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FACTORIZATION OF OPERATORS THROUGH SUBSPACES OF

L1-SPACES

J.M. CALABUIG, J. RODRÍGUEZ, AND E.A. SÁNCHEZ-PÉREZ

Abstract. We analyze domination properties and factorization of operators

in Banach spaces through subspaces of L1-spaces. Using vector measure inte-

gration and extending classical arguments based on scalar integral bounds, we

provide characterizations of operators factoring through subspaces of L1-spaces

of finite measures. Some special cases involving positivity and compactness of

the operators are considered.

1. Introduction

Domination by scalar valued integrals is the main tool for factoring operators

through (subspaces of) Lp-spaces, providing fundamental results as Pietsch’s the-

orem and the Maurey-Rosenthal factorization theorem. This kind of factorization

is in the core of modern functional analysis. It is connected with operator ideal

theory as there are several operator ideals that are characterized by factorizations

through subspaces of Lp-spaces: summing, integral, nuclear, factorable, etc. (see

e.g. [5, 8]). Another important source of factorization arguments comes from the

works by Krivine, Kwapień, Maurey, Pisier and Rosenthal in the 70’s regarding geo-

metric properties of operators acting in Banach lattices (convexity and concavity).

This theory (nowadays called Maurey-Rosenthal factorization) is well developed

and has many applications in other areas like harmonic analysis. For detailed in-

formation on the Maurey-Rosenthal factorization theory we refer to [12, 15, 18];

some recent contributions can be found in [17] and [4, 6, 7, 11, 13, 16]. A sample

result follows (see e.g. [4, Section 4.3]):

Theorem 1.1 (Maurey-Rosenthal). Let X be an order continuous Banach function

space over a finite measure µ, let Y be a Banach space and T : X → Y a 1-concave

operator, i.e. there is a constant C > 0 such that

(1.1)

n∑
j=1

‖T (xj)‖ ≤ C

∥∥∥∥∥∥
n∑
j=1

|xj |

∥∥∥∥∥∥
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for all x1, . . . , xn ∈ X, n ∈ N. Then T factors as

X
T //

S

��

Y

L1(µ)

R

==

where S is a positive (multiplication) operator and R is an operator.

In the usual proof of Theorem 1.1, the geometric inequality (1.1) gives rise to a

domination inequality by means of a scalar valued integral, which in turn yields the

desired factorization. In this paper we are interested in showing how the natural

extension of this type of domination inequalities to the case of vector valued integrals

can provide a general understanding of the factorization problem, as well as new

results and applications. The setting for such extension is provided by the spaces of

scalar functions which are integrable with respect to vector measures. This class of

Banach function spaces is a powerful tool for the analysis of operators on function

spaces (see [17, Chapters 4 and 6] and the references therein).

We shall focus on factorizations through subspaces of L1-spaces of finite mea-

sures, that is, subspaces of L1(µ) where µ is a finite measure. Typical examples

of Banach spaces which are (isomorphic to) subspaces of L1-spaces of finite mea-

sures are `p, all Lp-spaces of finite measures and Hp for 1 ≤ p ≤ 2. Subspaces

of L1-spaces have been thoroughly studied in the literature. Classical results of

Rosenthal [19, 20] ensure that a subspace of L1(µ) (µ a finite measure) not contain-

ing `1 is reflexive and isomorphic to a subspace of an Lp-space of a finite measure

for some 1 < p ≤ 2. We stress that factorizations through L1-spaces of arbitrary

non-negative measures are related to the ideal of 1-factorable operators. In this

direction, a result of Kwapień (see e.g. [8, Theorem 9.13]) states that an operator

between Banach spaces T : X → Y factors through a subspace of an L1-space of a

non-negative measure if and only if there is a constant C > 0 such that, whenever

the finite sets U, V ⊆ X satisfy∑
x∈U
|〈x∗, x〉| ≤

∑
x∈V
|〈x∗, x〉| for all x∗ ∈ X∗,

we have ∑
x∈U
‖T (x)‖ ≤ C

∑
x∈V
‖x‖.

We next summarize the content of this paper. In Section 2 we provide a charac-

terization of operators factoring through subspaces of L1-spaces of finite measures.

Our general result (Theorem 2.1) involves some domination inequalities by means

of integrals with respect to vector measures. In Section 3 we study such factoriza-

tions when the first factor is a positive and/or compact operator. In the positive

case, the factorization through a subspace of an L1-space is sometimes equivalent

to the factorization through an L1-space (Proposition 3.1). On the other hand, the

compact case is related to a certain summability property of the operator (Theo-

rem 3.5). From the technical point of view, our proof of Theorem 3.5 uses some
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recent results from [3] on compactness in L1-spaces of vector measures. Finally, in

Section 4 we deal with the particular case of operators acting in C(K) spaces.

