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1 Introduction

Since the beginning of the 21st century many authors have become interested in
the study of linearity within non linear settings or, in other words, the search for
linear structures of mathematical objects enjoying certain special or unexpected
properties. Vector spaces and linear algebras are elegant mathematical structures
which, at first glance, seem to be “forbidden” to families of “strange” objects.
In other words, take a function with some special or (as sometimes it is called)
“pathological” property (for example, the classical nowhere differentiable function,
also known as Weierstrass’ monster). Coming up with a concrete example of such
a function might be difficult. In fact, it may seem so difficult that if you succeed,
you think that there cannot be too many functions of that kind. Probably one
cannot find infinite dimensional vector spaces or infinitely generated algebras of
such functions. This is, however, exactly what has been happening in the last years
in many fields of mathematics, from Linear Chaos to Real and Complex Analysis
[6,2,15], passing through Set Theory [17] and Linear and Multilinear Algebra, or
even Operator Theory [9,11], Topology, Measure Theory [6,5,13], and Abstract
Algebra.

Recall that, as it nowadays is common terminology, a subset M of a topological
vector space X is called lineable (respectively, spaceable) in X if there exists an
infinite dimensional linear space (respectively, infinite dimensional closed linear
space) Y ⊂M ∪ {0}. Moreover, given an algebra A, a subset B ⊂ A is said to be
algebrable if there is a subalgebra C of A such that C ⊂ B∪{0} and the cardinality
of any generator of C is infinite (see, e.g., [2,7,3]).

As we mentioned above, there have recently been many results regarding the
linear structure of certain special subsets. One of the earliest results in this direction
was provided by Gurariy, who showed that the set of Weierstrass’ monsters is
lineable [18]. Also, and more recently, Enflo et al. [15] proved that, for every
infinite dimensional closed subspace X of C[0, 1], the set of functions in X having
infinitely many zeros in [0, 1] is spaceable in X (see, also, [12,16]). A vast literature
on this topic have been built during the last decade, and we refer the interested
reader to the survey paper [7] or, for a much detailed and thorough study, to the
forthcoming monograph [3].

In this paper, we relate for the first time, the topic of lineability with Prob-
ability Theory and Stochastic Processes. However one needs to be careful when
trying to find linear structures within certain sets of objects in this setting. Indeed,
the set of probability density functions cannot contain any linear space since any
non-trivial multiple of one already fails to be a probability density function or, in
a deeper level, if we had two martingales {Xn}n, {Yn}n, with their correspond-
ing filtrations {Fn}n and {Gn}n, the sequence of random variables {Xn + Yn}n
is not, in general, a martingale unless we had a “universal” filtration that would
comply with both simultaneously. Nevertheless, we shall consider some classical
(counter)examples in probability theory and study up to what level it is possible
to obtain lineability-related results. In this paper we shall consider lineability and
algebrability problems related to the following concepts:

i) Convergent martingales that are not L1 bounded,
ii) pointwise convergence of random variables,
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iii) stochastic processes being L2 bounded, converging in L2, and not converging
for any point off a null set, and

iv) zero-mean sequences of mutually independent random variables with divergent
sample mean.

v) unbounded random variables with finite expected value.

2 Preliminaries and notation

In this section, we recall some results that will be needed throughout the paper
(for more details see, e.g., [10]).

Let Ω be a non-empty space and let F be a σ-algebra over Ω. We say that
the pair (Ω,F) is a probabilizable (measurable) space. Given (Ω,F), a filtration
of σ-algebras of F is an increasing sequence of σ-algebras, such that Fn ⊂ F for
every n ∈ N.

Adding a function µ : F → [0, 1], we say that the triplet (Ω,F , P ) is a prob-
ability space. A random variable X on (Ω,F , P ) is a real-valued function defined
on Ω, such that for every open subset B ⊂ R we have X−1(B) ∈ F . The expected
value of the random variable X, namely E(X), is computed as

E[X] =

∫
Ω

XdP. (1)

A collection of random variables indexed by a totally ordered set, representing
the evolution of some system of random variables is said to be a stochastic process.

We now introduce the notion of a conditional expectation of a random variable
X.

