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DIFFERENTIABILITY OF Lp OF A VECTOR MEASURE AND
APPLICATIONS TO THE BISHOP-PHELPS-BOLLOBÁS PROPERTY

L. AGUD, J.M. CALABUIG, S. LAJARA, AND E.A. SÁNCHEZ-PÉREZ

Abstract. We study the properties of Gâteaux, Fréchet, uniformly Fréchet and uniformly
Gâteaux smoothness of the space Lp(m) of scalar p-integrable functions with respect to a
positive vector measure m with values in a Banach lattice. Applications in the setting of the
Bishop-Phelps-Bollobás property (both for operators and bilinear forms) are also given.

1. Introduction and preliminaries

Convexity and smoothness are Banach space properties that involve metric inequalities
and geometric concepts. When the attention is centered in Banach lattices (and more con-
cretely, in Banach function spaces), better characterizations can be obtained, and new pro-
perties can be added to the study. The main result on smoothness of Banach function spaces
is known since the eighties, when Kutzarova and Troyanski proved that any order continu-
ous Banach function space with a weak unit admits an equivalent lattice uniformly Gâteaux
smooth norm (see [21, Theorem 3.5 and Corollary 3.7]). Recently, some results providing
new powerful tools have been introduced in the study of this topic, both from the general
Banach space theory point of view and from the setting of the spaces of integrable functions
(see [4]).

In this work, we are interested in obtaining more information about smoothness properties
of Banach function spaces. In particular, we will study the case of the order continuous spaces
Lp(m), consisting of scalar functions which are p-integrable with respect to a (countably
additive) vector measure taking values in a Banach lattice. Although this class is interesting
by itself, it must be said that our aim is to use the results obtained about this in order to find
information on general Banach function spaces, via the well-known representation theorem
that establishes that for a given 1 < p <∞ each order continuous p-convex Banach function
space E(µ) over a finite measure can be represented as an Lp(m) space for a positive vector
measure m (see [23, Proposition 3.30]; sometimes a renorming is needed). In this direction,
it has been studied in [20] when the convexity properties of a Banach function space E(µ)
are preserved or even improved when the p-convexification E(µ)[1/p] of E(µ) is considered.
As application of our results, we obtain some more examples of couples of Banach spaces
with the Bishop-Phelps-Bollobás property for operators and bilinear forms.

Let us recall some definitions and terminology. Given a real Banach space (X, ‖ · ‖), we
denote by BX and SX the unit ball and the unit sphere of X, respectively, and by X∗ its
topological dual. The space X, or its norm ‖ · ‖, is said to be Gâteaux smooth, or simply
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smooth, if ‖ ·‖ is Gâteaux differentiable at every x ∈ SX , that is, if there exists a (necessarily
unique) functional ‖ · ‖′(x) ∈ SX∗ such that

(1) lim
t→0

‖x+ th‖ − 1

t
= ‖ · ‖′(x)(h), for each h ∈ X.

The space X (or its norm ‖ ·‖) is called Fréchet smooth if it is Gâteaux smooth and for every
x ∈ SX , the limit (1) is uniform with respect to h ∈ BX , that is, if

lim
t→0

sup

{∣∣∣∣‖x+ th‖ − 1

t
− ‖ · ‖′(x)(h)

∣∣∣∣ : h ∈ BX

}
= 0.

If the space X is smooth and for every h ∈ SX , the limit in (1) is uniform with respect to
x ∈ SX , that is, if

lim
t→0

sup

{∣∣∣∣‖x+ th‖ − 1

t
− ‖ · ‖′(x)(h)

∣∣∣∣ : x ∈ SX
}

= 0,

then we say that X (or its norm) is uniformly Gâteaux smooth. Finally, we say that X is
uniformly Fréchet smooth if it is Gâteaux smooth and the limit in (1) is uniform with respect
to (x, h) ∈ SX × SX .

It is clear that uniformly Fréchet smoothness ⇒ uniformly Gâteaux smoothness ⇒
smoothness and that uniformly Fréchet smoothness ⇒ Fréchet smoothness ⇒ smoothness,
but the converse implications do not hold true in general, even up to renorming. It is well-
known (see e.g. [14, Theorem 13.25]) that if the space X (respectively X∗) is weakly com-
pactly generated, then X admits an equivalent Gâteaux smooth norm (respectively Fréchet
smooth norm). Another classical result (see e.g. [14, Theorem 9.14]) establishes that Ba-
nach spaces having an equivalent uniformly Fréchet smooth norm are exactly super-reflexive
spaces. The class of uniformly Gâteaux smooth renormable spaces was characterized in [13]
(see also [12]), where it was shown that X admits an equivalent uniformly Gâteaux smooth
norm if, and only if, X is a subspace of a Hilbert-generated space (recall that a Banach
space Y is said to be Hilbert-generated if there exist a Hilbert space H and a bounded linear
operator T : H → Y with dense range). For more information on these properties, and their
interplay with Banach space geometry, we refer to the monographs [10] and [14].

Let (Ω,Σ, µ) be a finite measure space. A Banach space E(µ) is said to be a Banach
function space over (Ω, µ) if E(µ) is a linear subspace of L1(µ) such that:

(i) if f ∈ L0(µ) and |f | ≤ |g| µ-a.e. for some g ∈ E(µ), then f ∈ E(µ) and ‖f‖E(µ) ≤
‖g‖E(µ), and

(ii) for every set A ∈ Σ the characteristic function of A, χA, belongs to E(µ).
In this case, E(µ) is a Banach lattice when endowed with the µ-a.e. order.

Now, let X be a Banach space and m : Σ→ X be a (countably additive) vector measure.
For each x∗ in X∗ we write 〈m,x∗〉 to denote the scalar measure given by the formula

〈m,x∗〉(A) := 〈m(A), x∗〉, A ∈ Σ.

A Rybakov control measure for m is a measure of the form µ = |〈m,x∗0〉| with x∗0 ∈ BX∗

(where |〈m,x∗0〉| stands for the variation of the measure 〈m,x∗0〉, which is necessarily finite
since m is supposed to be countably additive) satisfying that µ(A) = 0 if, and only if,
‖m‖(A) = 0 (here ‖m‖ denotes the semivariation of m). A Rybakov control measure for m
always exists for a suitable x∗0 ∈ BX∗ (see [11, p. 268]). A Σ-measurable function f : Ω→ R
is said to be integrable with respect to m if:
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(i) for each x∗ ∈ X∗ , f is integrable with respect to the scalar measure 〈m,x∗〉, and
(ii) for each A ∈ Σ there exists a (unique) vector

∫
A
fdm ∈ X such that∫

A

fd〈m,x∗〉 =

〈∫
A

fdm,x∗
〉
, for all x∗ ∈ X∗.

