constitutively active in the absence of cytokinin [63,64]. ChIP-qPCR results from

DEX-treated 35S::ARR1ΔDDK-GR inflorescences, when compared to those mock-treated,

showed significant enrichment of a TAA1 promoter fragment that contains various type-B

ARR binding sites (Fig 4F), consistent with ARR1 directly regulating TAA1. This strongly sug-

gests that one of the outputs of the cytokinin signaling pathway is to activate the auxin biosyn-

thetic pathway and that ARR1 is a hub connecting the cytokinin signaling and auxin pathway.

Our results further substantiate previous reports suggesting the connection between ARR1

and auxin biosynthesis [65].

Given the fact that SPT enables cytokinin responses in the early gynoecium, and that it

likely activates ARR1 directly, we evaluated TAA1 response to cytokinin in spt mutants. As

expected, when SPT is mutated, gynoecium cytokinin-dependent TAA1::GFP induction is

abolished (Fig 4D). We also analyzed TAA1:GFP expression in untreated spt gynoecia, and

observed a moderate reduction in GFP signal (Fig 4C), suggesting that SPT is able to activate

TAA1, although additional regulators might contribute to TAA1 expression in developing

gynoecia. Interestingly, besides being required for the cytokinin induction of TAA1 expres-

sion, based on our luciferase transient reporter assays (Fig 4G) and ChIP-qPCR experiments

(Fig 4H), SPT seems to directly regulate TAA1 expression by recognizing a cis-motif present

within the TAA1 promoter (Fig 4H).

In summary, these results indicate that both cytokinin and SPT can activate TAA1 at the

medial domain of the ovary, probably in a cooperative fashion, integrating a regulatory node

for correct cytokinin signaling and auxin biosynthesis in the medial tissues of the gynoecia.

This TAA1 activation might be mediated by phosphorylated type-B ARRs and SPT, possibly as

direct regulators, as the ARR1 and the SPT activation of TAA1 and ChIP experiments suggest,

though indirect regulation cannot be discarded.
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Fig 4. Cytokinin signaling activates the auxin biosynthetic gene TAA1 in a SPT-dependent manner.

(A, B) Expression of the translational fusion TAA1::GFP-TAA1 in a transverse section of a stage 9 wild-type

gynoecium that either received mock (A) or BAP treatment for 48 hours (B). (C, D) Expression of the

translational fusion TAA1::GFP-TAA1 in a transverse section of a stage 9 spt-12 gynoecium that received

mock (C) or BAP treatment for 48 hours (D). (E) Luciferase reporter assay in N. benthamiana leaves co-
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The auxin transporter PIN3 is coordinately activated by cytokinin and

SPT

Intriguingly, the expression of TAA1 at the medial tissues of the ovary did not coincide with

the expression of the auxin reporter DR5rev::GFP, which was not detected in these tissues

(CMM, septa primordia, septum and transmitting tract) (S7A–S7D Fig). One possible expla-

nation for this discrepancy is that the auxin synthesized by TAA1 is transported outside these

tissues by PIN auxin efflux transporters [66]. To determine whether this was the case, we ana-

lyzed the expression pattern of different GFP reporters for PIN genes (PIN1, 3, 4 and 7) in the

medial region of the ovary of wild-type gynoecia and observed that PIN1:GFP and PIN3:GFP
were expressed in the medial domain (S7 and S8 Figs). Since pin1 mutants do not produce

flowers [67], we focussed most of our analyses on PIN3. PIN3:GFP signal was detected in the

CMM, septa primordia, septum and transmitting tract (Fig 5A; S7F and S8K–S8T Figs).

Given that cytokinin signaling was also detected there, we investigated whether cytokinin

was influencing PIN3 expression. Interestingly, when cytokinin was applied, the PIN3:GFP
reporter was strongly induced in the medial domain of the ovary, while it seemed to be local-

ized in a non-polar fashion in the cells (Fig 5B; S9M–S9O Fig). This clearly indicated that PIN3
is responsive to cytokinin in these tissues. Accordingly, we observed a similar induction of

PIN3 and PIN1 expression by cytokinin in the ectopic outgrowths produced from the medial

region of the ovary (Fig 5C; S9N Fig). In these tissues, PIN3:GFP and PIN1:GFP were polarly

localized towards the emerging outgrowths (Fig 5C; S9X Fig), which also showed a high

DR5rev::GFP signal at their tips [7].

To determine whether PIN3 is relevant for the overproliferation of the medial tissue after

cytokinin treatment, we applied cytokinin to pin3 inflorescences (pin1 could not be tested due

to the lack of inflorescences). If PIN3 is required, the ectopic outgrowths would not be pro-

duced. Indeed, a minor ectopic medial outgrowth was observed in cytokinin-treated pin3
gynoecia (S10D Fig) and only apical-basal defects were detected in 78.2% of the cases (i.e.,

alterations in the size of the ovary, gynophore and style with respect to each other) (n = 330)

(Fig 5G–5J and insets) [32]. This suggests that observed medial tissue responses to exogenously

applied cytokinin require a functional PIN3.