Definition 1 Let (Ω,F , P ) be a probability space, let X be a random variable
on this probability space, and let H ⊆ F be a sub-σ-algebra of F . The conditional
expectation of X, denoted as E[X | H], is any H-measurable function Ω → R
which satisfies ∫

H

E[X | H] dP =

∫
H

X dP for every H ∈ H. (2)

A sequence of random variables {Xn}n defined on (Ω,F , µ) is said to be a
Markov chain if for every n ≥ 1, the variable Xn+1 only depends upon the state
of Xn. Given a sequence of random variables {Xn}n∈N and a filtration {Fn}n∈N
of σ-algebras of F , we say that {Xn}n∈N is a martingale if Xn is integrable and
E[Xn+1|Fn] = Xn almost surely (a.s. from now one) for all n ∈ N.

Finally, let us recall the following definition that will be necessary in order to
introduce the notion of a martingale indexed by a directed set (see, e.g., [14]).

Definition 2 (directed set) A directed set is a nonempty set D with a relation
∼R such that:

i) a ∼R a for every a ∈ D.
ii) If a, b, c ∈ D such that a ∼R b and b ∼R c, then a ∼R c.
iii) If a, b ∈ D then there exists c ∈ D with a ∼R c and b ∼R c.

We point out that a ∼R b is (usually) denoted by a ≤ b.
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Let D be a directed set and let {Xd : d ∈ D} be an indexed family of random
variables. Let {Fd : d ∈ D} be a family of σ-algebras such that for d1 ≤ d2, we
have Fd1 ⊂ Fd2 . We also say that {Xd} is a martingale indexed by a directed set
D if for every d ∈ D we have E[|Xd|] < ∞, Xd is Fd-measurable, and for every
d1 ≤ d2 we have E[Xd2 |Fd1 ] = Xd1 almost surely.

3 Lineability of special sequences of random variables

The motivation for our first result is the fact that many martingale convergence
theorems require the martingale to be L1-bounded (for instance, in the famous
Doob’s martingale convergence theorems or in Lévy’s zero–one law, [10]). However,
this condition (although sufficient) is not necessary. Indeed, there is a classical and
well known example due to Ash (see [4], or [21, Example 9.15] for a more modern
reference), in which (briefly) the author constructed a martingale via a Markov
chain {Xn : n ∈ N}, properly defined on a probability space (Ω,F , P ), such that

(Xn)n converges for every ω ∈ Ω, and with E[|Xn|]
n→∞−→ ∞.

Here, and although (as we mentioned in the Introduction) one cannot consider
lineability within martingales, we shall show that one can construct an infinite
dimensional vector space every non-zero element of which, {Xn : n ∈ N}, is a

sequence of convergent random variables with E[|Xn|]
n→∞−→ ∞. That is, the main

tool in Ash’s example is, actually, “not as uncommon” as one might expect. The
proof is a little bit technical, although constructive.

Theorem 1 The set of convergent sequences of random variables {Xn : n ∈ N}
with E[|Xn|]

n→∞−→ ∞ is lineable.

Proof First let us denote by S = {sj}j∈N the (increasing) sequence of odd prime
numbers. Next, for every s ∈ S we consider the Markov chain defined as follows.

Let X
(s)
1 = 0. Also, if X

(s)
n = 0 let

X
(s)
n+1 =


sn+1 · (n+ 1)s with probability 1/sn+1,
−sn+1 · (n+ 1)s with probability 1/sn+1,
0 with probability 1− 2/sn+1,

(3)

and, if X
(s)
n 6= 0, we let X

(s)
n+1 = X

(s)
n . Notice that, if X

(s)
n 6= 0, then X

(s)
j =

X
(s)
n for every j ≥ n. Let us consider A = {ω : X

(s)
n (ω) 6= 0 for some n ∈ N}.