For 1 ≤ p <∞, let 1 < p′ ≤ ∞ be the conjugate exponent given by 1/p+1/p′ = 1. The space
Lp(m) is the Banach function space over (Ω,Σ, µ), where µ is a Rybakov control measure
for m, consisting of those (equivalence classes of) functions f : Ω → R such that |f |p is
integrable with respect to m, endowed with the (lattice) norm

‖f‖Lp(m) :=
∥∥|f |p∥∥1/p

L1(m)
= sup

{(∫
Ω

|f |pd|〈m,x∗〉|
)1/p

: x∗ ∈ BX∗

}
.

For a given 1 < p <∞ the most important properties and results of the well-known Lebesgue
spaces, Lp(µ), are also satisfied in our spaces Lp(m). This is, for instance, the case of Hölder’s
inequality (see [23, p. 133])

‖fg‖L1(m) ≤ ‖f‖Lp(m)‖g‖Lp′ (m), f ∈ Lp(m), g ∈ Lp′(m),

and the Lebesgue dominated convergence theorem (see [23, Theorem 3.7]).
In the sequel, we shall always assume that X is a Banach lattice and that the (countably

additive) vector measure m : Σ → X is positive, that is, the range of m is included in the
positive cone of X. In this case, the norm of Lp(m) can be computed by the easier formula
(see [23, Lemma 3.13]),

‖f‖Lp(m) =

∥∥∥∥∫
Ω

|f |pdm
∥∥∥∥1/p

, for each f ∈ Lp(m).

The reader can find the unexplained information on vector measures and integration of
scalar functions with respect to such measures in the monographs [11] and [23, Chapter 3],
respectively.

Observe that, according to the aforementioned results in [21], the space Lp(m), has an
equivalent uniformly Gâteaux smooth lattice norm whenever p ≥ 1 (and therefore, by the
result in [13], this space is a subspace of a Hilbert-generated space). In [16, Theorem 3.1], it
is shown that Lp(m)∗ is weakly compactly generated for p > 1. Consequently, Lp(m) admits
an equivalent Fréchet smooth norm as well. However, as it is noticed in the recent paper [4,
Example 1], the canonical norm of Lp(m) is not smooth in general. There, it is also shown
that ifm : Σ→ X is a positive vector measure and p > 1, then under a metric assumption on
the unit ball of Lp(m)∗, the (Gâteaux) smoothness of the space X is transferred directly to
Lp(m), when the canonical norm of this space is considered. Although the requirement on the
ball of Lp(m)∗ holds very often, the general question about the necessity of such assumption
is posed in that paper (see [4, Problem (Q1)]). In this work, we give a positive answer to this
question. More precisely, we show that if X is Gâteaux smooth and p > 1, then the space
Lp(m), endowed with its canonical norm, is Gâteaux smooth too. We also obtain similar
results for the properties of Fréchet, uniformly Gâteaux and uniformly Fréchet smoothness.
The uniformly Gâteaux smooth case is restricted to the order continuous Banach function
space over a finite measure setting. As a consequence of these results we deduce that if L1(m)
has any of the above properties of smoothness, then for every p > 1 the space Lp(m) shares
the same property, answering in particular [4, Problem (Q2)]. In the final part of the work
we provide new examples of pairs of spaces having the Bishop-Phelps-Bollobás property for
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operators (and also for bilinear forms). In particular, we extend in the setting of vector
valued measures a result that ensures that, if 1 < p, q <∞ and µ is a scalar measure, then
the couple (Lp(µ), Lq(ν)) satisfies the Bishop-Phelps-Bollobás property (in both cases, linear
and bilinear).

2. Gâteaux and Fréchet smoothness of Lp(m)

The main result of this section reads as follows.

Theorem 2.1. Let X be a Banach lattice, m : Σ → X be a positive vector measure and
1 < p <∞. If the norm of X is smooth (Fréchet smooth), then so is the canonical norm on
Lp(m).

As we mentioned in Introduction, the non parenthetic part of this theorem solves affirma-
tively Problem (Q1) in [4]. An important ingredient in the proof of this result is the following
proposition, which will be also useful in the next section.

Proposition 2.2. Let X be a Banach lattice, m : Σ → X a positive vector measure and
1 < p <∞. Then the mapping ϕ : Lp(m)→ X defined by the formula

ϕ(f) =

∫
Ω

|f |p dm, f ∈ Lp(m),

satisfies the following properties:
(i) ϕ is Gâteaux differentiable on all of Lp(m) and for every f, h ∈ Lp(m) we have

ϕ′(f)(h) = p

∫
Ω

sign(f)|f |p−1h dm.

(ii) There exist Cp > 0 and s > 0 such that

‖ϕ′(f)(h)− ϕ′(g)(h)‖ ≤ Cp‖f − g‖sLp(m)‖h‖Lp(m),

whenever f, g ∈ BLp(m) and h ∈ Lp(m). In particular ϕ is Fréchet differentiable.
Moreover we can take s = 1 if p ≥ 2 and s = p− 1 otherwise.

(iii) ϕ is 2p-Lipschitzian on the unit ball of Lp(m).

In the proof of this proposition, we shall use the following elementary inequalities (for
convenience we write 00 = 0).

Lemma 2.3. For each a, b ∈ [0,∞) we have

(a+ b)r ≤ ar + br ≤ 21/(1−r)(a+ b)r, 0 ≤ r < 1,(2)
|ar − br| ≤ |a− b|r, 0 ≤ r ≤ 1,(3)

ar + br ≤ (a+ b)r ≤ 2r−1(ar + br), r ≥ 1,(4)
|ar − br| ≤ r(ar−1 + br−1)|a− b|, r ≥ 1.(5)

Proof of Proposition 2.2. (i) Let us pick f, h ∈ Lp(m), and let (tn) be any sequence of non-
zero real numbers such that tn → 0. Since the function | · |p is differentible on all of R we
get

lim
n

|f(ω) + tnh(ω)|p − |f(ω)|p

tn
= p sign(f(ω))|f(ω)|p−1h(ω),
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for all ω ∈ Ω. On the other hand, for every n ∈ N, formula (5) yields

∣∣∣∣ |f(ω) + tnh(ω)|p − |f(ω)|p

tn

∣∣∣∣ ≤ p
(
|f(ω)|p−1 + |tn|p−1|h(ω)|p−1

)
|h(ω)|,

for each ω ∈ Ω. As f, h ∈ Lp(m) we have |f(ω)|p−1 + |tn|p−1|h(ω)|p−1 ∈ Lp′(m), and Hölder’s
inequality guarantees the integrability of the last function in the previous inequality. Thus,
according to Lebesgue’s dominated convergence theorem, it follows that

lim
n

∫
Ω

|f + tnh|p − |f |p

tn
dm = p

∫
Ω

sign(f)|f |p−1h dm.