Terminology. All our linear spaces are real. If X is a Banach space, we will write

BX for its closed unit ball and X∗ for its dual space. The evaluation of x∗ ∈ X∗
at x ∈ X is denoted by 〈x∗, x〉 = 〈x, x∗〉 = x∗(x). The norm of X is denoted by

‖ · ‖X or simply ‖ · ‖. When X is a Banach lattice, the symbol X+ stands for its

positive cone, i.e. the set of all non-negative elements of X. An operator is a linear

continuous map between Banach spaces. A subspace of a Banach space is a closed

linear subspace. By a non-negative measure we mean a [0,∞]-valued countably

additive measure defined on a measurable space. Non-negative finite measures are

simply called finite measures. By a Banach function space over a finite measure µ

we mean an order ideal of L1(µ) containing all simple functions which is equipped

with a complete lattice norm.

A vector measure is a countably additive measure m defined on a measurable

space (Ω,Σ) and taking values in a Banach space X. We will say that m is positive

if X is a Banach lattice and m(Σ) ⊆ X+. A Rybakov control measure of m is a finite

measure of the form µ = |〈m,x∗0〉| for some x∗0 ∈ BX∗ such that m(A) = 0 whenever

µ(A) = 0. Here 〈m,x∗〉 denotes the real-valued measure obtained by composing

m with any x∗ ∈ X∗. We refer the reader to [17] for the basic properties of the

Banach space L1(m) of (equivalence classes of) real-valued functions on Ω which

are integrable with respect to m. The space L1(m) is a Banach function space over

any Rybakov control measure of m when equipped with the norm

‖f‖L1(m) := sup
x∗∈BX∗

∫
Ω

|f | d|〈m,x∗〉|, f ∈ L1(m).

Any order continuous Banach lattice with weak unit is order isometric to L1(m)

for some vector measure m. We write Im : L1(m)→ X for the integration operator

given by

Im(f) :=

∫
Ω

f dm, f ∈ L1(m).

The symbol “Ω” will be omitted in formulas involving integrals when no confussion

arises, so we write expressions like
∫
f dm to denote the integral over the total set

on which the measure is defined. We will also deal with the Banach space L∞(m),

which is defined as L∞(µ) for any Rybakov control measure µ of m.

2. General factorization through a subspace of an L1-space

Let X and Y be Banach spaces and let T : X → Y be an operator factoring

through a subspace E ⊆ L1(ν) for some finite measure ν, that is, there exist
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operators S : X → E and R : E → Y such that T = R ◦ S. Then

n∑
j=1

‖T (xj)‖ ≤ ‖R‖
n∑
j=1

‖S(xj)‖L1(ν)

= ‖R‖
n∑
j=1

∫
|S(xj)| dν = ‖R‖

∥∥∥∥∥∥
n∑
j=1

|S(xj)|

∥∥∥∥∥∥
L1(ν)

for every x1, . . . , xn ∈ X, n ∈ N. This “1-concavity type” inequality is the starting

point of the following characterization that relates domination by integrals with

respect to vector measures and factorization through subspaces of L1-spaces.

Theorem 2.1. Let X and Y be Banach spaces. The following assertions are equiv-

alent for an operator T : X → Y .

(i) There exist a finite measure ν and a subspace E ⊆ L1(ν) such that T factors

as

X
T //

S

��

Y

E

R

>>

where S and R are operators.

(ii) There exist a finite measure ν, an L1(ν)-valued vector measure m and an

operator i : X → L1(m) such that

(2.1) ‖T (x)‖ ≤
∥∥∥∥∫ i(x) dm

∥∥∥∥
L1(ν)

for every x ∈ X.

(iii) There exist an order continuous Banach lattice with weak unit L, an L-

valued vector measure m and an operator i : X → L1(m) such that

(2.2)

n∑
j=1

‖T (xj)‖ ≤

∥∥∥∥∥∥
n∑
j=1

∣∣∣ ∫ i(xj) dm
∣∣∣
∥∥∥∥∥∥
L

for every x1, . . . , xn ∈ X, n ∈ N.

The following simple lemma will be used in the proof of Theorem 2.1; it gives a

basic tool that relates domination and factorization of operators.

Lemma 2.2. Let X, Y and Z be Banach spaces and let T : X → Y and S : X → Z

be operators such that

(2.3) ‖T (x)‖Y ≤ ‖S(x)‖Z for all x ∈ X.