If ω ∈ A, then X
(s)
j (ω) = X

(s)
n (ω) for every j ≥ n. In contrast, if ω ∈ Ω \ A then

X
(s)
n+1 is defined following equation (3). Moreover, note that for every n ∈ N,

E
[
X

(s)
n+1|X

(s)
n = 0

]
= (sn+1·(n+1)s)· 1

sn+1
−(sn+1·(n+1)s)· 1

sn+1
+0·(1− 2

sn+1
) = 0,

(4)

E
[
X

(s)
n+1|X

(s)
n = sn+1 · (n+ 1)s

]
= sn+1 · (n+ 1)s, and (5)

E
[
X

(s)
n+1|X

(s)
n = −sn+1 · (n+ 1)s

]
= −sn+1 · (n+ 1)s. (6)
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Therefore, for every s ∈ S, the Markov chain {X(s)
n : n ∈ N} is a martingale

respect on the natural filtration, that is, Fn = σ(X1, · · · , Xn)1 for all n. Further-
more, given s ∈ S, and assuming all of the above random variables are properly

defined on a probability space (Ω,F , P ), we have that either X
(s)
n (ω) = 0 for every

n ∈ N or even in the case that there is some m ∈ N such that X
(s)
n 6= 0 for all

n ≥ m, we can conclude that {X(s)
n }n is a convergent sequence on (Ω,F , P ).

Before carrying on with the main construction, let us recall that it can be

assumed, without loss of generality, that the set {X(s)
n : s ∈ S} is linearly in-

dependent, just taking, for instance, disjoint supports in the construction of the
random variables.

Our aim now is to show that any non-zero element in the linear span of {X(s)
n :

s ∈ S} is convergent and not L1-bounded. The convergence is straightforward from

the fact that {X(s)
n }n converges for every ω ∈ Ω and any element in the linear

span of {X(s)
n : s ∈ S} is a finite linear combination of these random variables in

the sequence {X(s)
n }n.

We still need a couple of estimates in order to achieve our goal. For every
I ∈ F , let us define IA as the characteristic function on the set A. Let s ∈ S and
k ∈ N, we have that

X
(s)
k = X

(s)
2 · I{X(s)

2 6=0} +X
(s)
3 · I{X(s)

2 =0,X
(s)
3 6=0}+

+ X
(s)
4 · I{X(s)

2 =X
(s)
3 =0,X

(s)
4 6=0} + . . .+

+ X
(s)
k · I{X(s)

1 =...=X
(s)
k−1=0,X

(s)
k 6=0} + 0 · I{X(s)

1 =...=X
(s)
k =0},

(7)

from which we obtain that

E
[
|X(s)
k |
]

= 2a2p2 + (1− 2p2) · 2a3p3 + (1− 2p2)(1− 2p3) · 2a4p4 + . . .+

+ (1− 2p2)(1− 2p3) · . . . · (1− 2pk−1) · 2akpk,
(8)

where, for the sake of simplicity, we have denoted an := snns and pn := 1/sn.

Applying the definition of X
(s)
n , making some simple calculations, and keeping in

mind that for every j ∈ {1, . . . , k − 1}, we have 0 < 1− 2pj < 1, and

1 > (1−2p2) ≥ (1−2p2)(1−2p3) ≥ . . . ≥ (1−2p2)(1−2p3) · . . . · (1−2pk−1). (9)

As a consequence, we obtain the following lower bound for E
[
|X(s)
k |
]
:

E
[
|X(s)
k |
]
≥ 2

k−1∏
j=1

(1− 2pj)

 ·
 k∑
j=2

ajpj

 = 2

k−1∏
j=1

(
1− 2

sj

) ·
 k∑
j=2

js

 . (10)

In the previous expression, let us recall that the amount
∞∏
j=1

(
1− 2

sj

)
is known, in

Number Theory, as the q-Pochhammer symbol (also known as q-shifted factorial,
see [8]) (2; s)∞, which verifies

0 < (2; s)∞ < 1

1 By Fn = σ(X1, · · · , Xn) we mean the smallest σ-algebra in which {Xi : i ≤ n} are
measurable.
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if s > 2 (which complies with our hypotheses). We, thus, have

E[|X(s)
k |] ≥ 2

k−1∏
j=1

(
1− 2

sj

) ·
 k∑
j=2

js

 k→∞−→ 2 · (2; s)∞ · lim
k→∞

k∑
j=2

js =∞,

and
{
X

(s)
k

}
k

is not L1-bounded. However, our aim is to show that any non-zero

element in the linear span of {X(s)
n : s ∈ S} is not L1-bounded and, in order

to obtain this, we shall need another estimate for E
[
|X(s)
k |
]
. Recall that, since