Since this equality holds for every f, h ∈ Lp(m) and every sequence tn → 0 with tn 6= 0
we deduce that ϕ is Gâteaux differentiable at every f ∈ Lp(m) (note that the directional
derivatives are linear and bounded in h since ϕ is continuous and convex on f), and

ϕ′(f)(h) = p

∫
Ω

sign(f)|f |p−1h dm, for all h ∈ Lp(m).

(ii) If f, g ∈ Lp(m), we denote by A0 and A1 the complementary measurable sets given by

A0 :=
{
ω ∈ Ω : sign(f(ω)) = sign(g(ω))

}
and A1 :=

{
ω ∈ Ω : sign(f(ω)) 6= sign(g(ω))

}
.

Then, for every h ∈ Lp(m) we have

‖ϕ′(f)(h)− ϕ′(g)(h)‖ ≤
∥∥∥∥∫

A0

(
sign(f)|f |p−1 − sign(g)|g|p−1

)
h dm

∥∥∥∥
+

∥∥∥∥∫
A1

(
sign(f)|f |p−1 − sign(g)|g|p−1

)
h dm

∥∥∥∥ .
We shall estimate the two expressions of the right-hand side of this inequality, that we denote
by I0 and I1, respectively. In order to do it, we consider three cases: p > 2, 1 < p < 2 and
p = 2. From now on, we assume that f, g, h ∈ BLp(m).
Case 1: p > 2. We shall prove that the result holds with Cp := 2p−2

(
(p− 1)K

1/p′
p + 1

)
, where

Kp:=1 if p ≥ 3 and Kp:=21/(3−p) otherwise.
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(I0) Applying inequality (5) with r:=p−1 > 1, Hölder’s inequality, (2) and (4) and, again,
Hölder’s inequality with s := p/p′ and s′ = (p− 1)/(p− 2), we obtain

I0 ≤
∥∥∥∥∫

A0

∣∣|f |p−1 − |g|p−1
∣∣|h| dm∥∥∥∥

≤ (p− 1)

∥∥∥∥∫
A0

(
|f |p−2 + |g|p−2

)
·
∣∣f − g∣∣|h| dm∥∥∥∥

≤ (p− 1)

∥∥∥∥∫
A0

(
|f |p−2 + |g|p−2

)p′|h|p′ dm∥∥∥∥1/p′

·
∥∥∥∥∫

A0

∣∣f − g∣∣p dm

∥∥∥∥1/p

≤ (p− 1)

∥∥∥∥∫
A0

Kp

(
|f |+ |g|

)p′(p−2)|h|p′ dm
∥∥∥∥1/p′

·
∥∥∥∥∫

A0

∣∣f − g∣∣p dm

∥∥∥∥1/p

≤ (p− 1)K1/p′

p

∥∥∥∥∫
A0

(
|f |+ |g|

)p
dm

∥∥∥∥(p−2)/p

·
∥∥∥∥∫

A0

|h|p dm

∥∥∥∥1/p

· ‖f − g‖Lp(m)

≤ (p− 1)K1/p′

p

(
‖f‖Lp(m) + ‖g‖Lp(m)

)p−2 · ‖f − g‖Lp(m)

≤ (p− 1)K1/p′

p 2p−2 · ‖f − g‖Lp(m) = Mp‖f − g‖Lp(m),

where Mp := (p− 1)K
1/p′
p 2p−2 > 0.

(I1) Using (4) with r := p− 1 > 1 and Hölder’s inequality we get

I1 ≤
∥∥∥∥∫

A1

(
|f |+ |g|

)p−1|h| dm
∥∥∥∥ ≤ ∥∥∥∥∫

A1

(
|f |+ |g|

)p′(p−1)
dm

∥∥∥∥1/p′

· ‖h‖Lp(m)

≤
∥∥∥∥∫

A1

(
|f |+ |g|

)p
dm

∥∥∥∥1/p′

= ‖(f − g)χA1‖
p/p′

Lp(m) ≤ ‖f − g‖
p/p′

Lp(m) .

Adding up the last two inequalities it follows that

‖ϕ′(f)(h)− ϕ′(g)(h)‖ ≤Mp‖f − g‖Lp(m) + ‖f − g‖p/p
′

Lp(m)

≤
(
Mp + ‖f − g‖p−2

Lp(m)

)
‖f − g‖Lp(m)

≤
(
Mp + 2p−2

)
‖f − g‖Lp(m) = Cp‖f − g‖Lp(m).

Case 2: 1 < p < 2. We shall prove that in this case the inequality works with the constant
Cp := 21/(2−p) + 1.

(I0) Because of (3) with 0 < r := p− 1 < 1 and Hölder’s inequality we have

I0 ≤
∥∥∥∥∫

A0

∣∣|f |p−1 − |g|p−1
∣∣|h| dm∥∥∥∥ ≤ ∥∥∥∥∫

A0

∣∣|f | − |g|∣∣p−1|h| dm
∥∥∥∥

≤
∥∥∥∥∫

A0

∣∣|f | − |g|∣∣(p−1)p′
dm

∥∥∥∥1/p′

·
∥∥∥∥∫

A0

|h|p dm

∥∥∥∥1/p

≤ ‖f − g‖p/p
′

Lp(m) = ‖f − g‖p−1
Lp(m).
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(I1) Applying (2) with 0 < r := p− 1 < 1 and Hölder’s inequality it follows that

I1 ≤
∥∥∥∥∫

A1

(
|f |p−1 + |g|p−1

)
|h| dm

∥∥∥∥ ≤ 21/(2−p)
∥∥∥∥∫

A1

(|f |+ |g|)p−1|h| dm
∥∥∥∥

≤ 21/(2−p)
∥∥∥∥∫

A1

(|f |+ |g|)(p−1)p′ dm

∥∥∥∥1/p′ ∥∥∥∥∫
A1

|h|p dm

∥∥∥∥1/p

= 21/(2−p)‖(f − g)χA1‖
p/p′

Lp(m) · ‖hχA1‖Lp(m) ≤ 21/(2−p)‖f − g‖p/p
′

Lp(m)

= 21/(2−p)‖f − g‖p−1
Lp(m).

