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STRONG EXTENSIONS FOR q-SUMMING OPERATORS

ACTING IN p-CONVEX BANACH FUNCTION SPACES FOR

1 ≤ p ≤ q

O. DELGADO AND E.A. SÁNCHEZ PÉREZ

Abstract. Let 1 ≤ p ≤ q <∞ and let X be a p-convex Banach function space

over a σ-finite measure µ. We combine the structure of the spaces Lp(µ) and

Lq(ξ) for constructing the new space S q
Xp

(ξ), where ξ is a probability Radon

measure on a certain compact set associated to X. We show some of its
properties, and the relevant fact that every q-summing operator T defined on

X can be continuously (strongly) extended to S q
Xp

(ξ). Our arguments lead to

a mixture of the Pietsch and Maurey-Rosenthal factorization theorems, which
provided the known (strong) factorizations for q-summing operators through

Lq-spaces when 1 ≤ q ≤ p. Thus, our result completes the picture, showing

what happens in the complementary case 1 ≤ p ≤ q.
Operator and extension and factorization and p-convex and q-summing.

46E30 and 47B38 and 46B42.

1. Introduction

Fix 1 ≤ p ≤ q <∞ and let T : X → E be a Banach space valued linear operator
defined on a saturated order semi-continuous Banach function space X related to
a σ-finite measure µ. In this paper we prove an extension theorem for T in the
case when T is q-summing and X is p-convex. In order to do this, we first define
and analyze a new class of Banach function spaces denoted by S qXp

(ξ) which have

some good properties, mainly order continuity and p-convexity. The space S qXp
(ξ)

is constructed by using the spaces Lp(µ) and Lq(ξ), where ξ is a finite positive
Radon measure on a certain compact set associated to X.

Corollary 5 states the desired extension for T . Namely, if T is q-summing and
X is p-convex then T can be strongly extended continuously to a space of the type
S qXp

(ξ). Here we use the term “strongly” for this extension to remark that the map

carrying X into S qXp
(ξ) is actually injective; as the reader will notice (Proposition

3), this is one of the goals of our result. In order to develop our arguments, we
introduce a new geometric tool which we call the family of p-strongly q-concave
operators (see the definition at the beginning of Section 4). The inclusion of X into
S qXp

(ξ) turns out to belong to this family. In particular, it is q-concave.

If T is q-summing then it is p-strongly q-concave (Proposition 5). Actually, in
Theorem 4 we show that in the case that X is p-convex, T can be continuously
extended to a space S qXp

(ξ) if and only if T is p-strongly q-concave. This result can

be understood as an extension of some well-known relevant factorizations of the
operator theory:

(I) Maurey-Rosenthal factorization theorem: If T is q-concave and X is q-convex
and order continuous, then T can be extended to a weighted Lq-space related
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2 O. DELGADO AND E.A. SÁNCHEZ PÉREZ

to µ (see for instance [3, Corollary 5]). Several generalizations and applications
of the ideas behind this fundamental factorization theorem have been recently
obtained (see [1, 2, 4, 5, 9]).

(II) Pietsch factorization theorem: If T is q-summing, then it factors through a
closed subspace of Lq(ξ), where ξ is a probability Radon measure on a certain
compact set associated to X; see for instance [6, Theorem 2.13].

Let us explain how the relation of our results with these ones must be understood.
The extreme case p = q in Theorem 4 gives the Maurey-Rosenthal type factorization
(I), since the q-strongly q-concave operators are exactly the q-concave operators.
This is the situation in the well-known case 1 ≤ q ≤ p for which p = q can be
assumed, since p-convexity of X(µ) implies q-convexity of X(µ). The factorization
space S qXq

(ξ) can be then identified with a weighted Lq-space, that is, the measure

ξ appearing in its definition can be given by the Dirac’s delta δw, where w is the
weight function. The other extreme case p = 1 gives a Pietsch type factorization
(II). In this case the convexity requirement disappears —every Banach lattice is
1-convex— and the 1-strongly q-concave operators are defined by a q-summing
type inequality. Indeed, for an operator acting in a C(K)-space, q-concavity, q-
summability and 1-strong q-concavity are the same thing. More aspects of the
asymptotic behavior of p-strongly q-concave operators will be explained in Remark
4.

We must also say that our generalization will allow to face the problem of the
factorization of several p-summing type of multilinear operators from products of
Banach function spaces —a topic of current interest—, since it allows to understand
factorization of q-summing operators from p-convex function lattices from a unified
point of view not depending on the order relation between p and q.

