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Abstract

We introduce a version of the epistasis test in FaST-LMM for clusters of multi-
threaded processors. This new software maintains the sensitivity of the original FaST-
LMM while delivering an acceleration that is close to linear on 12–16 nodes of two recent
platforms, with respect to the improved implementation of FaST-LMM presented in an
earlier work. This efficiency is attained via several enhancements on the original single-
node version of FaST-LMM, together with the development of an MPI-based version
that ensures a balanced distribution of the workload as well as a multi-GPU module
that can exploit the presence of multiple graphics processing units (GPUs) per node.

Key words: Epistasis, FaST-LMM, Genome-Wide Association Studies (GWAS),
multicore processors, GPUs, clusters of computers.

1 Introduction
After years of accumulating technological improvements, we have finally embraced the pos-
tomics era where methodological advances are quickly providing geneticists with tools to ana-
lyze massive genome-wide data sets. Recent genomic studies indicate that each healthy indi-
vidual carries hundreds of loss-of-function variants as well as tens of thousands of other genomic
variants in the coding and regulatory regions of their genomes. In this line, the aggregated
analysis of Genome-Wide Association Studies (GWAS) (Lappalainen et al., 2015) are accu-
mulating evidence at increasing pace, providing medically-relevant predictions of phenotypic
outcomes from genomic profiles based on Single Nucleotide Polymorphisms (SNPs) (Abraham
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et al., 2014; Coleman et al., 2016). Nonetheless, a problem of GWAS stems from the fact
that most associated SNPs have been detected within a framework that assumes additive in-
teraction and tests each SNP separately from others. In contrast, recent evidence suggests
that the assumption of additivity is sometimes not fulfilled in complex organisms (Zuk et al.,
2012; Wan et al., 2010; Hemani et al., 2014). Thus, in order to evaluate the interplay that
genetic variants have on phenotypes, we must compare linear additivity with more complex
interactions –or epistasis– among markers, assessing which are the sets of relationships be-
tween SNPs that produce the most adequate genomic risk scores in order to predict disease
status or treatment outcome.

There exist several software packages for genomic-wide epistasis analysis; see Table 1 for
a representative selection. Among these, the epistasis test module in FaST-LMM (Lippert
et al., 2013, 2011) offers high sensitivity at the cost of a considerable execution time. This
method inspects all possible interactions between two SNPs to detect those that best predict
the phenotype but, from the computational perspective, it is far more expensive than other
methods.To tackle this higher cost, the original epistasis test in FaST-LMM can exploit the
presence of multiple cores on a server using Python processes.

In Martínez et al. (2017), we introduced an enhanced version of the epistasis test module
in FaST-LMM that maintained its sensitivity while delivering an acceleration factor close to
7.5× on a (single) computer server equipped with a high-end graphics processing unit (GPU).
In this work, we propose an extension of that implementation that considerably accelerates the
FaST-LMM epistasis test, while preserving its sensitivity, using all the resources of a cluster
of multicore computers, equipped with multicore processors and one or more GPUs.

2 Analysis of the FaST-LMM epistasis test
In this section we briefly describe the epistasis test module in FaST-LMM 0.2.31, and the
acceleration strategies introduced in Martínez et al. (2017). These two components are the
reference baseline for the extensions described later, in Section 3.

FaST-LMM epistasis test. In order to identify whether there exists an epistatic interac-
tion between two SNPs, the epistasis test module in FaST-LMM computes, for each possible
combination of two SNPs, the p-value of the chi-square test associated with the difference
between the log-likelihoods of two alternative hypotheses.