To explore the role of PIN3 in medial tissue development, we analyzed thin sections of pin3
untreated gynoecia and observed mild alterations in transmitting tract development (Fig 5G–

5J), characterized by reduced blue staining of the cells. A possible explanation for the pin3
mild phenotype in the medial tissue is that the related PIN7 can partially compensate for the

PIN3 function, as it has been reported in other developmental programs [68]. Accordingly,

the double pin3 pin7 mutant has severe floral defects and none of the gynoecia form correctly

(S10E–S10H Fig) [66]. However, we were not able to detect PIN7 signal in wild type ovaries,

perhaps due to low signal of the reporter line. On the other hand, another explanation is that

PIN1 partially compensates for the PIN3 loss, because PIN1 signal is clearly detected in the

medial tissues and the reporter line responds to cytokinin (S8 and S9 Figs).

transformed with 35S::ARR1 and pTAA1::LUC. Ratio of LUC/REN activity. (F) ChIP experiments against the

TAA1 promoter region (indicated by “a” in the scheme above) using an inducible 35S::ARR1ΔDDK:GR line

treated with dexamethasone or mock. ACT2/7 served as a negative control. (G) Luciferase reporter assay in

N. benthamiana leaves co-transformed with 35S::SPT and pTAA1::LUC. Ratio of LUC/REN activity. (H) ChIP

experiments against the TAA1 promoter region (indicated by “a” in the scheme above) using a 35S::SPT-HA

line and wild-type. ACT2/7 served as a negative control. Error bars represent the SD for the LUC assays

based on three biological replicates. ChIP results of one representative experiment are shown; error bars

represent the SD of the technical replicates. *P < 0.05 (LUC: Student-t test; qPCR: ANOVA). Scale bars:

10 μm (A-D).

https://doi.org/10.1371/journal.pgen.1006726.g004
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Fig 5. The auxin transporter PIN3 is coordinately activated by cytokinin and SPT. (A-C) PIN3

expression in stage 9 PIN3::PIN3-GFP gynoecia that either received mock (A, transverse section) or BAP

treatment for 48 hours (B, transverse section and C, longitudinal view). The inset in (C) shows a magnified

view of the proliferating tissue. Arrows indicate the possible auxin flow. (D-F) PIN3 expression in transverse

sections of stage 9 PIN3::PIN3-GFP gynoecia in spt-2 (D), 35S::SPT (E), and in spt-2 treated for 48 hours
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To obtain insights about the possible molecular mechanism by which cytokinin activates

PIN3 expression at the medial domain, and since type-B ARRs are important effectors of cyto-

kinin signaling, we explored whether type-B ARR activity could be involved, using ARR1 to

test this. We found that ARR1 was able to activate PIN3 in luciferase transient reporter assays

(Fig 5K). Moreover, ChIP-qPCR data were compatible with the possibility of ARR1 directly

activating PIN3 expression in the medial domain of the gynoecia (Fig 5L). The data suggests

that ARR1 is able to bind two regions within the PIN3 promoter containing putative cis-regu-

latory motifs for type-B ARR transcription factors.

Next, we investigated whether SPT could also regulate PIN3 expression and whether the

PIN3 cytokinin response was SPT-dependent. Expression of PIN3 in the CMM and septa pri-

mordia appears to be dependent on SPT given that no PIN3 expression in these medial tissues

was observed in a spt mutant background (Fig 5D; S9E–S9H Fig), whereas it increased when

SPT was constitutively expressed (Fig 5E; S9I–S9L Fig). qRT-PCRs using dissected gynoecia

also showed a decrease in PIN3 expression in a spt background and an increase in a 35S::SPT
background (S9W Fig). Moreover, induction of PIN3 expression by cytokinin is also depen-

dent on the presence of SPT, as no PIN3 cytokinin-dependent activation was seen in spt
ovaries (Fig 5F; S9P–S9R Fig). Though indirect regulation cannot be discarded, luciferase tran-

sient reporter assays (Fig 5M) together with ChIP-qPCR data (Fig 5N) were consistent with

direct regulation of PIN3 by SPT. Specifically, and based on our results, SPT bound to two

regions (‘a‘and preferentially ‘b‘) within the PIN3 promoter (Fig 5N).

In summary, all these results together support that SPT and the cytokinin-signaling path-

way, probably in a cooperative fashion, are connected to auxin biosynthesis and auxin trans-

port at the medial domain of the ovary.

Cytokinin signaling repressors are expressed in the lateral domain After finding that the

localization of cytokinin signaling in the medial domain depends on SPT, we still wondered

whether other factors could be repressing cytokinin signaling in the lateral domain. Besides

barely detecting TCS::GFP expression at the lateral domain, we also had observed that exoge-

nous cytokinin treatments could not activate this marker in the lateral domain (presumptive

valves). Moreover, TCS::GFP signal could also not be detected in the lateral domain of 35S::

SPT gynoecia, not even when cytokinin was added to this line (S11 Fig). Finally, the out-

growths promoted by cytokinin treatments were observed to arise from the medial and not the

lateral domain of the gynoecium. Together, these observations indicate that gynoecia lateral

tissues (presumptive valves) are not responsive to the exogenously applied cytokinin or ectopic

SPT expression, and suggest that repression is taking place in these tissues.

As mentioned in the Introduction, some components of the cytokinin signaling pathway

execute a repressing effect on cytokinin-dependent outputs. We therefore wondered whether

these repressors were present in the lateral domain of the gynoecium. The gene AHP6 encodes

a histidine phosphotransfer protein that inhibits cytokinin signaling responses [69] and it has

with BAP (F). (G-J) Transverse sections of stage 12 gynoecia of wild-type (G, H) and pin3-4 (I, J). Gynoecia

phenotypes after three to four weeks of mock (G, I) or BAP treatment for five days (H, J). Insets show a

scanning electron microscopy image of the gynoecium. (K) Luciferase reporter assay in N. benthamiana

leaves co-transformed with 35S::ARR1 and pPIN3::LUC. Ratio of LUC/REN activity. (L) ChIP experiments

against the PIN3 promoter regions (indicated by “a” and “b” in the scheme above) using an inducible 35S::