Then there is an operator R : S(X)→ Y such that T = R ◦ S.

Proof. By (2.3), we can define a linear continuous mapping r : S(X) → Y by

declaring r(S(x)) := T (x) for all x ∈ X. Then r can be extended uniquely to an

operator R : S(X)→ Y satisfying the required property. �
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Proof of Theorem 2.1. (i) =⇒ (ii) Let (Ω,Σ) be the measurable space on which ν

is defined. Take the vector measure m : Σ → L1(ν) given by m(A) := χA (the

characteristic function of A) for all A ∈ Σ. In this case, the integration operator

Im : L1(m) → L1(ν) is an order isometry (see e.g. [17, Corollary 3.66]). Consider

now the operator i : X → L1(m) given by i := I−1
m ◦ S. We can assume without

loss of generality that ‖R‖ = 1. Then for every x ∈ X we have

‖T (x)‖ = ‖R(S(x))‖ ≤ ‖R‖ ‖S(x)‖L1(ν) = ‖Im(i(x))‖L1(ν) =

∥∥∥∥∫ i(x) dm

∥∥∥∥
L1(ν)

.

Therefore, inequality (2.1) holds.

(ii) =⇒ (i) We can apply Lemma 2.2 to S := Im ◦ i : X → L1(ν) in order to find

an operator R : S(X)→ Y such that R ◦ S = T .

(ii) =⇒ (iii) This is clear by taking L := L1(ν).

(iii) =⇒ (ii) We begin by proving the following:

Claim. There is ξ ∈ BL∗ such that

(2.4) ‖T (x)‖ ≤
〈∣∣∣ ∫ i(x) dm

∣∣∣, ξ〉 for all x ∈ X.

Indeed, for each x̄ = (x1, . . . , xn) ∈ Xn, n ∈ N, we define φx̄ : BL∗ → R as

φx̄(ξ) :=

n∑
j=1

‖T (xj)‖ −
〈 n∑
j=1

∣∣∣ ∫ i(xj) dm
∣∣∣, ξ〉.

Clearly, φx̄ is convex, w∗-continuous and there is ξx̄ ∈ BL∗ such that φx̄(ξx̄) ≤ 0

(by (2.2)). Note also that the collection of all functions of the form φx̄ is a convex

cone of RBL∗ . An appeal to Ky Fan’s Lemma (see e.g. [8, Lemma 9.10]) ensures

that there is ξ ∈ BL∗ such that φx̄(ξ) ≤ 0 for all φx̄’s as above. In particular,

inequality (2.4) holds and the claim is proved.

Since L is an order continuous Banach lattice with weak unit, there exist a

Banach function space Z over some probability space (Ω,Σ, µ), an order isometry

J : L→ Z and a function h ∈ L1(µ) such that

(2.5) 〈u, ξ〉 =

∫
Ω

J(u)h dµ for all u ∈ L

(see e.g. [15, Theorem 1.b.14]). Let ν be the finite measure defined by the formula

ν(A) :=
∫
A
|h|dµ for all A ∈ Σ, so that the identity map α : Z → L1(ν) is an

operator. Clearly, the operator j := α ◦ J : L→ L1(ν) satisfies

(2.6) j(|u|) = |j(u)| for every u ∈ L.

Define an L1(ν)-valued vector measure by m̃ := j ◦ m. Then every m-integrable

function is m̃-integrable and the identity map β : L1(m) → L1(m̃) is an operator

satisfying Im̃ ◦ β = j ◦ Im (see e.g. [17, Lemma 3.27]). Bearing in mind (2.4), for
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every x ∈ X we have:

‖T (x)‖ ≤
〈∣∣∣ ∫ i(x) dm

∣∣∣, ξ〉 (2.5)
=

∫
Ω

J
(∣∣∣ ∫ i(x) dm

∣∣∣)h dµ
≤
∫

Ω

J
(∣∣∣ ∫ i(x) dm

∣∣∣)|h| dµ =

∫
Ω

j
(∣∣∣ ∫ i(x) dm

∣∣∣) dν
(2.6)
=

∫
Ω

∣∣∣j(∫ i(x) dm
)∣∣∣ dν =

∫
Ω

∣∣∣ ∫ β(i(x)) dm̃
∣∣∣ dν =

∥∥∥∥∫ (β ◦ i)(x) dm̃

∥∥∥∥
L1(ν)

.

Therefore, inequality (2.1) holds for the L1(ν)-valued vector measure m̃ and the

operator β ◦ i : X → L1(m̃), hence T satisfies (ii). The proof is finished. �

Remark 2.3. When X is an order continuous Banach function space over a finite

measure, we get an alternative proof for (i) =⇒ (ii) in Theorem 2.1, with a different

choice of operators and vector measures.