As an application, we also prove by using Theorem 4 a kind of Kakutani repre-
sentation theorem (see for instance [7, Theorem 1.b.2]) through the spaces S qXp

(ξ)

for p-convex Banach function spaces which are p-strongly q-concave (Corollary 4).

2. Preliminaries

Let (Ω,Σ, µ) be a σ-finite measure space and denote by L0(µ) the space of
all measurable real functions on Ω, where functions which are equal µ-a.e. are
identified. By a Banach function space (briefly B.f.s.) we mean a Banach space
X ⊂ L0(µ) with norm ‖ · ‖X , such that if f ∈ L0(µ), g ∈ X and |f | ≤ |g| µ-
a.e. then f ∈ X and ‖f‖X ≤ ‖g‖X . In particular, X is a Banach lattice with
the µ-a.e. pointwise order, in which the convergence in norm of a sequence implies
the convergence µ-a.e. for some subsequence. A B.f.s. X is said to be saturated if
there exists no A ∈ Σ with µ(A) > 0 such that fχA = 0 µ-a.e. for all f ∈ X, or
equivalently, if X has a weak unit (i.e. g ∈ X such that g > 0 µ-a.e.).

Let X be a saturated B.f.s. For every f ∈ L0(µ), there exists (fn)n≥1 ⊂ X such
that 0 ≤ fn ↑ |f | µ-a.e.

Proof. Consider a weak unit g ∈ X and take gn = ng/(1 + ng). Note that 0 <
gn < ng µ-a.e., so gn is a weak unit in X. Moreover, (gn)n≥1 increases µ-a.e.
to the constant function equal to 1. Now, take fn = gn|f |χ{ω∈Ω: |f |≤n}. Since
0 ≤ fn ≤ ngn µ-a.e., we have that fn ∈ X, and fn ↑ |f | µ-a.e. �

The Köthe dual of a B.f.s. X is the space X ′ given by the functions h ∈ L0(µ)
such that

∫
|hf | dµ < ∞ for all f ∈ X. If X is saturated then X ′ is a saturated
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B.f.s. with norm ‖h‖X′ = supf∈BX

∫
|hf | dµ for h ∈ X ′. Here, as usual, BX denotes

the closed unit ball of X. Each function h ∈ X ′ defines a functional ζ(h) on X by
〈ζ(h), f〉 =

∫
hf dµ for all f ∈ X. In fact, X ′ is isometrically order isomorphic (via

ζ) to a closed subspace of the topological dual X∗ of X.
From now and on, a B.f.s. X will be assumed to be saturated. If for every

f, fn ∈ X such that 0 ≤ fn ↑ f µ-a.e. it follows that ‖fn‖X ↑ ‖f‖X , then X is said
to be order semi-continuous. This is equivalent to ζ(X ′) being a norming subspace
of X∗, i.e. ‖f‖X = suph∈BX′

∫
|fh| dµ for all f ∈ X. A B.f.s. X is order continuous

if for every f, fn ∈ X such that 0 ≤ fn ↑ f µ-a.e., it follows that fn → f in norm.
In this case, X ′ can be identified with X∗.

For general issues related to B.f.s.’ see [7], [8] and [10, Ch. 15] considering the
function norm ρ defined as ρ(f) = ‖f‖X if f ∈ X and ρ(f) =∞ in other case.

Let 1 ≤ p <∞. A B.f.s. X is said to be p-convex if there exists a constant C > 0
such that ∥∥∥( n∑

i=1

|fi|p
)1/p ∥∥∥

X
≤ C

( n∑
i=1

‖fi‖pX
)1/p

for every finite subset (fi)
n
i=1 ⊂ X. In this case, Mp(X) will denote the smallest

constant C satisfying the above inequality. Note that Mp(X) ≥ 1. A relevant fact
is that every p-convex B.f.s. X has an equivalent norm for which X is p-convex
with constant Mp(X) = 1, see [7, Proposition 1.d.8].

The p-th power of a B.f.s. X is the space defined as

Xp = {f ∈ L0(µ) : |f |1/p ∈ X},

endowed with the quasi-norm ‖f‖Xp
= ‖ |f |1/p ‖pX , for f ∈ Xp. Note that Xp

is always complete, see the proof of [8, Proposition 2.22]. If X is p-convex with
constant Mp(X) = 1, from [3, Lemma 3], ‖ · ‖Xp

is a norm and so Xp is a B.f.s.
Note that Xp is saturated if and only if X is so. The same holds for the properties
of being order continuous and order semi-continuous.