ARR1ΔDDK:GR line treated with dexamethasone or mock. ACT2/7 served as a negative control. (M)

Luciferase reporter assay in N. benthamiana leaves co-transformed with 35S::SPT and pPIN3::LUC. Ratio of

LUC/REN activity. (N) ChIP experiments against the PIN3 promoter regions (indicated by “a” and “b” in the

scheme above) using a 35S::SPT-HA line and wild-type. ACT2/7 served as a negative control. Error bars

represent the SD for the LUC assays based on three biological replicates. ChIP results of one representative

experiment is shown and the error bars represent the SD of the technical replicates. *P < 0.05 (LUC: Student-

t test; qPCR: ANOVA). Scale bars: 10 μm (A-F), 100 μm (G-J, G-J insets). Ovule primordium (op).

https://doi.org/10.1371/journal.pgen.1006726.g005
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been also shown to participate in auxin-cytokinin communication (i.e., it is induced by auxin)

[41,69,70]. In gynoecia, AHP6::GFP reporter activity is strong in the lateral domains of stage 7,

8, and 9 gynoecia (Fig 6A–6D), suggesting that AHP6 is negatively regulating cytokinin

signaling in the valves. As mentioned above, the TCS::GFP reporter is not active in the lateral

domains of gynoecia (Fig 1). However, this marker was ectopically active in the lateral domains

of ahp6 gynoecia (Fig 6E and 6F). Moreover, repeated cytokinin applications to ahp6 inflores-

cences caused ectopic tissue proliferation in a radial pattern in the apical part of the gynoe-

cium, a morphological effect not seen in wild-type treated gynoecia (Fig 6G and 6H).

Interestingly, we also observed that the GUS-reporter construct (ARR16::GUS) for the type-

A ARR16 gene, which encodes a regulatory protein that negatively regulates cytokinin signal-

ing pathway responses [13], was active in the lateral domain of stage 7, 8, 9, and 12 gynoecia

(Fig 6I–6L).

Fig 6. The cytokinin signaling repressors AHP6 and ARR16 likely block cytokinin responses in lateral tissues. (A-D) Expression of the

transcriptional reporter AHP6::GFP in transverse sections of stage 7, 8, 9, and 12 gynoecia. (E, F) Expression of the cytokinin response reporter

TCS::GFP in transverse sections of stage 9 and 12 gynoecia in an ahp6-1 mutant background. Arrowheads indicate the absence of GFP signal in

the epidermis of the valves. (G, H) Phenotypes of wild-type (G) and ahp6-1 (H) gynoecia one week after receiving BAP treatment for two weeks.

(I-L) Expression of the transcriptional reporter ARR16::GUS (type-A ARR) in transverse sections of stage 7, 8, 9, and 12 gynoecia. Scale bars:

10 μm (A-C, E), 20 μm (D, F), 1 mm (G, H), 100 μm (I-L).

https://doi.org/10.1371/journal.pgen.1006726.g006
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Altogether, these data support a scenario in which the cytokinin signaling pathway is nega-

tively regulated in the lateral domain of the gynoecium by AHP6, and perhaps by ARR16 as

well. This negative regulation can confine cytokinin signaling to the medial domain of the

gynoecium (Fig 7).

A dynamic GRN Boolean model during early gynoecium development In this work, we

found that SPT enables cytokinin signaling at the medial domain. Moreover, both SPT and

cytokinin signaling, probably together, positively regulate auxin biosynthesis and transport

genes in this domain. Based on these findings we developed a preliminary gene regulatory net-

work (GRN; Figs 7 and 8) that acts during early gynoecium development. To verify that this

network fits the experimental data, we made a GRN Boolean model using the computational

tools BioTapestry [71] and GeNeTool [72] (Fig 8A and 8B), and we confirmed that the wiring

of this network gives a stable output (i.e., fixed steady state for each gene) (Fig 8A). Note, we

modeled TAA1 and PIN3 regulation by SPT and ARR1 in a cooperative manner (i.e., meaning

that both are necessary). The possible cooperative regulation could be through the formation

of a protein complex. Support for this is the observation that SPT and ARR1 bind to the same

fragments of the TAA1 and PIN3 promoters in ChIP assays. We already explored whether

these two transcription factors interact directly. However, we could not detect any protein-

Fig 7. Model of the regulatory network in early gynoecium development integrating SPT, cytokinin

signaling, auxin biosynthesis, and auxin transport. Model of the regulatory network in early gynoecium

development. This regulatory network integrates the results that SPT, an important player of gynoecium

development, enables cytokinin signaling in the medial domain of the young gynoecium by activating the

transcription of type-B ARR genes (at least ARR1 and ARR12; likely ARR1 directly and ARR12 indirectly),

which proteins become active upon phosphorylation because of a phosphorelay cascade initiated when

cytokinin is present, and then together activate auxin biosynthesis (TAA1) and transport important (PIN) for

growth. It is likely that SPT also affects other components of the cytokinin signaling pathway (indicated by gray

arrows). Solid black arrows indicate a positive regulation and a T-bar indicates a repression function, a broken

black arrow indicates possible positive regulation by auxin, a double arrowhead indicates phosphorylation,

purple arrows indicate possible auxin flow; CK, cytokinin; P, phosphate group.

https://doi.org/10.1371/journal.pgen.1006726.g007
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Fig 8. Dynamic GRN Boolean model active during early gynoecium development. (A) The topology of the Gene Regulatory Network (GRN) model

visualized using the computational and graphical platform BioTapestry [71]. Regulatory relations among genes are based on the experimental evidence

(this work). The two coherent feed-forward subcircuits are formed by starting with SPT regulating ARR1 and both together regulate TAA1, and also both

together regulate PIN3. TAA1 also has other positive regulators, but for simplicity only SPT and ARR1 are depicted. ARR1 is depicted, but ARR12 is likely

part of the network too. CK: cytokinin; Aux: auxin; P: phosphorylation. (B) All regulatory interactions were fed to the computational tool GeNeTool [72] to

create the Boolean vector equations and for modeling of the GRN. The coherent feed-forward subcircuits are both configured as an AND-gate, i.e.,

cooperate regulation. Boolean output for gene active = 1 and for gene inactive = 0. (C-F) Alterations of the topology of the GRN model after perturbations.