Proof. Let (Ω,Σ, µ) be the finite measure space on which X is based. Suppose (i)

in Theorem 2.1 holds. We can assume without loss of generality that ‖R‖ = 1.

Define m(A) := S(χA) for every A ∈ Σ. Since S is an operator and X is order

continuous, the following statements hold: m : Σ → L1(ν) is a vector measure,

every element of X belongs to L1(m), the identity map i : X → L1(m) is an

operator and S = Im ◦ i (see e.g. [17, Proposition 4.4]). Then

‖T (x)‖ = ‖R(S(x))‖ ≤ ‖S(x)‖ = ‖Im(i(x))‖L1(ν) =

∥∥∥∥∫
Ω

i(x) dm

∥∥∥∥
L1(ν)

for every x ∈ X. This proves that (ii) in Theorem 2.1 holds. �

Corollary 2.4. Let X be a Banach space and L an order continuous Banach lattice

with weak unit. If T : X → L is an operator satisfying

(2.7)

n∑
j=1

‖T (xj)‖ ≤

∥∥∥∥∥∥
n∑
j=1

∣∣T (xj)
∣∣∥∥∥∥∥∥
L

for all x1, . . . , xn ∈ X, n ∈ N,

then T factors through a subspace of L1(ν) for some finite measure ν.

Proof. By [15, Theorem 1.b.14], we can assume that L is a Banach function space

over some probability space (Ω,Σ, µ). The set function m : Σ → L defined by

m(A) := χA is a vector measure such that the integration operator Im : L1(m)→ L

is an isomorphism (see e.g. [17, Corollary 3.66]). Inequality (2.7) means that (iii) in

Theorem 2.1 holds by taking i := I−1
m ◦T . Therefore, T factors through a subspace

of L1(ν) for some finite measure ν. �

In general, an operator factoring through a subspace of an L1-space need not

factor through an L1-space.

Example 2.5. The identity operator T : `2 → `2 factors through the subspace

of L1[0, 1] generated by the Rademacher functions (which is isomorphic to `2).

However, T cannot be factored through an L1-space. Indeed, T is not 1-summing,

while Grothendieck’s theorem ensures that every operator from an L1-space to `2 is

1-summing (see e.g. [8, Theorem 3.4]).
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A Banach space Y is called injective (resp. separably injective) if, for every

Banach space (resp. separable Banach space) Z and every subspace Z0 ⊆ Z, any

operator R : Z0 → Y can be extended to an operator R̃ : Z → Y . A typical

example of injective (resp. separably injective) space is `∞ (resp. c0). We refer the

reader to [1, 22] for basic information on injective and separably injective spaces.

Remark 2.6. Let X and Y be Banach spaces and T : X → Y an operator satisfying

the statements of Theorem 2.1. Then T factors through L1(ν) if either Y is injective

or Y is separably injective and X is separable.

Proof. The injective case is obvious. On the other hand, if X is separable, then

so is Z0 := S(X) ⊆ E. Since L1(ν) is weakly compactly generated, it has the

separable complementation property (see e.g. [10, Section 13.2]), hence there is a

separable complemented subspace Z of L1(ν) such that Z0 ⊆ Z. If, in addition,

Y is separably injective, then the restriction R|Z0 can be extended to an operator

from Z to Y . Since Z is complemented in L1(ν), such an operator can be obviously

extended to an operator from L1(ν) to Y . �

3. Positive and compact factorizations

We begin this section by showing that, under some adequate requirements, fac-

toring through a subspace of an L1-space is equivalent to factoring through an

L1-space. To this end we shall apply the Maurey-Rosenthal Theorem 1.1.

Proposition 3.1. Let X be an order continuous Banach function space over a

finite measure, Y a Banach space and T : X → Y an operator. The following

statements are equivalent:

(i) There exist a finite measure ν and a subspace E ⊆ L1(ν) such that T factors

as

X
T //

S

��

Y

E

R

>>

where S is a positive operator and R is an operator.

(ii) There is a finite measure ν such that T factors as

X
T //

S

��

Y

L1(ν)

R

==

where S is a positive operator and R is an operator.

Proof. Only (i) =⇒ (ii) requires a proof. Let (Ω,Σ, µ) be the finite measure space

on which X is based. Since S is positive and L1(ν) is 1-concave, S is 1-concave
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(see e.g. [15, Proposition 1.d.9]). The Maurey-Rosenthal Theorem 1.1 ensures that

S factors as

X
S //

U

��

E

L1(µ)

V

==

where U is a positive (multiplication) operator and V is an operator. Then we have

the factorization T = (R ◦ V ) ◦ U and so (ii) holds. �

The following remark should be compared with Corollary 2.4.