3. The space S qXp
(ξ)

Let 1 ≤ p ≤ q < ∞ and let X be a saturated p-convex B.f.s. We can assume
without loss of generality that the p-convexity constant Mp(X) is equal to 1. Then,
Xp and (Xp)

′ are saturated B.f.s.’. Consider the topology σ
(
(Xp)

′, Xp

)
on (Xp)

′

defined by the elements of Xp. Note that the subset B+
(Xp)′ of all positive elements

of the closed unit ball of (Xp)
′ is compact for this topology.

Let ξ be a finite positive Radon measure on B+
(Xp)′ . For f ∈ L0(µ), consider the

map φf : B+
(Xp)′ → [0,∞] defined by

φf (h) =
(∫

Ω

|f(ω)|ph(ω) dµ(ω)
)q/p

for all h ∈ B+
(Xp)′ . In the case when f ∈ X it follows that φf is continuous

and so measurable, since |f |p ∈ Xp. For a general f ∈ L0(µ), by Lemma 2 we
can take a sequence (fn)n≥1 ⊂ X such that 0 ≤ fn ↑ |f | µ-a.e. Applying the
Monotone Convergence Theorem, we have that φfn ↑ φf pointwise and so φf is
measurable. Then, we can consider the integral

∫
B+

(Xp)′
φf (h)dξ(h) ∈ [0,∞] and
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define the following space:

S qXp
(ξ) =

f ∈ L0(µ) :

∫
B+

(Xp)′

(∫
Ω

|f(ω)|ph(ω) dµ(ω)
)q/p

dξ(h) <∞

 .

Let us endow S qXp
(ξ) with the seminorm

‖f‖S q
Xp

(ξ) =

∫
B+

(Xp)′

(∫
Ω

|f(ω)|ph(ω) dµ(ω)
)q/p

dξ(h)

1/q

=
∥∥∥h→ ∥∥f |h|1/p ∥∥

Lp(µ)

∥∥∥
Lq(ξ)

.

In general, ‖ · ‖S q
Xp

(ξ) is not a norm. For instance, if ξ is the Dirac measure at

some h0 ∈ B+
(Xp)′ such that A = {ω ∈ Ω : h0(ω) = 0} satisfies µ(A) > 0, taking

f = gχA ∈ X with g being a weak unit of X, we have that

‖f‖S q
Xp

(ξ) =
(∫

A

|g(ω)|ph0(ω) dµ(ω)
)1/p

= 0

and

µ({ω ∈ Ω : f(ω) 6= 0}) = µ(A ∩ {ω ∈ Ω : g(ω) 6= 0}) = µ(A) > 0.

If the Radon measure ξ satisfies

(1)

∫
B+

(Xp)′

(∫
A

h(ω) dµ(ω)
)q/p

dξ(h) = 0 ⇒ µ(A) = 0

then, S qXp
(ξ) is a saturated B.f.s. Moreover, S qXp

(ξ) is order continuous, p-convex

(with constant 1) and X ⊂ S qXp
(ξ) continuously.

Proof. It is clear that if f ∈ L0(µ), g ∈ S qXp
(ξ) and |f | ≤ |g| µ-a.e. then f ∈ S qXp

(ξ)

and ‖f‖S q
Xp

(ξ) ≤ ‖g‖S q
Xp

(ξ). Let us see that ‖ · ‖S q
Xp

(ξ) is a norm. Suppose that

‖f‖S q
Xp

(ξ) = 0 and set An = {ω ∈ Ω : |f(ω)| > 1
n} for every n ≥ 1. Since

χAn
≤ n|f | and∫

B+

(Xp)′

(∫
An

h(ω) dµ(ω)
)q/p

dξ(h) =
∥∥χAn

∥∥q
S q
Xp

(ξ)
≤ nq‖f‖q

S q
Xp

(ξ)
= 0,

from (1) we have that µ(An) = 0 and so

µ({ω ∈ Ω : f(ω) 6= 0}) = lim
n→∞

µ(An) = 0.

Now we will see that S qXp
(ξ) is complete by showing that

∑
n≥1 fn ∈ S qXp

(ξ)

whenever (fn)n≥1 ⊂ S qXp
(ξ) with C =

∑
‖fn‖S q

Xp
(ξ) < ∞. First let us prove that∑

n≥1 |fn| < ∞ µ-a.e. For every N,n ≥ 1, taking ANn = {ω ∈ Ω :
∑n
j=1 |fj(ω)| >

N}, since χAN
n
≤ 1

N

∑n
j=1 |fj |, we have that∫

B+

(Xp)′

(∫
AN

n

h(ω) dµ(ω)
)q/p

dξ(h) = ‖χAN
n
‖q
S q
Xp

(ξ)

≤ 1

Nq

∥∥∥ n∑
j=1

|fj |
∥∥∥q
S q
Xp

(ξ)
≤ Cq

Nq
.
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Note that, for N fixed, (ANn )n≥1 increases. Taking limit for n → ∞ and applying
twice the Monotone Convergence Theorem, it follows that∫

B+

(Xp)′

(∫
∪n≥1AN

n

h(ω) dµ(ω)
)q/p

dξ(h) ≤ Cq

Nq
.