(2; s)∞ ∈ (0, 1), we also have

E
[
|X(s)
k |
]
≤ Rs+1(k) := 2

k∑
j=2

js (11)

and it can be easily checked that the expression Rs+1(k) is a polynomial of degree
s+ 1 with

lim
k→∞

Rs+1(k) = +∞. (12)

Now, let Xk ∈ span
{
X

(s)
k : s ∈ S

}
, then:

Xk = α1X
(s1)
k + α2X

(s2)
k + . . .+ αmX

(sm)
k , (13)

where s1 < s2 < . . . < sm are elements from S, {αn}n ⊂ R, and (without loss of
generality) αm 6= 0. Let us now show that Xk is not L1-bounded. Indeed, using
the linearity of E[·], the reverse triangle inequality, and equations (10) and (11),
we have:

E [|Xk|] = E
[
|α1X

(s1)
k + α2X

(s2)
k + . . .+ αmX

(sm)
k |

]
≥

≥ |αm| · E
[
|X(sm)
k

]
− |α1| · E

[
|X(s1)
k

]
− . . .− |αm−1| · E[|X(sm−1)

k ] ≥

≥ |αm| · (2; sm)∞ ·Rsm+1(k)− 2|α1|
k∑
j=2

js1 − . . .− 2|αm−1|
k∑
j=2

jsm−1 =

= |αm| · (2; sm)∞ ·Rsm+1(k)− 2

m−1∑
i=1

 k∑
j=2

jsi

 k→∞−→ ∞,

(14)
since the expression 2|αm| · (2; sm)∞ ·Rsm+1(k) is a polynomial of degree sm + 1
with

lim
k→∞

Rsm+1(k) = +∞, (15)

the expression
m−1∑
i=1

 k∑
j=2

jsi

 (16)

is a polynomial of degree sm−1 + 1, and sm−1 < sm. Therefore, Xk is not L1-
bounded, and the result is proved.
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Remark 1 We recall that the previous result could certainly be stated in terms
of martingales assuming, of course, that the martingales adapted to the same
filtration form a vector space (the proof would follow the same ideas as in that of
Theorem 1).

Now, let us continue focusing on obtaining lineability-related results of certain
subsets of random variables enjoying “unexpected” properties. For instance, in
[21, Example 9.2], the authors provide (given any b > 0) a sequence of integrable
random variables {Xn}n∈N and an integrable random variable X such that Xn
converges to X pointwise and, yet, E[Xn] = −b and E[X] = b (the important
point here is that one has, under the previous hipotheses, E[Xn] 6= E[X] for every
n ∈ N). This construction can be generalized in order to construct a positive cone
(see, e.g., [1]) of such elements since, in general, linearity of elements enjoying such
properties might get lost.

Let {Xn}n∈N and {Yn}n∈N be sequences of integrable random variables con-
verging, pointwise, to the integrable random variables X,Y (respectively). Let
b, c > 0, and Xn, X, Yn, Y random variables such that E[Xn] = −b, E[X] =
b, E[Yn] = −c, E[Y ] = c . Now, let α, β ∈ R be such that αb + βc = 0, then
E[αXn + βYb] = 0 = E[αX + βY ], which does not fall into the class of examples
we are working with. Thus, the above property is “not a lineable one”. However,
one could try to find a positive cone of such objects, as it was done in [1] when
certain sets failed to be lineable (calling these sets coneable). More precisely, a
subset M of a topological vector space X is called positively coneable in X if there
exists an infinite dimensional set M such that αM ⊂M for every α > 0.

Theorem 2 Let us consider the probability space ([0, 1],B([0, 1]), λ), where λ de-
notes the Lebesgue measure. The set of sequences of integrable random variables
{Xn}n converging to an integrable random variable X such that limn→∞E[Xn] 6=
E[X] is positively coneable.