Remark 3.2. Let X be an order continuous Banach function space over a finite

measure, Y a Banach lattice and T : X → Y a positive operator satisfying

(3.1)
n∑
j=1

‖T (xj)‖ ≤

∥∥∥∥∥∥
n∑
j=1

∣∣T (xj)
∣∣∥∥∥∥∥∥ for all x1, . . . , xn ∈ X, n ∈ N.

Then T factors through L1(ν) for some finite measure ν.

Proof. Every positive operator between Banach lattices satisfying (3.1) is 1-concave

(see e.g. [15, Proposition 1.d.9]). Hence the conclusion follows from the Maurey-

Rosenthal Theorem 1.1. �

Some straightforward verifications in the proof of Theorem 2.1 yield the following

characterization:

Theorem 3.3. Let X be a Banach lattice, Y a Banach space and T : X → Y an

operator. The following statements are equivalent:

(i) There exist a finite measure ν and a subspace E ⊆ L1(ν) such that T factors

as

X
T //

S

��

Y

E

R

>>

where S is a positive operator and R is an operator.

(ii) There exist a finite measure ν, an L1(ν)-valued positive vector measure m

and a positive operator i : X → L1(m) such that

‖T (x)‖ ≤
∥∥∥∥∫ i(x) dm

∥∥∥∥
L1(ν)

for every x ∈ X.
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(iii) There exist an order continuous Banach lattice with weak unit L, an L-

valued positive vector measure m and a positive operator i : X → L1(m)

such that
n∑
j=1

‖T (xj)‖ ≤

∥∥∥∥∥∥
n∑
j=1

∣∣∣ ∫ i(xj) dm
∣∣∣
∥∥∥∥∥∥
L

for every x1, . . . , xn ∈ X, n ∈ N.

From now on we focus on factorizations for which the first factor is a compact

operator. In this case, domination by L∞-valued operators appears in a natural

way and the key property for the vector measure is to have norm relatively compact

range. This type of factorization is related to the following summability property.

Definition 3.4. Let X and Y be Banach spaces. An operator T : X → Y satisfies

property (S∞) if there exist a finite measure ν, an L1(ν)-valued vector measure m

with norm relatively compact range and an operator i : X → L∞(m) such that

(3.2)

n∑
j=1

‖T (xj)‖ ≤ sup
h∈BL∞(m)

n∑
j=1

∥∥∥∥∫ i(xj)h dm

∥∥∥∥
L1(ν)

for every x1, . . . , xn ∈ X, n ∈ N.

Theorem 3.5. Let X and Y be Banach spaces. If an operator T : X → Y satisfies

property (S∞), then there exist a finite measure ν and a subspace E ⊆ L1(ν) such

that T factors as

X
T //

S

��

Y

E

R

>>

where S is a compact operator and R is an operator.

In the proof of Theorem 3.5 we will use an auxiliary locally convex Hausdorff

topology τm on L1(m) (m a vector measure). A net (fα) in L1(m) is said to be

τm-convergent to f ∈ L1(m) if and only if for every h ∈ L∞(m) we have∫
fαh dm→

∫
fh dm in norm.

The topology τm has been studied recently in [3, 21].

Proof of Theorem 3.5. Since m has norm relatively compact range, K := BL∞(m)

is τm-compact as a subset of L1(m) (see [3, Proposition 3.5]). From now on K is

equipped with the topology τm. For each g ∈ L∞(m) we consider the operator

Tg : L1(m)→ L1(ν), Tg(f) =

∫
fg dm.

Since Tg is τm-norm continuous, the restriction Tg|K is Bochner integrable with

respect to any regular Borel probability on K. Moreover, the function g̃ : K → R
given by

(3.3) g̃(h) :=
∥∥Tg(h)

∥∥
L1(ν)
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is continuous. We denote by C(K,L1(ν)) the Banach space of all L1(ν)-valued

functions on K which are τm-norm continuous, with the supremum norm.

Claim A. The map j : X → C(K,L1(ν)) given by j(x) := Ti(x)|K is an operator.