Then, ∫
B+

(Xp)′

(∫
∩N≥1∪n≥1AN

n

h(ω) dµ(ω)
)q/p

dξ(h) ≤ lim
N→∞

Cq

Nq
= 0,

and so, from (1),

µ
({
ω ∈ Ω :

∑
n≥1

|fn(ω)| =∞
})

= µ
( ⋂
N≥1

⋃
n≥1

ANn

)
= 0.

Hence,
∑
n≥1 fn ∈ L0(µ). Again applying the Monotone Convergence Theorem, it

follows that ∫
B+

(Xp)′

(∫
Ω

∣∣∣∑
n≥1

fn(ω)
∣∣∣ph(ω) dµ(ω)

)q/p
dξ(h) ≤

∫
B+

(Xp)′

(∫
Ω

(∑
n≥1

|fn(ω)|
)p
h(ω) dµ(ω)

)q/p
dξ(h) =

lim
n→∞

∫
B+

(Xp)′

(∫
Ω

( n∑
j=1

|fj(ω)|
)p
h(ω) dµ(ω)

)q/p
dξ(h) =

lim
n→∞

∥∥∥ n∑
j=1

|fj |
∥∥∥q
S q
Xp

(ξ)
≤ Cq

and thus
∑
n≥1 fn ∈ S

q
Xp

(ξ).

Note that if f ∈ X, for every h ∈ B+
(Xp)′ we have that∫

Ω

|f(ω)|ph(ω) dµ(ω) ≤ ‖ |f |p ‖Xp‖h‖(Xp)′ ≤ ‖f‖pX

and so ∫
B+

(Xp)′

(∫
Ω

|f(ω)|ph(ω) dµ(ω)
)q/p

dξ(h) ≤ ‖f‖qX ξ
(
B+

(Xp)′

)
.

Then, X ⊂ S qXp
(ξ) and ‖f‖S q

Xp
(ξ) ≤ ξ

(
B+

(Xp)′

)1/q ‖f‖X for all f ∈ X. In particular,

S qXp
(ξ) is saturated, as a weak unit in X is a weak unit in S qXp

(ξ).

Let us show that S qXp
(ξ) is order continuous. Consider f, fn ∈ S qXp

(ξ) such that

0 ≤ fn ↑ f µ-a.e. Note that, since∫
B+

(Xp)′

(∫
Ω

|f(ω)|ph(ω) dµ(ω)
)q/p

dξ(h) <∞,

there exists a ξ-measurable set B with ξ(B+
(Xp)′\B) = 0 such that∫

Ω

|f(ω)|ph(ω) dµ(ω) <∞

for all h ∈ B. Fixed h ∈ B, we have that |f − fn|ph ↓ 0 µ-a.e. and |f − fn|ph ≤
|f |ph µ-a.e. Then, applying the Dominated Convergence Theorem,

∫
Ω
|f(ω) −
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fn(ω)|ph(ω) dµ(ω) ↓ 0. Consider the measurable functions φ, φn : B+
(Xp)′ → [0,∞]

given by

φ(h) =
(∫

Ω

|f(ω)|ph(ω) dµ(ω)
)q/p

φn(h) =
(∫

Ω

|f(ω)− fn(ω)|ph(ω) dµ(ω)
)q/p

for all h ∈ B+
(Xp)′ . It follows that φn ↓ 0 ξ-a.e. and φn ≤ φ ξ-a.e. Again by the

Dominated Convergence Theorem, we obtain

‖f − fn‖qS q
Xp

(ξ)
=

∫
B+

(Xp)′

φn(h)dξ(h) ↓ 0.

Finally, let us see that S qXp
(ξ) is p-convex. Fix (fi)

n
i=1 ⊂ S qXp

(ξ) and consider

the measurable functions φi : B
+
(Xp)′ → [0,∞] (for 1 ≤ i ≤ n) defined by

φi(h) =

∫
Ω

|fi(ω)|ph(ω) dµ(ω).

for all h ∈ B+
(Xp)′ . Then,∥∥∥( n∑

i=1

|fi|p
)1/p ∥∥∥q

S q
Xp

(ξ)
=

∫
B+

(Xp)′

(∫
Ω

n∑
i=1

|fi(ω)|ph(ω) dµ(ω)
)q/p

dξ(h)

=

∫
B+

(Xp)′

( n∑
i=1

φi(h)
)q/p

dξ(h)

≤
( n∑
i=1

‖φi‖Lq/p(ξ)

)q/p
.