Combining the last two inequalities we get

‖ϕ′(f)(h)− ϕ′(g)(h)‖ ≤ Cp‖f − g‖p−1
Lp(m).

Case 3: p = 2. Following the lines in the previous cases, spliting the integral into over the
sets A0 and A1 and applying Hölder’s inequality (with p = p′ := 2) it follows that

‖ϕ′(f)(h)− ϕ′(g)(h)‖ ≤ 2‖f − g‖L2(m).

(iii) If p > 1 and f, g ∈ BLp(m), then using (5) with r:=p > 1, (4) with r:=p′, and Hölder’s
inequality we get

‖ϕ(f)− ϕ(g)‖ ≤
∥∥∥∥∫

Ω

∣∣|f |p − |g|p∣∣ dm∥∥∥∥ ≤ ∥∥∥∥∫
Ω

p
(
|f |p−1 + |g|p−1

)
· |f − g| dm

∥∥∥∥
≤ p

∥∥∥∥∫
Ω

(
|f |p−1 + |g|p−1

)p′
dm

∥∥∥∥1/p′

·
∥∥∥∥∫

Ω

|f − g|p dm

∥∥∥∥1/p

≤ p

∥∥∥∥∫
Ω

2p
′−1
(
|f |p′(p−1) + |g|p′(p−1)

)
dm

∥∥∥∥1/p′

·
∥∥∥∥∫

Ω

|f − g|p dm

∥∥∥∥1/p

= p21/p

∥∥∥∥∫
Ω

(
|f |p + |g|p

)
dm

∥∥∥∥1/p′

·
∥∥∥∥∫

Ω

|f − g|p dm

∥∥∥∥1/p

≤ 2p‖f − g‖Lp(m).

So ϕ is 2p-Lipschitzian on the unit ball of Lp(m) and the result is proved. �

We are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let Φ : Lp(m)→ [0,+∞) be the function defined by the formula

Φ(f) = ‖ϕ(f)‖, f ∈ Lp(m).

At first, we shall show that if X is smooth, then Φ is Gâteaux differentiable at every f ∈
SLp(m). We already know that ϕ is Gâteaux differentiable on Lp(m). Pick h ∈ Lp(m) and
t ∈ R with t 6= 0. Using the triangle inequality we get∣∣Φ(f + th)− Φ(f)− (‖ϕ(f) + tϕ′(f)(h)‖ − ‖ϕ(f)‖)

∣∣ =
∣∣‖ϕ(f + th)‖ − ‖ϕ(f) + tϕ′(f)(h)‖

∣∣
≤ ‖ϕ(f + th)− ϕ(f)− tϕ′(f)(h)‖ .

Thus,∣∣∣∣Φ(f + th)− Φ(f)

t
− ‖ϕ(f) + tϕ′(f)(h)‖ − ‖ϕ(f)‖

t

∣∣∣∣ ≤ ∥∥∥∥ϕ(f + th)− ϕ(f)

t
− ϕ′(f)(h)

∥∥∥∥ .
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Since, by hypothesis, the norm ‖ · ‖ on X is Gâteaux smooth, we have

‖ϕ(f) + tϕ′(f)(h)‖ − ‖ϕ(f)‖
t

−→〈‖ · ‖′(ϕ(f), ϕ′(f)(h)〉 as t→ 0.

Consequently,

Φ(f + th)− Φ(f)

t
−→〈‖ · ‖′(ϕ(f), ϕ′(f)(h)〉 as t→ 0.

Therefore since the directional derivative is linear and bounded in h (because, for instance,
Φ is continuous and convex around f) then it is Gâteaux differentiable at f . Now, bearing
in mind that ‖ · ‖Lp(m) = α ◦Φ, where α(t) = |t|1/p, it easily follows that ‖ · ‖Lp(m) is Gâteaux
differentiable on Lp(m) \ {0}, and

(6) ‖ · ‖′Lp(m)(f)(h) = p−1Φ′(f)(h) = p−1 〈‖ · ‖′(ϕ(f)), ϕ′(f)(h)〉 .

The statement about Fréchet smoothness is now easy. Indeed, by Proposition 2.2 (ii) the
mapping ϕ is Fréchet differentiable at f . Thus, if the norm on X is Fréchet differentiable,
according to the chain rule [17, Theorem 69] it follows that the function ‖·‖Lp(m) = (ϕ◦‖·‖)1/p

is Fréchet differentiable at every f ∈ Lp(m) \ {0}. �

Remark 2.4. According to Šmulyan Lemma (see e.g. [14, Corollary 7.22]) it follows that if
X is Gâteaux smooth then for a given f ∈ SLp(m) there exists a unique norm one functional
x∗f ∈ X∗ such that x∗f (ϕ(f)) = 1, and moreover, x∗f = ‖ · ‖′(ϕ(f)). Therefore, from (6) it
follows that if f, h ∈ SLp(m), then

‖ · ‖′Lp(m)(f)(h) = p−1〈x∗f , ϕ′(f)(h)〉 =

∫
Ω

sign(f)|f |p−1h d〈m,x∗f〉.

As a consequence of Theorem 2.1, we obtain a positive answer to the second question
posed at the end of [4]. Recall that for a given vector measure (not necessarily positive)
m : Σ→ X, the formula

m0(A) = χA, A ∈ Σ,

defines another (countably additive) positive vector measure, m0 : Σ → L1(m). It is well-
known (see e.g. [23, Proposition 3.28 (i), Proposition 3.30]) that Lp(m) is isometrically
isomorphic to Lp(m0). Therefore, we obtain the following result, which improves [4, Corollary
3.1] since in this case we do not need the assumption that L1(m) has the Fatou property.

Corollary 2.5. Let X be a Banach space, m : Σ→ X be a vector measure and 1 < p <∞.
If the space L1(m) is Gâteaux smooth (Fréchet smooth), then so is Lp(m).

Notice that, there exist non-trivial examples of spaces L1(m) with good properties of
smoothness. For instance, consider, for each 1 < r < ∞, the positive vector measure mr :
Σ→ Lr([0, 1]) given by

mr(A) = χA, A ∈ Σ.

Since L1(mr) is isometrically isomorphic to Lr([0, 1]), and this space is Fréchet smooth, so
is L1(mr). However, we want to point out that our result gives new examples. This is for
instance the case of the following space related with the measure associated to the Volterra
operator.
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Example 2.6. Consider, for 1 ≤ r < ∞, the Volterra integral operator Vr : Lr([0, 1]) →
Lr([0, 1]) defined by means of the formula

(7) Vr(f)(t) =

∫ t

0

f(u)du, f ∈ Lr([0, 1]), t ∈ [0, 1].