Indeed, the linearity of j is clear. On the other hand, the norm of any f ∈ L1(m)

can be computed as

(3.4) ‖f‖L1(m) = sup
h∈K

∥∥∥∥∫ hf dm

∥∥∥∥
L1(ν)

(see e.g. [17, Lemma 3.11]) and so for every x ∈ X we have

‖j(x)‖C(K,L1(ν)) = sup
h∈K

∥∥∥∥∫ hi(x) dm

∥∥∥∥
L1(ν)

(3.4)
= ‖i(x)‖L1(m) ≤ ‖m‖‖i(x)‖L∞(m) ≤ ‖m‖‖i‖‖x‖,

where ‖m‖ denotes the total semivariation of m. Therefore, j is continuous.

Claim B. Let η be a regular Borel probability on K. Then the map

Φ : K → L1(η, L1(ν)), Φ(g) := Tg|K ,

is τm-norm continuous. Here L1(η, L1(ν)) denotes the Banach space of all (equiv-

alence classes of) L1(ν)-valued functions on K which are Bochner integrable with

respect to η. Since K is a compact subset of the angelic space (L1(m), τm) (see

[3, Proposition 2.2]), it suffices to prove that Φ is τm-norm sequentially continuous.

Let (gn) be a sequence in K which τm-converges to g ∈ K. For each n ∈ N we

define fn := gn − g ∈ 2BL∞(m) and we consider the function f̃n ∈ C(K) defined

by (3.3). Note that the sequence (f̃n) in C(K) satisfies f̃n → 0 pointwise on K

(because fn → 0 with respect to τm) and

‖f̃n‖C(K) = sup
h∈K

∥∥∥∥∫ hfn dm

∥∥∥∥
L1(ν)

(3.4)
= ‖fn‖L1(m) ≤ 2‖m‖ for all n ∈ N.

By Lebesgue’s dominated convergence theorem we get

‖Φ(gn)− Φ(g)‖L1(η,L1(ν)) =

∫
K

‖Tgn(h)− Tg(h)‖L1(ν) dη(h) =

∫
K

f̃n dη → 0.

This proves Claim B.

Consider now the w∗-compact convex set P(K) ⊆ C(K)∗ of all regular Borel

probability measures on K. For each x̄ = (x1, . . . , xn) ∈ Xn, n ∈ N, we define the

function φx̄ : P(K)→ R by

φx̄(η) :=

n∑
k=1

‖T (xk)‖ −
n∑
k=1

∫
K

ĩ(xk) dη.

Clearly, φx̄ is convex and w∗-continuous. Moreover, since
∑n
k=1 ĩ(xk) is continuous

on K, there is hx̄ ∈ K such that

n∑
k=1

‖T (xk)‖
(3.2)

≤ sup
h∈K

n∑
k=1

ĩ(xk)(h) =

n∑
k=1

ĩ(xk)(hx̄),
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hence φx̄(δhx̄) ≤ 0, where δhx̄ ∈ P(K) denotes the evaluation functional at hx̄. It

is also easy to check that the collection of all functions of the form φx̄ is a convex

cone of RP(K). According to Ky Fan’s Lemma (see e.g. [8, Lemma 9.10]) there is

η ∈ P(K) such that φx̄(η) ≤ 0 for all functions of the form φx̄. Thus

(3.5) ‖T (x)‖ ≤
∫
K

ĩ(x) dη =
∥∥S(x)

∥∥
L1(η,L1(ν))

for every x ∈ X,

where S is the composition of the operator j (of Claim A) with the identity oper-

ator from C(K,L1(ν)) to L1(η, L1(ν)). In view of (3.5), we can apply Lemma 2.2

to find an operator R : S(X) → Y such that T = R ◦ S. Taking into account

that L1(η, L1(ν)) is isometrically isomorphic to L1(η ⊗ ν), we have a factoriza-

tion of T through a subspace of the L1-space of the finite measure η ⊗ ν. It

remains to check that S is compact. Let ρ > 0 such that i(ρBX) ⊆ K. Since

S(ρBX) = Φ(i(ρBX)) ⊆ Φ(K) and Φ(K) is norm compact in L1(η, L1(ν)) (by

Claim B), the set S(ρBX) is norm relatively compact, hence so is S(BX). The

proof is finished. �

The proof that (ii) =⇒ (i) in the following remark follows the steps of the proof

of (iii) =⇒ (ii) in Theorem 2.1.

Remark 3.6. Let X and Y be Banach spaces and T : X → Y and operator. The

following assertions are equivalent and imply that T satisfies property (S∞).

(i) There exist a finite measure ν, an L1(ν)-valued vector measure m with norm

relatively compact range and an operator i : X → L∞(m) such that

‖T (x)‖ ≤
∥∥∥∥∫ i(x) dm

∥∥∥∥
L1(ν)

for every x ∈ X.