Since ‖φi‖Lq/p(ξ) = ‖fi‖pS q
Xp

(ξ)
for all 1 ≤ i ≤ n, we have that

∥∥∥( n∑
i=1

|fi|p
)1/p ∥∥∥

S q
Xp

(ξ)
≤
( n∑
i=1

‖fi‖pS q
Xp

(ξ)

)1/p

.

�

Take a weak unit g ∈ (Xp)
′ and consider the Radon measure ξ as the Dirac

measure at g. If A ∈ Σ is such that

0 =

∫
B+

(Xp)′

(∫
A

h(ω) dµ(ω)
)q/p

dξ(h) =
(∫

A

g(ω) dµ(ω)
)q/p

then, gχA = 0 µ-a.e. and so, since g > 0 µ-a.e., µ(A) = 0. That is, ξ satisfies (1).
In this case, S qXp

(ξ) = Lp(gdµ) with equal norms, as∫
B+

(Xp)′

(∫
Ω

|f(ω)|ph(ω) dµ(ω)
)q/p

dξ(h) =
(∫

Ω

|f(ω)|pg(ω) dµ(ω)
)q/p

for all f ∈ L0(µ).
Write Ω = ∪n≥1Ωn with (Ωn)n≥1 being a disjoint sequence of measurable sets

and take a sequence of strictly positive elements (αn)n≥1 ∈ `1. Let us consider the
Radon measure ξ =

∑
n≥1 αnδgχΩn

on B+
(Xp)′ , where δgχΩn

is the Dirac measure
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at gχΩn
with g ∈ (Xp)

′ being a weak unit. Note that for every positive function
φ ∈ L0(ξ), it follows that

∫
B+

(Xp)′
φdξ =

∑
n≥1 αnφ(gχΩn). If A ∈ Σ is such that

0 =

∫
B+

(Xp)′

(∫
A

h(ω) dµ(ω)
)q/p

dξ(h) =
∑
n≥1

αn

(∫
A∩Ωn

g(ω) dµ(ω)
)q/p

then,
∫
A∩Ωn

g(ω) dµ(ω) = 0 for all n ≥ 1. Hence,∫
A

g(ω) dµ(ω) =
∑
n≥1

∫
A∩Ωn

g(ω) dµ(ω) = 0

and so gχA = 0 µ-a.e., from which µ(A) = 0. That is, ξ satisfies (1). For every
f ∈ L0(µ) we have that∫

B+

(Xp)′

(∫
Ω

|f(ω)|ph(ω) dµ(ω)
)q/p

dξ(h) =

∑
n≥1

αn

(∫
Ωn

|f(ω)|pg(ω) dµ(ω)
)q/p

.

Then, the B.f.s. S qXp
(ξ) can be described as the space of functions f ∈ ∩n≥1L

p(gχΩn
dµ)

such that
(
α

1/q
n ‖f‖Lp(gχΩndµ)

)
n≥1
∈ `q. Moreover,

‖f‖S q
Xp

(ξ) =
(∑
n≥1

αn ‖f‖qLp(gχΩndµ)

)1/q

for all f ∈ S qXp
(ξ).

4. p-strongly q-concave operators

Let 1 ≤ p ≤ q < ∞ and let T : X → E be a linear operator from a saturated
B.f.s. X into a Banach space E. Recall that T is said to be q-concave if there exists
a constant C > 0 such that( n∑

i=1

‖T (fi)‖qE
)1/q

≤ C
∥∥∥( n∑

i=1

|fi|q
)1/q ∥∥∥

X

for every finite subset (fi)
n
i=1 ⊂ X. The smallest possible value of C will be

denoted by Mq(T ). For issues related to q-concavity see for instance [7, Ch. 1.d].
We introduce a slightly stronger notion than q-concavity: T will be called p-strongly
q-concave if there exists C > 0 such that( n∑

i=1

‖T (fi)‖qE
)1/q

≤ C sup
(βi)i≥1∈B`r

∥∥∥( n∑
i=1

|βifi|p
)1/p ∥∥∥

X

for every finite subset (fi)
n
i=1 ⊂ X, where 1 < r ≤ ∞ is such that 1

r = 1
p−

1
q . In this

case, Mp,q(T ) will denote the smallest constant C satisfying the above inequality.
Noting that r

p and q
p are conjugate exponents, it is clear that every p-strongly q-

concave operator is q-concave and so continuous, and moreover ‖T‖ ≤ Mq(T ) ≤
Mp,q(T ). As usual, we will say that X is p-strongly q-concave if the identity map
I : X → X is so, and in this case, we denote Mp,q(X) = Mp,q(I).