Proof For every m ∈ N, let us take B(m), C(m) > 0 and let us define the following
random variables for every ω ∈ [0, 1]

X(m)(ω) =
am

am − 1
·B(m) · I[1/am,1](ω) for every w ∈ ω ∈ [0, 1]and (17)

X(m)
n (ω) =

{
B(m) + C(m) if n ≤ am,
n · C(m) · I[1/am−1/n,1/am](ω) +X(m)(ω) if n > am,

(18)

where {am}m∈N ⊂ N is defined, recursively, as follows:

a1 = 2 and am+1 = (am + 1) · am for m > 1. (19)

This permits us to state that the set of sequences {X(m)
n : m ∈ N} are linearly

independent when seen as regular functions in R[0,1] (due to the choice of the am’s

in order to avoid major overlappings). The sequence X
(m)
n converges to X(m)

pointwisely when n tends to infinity. It can be easily seen that {X(m)
n }n is a

sequence of integrable random variables for every m ∈ N and that X(m) is an
integrable random variable, too.

Furthermore, for every n,m ∈ N we have

E[X(m)] =

∫
[0,1]

am
am − 1

·B(m) · I[1/am,1](ω)dω = B(m), (20)
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and

E[X(m)
n ] =

∫
[0,1]

X(m)(ω)+n ·C(m) ·I[1/am−1/n,1/am](ω)dω = B(m)+C(m). (21)

We then consider the positive cone given by Cn = {αX(m)
n : m ∈ N, α > 0}

where any element Yn ∈ Cn can be written as Yn =
∑k
i=1 αiX

(mi)
n , where αi > 0

and mi ∈ N for every i ∈ {1, . . . , k}. By linearity of E[·] we have

E[Yn] = E

[
k∑
i=1

αiX
(mi)
n

]
=

k∑
i=1

αiE
[
X(mi)
n

]
=

k∑
i=1

αi(B
(mi) + C(mi)), (22)

and given Y =
∑k
i=1 αiX

(mi), one obtains

E[Y ] =
k∑
i=1

αiE
[
X(mi)

]
=

k∑
i=1

αiB
(mi), (23)

which gives that, although by linearity, Yn converges pointwise to Y with E[Yn] 6=
E[Y ] (actually, and more precisely, E[Yn] > E[Y ]) for every n ∈ N.

The following result shows the algebrability of the set of unbounded random
variables with a finite expected value. The example used for the construction is
inspired in [21, Example 5.2].

Theorem 3 Let us consider the probability space (R+,B(R+), λ), where λ denotes
the Lebesgue measure. The set of unbounded random variables f : R→ R that have
a finite expected value is algebrable.

Proof Let us consider the function

T (x) :=

{
1− x if 0 ≤ x ≤ 1,

0 otherwise.
(24)

For each n ∈ N, we define:

fn(x) := nT (n3(x− n)) (25)

Each function fn is null except in the interval Jn :=
[
n, n+ 1

n3

]
. Moreover,∫

Jn

fn(x)dx =
1

2n2
. (26)

and then, the random variable defined as

X(x) :=
∞∑
n=1

fn(x) (27)

has an expected value E[X] = π2

12 .
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Let us consider a Cantor set on the unit interval obtained as C = ∪∞n=1In,
where I0 = [0, 1] and In is obtained from In−1 removing the inner third of each of
its subintervals. Let us define Ln := Jn ∩ (n+ In). Then, we have∫

Ln

fn(x)dx =
1

2n2

(
2

3

)n
for every n ∈ N. (28)

Let {αl}l∈Λ be a non-numerable set of irrational numbers on (0, 1) which are
not Q linearly dependent, then for every α ∈ {αl}l∈Λ we define the functions:

X(α)
n (x) =

{
fn(x− α) if x ∈ α+ Ln,

0 elsewhere.
(29)

and then, we consider the random variable

Xα(x) :=
∞∑
n=1

Xα
n (x)dx. (30)

Consider the algebra generated by these functions A({Xα}α∈Λ). It is clear that
for every α ∈ {αl}l∈Λ the random variable Xα has a finite expected value and it
is an unbounded random variable. Besides, this algebra is uncountably generated.