Boolean output was calculated by GeNeTool for each perturbation and visualized with BioTapestry. Gray color of lines and genes means it is inactive. The

GRN is affected after the following perturbation experiments: SPT off (C), CK signaling off (D), PIN3 off (E), and TAA1 off (F). In all cases the GRN is

altered, which predicts that gynoecium development will also be altered, and this happens in the mutants, validating our GRN model.

https://doi.org/10.1371/journal.pgen.1006726.g008
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protein interaction in yeast two-hybrid (between SPT and ARR proteins) nor in a bimolecular

fluorescence complementation assays (between SPT and ARR1) (S12 Fig). Nevertheless, SPT

and ARR1 could be part of a higher-order complex where both factors are present but do not

interact directly. Note, cytokinin should be as well present, to start the phosphorelay cascade

that finally leads to phosphorylation of the type-B ARR proteins so that they are functional.

Moreover, in silico perturbations of the regulatory links in our model produces the observed

phenotypes (Fig 8C–8F). The experimental evidence supports direct regulatory links between

the genes, but the value of the identified GRN holds even though if regulatory links would be

indirect. The topology of the network presents interesting features. For example, the regulatory

interactions between SPT, ARR1, and TAA1 as well as between SPT, ARR1, and PIN3 are wired

as coherent feed-forward subcircuits [73,74]. This type of subcircuit has been detected in other

plant developmental processes (e.g., [75–77]), and can integrate upstream spatial regulatory

inputs, cause high expression of the target gene, and temporal delay in switching the target

gene on or off [73,74].

Discussion

In angiosperms, the correct patterning and morphogenesis of the gynoecium is an essential

developmental program for the formation of reproductive tissues and, thus, the reproductive

success of the plant. Research from many groups led to the identification of key regulatory

genes governing gynoecium development (reviewed in: [1,3,78–80]). Several lines of evidence

have also highlighted the importance of hormones during gynoecium development (reviewed

in: [1,5,6,25,81,82]). However, the interaction between the gene regulatory layers and hor-

monal pathways, the mechanisms that determine different hormone responsive and non-

responsive regions, and the interaction between hormonal pathways in the medial tissues of

the ovary of the young gynoecium, are topics not explored in depth.

In our study we addressed these questions from the cytokinin signaling point of view. Cyto-

kinin signaling is localized in the medial domain of the young gynoecium, and the triple type-

B arr mutant phenotypes indicate that proper signaling is required for the correct formation of

medial domain structures in the ovary, necessary for normal gynoecium and fruit develop-

ment. Interestingly, STM, which can activate the cytokinin biosynthesis IPT genes, is expressed

at the CMM [15,83], and inducible repression of STM causes carpel fusion defects, reduced

CMM development, a reduction in placenta and ovule number, and even a complete absence

of the gynoecium [84]. Conversely, increased cytokinin levels in the gynoecium causes a larger

placenta and more ovules [11], and increased replum width [7], further supporting an impor-

tant role for cytokinin in early gynoecium development.

The bHLH transcription factor SPT is key for early gynoecium development [45–47]. Previ-

ous reports showed that members of the bHLH transcription factor family are related to hor-

mone signaling pathways (e.g., [85–89]). In our study, most importantly, we have identified

that SPT enables cytokinin response at the medial domain, thereby stimulating meristematic

activity in this domain. The lack of cytokinin signaling observed in spt explains why the CMM

and septa primordia of analyzed stage 8 spt gynoecia contain fewer cells, and why, at later

stages, less ovules are formed in the mutant than in the wild-type [46]. SPT may act through

type-B ARRs, and results support a direct regulation of ARR1 by SPT. Furthermore, results

also suggest regulation of ARR12 by SPT, though, this regulation is likely indirect because,

though its promoter contains bHLHs motifs, a true G-box bound by SPT was not detected

[39,57]. On the other hand, since the qRT-PCR experiment did not show a reduction of

ARR10 in the spt mutant, we cannot conclude that it is also positively regulated by SPT as

ARR1 and ARR12. If SPT does not regulate ARR10, it would be most likely regulating
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additional components of the cytokinin signaling pathway, because, though the arr1 arr12
double mutant has a reduced response to exogenous cytokinins, it does not present a severe

mutant gynoecium phenotype. Still, the promoter regions of ARR10 contain bHLH binding

motifs, suggesting that it could be regulated by another bHLH transcription factor.

Moreover, we identified close links between the cytokinin and auxin pathways at the medial

domain of the gynoecium. Both SPT and ARR1 regulate TAA1 and PIN3, components of the

auxin pathway, in the medial domain, probably causing a PIN3-dependent auxin flux away

(auxin drainage) from the gynoecium centre towards the repla and the valves. The regulation

of TAA1 and PIN3 by SPT and ARR1 may be cooperative. Most likely, auxin is directed after-

wards to the apical and/or basal part of the gynoecium, where it can flow from the base to the

top and back, as recently proposed in the ‘reverse fountain’ model [35]. Auxin drainage would

be important for growth and, furthermore, auxin flow in the lateral domains (presumptive

valves) would prevent them from obtaining medial domain identity [35]. Evidence for the

importance of auxin transport comes from the observation of strong defects in medial domain

development in the double mutant for the genes REVOLUTA (REV) and AINTEGUMENTA
(ANT), where auxin transport was altered [36].