Our goal is to get a continuous extension of T to a space of the type S qXp
(ξ) in

the case when T is p-strongly q-concave and X is p-convex. To this end we will
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need to describe the supremum on the right-hand side of the p-strongly q-concave
inequality in terms of the Köthe dual of Xp.

If X is p-convex and order semi-continuous then

sup
(βi)i≥1∈B`r

∥∥∥( n∑
i=1

|βifi|p
)1/p ∥∥∥

X
= sup
h∈B+

(Xp)′

( n∑
i=1

(∫
|fi|ph dµ

)q/p )1/q

for every finite subset (fi)
n
i=1 ⊂ X, where 1 < r ≤ ∞ is such that 1

r = 1
p −

1
q and

B+
(Xp)′ is the subset of all positive elements of the closed unit ball B(Xp)′ of (Xp)

′.

Proof. Given (fi)
n
i=1 ⊂ X, since Xp is order semi-continuous (as X so is) and

(`q/p)∗ = `r/p (as r
p is the conjugate exponent of q

p ), we have that

sup
(βi)∈B`r

∥∥∥( n∑
i=1

|βifi|p
)1/p ∥∥∥p

X
= sup

(βi)∈B`r

∥∥∥ n∑
i=1

|βifi|p
∥∥∥
Xp

= sup
(βi)∈B`r

sup
h∈B(Xp)′

∫ n∑
i=1

|βifi|p|h| dµ

= sup
(βi)∈B`r

sup
h∈B+

(Xp)′

∫ n∑
i=1

|βifi|ph dµ

= sup
h∈B+

(Xp)′

sup
(βi)∈B`r

n∑
i=1

|βi|p
∫
|fi|ph dµ

= sup
h∈B+

(Xp)′

sup
(αi)∈B+

`r/p

n∑
i=1

αi

∫
|fi|ph dµ

= sup
h∈B+

(Xp)′

( n∑
i=1

(∫
|fi|ph dµ

)q/p )p/q
.

�

In the following remark we show a general example of p-strongly q-concave op-
erator that can be easily obtained from Lemma 4. In a sense, this operator is the
prototype of p-strongly q-concave operator.

Suppose that X is p-convex and order semi-continuous. For every finite positive
Radon measure ξ on B+

(Xp)′ satisfying (1), it follows that the inclusion map i : X →
S qXp

(ξ) is p-strongly q-concave. Indeed, for each (fi)
n
i=1 ⊂ X, we have that

n∑
i=1

‖fi‖qS q
Xp

(ξ)
=

n∑
i=1

∫
B+

(Xp)′

(∫
Ω

|fi(ω)|ph(ω) dµ(ω)
)q/p

dξ(h)

≤ ξ
(
B+

(Xp)′

)
sup

h∈B+

(Xp)′

n∑
i=1

(∫
Ω

|fi(ω)|ph(ω) dµ(ω)
)q/p

and so, Lemma 4 gives the conclusion for Mp,q(i) ≤ ξ
(
B+

(Xp)′

)1/q
.

Now let us prove our main result.
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If T is p-strongly q-concave and X is p-convex and order semi-continuous, then
there exists a probability Radon measure ξ on B+

(Xp)′ satisfying (1) such that

(2) ‖T (f)‖E ≤Mp,q(T )
(∫

B+

(Xp)′

(∫
Ω

|f(ω)|ph(ω) dµ(ω)
)q/p

dξ(h)
)1/q

for all f ∈ X.

Proof. Recall that the topology on (Xp)
′ is σ((Xp)

′, Xp), the one which is de-
fined by the elements of Xp. For each finite subset (with possibly repeated el-
ements) M = (fi)

m
i=1 ⊂ X, consider the map ψM : B+

(Xp)′ → [0,∞) defined by

ψM (h) =
∑m
i=1

( ∫
Ω
|fi|p h dµ

)q/p
for h ∈ B+

(Xp)′ . Note that ψM attains its supre-

mum as it is continuous on a compact set, so there exists hM ∈ B+
(Xp)′ such that

suph∈B+

(Xp)′
ψM (h) = ψM (hM ). Then, the p-strongly q-concavity of T , together

with Lemma 4, gives

m∑
i=1

‖T (fi)‖qE ≤ Mp,q(T )q sup
h∈B+

(Xp)′

m∑
i=1

(∫
Ω

|fi|ph dµ
)q/p

≤ Mp,q(T )q sup
h∈B+

(Xp)′

ψM (h)