Hence, the Volterra measure of order r is the Lr([0, 1])-valued vector measure defined on
B([0, 1]), the Borel σ-algebra in [0, 1] associated to the Volterra operator which is given by

(8) νr(A) = Vr(χA) =

∫ t

0

χA(u)du, A ∈ B([0, 1]).

The corresponding space Lp(νr) is nowadays well-known (see for instance [23, Example 3.10]).
In particular in [23, Example 3.26], it is shown that, for 1 < r <∞,

Lr([0, 1]) ⊆ L1([0, 1]) ⊆ L1(
∣∣νr∣∣) ⊆ L1(νr) ⊆ L1(ν1),

with all inclusion being strict. For 1 < p, r <∞ the space Lp(νr) is Fréchet smooth.

3. Uniform smoothness of Lp(m)

In this section, we establish the analogue of Theorem 2.1 for the properties of uniformly
Gâteaux and uniformly Fréchet smoothness. Unfortunately, we have not been able to obtain
the first case in full generality. In this case we restrict ourselves to positive vector measures
with values in an order continuous Banach function space. The result concerning uniform
Fréchet smoothness can be achieved easily using the Šmulyan characterization of this pro-
perty (see e.g. [14, Fact 9.7]).

Theorem 3.1. Let X be a Banach lattice, m : Σ → X be a positive vector measure and
1 < p <∞. If the norm of X is uniformly Fréchet smooth, then so is the norm ‖ · ‖Lp(m) on
Lp(m).

Proof. Thanks to Theorem 2.1, the norm ‖ · ‖Lp(m) is Fréchet smooth, and bearing in mind
the corresponding formula for the derivative (Remark 2.4), for every f, h ∈ SLp(m) we have

‖ · ‖′Lp(m)(f)(h) = p−1
〈
x∗f , ϕ

′(f)(h)
〉
,

where x∗f is the unique functional in SX∗ such that x∗f (ϕ(f)) = ‖ϕ(f)‖ = 1. Thus, for each
f, g, h ∈ SLp(m) we have

p
∣∣‖ · ‖′Lp(m)(f)(h)− ‖ · ‖′Lp(m)(g)(h)

∣∣ =
∣∣〈x∗f , ϕ′(f)(h)

〉
−
〈
x∗g, ϕ

′(g)(h)
〉∣∣

≤
∣∣〈x∗f , ϕ′(f)(h)− ϕ′(g)(h)

〉∣∣+
∣∣〈x∗f − x∗g, ϕ′(g)(h)

〉∣∣
≤ ‖ϕ′(f)(h)− ϕ′(g)(h)‖+ ‖x∗f − x∗g‖ · ‖ϕ′(g)(h)‖.

On the other hand, Proposition 2.2 (ii) guarantees that

‖ϕ′(f)(h)− ϕ′(g)(h)‖ ≤ Cp‖f − g‖sLp(m) and ‖ϕ′(g)(h)‖ ≤ Cp‖g‖sLp(m) = Cp,

for some constants Cp > 0 and s > 0. Consequently, for every f, g ∈ SLp(m) we have

(9)
∣∣‖ · ‖′Lp(m)(f)− ‖ · ‖′Lp(m)(g)

∣∣ ≤ p−1Cp
(
‖f − g‖sLp(m) + ‖x∗f − x∗g‖

)
.

Now, let (fn) and (gn) be two sequences in SLp(m) such that ‖fn − gn‖Lp(m) → 0. Since,
by Proposition 2.2 (iii), the mapping ϕ is 2p-Lipschitzian on the unit ball of Lp(m) we get
‖ϕ(fn)−ϕ(gn)‖ −→ 0. On the other hand, as the norm ‖·‖ onX is uniformly Fréchet smooth,
according to Šmulyan Lemma it follows that the mapping SX 3 x 7−→ ‖ · ‖′(x) ∈ SX∗ is
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norm-to-norm uniformly continuous, and thus, ‖x∗fn − x
∗
gn‖ −→ 0. Applying inequality (9),

with f := fn and g := gn, we obtain∣∣‖ · ‖′Lp(m)(fn)− ‖ · ‖′Lp(m)(gn)
∣∣−→ 0,

and a new appeal to Šmulyan Lemma yields that the norm ‖ · ‖Lp(m) is uniformly Fréchet
smooth. �

As a consequence of Theorem 3.1, we obtain the following uniformly Fréchet counterpart
of Corollary 2.5.

Corollary 3.2. Let X be a Banach space, m : Σ→ X be a vector measure and 1 < p <∞.
If the space L1(m) is uniformly Fréchet smooth, then so is Lp(m).

Another consequence of Theorem 3.1, the former corollary, and the fact that super-
reflexivity is equivalent to the existence of an equivalent uniformly Fréchet smooth renorming,
is the following result.

Corollary 3.3. Let X be a Banach lattice, m : Σ → X be a positive vector measure and
1 < p <∞. If either X or L1(m) is super-reflexive, then so is the space Lp(m).

Now, we present an application of the former result (see [4, Example 7]).

Example 3.4. Let µ the Lebesgue measure on [0, 1] and let (Ai)i≥1 be a sequence of pairwise
disjoint measurable subsets of [0, 1]. Define the positive `2-valued vector measure m : Σ→ `2

given by
m(A) =

∑
i≥1

µ(A ∩ Ai)ei, A ∈ Σ,

where (ei) is the usual canonical basis of `2. It is easy to check that ν := |〈m,x∗0〉|, where
x∗0 := (2−i/2)i≥1 ∈ `2 is a Rybakov control measure for m. Since in this case X = `2 then for
1 < p <∞, the space

Lp(m) =

{
f ∈ L0(ν) :

∑
i≥1

( ∫
Ai

|f |pdµ
)2
<∞

}
=
⊕

2p

Lp(µ|Ai
),

is super-reflexive.

Remark 3.5. The space L1(m) is not necessarily super-reflexive, even if the Banach lattice
X where the measure m takes its values is super-reflexive. Indeed, if m is the Lebesgue
measure of [0, 1], then X = R while L1(m) = L1([0, 1]), and this space is not even reflexive.
Our results also apply to the case of the vector measure νr associated to the Volterra operator
introduced above. More concretely, if 1 < r <∞ then the space L1(νr) is not reflexive ([23,
Example 3.26(iv)]).

We end this section with the case of uniformly Gâteaux smoothness. The argument em-
ployed in Theorem 3.1 does not seem to work now. As we said before we restrict ourselves
to positive vector measures with values in an order continuous Banach function space.