(ii) There exist an order continuous Banach lattice with weak unit L, an L-

valued vector measure m with norm relatively compact range and an oper-

ator i : X → L∞(m) such that

n∑
j=1

‖T (xj)‖ ≤

∥∥∥∥∥∥
n∑
j=1

∣∣∣ ∫ i(xj) dm
∣∣∣
∥∥∥∥∥∥
L

for every x1, . . . , xn ∈ X, n ∈ N.

In order to prove a version of Theorem 3.5 for positive operators and positive

vector measures we need the following technical result.

Lemma 3.7. Let m be a vector measure. Then:

(i) L1(m)+ is τm-sequentially closed.

(ii) K ∩ L1(m)+ is τm-compact whenever K ⊆ L1(m) is τm-compact.

Proof. The convex set L1(m)+ is norm closed, hence weakly closed, so (i) follows

from [3, Proposition 3.3]. Bearing in mind that τm-compactness and τm-sequential

compactness coincide (see [3, Corollary 2.3]), part (ii) follows from (i). �
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Theorem 3.8. Let X be a Banach lattice, Y a Banach space and T : X → Y an

operator such that:

There exist a finite measure ν, an L1(ν)-valued positive vector measure m

with norm relatively compact range and a positive operator i : X → L∞(m)

such that

n∑
j=1

‖T (xj)‖ ≤ sup
h∈BL∞(m)

n∑
j=1

∥∥∥∥∫ i(xj)h dm

∥∥∥∥
L1(ν)

for every x1, . . . , xn ∈ X, n ∈ N.

Then there exist a finite measure ν and a subspace E ⊆ L1(ν) such that T factors

as

X
T //

S

��

Y

E

R

>>

where S is a positive compact operator and R is an operator.

Proof. This can be proved as Theorem 3.5 with only a few changes:

(1) Take the τm-compact set K := BL∞(m) ∩ L1(m)+ (Lemma 3.7).

(2) ‖j(x)‖C(K,L1(ν)) ≤ ‖i(x)‖L1(m).

(3) ‖f̃n‖C(K) ≤ ‖fn‖L1(m).

(4) φx̄(η) :=
∑n
k=1 ‖T (xk)‖ − 2

∑n
k=1

∫
K
ĩ(xk) dη.

(5) ‖T (x)‖ ≤ 2
∫
K
ĩ(x) dη = ‖2S(x)‖L1(η,L1(ν)).

(6) i(ρBX ∩X+) ⊆ K.

Since m and i are positive, the operator j is positive and the same holds for S. �

4. Factorization of operators acting in C(K) spaces

Throughout this section we consider the case of operators acting in a C(K)

space (K a compact Hausdorff topological space), that is, the Banach space of

all real-valued continuous functions on K. Such operators play an important role

in the general theory of Banach spaces. A fundamental result of Bartle, Dunford

and Schwartz [2] (see e.g. [9, VI.2]) states that if T : C(K) → Y is a weakly

compact operator (Y a Banach space), then there is an Y -valued regular Borel

vector measure m on K such that T (f) =
∫
K
f dm for all f ∈ C(K).

Remark 4.1. Let K be a compact Hausdorff topological space, Y a Banach space

and T : C(K)→ Y an operator. The following statements are equivalent:

(i) T is 1-summing.
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(ii) There exist a finite measure ν and a subspace E ⊆ L1(ν) such that T factors

as

C(K)
T //

S

��

Y

E

R

==

where S is a positive operator and R is an operator.

(ii’) The same as (ii) with a (non necessarily finite) non-negative measure ν.

(iii) There is a finite measure ν such that T factors as

C(K)
T //

S

��

Y

L1(ν)

R

==

where S is a positive operator and R is an operator.

(iii’) The same as (iii) with a (non necessarily finite) non-negative measure ν.

Proof. The implication (i) =⇒ (iii) follows from Pietsch’s factorization theorem (see

e.g. [8, Corollary 2.15]). (ii’) =⇒ (i) is a consequence of the fact that every positive

operator from C(K) to a 1-concave Banach lattice (like L1(ν)) is 1-summing (see

e.g. [15, Theorem 1.d.10]). The remaining implications are obvious. �

It turns out that an operator acting in a C(K) space factors through a subspace of

an L1-space if and only if it is 2-summing. These operators can also be characterized

in the spirit of Theorem 2.1, as follows.

Theorem 4.2. Let K be a compact Hausdorff topological space and Y a Banach

space. The following assertions are equivalent for an operator T : C(K)→ Y .

(i) T is 2-summing.