The original workflow of the epistasis test in FaST-LMM is divided into four stages (S1–S3
and RR in Figure 1). The first stage, S1, is performed by a single process that assembles the
initial matrices, splits the set of all SNP pairs into packages of fixed size, spawns a user-specified
number of processes, and distributes the packages among those. The assembly in this stage
requires the computation of matrix-matrix multiplications, singular value decompositions, and
the solution of eigenvalue problems. Next, each spawned process operates on stages S2 and S3,
retrieving the data corresponding to its SNP-pair packages, computing the p-values associated
to each pair, and storing these intermediate results to disk. Here, the second stage again
involves a number of matrix-matrix multiplications. The third stage requires the computation
of the log-likelihood of the alternative hypotheses, together with p-value of the chi-square test
for the difference of the previous log-likelihoods. Finally, the last stage, RR, is executed by
a single process that combines the partial results into a single data structure. (See Martínez
et al. (2017) for details.)
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FaST-LMM epistasis test enhancements. In Martínez et al. (2017) we evaluated the
parallel performance of the original epistasis test module in FaST-LMM, and proposed some
enhancements that were specifically designed to speed-up the most time-consuming operations:
i) a large-scale matrix-matrix multiplication in S2; ii) the log-likelihood tests in S3; and
iii) the insertion of the local results in a Python database in S3. Our modifications to FaST-
LMM targeted these performance bottlenecks by respectively: i) off-loading the costly matrix-
matrix multiplication to a GPU; ii) removing some clutter code in the log-likelihood test;
and iii) collapsing the storage of the epistasis test results into a single point. These three
improvements will be hereafter referred to as GPU, LC+LOG, and D4D, respectively. The
experimental analysis in Martínez et al. (2017), on a server equipped 2 Intel Xeon E5-2620v4
8-core processors (16 cores), 32 GiB of memory, and an NVIDIA P100 “Pascal” GPU, reported
a speed-up factor that was around 7.5× with respect to the original implementation of FaST-
LMM running on 16 cores.

3 Extending FaST-LMM epistasis test to multi-GPU
and clusters

In this section we introduce two extensions of the enhanced FaST-LMM epistasis test module
for clusters of nodes equipped with multi-core processors and multi-GPUs, available under an
Apache License 2.0 on https://github.com/epiproject/FaST-LMM-HPC/.

3.1 Multi-GPU extension
One of the enhancements to the standard implementation of the epistasis test in FaST-LMM
proposed in Martínez et al. (2017) consisted in off-loading some computations of stage S2 to a
(single) GPU. As multiple processes are simultaneously executing stages S2 and S3, this can
lead to conflicts in the access to the GPU. To alleviate this bottleneck, we have developed a
multi-GPU extension of the enhanced FaST-LMM epistasis test that can leverage more than
one GPU, if available in the server.

The multi-GPU extension distributes the workload among all available GPUs on a server
by cyclically attaching them to each spawned process. In addition, the GPU memory manager
implemented in Martínez et al. (2017) was extended to suspend a process request until enough
memory is available in the GPU that is assigned to it. A more detailed explanation appears
in Section 1 of the supplementary material.

3.2 Cluster extension
This extension distributes the SNP-pairs packages among the nodes of a cluster, instructs the
processes running on each node to operate on a disjoint set of SNP-pairs packages, and finally
gathers the results. It is implemented using MPI1 to create np(+1) MPI ranks (processes)
(one per node), which will in turn spawn p Python processes each.

We have implemented the following static and dynamic workload scheduling strategies to
distribute the input data (workload) among the cluster nodes.

1http://www.mpi-forum.org
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Static schedule. The SNP-pairs packages are evenly distributed among the np×p processes
(workers) on the system. Thus, for a dataset with k SNPs and w workers, each worker analyzes
about k2/(2wp) packets, with p standing for the packet size in terms of number of SNP pairs.
In this solution, each rank can independently compute which set of SNP-pairs packages it
should process from the dataset size, the package size, the number of processes per node, the
number of nodes, and its rank identifier.