Theorem 3.6. Let E(µ) be an order continuous Banach function space over a finite measure
space (Ω,Σ, µ), m : Σ → E(µ) a positive vector measure and 1 < p < ∞. If the norm of
E(µ) is uniformly Gâteaux smooth, then so is the norm ‖ · ‖Lp(m) on Lp(m).
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The proof in this case relies on the following lemma, which provides a characterization of
the uniform Gâteaux smoothness for the class of order continuous Banach function spaces.
In order to simplify the notation, since our space E(µ) will be Gâteaux smooth, for each
x ∈ SE(µ) let us denote by x∗ the derivative ‖ · ‖′(x) (that is, x∗ is the unique norm one
functional in E(µ)∗ norming the vector x).

Lemma 3.7. Let E(µ) be an order continuous Banach function space over a finite measure
space (Ω,Σ, µ). Then, E(µ) is uniformly Gâteaux smooth if, and only if, E(µ) is Gâteaux
smooth and for every x ∈ SE(µ) and every ε > 0, there is δ > 0 such that∣∣〈|x∗1 − x∗2|, x〉∣∣ < ε whenever x1, x2 ∈ SE(µ) and ‖x1 − x2‖ < δ.

The proof of this lemma is based on the fact that if the space E(µ) is order continuous,
then the (topological) dual space E(µ)∗ coincides isometrically with the Köthe dual space
E(µ)′, which can be identified with the set of functionals defined by integrals given by a
function (see [23, Proposition 2.16, Remark 3.8] and the references therein), and a Šmulyan
type criterion for uniformly Gâteaux smoothness (see e.g. [15, Lemma 2.5]), which ensures
that a Banach space X is uniformly Gâteaux smooth if, and only if, X is Gâteaux smooth
and for every h ∈ BX , the mapping SX 3 x 7−→ ‖ · ‖′(x)(h) ∈ R is uniformly continuous.

Proof of Lemma 3.7. Only the left-to-right implication needs a proof. So, suppose that E(µ)
is uniformly Gâteaux smooth and fix x ∈ SE(µ) and ε > 0. Then there is a δ > 0 such that∣∣〈x∗1 − x∗2, x〉∣∣ < ε,

for all pairs x1, x2 ∈ E(µ) satisfying that ‖x1 − x2‖ < δ (recall that, for i = 1, 2, the
functionals x∗i are identified with the derivatives ‖·‖′(xi)). Pick any two vectors x1, x2 ∈ E(µ)
with ‖x1−x2‖ < δ. Since the space E(µ) is order continuous, the topological dual space E(µ)∗

can be identified with the Köthe dual, E(µ)′. More concretely the functionals x∗1, x∗2 ∈ E(µ)∗

are associated with two (Σ-measurable) functions g1, g2 ∈ E(µ)′ by means of the formula

〈x∗i , x〉 =

∫
Ω

x · gi dµ, x ∈ E(µ), i = 1, 2.

With this notation let A := {w ∈ Ω : (g1 − g2)(w) ≥ 0} ∈ Σ, and write Ac = Ω \ A and
Θ := χA − χAc . Since

∣∣(x1 − x2)Θ
∣∣ =

∣∣x1 − x2

∣∣, it is clear that∥∥(x1 − x2)Θ
∥∥ = ‖x1 − x2‖.

Now, for every y ∈ SE(µ) we denote by g the function in E(µ)′ which is identified with y∗ (the
unique norm-one functional in E(µ)∗ norming y). Then by using again the order continuity
of E(µ) one obtains that

〈y∗, y〉 =

∫
Ω

y · g dµ =

∫
Ω

Θy ·Θg dµ.

In other words, the functional (Θy)∗ ∈ E(µ)∗ is identified with the function Θg ∈ E(µ)′.
Finally, using the uniform Gâteaux smoothness of E(µ) with the pair of vectors x̂i = Θxi

(i = 1, 2), that satisfy ‖x̂1 − x̂2‖ < δ, we get

ε >
∣∣〈x̂∗1 − x̂∗2, x〉∣∣ =

∣∣〈(Θx1 −Θx2)∗, x〉
∣∣ =

∣∣∣∣∫
Ω

x · (Θg1 −Θg2) dµ

∣∣∣∣
=

∣∣∣∣∫
Ω

x · |g1 − g2| dµ
∣∣∣∣ =

∣∣〈|x∗1 − x∗2|, x〉∣∣,
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as we wanted to show. �

Proof of Theorem 3.6. Since E(µ) is uniformly Gâteaux smooth it is, in particular, Gâteaux
smooth, and Theorem 2.1 ensures that the space Lp(m) is Gâteaux smooth. Therefore we
only have to prove that for every h ∈ SLp(m), the function SLp(m) 3 f 7−→ ‖·‖′Lp(m)(f)(h) ∈ R,
is uniformly continuous. For each function f ∈ SLp(m) we denote by x∗f the unique norm-one
functional in E(µ)∗ norming the vector ϕ(f) =

∫
Ω
|f |pdm ∈ E(µ). Bearing in mind Remark

2.4 we have∣∣‖ · ‖′Lp(m)(f)(h)− ‖ · ‖′Lp(m)(g)(h)
∣∣ = p−1

∣∣〈x∗f , ϕ′(f)(h)〉 − 〈x∗g, ϕ′(g)(h)〉
∣∣(10)

≤ p−1
(
|〈x∗f − x∗g, ϕ′(f)(h)〉|+ |〈x∗g, ϕ′(f)(h)− ϕ′(g)(h)〉|

)
.

Fix ε > 0 and h ∈ SLp(m). Using Proposition 2.2 (ii) we find a constant Cp > 0 such that

(11)
∣∣〈x∗g, ϕ′(f)(h)− ϕ′(g)(h)

〉∣∣ ≤ ∥∥ϕ′(f)(h)− ϕ′(g)(h)
∥∥ ≤ Cp

∥∥f − g∥∥s
Lp(m)

,

for some s ∈ {1, p − 1} and all f, g ∈ BLp(m). On the other hand, since E(µ) is uniformly
Gâteaux smooth, by using the previous lemma we have that, for the fixed element y =
ϕ(h) ∈ E(µ), there is a δ1 > 0 such that, if x1, x2 ∈ SE(µ) satisfy the inequality ‖x1 − x2‖ <
δ1, then the corresponding norm-one functionals x∗1, x∗2 attaining their norms, satisfy that∣∣〈|x∗1 − x∗2|, ϕ(h)〉

∣∣ = 〈|x∗1 − x∗2|, ϕ(h)〉 < (ε/2)p. Let us take δ > 0 such that

0 < δ ≤ min

{(
pε

2Cp

)1/s

,
δ1

2p

}
.(12)

Fix f, g ∈ SLp(m) such that ‖f−g‖Lp(m) < δ, and let x1 = ϕ(f) ∈ E(µ) and x2 = ϕ(g) ∈ E(µ).
Using Proposition 2.2 (iii) we get∥∥x1 − x2

∥∥ =
∥∥ϕ(f)− ϕ(g)

∥∥ ≤ 2p
∥∥f − g∥∥

Lp(m)
< δ1.