Given an arbitrary function

X(x) :=

m0∑
m=1

λmXαm(x), with αm ∈ Λ, λm ∈ K for all m ∈ N. (31)

On the one hand, these random variables are unbounded, too. Indeed, let αmin :=
min{αm : 1 ≤ m ≤ m0} and we get X(n+ αmin) = n. Additionally, this random
variable has a finite expected value as well.

Remark 2 Let us recall that, in the previous result, the unboundedness holds out-
side every interval of finite length, which adds an extra pathology to the considered
property.

For the final part of this paper, let us recall the work [20] (see, also, [21,
Example 9.17]), in which Walsh provided an example of a martingale (indexed
by a directed set) that is L2 bounded and converging in L2 and that, also, does
not converge for any point off a null set. Our aim here shall be to generalize this
example in order to build an infinite dimensional linear space such that every
non zero element of which is a martingale enjoying the previous property. Before
starting its proof, we need to recall the following lemma (due to Muñoz, Palmberg,
Puglisi, and the second author), which is a particular case of [19, Theorem 3.5].
In what follows (`p, ‖ · ‖p) denotes the Banach space of real valued sequences with
the usual p-norm.

Lemma 1 The set `2 \ `1 is lineable.

Theorem 4 The set of stochastic processes that are L2 bounded, converging in
L2 and that, also, do not converge for any point of a null set, is lineable.



10 J.A. Conejero, M. Fenoy, M. Murillo-Arcila, and J.B. Seoane-Sepúlveda

Proof By lemma 1, let V be any (countably generated) linear space contained in

(`2 \ `1) ∪ {0} and let
{
{h(m)
n }n : m ∈ N

}
be a basis for V . For instance, and in

order to be more clear in the coming construction, we can take (see [19, Theorem
3.5])

V = span

{
h(m)
n :=

{
1

nm

}
n∈N

: m ∈ Q ∩
(

1

2
, 1

)}
. (32)

For every m ∈ Q∩
(
1
2 , 1
)
, let {X(m)

n }n be an linearly independent (and infinite)
set, every element of which is a sequence of mutually independent random variables
such that provided m ∈ Q ∩

(
1
2 , 1
)

P
(
X(m)
n = −1

)
= P

(
X(m)
n = 1

)
= 1/2. (33)

for every n ∈ N.

By construction, one has that
∑
n∈N

h(m)
n X(m)

n converges almost surely for every

m ∈ Q ∩
(
1
2 , 1
)
.

Let D be the family of all finite subsets of N, partially ordered by set inclusion,
which is a directed set. For every d ∈ D,m ∈ Q ∩

(
1
2 , 1
)

we define:

M
(m)
d =

∑
n∈d

h(m)
n X(m)

n . (34)

Therefore, for every m ∈ Q∩
(
1
2 , 1
)
, and with respect to its own filtration, it can

be easily checked that {M (m)
d : d ∈ D} is a martingale and it converges in proba-

bility. By construction, we also have that the set {(M (m)
d )d∈D : m ∈ N} is linearly

independent and, by linearity, any non-zero element in W := span{(M (m)
d )d∈D :

m ∈ N} also converges in probability.

However, we will see {(M (m)
d )d∈D : m ∈ N} as, simply, stochastic processes

(dropping the filtration). Moreover, any element in W is, also, L2-bounded, since
(for every m ∈ Q ∩

(
1
2 , 1
)
) we have

E
[
(M

(m)
d )2

]
=
∞∑
n=1

(
h(m)
n

)2
<∞,

since the set
{
{h(m)
k }k∈N : m ∈ N

}
is contained in `2 \ `1. However, notice that

(for every m ∈ Q ∩
(
1
2 , 1
)
), M

(m)
d (ω) converges only if it converges regardless of

the order of summation (that is, absolutely), but

∞∑
n=1

∣∣∣h(m)
n X(m)

n

∣∣∣ =
∞∑
n=1

∣∣∣h(m)
n

∣∣∣ =

∞∑
n=1

1/nm =∞.