The cytokinin signaling repressors AHP6 and ARR16 are found at the presumptive valve tis-

sues (lateral domain) and thereby, at least AHP6, restrict the high cytokinin signaling output

that stimulates meristematic activity to the medial domain. This restriction of cytokinin signal-

ing explains why no expansion of TCS signal from medial to lateral domain is observed in

exogenous cytokinin treated gynoecia, in 35S::SPT gynoecia, nor in cytokinin treated 35S::SPT
gynoecia.

The ahp6 mutant gynoecia showed TCS::GFP signal in the valves and appeared to be more

sensitive to cytokinin applications compared to wild-type, although the non-treated gynoecia

of the mutant appeared normal, suggesting redundancy of this cytokinin restriction function.

One thing we noticed is that the TCS::GFP signal in ahp6 gynoecia did not extend to the epi-

dermis of the valves. It has been reported that the epidermis is important for signaling [90].

Perhaps only in double or higher-order mutants for valve expressed cytokinin signaling

repressors, gynoecial developmental defects can be observed. Another point of interest is that

AHP6 is involved in the hormonal communication between auxin and cytokinin [41]. In vas-

cular pattern formation, the auxin-induced cytokinin signaling repressor AHP6 is involved in

the establishment of two mutually inhibitory domains [41]. In the SAM, AHP6 is also involved

in establishing inhibitory fields, important for phyllotaxis [70]. It will be interesting in future

studies to investigate if AHP6 is involved in establishing inhibitory fields also in the gynoe-

cium. In principle, we already observed separate fields of cytokinin and auxin responses in the

young gynoecium. It will also be interesting to investigate if it is the produced auxin induced

by cytokinin in the medial domain of the gynoecium that then gets transported by cytokinin-

induced PIN3 to the lateral domains to activate AHP6, or whether AHP6 is under the control

of the regulatory genes required for lateral tissue formation. Future experiments might provide

further insights into how cytokinin controls the gynoecium and its impact on patterning.

Interestingly, a function for the HEC genes and SPT in SAM function was recently reported:

HECs were shown to stimulate stem cell proliferation in a tissue-specific and SPT-dependent

manner, suggesting that the relative levels of these transcription factors dictate the proliferative

potential of stem cells [91]. A reduced SAM size was observed in spt mutant plants [91], which

suggests that SPT function is also likely to be necessary for a positive cytokinin signaling out-

put in the SAM. It would be interesting to explore other elements participating in the regula-

tory network in early gynoecium development, including the HEC genes, whose triple mutant

has similar developmental defects in medial tissues to those observed in the spt mutant [92]. A

recent study has already started to explore HEC–SPT function in style and stigma formation,
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demonstrating positive regulation of auxin biosynthesis and transport, and likely repressing

cytokinin signaling in the apical region of the gynoecium [55]. This indicates that the role of

SPT in the style and stigma is different from that in the ovary.

Some of the effects of cytokinin application resemble phenotypes observed in polarity

mutants (this work) [7,32,93,94]. It would be very interesting to further explore how the net-

work here described interacts or even overlaps with known polarity cues or regulators such as

CRABSCLAW (CRC) [46,95], ETTIN (ETT) [96], REVOLUTA (REV) [97], or KANADI (KAN)

[98–101].

The gynoecium is a key component of the success of the angiosperms [102,103], which

comprise over 300,000 species on earth. Here we showed, for a Brassicaceae family member,

that cytokinin signaling is necessary for its correct development and, therefore, for reproduc-

tive competence. Interestingly, the presence of the bHLH transcription factor SPT, cytokinin

signaling and auxin biosynthesis genes, and PIN orthologs in basal angiosperms [57,104–108],

suggests that these genes already could have a function in gynoecium development in early

flowering plants. Future work should shed light on how and when this network emerged.

Materials and methods

Plant materials and growth conditions

Seeds were obtained for spt-2 (CS275), arr1-3 (CS6971), arr10-5 (CS39989), arr12-1 (CS6978),

arr1-3 arr10-5 (CS39990), arr1-3 arr12-1 (CS6981), arr10-5 arr12-1 (CS39991), arr1-3 arr10-5
arr12-1 (CS39992), and DR5rev::GFP (CS9361) from the Arabidopsis Biological Resource Cen-

ter (Ohio State University, Columbus), TCS::GFP from Bruno Muller, pSPT-6253:GUS from

David Smyth, spt-12, 35S::SPT, and 35S::SPT-HA from Karen Halliday, pin3-4 and pin3 pin7
from Eva Benková, PIN3::PIN3-GFP and TAA1::GFP-TAA1 spt-12 from Lars Østergaard,

PIN1::PIN1-GFP and PIN7::PIN7-GFP from Luis Herrera-Estrella, PIN4::PIN4-GFP from

Elena Alvarez-Buylla, TAA1::GFP-TAA1 from Anna Stepanova, AHP6::GFP from Ykä Helar-

iutta, TCS::GFP in the ahp6-1 background from Teva Vernoux, 35S::ARR1ΔDDK-GR from

Takashi Aoyama, and ARR16::GUS from Takeshi Mizuno. Arabidopsis thaliana, Nicothiana
tabacum, and Nicotiana benthamiana were grown in soil under normal greenhouse conditions

or in a growth chamber (~22˚C, long day light regime).