Therefore, if we denote by x∗f and x∗g the norm-one functionals norming respectively x1 =
ϕ(f) and x2 = ϕ(g), because of Lemma 3.7 we get

(13)
〈
|x∗f − x∗g|, ϕ(h)

〉
<
(
ε/21+1/p′

)p
.

Hence using the positivity of the measure m and taking into account that |f |p−1 ∈ SLp′ (m),
as an application of Hólder’s inequality and (13) we obtain∣∣〈x∗f − x∗g, ϕ′(f)(h)

〉∣∣ =

∣∣∣∣〈p ∫
Ω

sign(f)|f |p−1h dm,x∗f − x∗g
〉∣∣∣∣(14)

≤ p

∫
Ω

|f |p−1|h| d〈m, |x∗f − x∗g|〉

≤ p
∥∥x∗f − x∗g∥∥1/p′

(∫
Ω

|h|p d〈m, |x∗f − x∗g|〉
)1/p

= p
∥∥x∗f − x∗g∥∥1/p′(〈|x∗f − x∗g|, ϕ(h)〉

)1/p

≤ p 21/p′
(
〈|x∗f − x∗g|, ϕ(h)〉

)1/p
< p ε/2.

Finally, putting (14) and (11) in (10) and bearing in mind (12) we have∣∣‖ · ‖′Lp(m)(f)(h)− ‖ · ‖′Lp(m)(g)(h)
∣∣ ≤ 1

p

(
p
ε

2
+ Cpδ

s

)
≤ ε.
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The proof is done. �

Now, we establish the uniformly Gâteaux smooth counterpart of Corollaries 2.5 and 3.2.
Although in Theorem 3.6, the measure m must take values in an order continuous Banach
function space, we do not require such assumption now. The reason is that L1(m) is always an
order continuous Banach function space (see [23, Proposition 3.28]) over a Rybakov measure
for m.

Corollary 3.8. Let X be a Banach space, m : Σ→ X be a vector measure and 1 < p <∞.
If L1(m) is uniformly Gâteaux smooth, then so is the space Lp(m).

As a combination of the previous results we obtain the following corollaries.

Corollary 3.9. Let E(µ) be an order continuous Banach function space over a finite measure
space (Ω,Σ, µ), m : Σ → E(µ) be a positive vector measure and 1 < p < ∞. If E(µ) is
simulteanously Fréchet and uniformly Gâteaux smooth, then so is the space Lp(m).

Corollary 3.10. Let X be a Banach space, m : Σ→ X be a vector measure and 1 < p <∞.
If L1(m) is simulteanously Fréchet and uniformly Gâteaux smooth, then so is the space Lp(m).

4. Applications

In this final section we apply our results in order to obtain some examples in the setting of
the well-known Bishop-Phelps-Bollobás property and its corresponding bilinear form version.
In [6], Bishop and Phelps proved that the set of norm-attaining functionals on a Banach
space is dense in its dual space. Some years later, Bollobás [7] gave a quantitate version of
this theorem, known now as the Bishop-Phelps-Bollobás theorem. In [1], the corresponding
version for operators was studied. In particular, it was shown there that the version of the
theorem fails in general when we pass from functionals to operators, and hence the Bishop-
Phelps-Bollobás property (BPBP for short) was introduced. More recently, the corresponding
version for bilinear forms has been studied in [9] and [3]. Recall that a couple (X, Y ) of Banach
spaces satisfies the Bishop-Phelps-Bollobás property for operators (BPBP for operators, for
short) if, for each ε > 0 there exist η(ε) > 0 and β(ε) > 0 with lim

t→0
β(t) = 0 such that

for every operator T ∈ SL(X,Y ), if x0 ∈ SX is such that ‖Tx0‖ > 1 − η(ε), then there exist
u0 ∈ SX and S ∈ SL(X,Y ) satisfying

‖S(u0)‖ = 1, ‖u0 − x0‖ < β(ε), and ‖S − T‖ < ε.

Analogously, the pair (X, Y ) enjoys the Bishop-Phelps-Bollobás property for bilinear forms
(BPBP for bilinear forms, for short) if, for each ε > 0 there exist η(ε) > 0 and β(ε) > 0 with
lim
t→0

β(t) = 0 such that for every bounded bilinear form A ∈ SL2(X×Y ), if (x0, y0) ∈ SX × SY
is such that |A(x0, y0)| > 1 − η(ε), then there exist (u0, v0) ∈ SX × SY and B ∈ SL(X×Y )

satisfying

|B(u0, v0)| = 1, max{‖u0 − x0‖, ‖v0 − y0‖} < β(ε), and ‖S − T‖ < ε.

We start with the case of BPBP for bilinear forms. In [3, Theorem 2.2]), it is shown
that if X is a uniforly convex Banach space, then for every Banach space Y , the couple
(X, Y ) enjoys this property. Tnus, if X is any Banach space, m : Σ→ X is a vector measure
and 1 < p < ∞, then the pairs (`p, Lq(m)) and (Lp(µ), Lq(m)) have the BPBP for bilinear
forms for 1 ≤ q < ∞. Now, we address our attention to the case p = 1. In [3], it is proved
that for a given Banach space Y , the pair (`1, Y ) has the BPBP for bilinear forms if, and
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only if, the pair (Y, Y ∗) satisfies an isometric property, called the apprximamate hyperplane
series property (AHSP), and that this property is fulfilled if the Banach space Y is uniformly
Fréchet smooth. Therefore, Theorem 3.1 yield the following corollaries.

Corollary 4.1. Let X be a Banach lattice, m : Σ → X be a positive vector measure and
1 < q < ∞. If the norm of X is uniformly Fréchet smooth, then (`1, Lq(m)) has the BPBP
for bilinear forms.

Corollary 4.2. Let X be a Banach space, m : Σ→ X be a vector measure and 1 < q <∞. If
the norm of L1(m) is uniformly Fréchet smooth, then (`1, Lq(m)) has the BPBP for bilinear
forms.