Dynamic schedule. The SNP-pairs packages are assigned to the MPI rank/nodes on de-
mand. We have implemented this schedule by creating np + 1 MPI ranks, where node 0
contains two MPI ranks, one of them —the manager— is in charge of the work distribution,
while the remaining np worker MPI ranks, one of them in node 0, perform the actual compu-
tations (see Figure 2). The manager first computes the total number of SNP-pairs packages
and the row and column index of the first pair of each SNP-pairs package. Next, it carries
out an initial distribution of SNP-pairs packages among the workers, and then waits until a
worker asks for a new task. In response to this event, the manager assigns a bundle of pending
SNP-pair packages to the demanding worker. This is repeated until the pending queue is
emptied. In this solution, only the row and column indexes of the first SNP-pair for each
SNP-pairs package is transmitted, yielding a negligible communication overhead. Due to its
low overhead, dynamic scheduling should always be the preferred option. This strategy is
selected for the next experiments unless otherwise stated.

4 Experimental results
In this section we describe the setup for the experiments and perform the experimental eval-
uation of the extensions.

4.1 Experimental setup
Our experiments employ a sample from theWelcome Trust Case Control Consortium (WTCCC)
bipolar disorder (The Wellcome Trust Case Control Consortium, 2007), which provides a total
of 455,086 SNPs for n=4,804 individuals. To reduce the execution time, we have only used a
fraction of the original SNP dataset, consisting of k = 2,000 to 32,000 SNPs (or 1,999,000 to
511,984,000 SNP pairs). This reduced sample of SNPs is enough to analyze the performance
of the proposed extensions, as FaST-LMM splits the work in packages comprising 1,000 SNP
pairs each (the default package size in the FaST-LMM epistasis test) and, once k ≥ n, the
matrices sizes are constrained to the number of individuals. Hence, an execution involving a
dataset with a larger number of SNPs should roughly increase the execution time linearly on
the number of SNP pairs (≈ k2/2). This linear relationship was already observed in Martínez
et al. (2017). Furthermore, the execution time does not depend on the specific subset of SNP
pairs being selected. Therefore, we can expect that the conclusions extracted from the experi-
ments in this paper, with these (fragments of) datasets, carry over to other cases with a larger
number of SNPs or a different set.

The experiments were performed using the next two cluster platforms:

• Piz Daint at the Swiss National Supercomputing Centre (CSCS). This cluster contains
5,272 nodes, each with an Intel Xeon E5-2690 v3 at 2.60 GHz with 12 cores, 64 GiB
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RAM and an NVIDIA Tesla P100 with 16 GiB. The system interconnect is based on
Aries routing and ASIC communications, and features a Dragonfly network topology.

• Minotauro at the Barcelona Supercomputing Center (BSC). It is an heterogeneous clus-
ter with 39 nodes, each equipped with two NVIDIA K80 GPU cards, 2 Intel Xeon
E5–2630 v3 (Haswell) 8-core processors (each core at 2.4 GHz with 20 MiB L3 cache),
and 128 GiB of main memory. The cluster interconnect employs the Mellanox FDR
Infiniband technology.

We spawned one Python process per hardware core. The operating system was RedHat
Linux 2.6.32. The following software modules were used: FaST-LMM 0.2.31, Python 2.7.13,
PyCUDA 2016.1.2, Scikit-CUDA 0.5.1, Intel MKL Update 11 (ICC 17.0.1), and NVIDIA
CUBLAS 8.0. The MPI versions were: MPI Slurm 17.02.7 on Piz Daint and Open MPI 1.6.5
on Minotauro.

We have repeated all experiments 5 times and the coefficient of variation (CV) (Everitt
and Skrondal, 2010) was always below 10% and rapidly decreased with the number of SNPs
per node (see Section 2 of the supplementary material). For example, with 6,000 or more
SNPs per node, the CV was always below 3%, and in most cases, around 1%.

4.2 FaST-LMM enhancements and multi-GPU version
We have first evaluated the speed-ups due to the enhancements introduced in Martínez et al.
(2017) on a single node of each one of the aforementioned clusters. As Minotauro includes
4 GPUs per node, we have also tested the multi-GPU extension on this platform.