= Mp,q(T )q ψM (hM ).(3)

Consider now the continuous map φM : B+
(Xp)′ → R defined by

φM (h) = Mp,q(T )q ψM (h)−
m∑
i=1

‖T (fi)‖qE

for h ∈ B+
(Xp)′ . Take B = {φM : M is a finite subset of X}. Since for every M =

(fi)
m
i=1, M

′ = (f ′i)
k
i=1 ⊂ X and 0 < t < 1, it follows that tφM + (1− t)φM ′ = φM ′′

where M ′′ =
(
t1/qfi

)m
i=1
∪
(
(1 − t)1/qf ′i

)k
i=1

, we have that B is convex. Denote

by C(B+
(Xp)′) the space of continuous real functions on B+

(Xp)′ , endowed with the

supremum norm, and by A the open convex subset {φ ∈ C(B+
(Xp)′) : φ(h) <

0 for all h ∈ B+
(Xp)′}. By (3) we have that A ∩ B = ∅. From the Hahn-Banach

separation theorem, there exist ξ ∈ C(B+
(Xp)′)

∗ and α ∈ R such that 〈ξ, φ〉 < α ≤
〈ξ, φM 〉 for all φ ∈ A and φM ∈ B. Since every negative constant function is in A,
it follows that 0 ≤ α. Even more, α = 0 as the constant function equal to 0 is just
φ{0} ∈ B. It is routine to see that 〈ξ, φ〉 ≥ 0 whenever φ ∈ C(B+

(Xp)′) is such that

φ(h) ≥ 0 for all h ∈ B+
(Xp)′ . Then, ξ is a positive linear functional on C(B+

(Xp)′)

and so it can be interpreted as a finite positive Radon measure on B+
(Xp)′ . Hence,

we have that

0 ≤
∫
B+

(Xp)′

φM dξ
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for all finite subset M ⊂ X. Dividing by ξ(B+
(Xp)′), we can suppose that ξ is a

probability measure. Then, for M = {f} with f ∈ X, we obtain that

‖T (f)‖qE ≤Mp,q(T )q
∫
B+

(Xp)′

(∫
Ω

|f(ω)|ph(ω) dµ(ω)
)q/p

dξ(h)

and so (2) holds. �

Actually, Theorem 4 says that we can find a probability Radon measure ξ on
B+

(Xp)′ such that T : X → E is continuous when X is considered with the norm of

the space S qXp
(ξ). In the next result we will see how to extend T continuously to

S qXp
(ξ). Even more, we will show that this extension is possible if and only if T is

p-strongly q-concave.
Suppose that X is p-convex and order semi-continuous. The following statements

are equivalent:

(a) T is p-strongly q-concave.
(b) There exists a probability Radon measure ξ on B+

(Xp)′ satisfying (1) such that

T can be extended continuously to S qXp
(ξ), i.e. there is a factorization for T

as

X
T //

i
""

E

S qXp
(ξ)

T̃

<<

where T̃ is a continuous linear operator and i is the inclusion map.

If (a)-(b) holds, then Mp,q(T ) = ‖T̃‖.

Proof. (a)⇒ (b) From Theorem 4, we get that there is a probability Radon measure
ξ on B+

(Xp)′ satisfying (1) such that ‖T (f)‖E ≤ Mp,q(T )‖f‖S q
Xp

(ξ) for all f ∈ X.

Given 0 ≤ f ∈ S qXp
(ξ), from Lemma 2, we can take (fn)n≥1 ⊂ X such that

0 ≤ fn ↑ f µ-a.e. Then, since S qXp
(ξ) is order continuous, we have that fn → f

in S qXp
(ξ) and so

(
T (fn)

)
n≥1

converges to some element e of E. Define T̃ (f) = e.

Note that T̃ is well defined, since if (gn)n≥1 ⊂ X is such that 0 ≤ gn ↑ f µ-a.e.,
then

‖T (fn)− T (gn)‖E ≤Mp,q(T )‖fn − gn‖S q
Xp

(ξ) → 0.

Moreover,

‖T̃ (f)‖E = lim
n→∞

‖T (fn)‖E
≤ Mp,q(T ) lim

n→∞
‖fn‖S q

Xp
(ξ)

= Mp,q(T )‖f‖S q
Xp

(ξ).