(ii) There exist a finite measure ν and a subspace E ⊆ L1(ν) such that T factors

as

C(K)
T //

S

��

Y

E

R

==

where S and R are operators.

(ii’) The same as (ii) with a (non necessarily finite) non-negative measure ν.

(iii) There exist a finite measure ν and an L1(ν)-valued regular Borel vector

measure m on K such that

‖T (f)‖ ≤
∥∥∥∥∫

K

f dm

∥∥∥∥
L1(ν)

for every f ∈ C(K).
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(iv) There exist an order continuous Banach lattice with weak unit L and an

L-valued regular Borel vector measure m on K such that

n∑
j=1

‖T (fj)‖ ≤

∥∥∥∥∥∥
n∑
j=1

∣∣∣ ∫
K

fj dm
∣∣∣
∥∥∥∥∥∥
L

for every f1, . . . , fn ∈ C(K), n ∈ N.

Proof. (i) =⇒ (ii) This implication holds for operators defined on arbitrary Banach

spaces. Indeed, any 2-summing operator factors through a Hilbert space (see e.g.

[8, Corollary 2.16]) and every Hilbert space embeds isomorphically into an L1-space

of a finite measure (see e.g. [14, p. 128, Theorem 12]).

(ii) =⇒ (ii’) Trivial.

(ii’) =⇒ (i) Since every operator from C(K) to an L1-space is 2-summing (see

e.g. [8, Theorem 3.5]), S is 2-summing and so is T = R ◦ S.

(ii) =⇒ (iii) We can assume without loss of generality that ‖R‖ = 1. Since

L1(ν) contains no subspace isomorphic to c0, the operator S is weakly compact

(see e.g. [9, p. 159, Theorem 15]). Therefore, there is an E-valued regular Borel

vector measure m on K such that S = Im ◦ i, where i : C(K) → L1(m) is the

identity operator (see e.g. [9, VI.2]). Then

‖T (f)‖ = ‖R(S(f))‖ ≤ ‖S(f)‖ = ‖Im(f)‖L1(ν) =

∥∥∥∥∫
K

f dm

∥∥∥∥
L1(ν)

for every f ∈ C(K). This proves that (iii) holds.

(iii) =⇒ (iv) This is clear by taking L := L1(ν).

(iv) =⇒ (iii) This can be proved like in (iii) =⇒ (ii) of Theorem 2.1.

(iii) =⇒ (ii) Let i : C(K) → L1(m) be the identity operator and consider the

operator S := Im ◦ i : C(K) → L1(ν). Then Lemma 2.2 applied to T and S gives

the desired factorization. The proof is complete. �

The following example shows that compact operators from a C(K) space need

not factor through subspaces of L1-spaces.

Example 4.3. Consider the standard basis (en) of c0, a sequence (In) of pairwise

disjoint open subintervals of [0, 1] and points kn ∈ In for all n ∈ N. Define an

operator T : C[0, 1]→ c0 by

T (f) :=

∞∑
n=1

f(kn)√
n
en, f ∈ C[0, 1].

Then T is compact but not 2-summing (hence T does not factor through a subspace

of an L1-space).

Proof. Clearly, T is the limit (in the operator norm) of the sequence (Tk) of finite

rank operators Tp : C[0, 1]→ c0 defined by

Tp(f) :=

p∑
n=1

f(kn)√
n
en, f ∈ C[0, 1].
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Hence T is compact. We prove that T is not 2-summing by contradiction. If T

were 2-summing, then Pietsch’s domination theorem (see e.g. [8, Theorem 2.12])

would ensure the existence of a finite Borel measure µ on [0, 1] such that

‖T (f)‖c0 ≤ ‖f‖L2(µ) for all f ∈ C(K).

Take a sequence (fn) in C[0, 1] such that 0 ≤ fn ≤ 1, supp(fn) ⊆ In and fn(kn) = 1

for all n ∈ N. Then, for any N ∈ N, we have

N∑
n=1

1

n
=

N∑
n=1

∥∥T (fn)
∥∥2

c0
≤

N∑
n=1

∥∥fn∥∥2

L2(µ)
=

∫
[0,1]

( N∑
n=1

f2
n

)
dµ ≤ µ([0, 1]) <∞,

because 0 ≤
∑N
n=1 f

2
n ≤ 1. This gives a contradiction. Therefore, T is not 2-

summing and cannot be factored through a subspace of an L1-space. �
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[6] A. Defant and E. A. Sánchez Pérez, Maurey-Rosenthal factorization of positive operators and

convexity, J. Math. Anal. Appl. 297 (2004), no. 2, 771–790, Special issue dedicated to John
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