It only remains to show that, for any m1,m2, . . . ,mq ∈
(
1
2 , 1
)

and α1, . . . , αq ∈ R,

lim
s→∞

s∑
n=1

∣∣∣α1h
(m1)
n X(m1)

n + α2h
(m2)
n X(m2)

n + . . .+ αqh
(mq)
n X

(mq)
n

∣∣∣ =∞.
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Indeed, if we apply the reverse triangle inequality to the above expression as-
suming, without loss of generality, that m1 < m2 < . . . < mq, and α1 6= 0, we
obtain

s∑
n=1

∣∣∣α1h
(m1)
n X(m1)

n + α2h
(m2)
n X(m2)

n + . . .+ αqh
(mq)
n X

(mq)
n

∣∣∣ ≥
≥

s∑
n=1

(
|α1|

1

nm1
− |α2|

1

nm2
− . . .− |αq|

1

nmq

)
and this last sum is divergent to +∞, by construction and by the above definition
of V .

Now, we wold like to consider a new interesting property of random variables.
In [21], the authors show that there exists a sequence {Xn : n ∈ N} of mutually in-

dependent random variables, having zero mean, and such that

∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ diverges

to ∞ almost surely. However, this example can be extended in order to obtain
lineability, as our following result states.

Theorem 5 Given a common probability space (Ω,F , P ), the set of sequences
{Xn : n ∈ N} of mutually independent random variables having zero mean and

such that

∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ diverges to ∞ (almost surely) is lineable.

Proof Given s ∈ N, s ≥ 2, let {X(s)
n : n ∈ N} be a set of linearly independent

sequences, each of which is formed by mutually independent random variables,
and such that

P
(
X(s)
n = −ns

)
= 1− 1

n2s
and

P
(
X(s)
n = n3s − ns

)
=

1

n2s
.

It is easy to check that, by construction,

E[X(s)
n ] = 0 and (35)

X
(s)
n

n
−→ −∞ almost surely (36)

for every s, n ∈ N with s ≥ 2. From equation (36) it follows that (for every
s ≥ 2, s ∈ N)

1

n

n∑
i=1

X
(s)
i −→ −∞ a.s. (37)

Indeed, take s ≥ 2, s ∈ N, and letΩ1 = {ω ∈ Ω : X
(s)
n (ω) = −ns} andΩ2 = Ω\Ω1.

Now, if ω ∈ Ω1, we have X
(s)
k (ω) = −ks, obtaining that, as n→∞, equation (37)

holds.
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Let now V = span{X(s)
n : s ≥ 2, s ∈ N} and let Yn ∈ V . Thus, Yn can be

written as

Yn =
N∑
i=1

αiX
(si)
n ,

for some N ∈ N, si ∈ N, 2 ≤ s1 < s2 < . . . < sN , and αi ∈ R for every
i ∈ {1, 2, . . . , N} with αN 6= 0. By the linearity of E[·], and equation (35), we have
that

E[Yn] =
N∑
i=1

αiE[X(si)
n ] =

N∑
i=1

αi0 = 0.

Also, notice that∣∣∣∣∣ 1n
n∑
k=1

Yk

∣∣∣∣∣ =

∣∣∣∣∣α1

n
·
n∑
k=1

X
(s1)
k + . . .+

αN
n
·
n∑
k=1

X
(sN )
k

∣∣∣∣∣ ≥
≥ |αN |

n

∣∣∣∣∣
n∑
k=1

X
(sN )
k

∣∣∣∣∣− |αN−1|
n

∣∣∣∣∣
n∑
k=1

X
(sN−1)
k

∣∣∣∣∣− . . .− |α1|
n

∣∣∣∣∣
n∑
k=1

X
(s1)
k

∣∣∣∣∣ .
From the previous inequality, the fact that sN > sN−1 > . . . > s1 ≥ 2, and

equations (36) and (37) it can be seen that

∣∣∣∣∣ 1n
n∑
k=1

Yk

∣∣∣∣∣ → ∞ a.s. and the claim

holds for ω ∈ Ω1. The case w ∈ Ω2 also holds in a similar fashion and, thus, we
spare the details of the calculations involved in it.
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eability and coneability of discontinuous functions on R. Publ. Math. Debrecen, 72(1-
2):129–139, 2008.

2. Richard Aron, V. I. Gurariy, and J. B. Seoane. Lineability and spaceability of sets of
functions on R. Proc. Amer. Math. Soc., 133(3):795–803 (electronic), 2005.
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