Cytokinin treatments

Inflorescences were treated with cytokinin 6-Benzylaminopurine (BAP) as previously

described [32]. In summary, one week after bolting, BAP solution drops were placed on the

inflorescences once a day for 2 (48-hour period) or 5 to 10 (repeated applications) consecutive

days. To observe ectopic outgrowths from the medial domain of the pistil, a BAP treatment for

five days is given and after three to four weeks observations are made. The BAP solution con-

tains 100 μM 6-benzylaminopurine (BAP; Duchefa Biochemie) and 0.01% Silwet L-77 (Lehle

Seeds) in distilled water. Mock treatments contained only 0.01% Silwet L-77 in distilled water.

All treated plants with their respective controls were cultivated simultaneously under the same

growth conditions.

Gene expression analysis

For qRT-PCR analysis, stage 8–10 gynoecia or inflorescence with only floral buds were col-

lected and total RNA was extracted using TRIzol (Invitrogen). After DNAse I (Invitrogen)

treatment, cDNA was prepared using SuperScript III Reverse Transcriptase (Invitrogen)

according to manufacturer’s instructions and using reverse specific primers for each of the
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corresponding genes under test (S1 Table). The cDNA was analyzed in an ABI PRISM 7500

sequence detection system (Applied Biosystems) with SYBR Green Master Mix (Applied Bio-

systems) according to the manufacturer’s instructions. Three biological replicates and four

technical replicates were done for each assay. Data was analyzed using the 2-ΔΔCT method

[109]. Target gene expression levels were normalized to ACTIN2/7. Primer sequences are listed

in S1 Table.

In situ hybridization

In situ hybridization was carried out as previously described [110]. The template for the DIG-

labeled antisense and sense probe synthesis for ARR1 mRNA was generated by PCR using spe-

cific primers (S1 Table) and inflorescence wild-type cDNA. The resulting PCR fragment was

purified, sequenced and used as template to transcribe the antisense probe with the T7 RNA

polymerase (Promega) and the sense probe with the SP6 polymerase (Promega).

ChIP assay

ChIP experiments were performed as previously described [111]. Between 0.5 g and 1 g of

inflorescences were collected for each experiment. The 35S::SPT-HA homozygous transgenic

line [112] and wild-type Ler (as relative control) were used for ChIP on SPT. A monoclonal

mouse anti-HA (Sigma; H3663) (2 μg per sample) was used to immunoprecipitate SPT-HA

complexes. We additionally tested 35S::SPT-HA line ChIP enrichment with no anti-HA anti-

body as a preliminary test, to ensure specificity of the ChIP reaction. ChIP assays for ARR1

were performed using the DEX (dexamethasone)-inducible 35S::ARR1ΔDDK-GR line [64]

after DEX induction. Mock treated plants were employed as controls. In short, DEX-treated

35S::ARR1ΔDDK-GR inflorescences were collected 24 hours after two DEX applications (each

one separated by 12 hours) with 10 μm DEX solution with 0.015% Silwet in distilled water, fro-

zen in liquid nitrogen, and stored at -80˚C till enough material was collected. Glucocorticoid

Receptor alpha polyclonal antibody (Thermo Scientific; PA1-516) (2 μg per sample) was used

to immunoprecipitate ARR1ΔDDK-GR complexes. Results from qPCR experiments were ana-

lyzed using the 2-ΔΔCT method [109]. Each biological sample was assayed for relative enrich-

ment with respect to its input sample (fragments were normalized using ACTIN2/7). Binding

was concluded if PCR enrichment was detected in at least three out of five independent biolog-

ical replicates. Primers used for ChIP-qPCR analysis are listed in S1 Table.

Luciferase activity assay

Promoter regions of PIN3 (4.3 kb, -4310 to ATG), ARR1 (2.1 kb, -2116 to ATG), and TAA1 (2

kb, -2047 to ATG) were amplified from Arabidopsis Col-0 genomic DNA with specific primer

pairs (S1 Table), cloned into pGEM-T vector (Promega), digested with SmaI and NcoI restric-

tion enzymes, and ligated into pGREEN-LUC [59] to generate pPIN3::LUC, pARR1::LUC, and

TAA1::LUC reporters, respectively, for transient expression assays in N. benthamiana leaves.

The 35S::SPT effector construct that was used in the coinfiltrations with the corresponding

LUC reporters, was generated by transferring the SPT ORF into the pEARLY100 vector [113]

through Gateway reactions, which was previously cloned in the pDONR221 vector (Invitro-

gen). The 35S::HA-ARR1 has been previously described [114]. The transient Luciferase

expression assays were performed by transient transformation of N. benthamiana leaves by

Agrobacterium infiltration, which was performed as previously described [115] with minor

modifications [58]. At least three plants at the same developmental stage were used for each

treatment, and the experiments were repeated at least three times.
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Tissue preparation and confocal microscopy analysis To observe fluorescence signal,

gynoecia were dissected and observed as previously described [116]. In summary, gynoecia

were observed longitudinally or cut transversely using a scalpel and mounted in glycerol. Pro-

pidium iodide (PI; Fluka), 50 μM PI for 30–60 seconds, was used as counterstain. Imaging was

done using a LSM 510 META inverted confocal microscope (Carl Zeiss) with either a 20X or

40X air objective. GFP was excited with a 488 nm line of an Argon laser and PI with a 514 laser

line. GFP emission was filtered with a BP 500–520 nm filter and PI emission was filtered with

a LP 575 nm filter.

Scanning electron microscope analysis Fresh tissue samples were visualized in a Zeiss scan-

ning electron microscope EVO40 (Carl Zeiss) using the VPSE G3 or the BSD detector with a

15–20 kV beam.