Figure 3 shows the execution time obtained for different numbers of SNP pairs and the
accumulative acceleration attained with each additional enhancement over the original FaST-
LMM epistasis test. As anticipated in the previous subsection and reported in Figures 3a)
and 3b), when the number of SNPs that are processed exceeds the number of individuals,
the execution time grows linearly with the number of SNP pairs. When processing pairs
of 8,000 SNPs, the modifications to the original FaST-LMM test reduce the execution time
from 9 hours 13 minutes to 1 hour 12 minutes on Piz Daint, and from 4 hours 50 minutes to
41 minutes on Minotauro.

Figures 3c) and 3d) show that applying the enhancements described on Martínez et al.
(2017) yield speed-ups around 7.6 on Piz Daint and 5.5 on Minotauro. Here, the speed-
up of the accelerated FaST-LMM epistasis test on Piz Daint is higher than that observed
on Minotauro. The reason for this behavior is that one of the enhancements off-loads a
key computation to the graphics accelerator, and Piz Daint integrates a faster GPU than
Minotauro.

Figure 3d) also shows that applying the new multi-GPU extension on Minotauro, the
speed-up is increased, on average, to 6.9. Although this could seem a small improvement
(only a 1.25× factor over the acceleration of 5.5 stated earlier), we must take into account
that only the matrix-matrix multiplications in stage S2 benefits from this extension.

4.3 Cluster version and workload schedules
We next evaluate the two workload schedules, static and dynamic, using the extension of the
enhanced FaST-LMM epistasis test for clusters, with a 16,000–SNP dataset on the Piz Daint
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cluster only. (We do not expect to gain different insights from performing a similar evaluation
on the Minotauro system.) For this purpose, we run the extension using different numbers
of nodes, and measure the execution time of the test on each node when using an static or a
dynamic workload distribution. Table 2 shows the minimum and maximum execution times
among all nodes. These results show that the static schedule exhibits a small deviation in
the workload distribution balance. This variability is due to differences in the efficiency when
the GPU(s) is shared between all processes of a node. In comparison, the dynamic schedule
produces an even better workload balance, and its overhead is negligible compared with the
execution time of the application.

At this point, it should be stressed that, although both workload schedules obtain close
results in this experiment, the dynamic configuration will lead to much better results in case
the cluster integrates a collection of heterogeneous nodes.

4.4 Cluster extension: performance and scalability

In order to assess the strong scalability of the cluster extension, we have employed from 1 to
16 nodes of the Piz Daint and Minotauro clusters to perform two epistasis tests, with 8,000
and 16,000 SNPs. The execution time of these experiments and their speed-ups are presented
in Figure 4. The speed-up factors reported in our manuscript correspond to the acceleration
with respect to the improved version of the FaST-LMM code presented in our earlier work
(in Martínez et al. (2017)). Note that such version is parallel and exploits all the resources
from the node, for example, all 12 cores and the GPU on the Piz Daint system. The cost of
the enhanced version of FaST-LMM with 16,000 SNPs on Piz Daint is reduced from 4 hours
39 minutes when executed on 1 node to 20 minutes when executed on 16 nodes; see Figure 4a).
Hence, we attain a speed-up around 14.1× on 16 nodes of Piz Daint, see Figure 4c); and a
similar acceleration factor on the same number of nodes of Minotauro (14.6×), see Figures 4b)
and 4d). These plots also show that the speed-up is very close to the ideal one when 8 or
fewer nodes are employed; for a larger number of nodes, the speed-up approximates the ideal
one as the number of SNPs being processed is increased (which should be the case in most
epistasis test scenarios).