For the case of the pair (L1(µ), Y ) —where µ is a σ-finite scalar measure—, a similar
result is obtained in [2], but in the setting of Asplund spaces. More concretely, it is proved
there that if Y is an Asplund space, then the pair (L1(µ), Y ) has the BPBP for bilinear forms
if, and only if, the pair (Y, Y ∗) has the AHSP. Since the presence of an equivalent Fréchet
smooth renorming implies Asplundness we have the following results.

Corollary 4.3. Let X be a Banach lattice, m : Σ → X be a positive vector measure and
1 < q < ∞. If the norm of X is uniformly Fréchet smooth, then (L1(µ), Lq(m)) has the
BPBP for bilinear forms.

Corollary 4.4. Let X be a Banach space, m : Σ→ X be a vector measure and 1 < q <∞.
If the norm of L1(m) is uniformly Fréchet smooth, then (L1(µ), Lq(m)) has the BPBP for
bilinear forms.

These results can be extended to the general vector measure setting. Indeed, since the
dual space X∗ is uniformly convex if the space X is uniformly Fréchet smooth, we get

Corollary 4.5. Let X1 be a uniformly Fréchet smooth Banach lattice, m1 : Σ1 → X1 be
a positive vector measure, X2 be a Banach space, m2 : Σ2 → X2 be a vector measure, and
1 < pi <∞ for i = 1, 2. Then (Lp1(m1)∗, Lp2(m2)) has the BPBP for bilinear forms.

Corollary 4.6. For i = 1, 2 let Xi be Banach spaces, mi : Σi → Xi be vector measures and
1 < pi < ∞. If the norm of L1(m1) is uniformly Fréchet smooth, then (Lp1(m1)∗, Lp2(m2))
has the BPBP for bilinear forms.

Remark 4.7. (i) The space X2 does not need to be uniformly Fréchet smooth. (ii) Since
the pair (L1(µ), L1(µ)∗) does not have the AHSP (see [3, Proposition 4.8]) then (`1, L1(µ))
does not have the BPBP for bilinear forms. Hence, the result cannot be extended for pi = 1
(i = 1, 2). (iii) For 1 < p1 < ∞ and p2 = 1 the result is also true. (iv) Finally, for p1 = 1
and 1 < p2 <∞ we do not know if the result is true.

The counterpart of the previous corollaries for the BPBP case is now a direct consequence
of the natural identification of the space of bounded bilinear forms defined on X × Y with
the space of bounded linear maps from X into Y ∗. Indeed, this identification means that if
the pair (X, Y ) has the BPBP for bilinear forms then the pair (X, Y ∗) has the corresponding
BPBP (now for operators).Therefore:

Corollary 4.8. Let X be a Banach lattice, m : Σ→ X be a positive vector measure and 1 <
q <∞. If the norm of X is uniformly Fréchet smooth, then (`1, Lq(m)) and (L1(µ), Lq(m))
have the BPBP for bilinear forms.
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Corollary 4.9. Let X be a Banach space, m : Σ→ X be a vector measure and 1 < q <∞.
If the norm of L1(m) is uniformly Fréchet smooth, then (`1, Lq(m)) and (L1(µ), Lq(m)) have
the BPBP for bilinear forms.

And also the corresponding vector valued case:

Corollary 4.10. Let X1 be a uniformly Fréchet smooth Banach lattice, m1 : Σ1 → X1 a
positive vector measure, X2 a Banach space, m2 : Σ2 → X2 a vector measure, and 1 < pi <∞
for i = 1, 2. Then (Lp1(m1)∗, Lp2(m2)∗) has the BPBP.

Corollary 4.11. For i = 1, 2 let Xi be Banach spaces, mi : Σi → Xi vector measures and
1 < pi < ∞. If the norm of L1(m1) is uniformly Fréchet smooth then (Lp1(m1)∗, Lp2(m2)∗)
has the BPBP.

Some other results can be obtained. Namely, since the pairs (c0, Y ), (C(K), Y ) —being
K a compact Hausdorff topological space— and (L∞(µ), Y ) have the BPBP for all uniformly
convex Banach space Y (see [18, 19]), we have

Corollary 4.12. Let X be a Banach lattice (resp. a Banach space) , Y a Banach space,
m : Σ → X a positive vector measure (resp. a vector measure) and 1 < p < ∞. If the
norm of X (resp. L1(m)) is uniformly Fréchet smooth, then (c0, L

p(m)∗), (C(K), Lp(m)∗)
and (L∞(µ), Lp(m)∗) have the BPBP.

In a similar way, since for the Asplund case one has that both (X,A) —being A a uniform
algebra— and (X,C0(L)) —where L is a locally compact Hausdorff topological space—, have
the BPBP (see [5, 8]), we obtain

Corollary 4.13. Let X be a Banach lattice (resp. a Banach space) , Y a Banach space,
m : Σ→ X a positive vector measure (resp. a vector measure) and 1 < p <∞. If the norm
of X (resp. L1(m)) is uniformly Fréchet smooth, then (Lp(m),A) and (Lp(m), C0(L)) have
the BPBP.

Of course, some examples given in this work recover very well-known examples of pairs
of Banach spaces having the BPBP (both for operators and for bilinear forms). This is, for
instance , the classical case of (`q, L

p(µ)) where µ is a scalar σ-finite measure and 1 < p <∞
or, even (`q,

⊕
2p L

p(µ|Ai
)) (see Example 3.4) in both cases for 1 ≤ q <∞ (and also replacing

`q for the corresponding Lq(ν)). However, for 1 < r, p <∞, the space Lp(νr) associated to
the Volterra operator given in Example 2.6 gives us some new results. We finish this paper
with a short list of examples of pairs of spaces having the BPBP (both for operators and for
bilinear forms).

Example 4.14. (i) The pairs (`q, Lp(νr)) and (Lq(µ), Lp(νr)) have the BPBP for bilin-
ear forms.

(ii) The pairs (Lp(νr)
∗, Lq(m)) and (Lp(νr)

∗, Lq(m)∗) have the BPBP for bilinear forms
for all vector measure m.

(iii) The pairs (`q, Lp(νr)
∗), (Lq(µ), Lp(νr)

∗), (c0, L
p(νr)

∗), (C(K), Lp(νr)
∗) and

(L∞(µ), Lp(νr)
∗) have the BPBP.

(iv) The pairs (Lp(νr), C0(L)), (Lp(νr),A), (Lp(νr), C0(L)) and (Lp(νr),A) have the BPBP.
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