GUS analysis

Gynoecia were dissected and pre-fixed with cold acetone for 20 min, rinsed, and transferred

into GUS substrate solution: 50 mM sodium phosphate pH 7, 5 mM K3/K4 FeCN, 0.1% (w/v)

Triton X-100, and 2 mM X-Gluc (Gold BioTechnology, Inc). After application of vacuum for

5 min, SPT::GUS and ARR16::GUS samples were incubated at 37˚C for 12 hrs.

Histology

Tissues were fixed in FAE (3.7% formaldehyde, 5% glacial acetic acid and 50% ethanol) with

vacuum (15 min, 4˚C) and incubated for 60 min at room temperature. The material was rinsed

with 70% ethanol and incubated overnight at 4˚C, followed by dehydration in a series of alco-

hol solutions (70, 85, 95, and 100% ethanol) for 60 min each and embedded in Technovit as

previously described [117]. Pictures were taken using a Leica DM6000B microscope coupled

with a DFC420 C camera (Leica).

Transmitting tract analysis Transmitting tract staining was performed as previously

described [118].

Yeast two-hybrid assay

The SPT cDNA was cloned in the pENTR/D TOPO vector (Invitrogen), verified by sequenc-

ing, and introduced into the LexA DNA-binding domain vector (pBTM116c-D9) by Gateway

LR recombination. The ARRs fused to the Gal4 activation domain in pACT2 (Clontech,

Mountain View, CA, USA) are previously described [119]. Yeast transformations were per-

formed as previously described [120] using the L40ccaU strain (MATa his3D200 trp1-901

leu2-3 112 LYS::(lexAop)4-HIS3 URA3::(lexAop)8-lacZ, ADE2::(lexAop)8- URA3 GAL4 gal80

can1 cyh2) [121]. The assay was done on SD-Gluc medium lacking Leucine, Tryptophan, and

Histidine complemented with 3 mM 3-Amino-1,2,4-triazole. Interactions were scored after

growing yeast at 25˚C for 5 days.

Bimolecular fluorescence complementation assay

SPT and ARR1 coding sequences in Gateway entry vectors were recombined with pYFC43 and

pYFN43 to generate C- and N-terminal YFP fusion constructs, respectively [122]. BiFC in

young N. tabacum leaves was previously described [117]. YFP signal was assayed 3 days after

infiltration using a confocal microscope.
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GRN Boolean model

The topology of the Gene Regulatory Network (GRN) model was visualized using the compu-

tational and graphical platform BioTapestry [71]. Regulatory relations among genes are based

on the experimental evidence (this work). The two coherent feed-forward subcircuits are

formed by starting with SPT regulating ARR1 and both regulate TAA1, and also both regulate

PIN3. TAA1 also has other positive regulators, but for simplicity only SPT and ARR1 are

depicted. ARR1 is depicted, but other type-B ARR genes are part of the network. All regulatory

interactions were fed to the computational tool GeNeTool [72] to create the Boolean vector

equations and for modeling of the GRN. The two coherent feed-forward subcircuits are both

configured as an AND-gate. Boolean output for gene active = 1 and for gene inactive = 0.

Alterations of the topology of the GRN model after perturbations were calculated by GeNe-

Tool and visualized with BioTapestry.

Supporting information

S1 Table. Primer sequences used in this study.

(PDF)

S1 Fig. SPT expression during gynoecium development. (A-F) Expression of SPT::GUS dur-

ing gynoecium development at stage 7, 8, 9, 10, 11, and 12, respectively. Scale bars: 20 μm

(A-C), 40 μm (D-F).

(TIF)

S2 Fig. Phenotypes of wild-type, single, double, and triple type-B arr mutant plants. Photos

of plants of 73 days old of wild-type (Col-0), arr1, arr10, arr12, arr1 arr10, arr10 arr12, arr1
arr12, and arr1 arr10 arr12. Scale bar: 3 cm.

(TIF)

S3 Fig. Transverse sections of stage 6–12 gynoecia of wild-type, single, double, and triple

type-B arr mutants. Transverse sections of the ovary region of stage 6–12 gynoecia of wild-

type, arr1, arr10, arr12, arr1 arr10, arr10 arr12, arr1 arr12, and arr1 arr10 arr12. The photo of

the stage 12 gynoecium of the triple type-B arr mutant is an example of a section with an

apparently normal transmitting tract. Scale bars: 100 μm.

(TIF)

S4 Fig. SPT enables cytokinin response during gynoecium development. (A, B) Phenotypes

of wild-type Ler (A) and spt-2 (B) gynoecia treated with BAP for 5 days. The photos were taken

3–4 weeks after the BAP treatment. In (B) an example is shown of a spt-2 gynoecium present-

ing a minor effect to BAP in the replum outgrowth phenotype (only in 12.5% of the cases). (C)

Phenotypes of wild-type Col-0 (left) and of spt-12 (right) gynoecia treated with mock or BAP

for 48 hours. The photos were taken 1 day after the BAP treatment. (D, E, H, I) Transverse sec-

tions of stigma/style region of gynoecia of wild-type Ler (mock) (D) and spt-2 (mock) (H), and

of 48 hours BAP-treated gynoecia of wild-type Ler (E) and of spt-2 (I). (F, G, J, K) Transverse

sections of the ovary region of gynoecia of wild-type Ler (mock) (F) and spt-2 (mock) (J), and

of 48 hours BAP-treated gynoecia of wild-type Ler (G) and of spt-2 (K). Scale bars: 10 mm

(A-C), 150 μm (D-K).