Finally, we have also performed a weak scalability analysis. In this type of study, we
evaluate the variation of execution time as we increase the number of nodes while maintaining
the problem size per node constant. For this purpose, as the execution time should be linear
with the number of SNP pairs, we fix the problem size per node to 31,996,000 SNP pairs (3,000
SNPs), and then we vary the number of nodes. The results on the Piz Daint and Minotauro
clusters with up to 16 nodes are shown in Table 3. The average execution time per node on
Piz Daint was 4,281 seconds with a standard deviation of 21 seconds. The same experiment
on Minotauro offered 2,590.73 seconds with a standard deviation of 152 seconds. These results
show the notable weak scalability of the parallel epistasis solution, for up to 12–16 nodes and
192–256 cores. The extrapolation of the experiments in Martínez et al. (2017) and the cluster
extension of FaST-LMM in this work shows that performing the Epistasis analysis for a very
large dataset, with k = 500, 000 SNPs, would require an execution time of about 50 months
when using all the resources of a single node of Piz Daint. Assuming the weak scalability
efficiency is maintained, the same dataset could be analyzed in around 19 hours using our
cluster version on 320 nodes of this platform. Moreover, even if the weak scalability efficiency
was degraded to only a 50%, this dataset could still be analyzed in around 30 hours.
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5 Conclusions
We have evolved our multi-threaded software for epistasis tests based on FaST-LMM to pro-
duce a parallel version that can leverage the computational resources of a cluster of nodes
equipped with one or more GPUs per node. The new parallel epistasis framework delivers
remarkable accelerations when executed on a moderate number of nodes from two current
supercomputers. The parallel extension relies on the standard MPI for communication and
well-known high performance libraries for dense linear algebra so it should be portable, with
good efficiency, to other recent high performance clusters. As the number of nodes is in-
creased beyond a few dozens, we can expect that the distribution of the input data through
the filesystem becomes a performance bottleneck, asking for the application of input/output
optimization techniques.
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Figure 3: Execution time of the original FaST-LMM epistasis test, and of FaST-LMM with
the previously proposed enhancements and the multi-GPU extension, and their speed-ups, for
different numbers of SNP pairs on a single node of: Piz Daint, using 12 processes per node
—figures a) and c)—; and Minotauro, using 16 processes per node —figures b) and d)—.
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Figure 4: Execution time of the cluster extension of FaST-LMM and its speed-up for different
number of nodes on: Piz Daint —figures a) and c)—; and Minotauro —figures b) and d)—.

12



Table 1: Some applications for genome-wide analysis of two-way epistasis.

Software Method Parallel model URL
BOOST Regression — http://bioinformatics.ust.hk/BOOST.html#BOOST
Encore Gen. linear model OpenMP https://github.com/insilico/encore
EpiGPU Regression OpenCL https://github.com/explodecomputer/epiGPU
EpistSearch Regression (BOOST) CUDA/FPGA —
FastEpistasis Brute force SMP/MPI https://www.cog-genomics.org/plink/1.9/epistasis
FaST-LMM Linear-mixed model Hadoop https://github.com/MicrosoftGenomics/FaST-LMM
GBOOST Regression (BOOST) CUDA http://bioinformatics.ust.hk/BOOST.html#GBOOST 2.0
SNPRuler Machine learning — http://bioinformatics.ust.hk/SNPRuler.zip
SUPER Linear-mixed model — —
TEAM Data mining — http://www.csbio.unc.edu/epistasis/download.php
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Table 2: Minimum and maximum time per node (in seconds), and their difference, when using
an static or a dynamic workload distribution for the 16,000 SNPs dataset on the Piz Daint
platform.

Static distribution Dynamic distribution
Nodes Minimum Maximum Diff Minimum Maximum Diff

2 8,482.62 8,555.93 73.31 8,525.11 8,528.32 3.21
4 4,271.68 4,359.87 88.19 4,299.37 4,300.76 1.39
8 2,140.83 2,240.32 99.49 2,219.90 2,223.12 3.22
12 1,465.22 1,558.30 93.08 1,521.50 1,524.34 2.84
16 1,109.62 1,192.63 83.01 1,171.14 1,174.06 2.92
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Table 3: Execution time (in seconds) for different number of nodes and a fixed problem size
(3,000 SNPs) per node on Piz Daint and Minotauro.

Time
Nodes SNPs Pairs Piz Daint Minotauro

1 31,996,000 4,244.78 2,351.77
2 63,997,641 4,260.44 2,402.85
4 127,992,000 4,300.12 2,694.75
8 255,979,251 4,286.53 2,684.12
12 383,991,328 4,300.18 2,695.05
16 511,984,000 4,294.01 2,715.84
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