(TIF)

S5 Fig. qRT-PCR of ARR1, ARR10, and ARR12 in wild-type gynoecia. Expression analysis

by qRT-PCR of ARR1, ARR10, and ARR12 in wild-type dissected gynoecia. Error bars repre-

sent the SD based on three biological replicates.

(TIF)
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S6 Fig. In situ hybridization with sense-probe for ARR1 in the gynoecium. (A) Negative

control (sense probe) for the in situ hybridization of the type-B ARR1 in a longitudinal section

of a stage 12 gynoecium. Scale bar: 100 μm.

(TIF)

S7 Fig. Expression of DR5::GFP and auxin efflux PIN transporters in the gynoecium.

(A-D) Expression of the transcriptional auxin response reporter DR5::GFP line in transverse

sections of wild-type gynoecia at stages 8, 9, 10, and 12. (E-L) Expression of PIN translational

fusions with GFP in gynoecia at stage 9 and 12: PIN1::PIN1-GFP (E, I), PIN3::PIN3-GFP (F, J),

PIN4::PIN4-GFP (G, K), and PIN7::PIN7-GFP (H, L). Scale bars: 10 μm (A-C), 20 μm (D-H),

50 μm (I-L).

(TIF)

S8 Fig. PIN1 and PIN3 localization during gynoecium development. (A-J) The localization

of PIN1::PIN1-GFP during gynoecium development at stage 7, 8, 9, 10, and 12 (Longitudinal

view: A-E; top view at the apex: F; transverse section in the ovary: G-J). (K-T) The localization

of PIN3::PIN3-GFP during gynoecium development at stage 7, 8, 9, 10, and 12 (Longitudinal

view: K-O; top view at the apex: P; transverse section in the ovary: K-T). Scale bars: 10 μm

(A-C, F-I, K-M, P-S), 20 μm (D, E, J, N, O, T).

(TIF)

S9 Fig. PIN3 localization during gynoecium development in different backgrounds and

upon cytokinin treatment. (A-L) Localization of PIN3::PIN3-GFP in transverse sections of

gynoecia at stage 7, 8, 9, and 12 of wild-type (A-D), spt-2 (E-H), and 35S::SPT (I-L). (M-R)

PIN3 expression after 48 hours BAP treatment of stage 8, 9, and 12 gynoecia in wild-type

(M-O) and spt-2 (P-R). (S-V) Longitudinal view of PIN3 expression in a wild-type stage 9

gynoecium (mock) (S) and after 48 hrs BAP treatment (T), and in a spt-2 stage 9 gynoecium

(mock) (U) and after 48 hrs BAP treatment (V). (W) Expression analysis by qRT-PCR of PIN3
in dissected gynoecia from spt-12 and 35S::SPT versus wild-type. Error bars represent the SD

based on three biological replicates. �P < 0.05, ��P = 0.08 (qRT-PCR: ANOVA). (X) Localiza-

tion of PIN1::PIN1-GFP in the ectopic outgrowths of a gynoecium after five days of BAP treat-

ment. Scale bars: 10 μm (A-C, E-G, I-K, M, N, P, Q), 20 μm (D, H, L, O, R, S-V, X).

(TIF)

S10 Fig. PIN3 is necessary for a cytokinin response and with PIN7 for correct gynoecium

development. (A) Scanning electron microscopy image of a pin3-4 mutant gynoecium. (B-D)

Five days BAP-treated gynoecia phenotypes (photos were taken 3–4 weeks after BAP treat-

ment) of wild-type Col-0 with the typical overgrowth of tissue from the repla (B), pin3-4 lack-

ing the overgrowth of tissue from the repla in 78.2% of the cases (C), and pin3-4 with a slight

phenotype in 21.8% of the cases (n = 330) (D). (E-H) Observed gynoecia phenotypes in the

pin3 pin7 double mutant (non-treated plants; n = 277). Phenotypes: 9.3% of the cases the size

of the carpels is unequal; 15.2% only one carpel present; 42.2% stem-like structure; 33.3%

fused gynoecia-like structures. Insets show a transverse section at the middle of the ‘ovary‘-

structure. Scale bars: 100 μm (A, E-H), 10 mm (B-D).

(TIF)

S11 Fig. TCS signal in cytokinin treated 35S::SPT x TCS::GFP gynoecia. Expression of the

cytokinin response reporter TCS::GFP in transverse sections of gynoecia at stage 8 and 9 of

35S::SPT (A, B), and 35S::SPT after 48 hours of BAP treatment (C, D). Scale bars: 10 μm.

(TIF)
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S12 Fig. Protein-protein interaction assays of SPT with ARR proteins. (A) Yeast two-hybrid

assay with SPT fused to the GAL4 DNA binding domain in combination with itself (homo-

dimerization detection) and with 9 type-B ARR proteins (ARR1, ARR2, ARR10, ARR11,

ARR12, ARR14, ARR18, ARR20, and ARR21), and also we performed the assay with 8 type-A

ARR proteins (ARR3, ARR4, ARR5, ARR6, ARR8, ARR9, ARR15, and ARR16), all fused to the

GAL4 activation domain. Positive control reaction: NO TRANSMITTING TRACT (NTT)

fused to the GAL4 DNA binding domain in combination with itself (homo-dimerization

detection), and NTT against SPT as a negative control. No interaction is observed between

SPT and any tested ARR proteins. (B) Bimolecular fluorescence complementation (BiFC)

assay of SPT with ARR1 in N. tabacum leaves, where no interaction (no fluorescence) is

detected. Positive control for the BiFC assay is SUPPRESSOR OF OVEREXPRESSION OF CO

1 (SOC1) with FRUITFULL (FUL).

(TIF)
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