For a general f ∈ S qXp
(ξ), writing f = f+ − f− where f+ and f− are the positive

and negative parts of f respectively, we define T̃ (f) = T̃ (f+) − T̃ (f−). Then,

T̃ : S qXp
(ξ) → E is a continuous linear operator extending T . Moreover ‖T̃‖ ≤
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Mp,q(T ). Indeed, let f ∈ S qXp
(ξ) and take (f+

n )n≥1, (f−n )n≥1 ⊂ X such that 0 ≤
f+
n ↑ f+ and 0 ≤ f−n ↑ f− µ-a.e. Then, f+

n − f−n → f in S qXp
(ξ) and

T (f+
n − f−n ) = T (f+

n )− T (f−n )→ T̃ (f+)− T̃ (f−) = T̃ (f)

in E. Hence,

‖T̃ (f)‖E = lim
n→∞

‖T (f+
n − f−n )‖E

≤ Mp,q(T ) lim
n→∞

‖f+
n − f−n ‖S q

Xp
(ξ)

= Mp,q(T )‖f‖S q
Xp

(ξ).

(b) ⇒ (a) Given (fi)
n
i=1 ⊂ X, we have that

n∑
i=1

‖T (fi)‖qE =

n∑
i=1

‖T̃ (fi)‖qE ≤ ‖T̃‖
q

n∑
i=1

‖fi‖qS q
Xp

(ξ)

= ‖T̃‖q
n∑
i=1

∫
B+

(Xp)′

(∫
Ω

|fi(ω)|ph(ω) dµ(ω)
)q/p

dξ(h)

≤ ‖T̃‖q sup
h∈B+

(Xp)′

n∑
i=1

(∫
Ω

|fi(ω)|ph(ω) dµ(ω)
)q/p

.

Thus, we obtain from Lemma 4 that T is p-strongly q-concave with Mp,q(T ) ≤
‖T̃‖. �

The definition of the norm of the spaces S qXp
(ξ) and the characterization given

in Theorem 4 show some inclusions among the spaces of p-strongly q-concave op-
erators. Indeed, for a p-convex Banach function space X, a suitable probability
measure ξ and real numbers p ≤ q1 ≤ q2, Hölder’s inequality gives the inclusion
S q2Xp

(ξ) ⊆ S q1Xp
(ξ). Therefore, if q1 ≤ q2 and T is q1-concave, then it is also q2-

concave.
The structure of the spaces S qXp

(ξ) also allows to understand the asymptotic

behavior of the factorization when q → ∞. In this case, the norm in the space
S qXp

(ξ) for a given function in X tends to the norm in X when q increases, in the

sense that the Lq(µ)-norm of a bounded function tends to the L∞(µ)-norm. Note
also that for this asymptotic behavior the p-convexity of X does not play any role,
so it can be assumed to be the trivial 1-convexity.

A first application of Theorem 4 is the following Kakutani type representation
theorem (see for instance [7, Theorem 1.b.2]) for B.f.s.’ being order semi-continuous,
p-convex and p-strongly q-concave.

Suppose that X is p-convex and order semi-continuous. The following statements
are equivalent:

(a) X is p-strongly q-concave.
(b) There exists a probability Radon measure ξ on B+

(Xp)′ satisfying (1), such that

X = S qXp
(ξ) with equivalent norms.

Proof. (a) ⇒ (b) The identity map I : X → X is p-strongly q-concave as X is
so. Then, from Theorem 4, there exists a probability Radon measure ξ on B+

(Xp)′
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satisfying (1), such that I factors as

X
I //

i
""

X

S qXp
(ξ)

Ĩ

<<

where Ĩ is a continuous linear operator with ‖Ĩ‖ = Mp,q(X) and i is the inclusion
map. Since ξ is a probability measure, we have that ‖f‖S q

Xp
(ξ) ≤ ‖f‖X for all

f ∈ X, see the proof of Proposition 3. Let 0 ≤ f ∈ S qXp
(ξ). By Lemma 2, we can

take (fn)n≥1 ⊂ X such that 0 ≤ fn ↑ f µ-a.e. Since S qXp
(ξ) is order continuous,

it follows that fn → f in S qXp
(ξ) and so fn = Ĩ(fn) → Ĩ(f) in X. Then, there

is a subsequence of (fn)n≥1 converging µ-a.e. to Ĩ(f) and hence f = Ĩ(f) ∈ X.
For a general f ∈ S qXp

(ξ), writing f = f+ − f− where f+ and f− are the positive

and negative parts of f respectively, we have that f = Ĩ(f+)− Ĩ(f−) = Ĩ(f) ∈ X.

Therefore, X = S qXp
(ξ) and Ĩ is de identity map. Moreover, ‖f‖X = ‖Ĩ(f)‖X ≤

‖Ĩ‖ ‖f‖S q
Xp

(ξ) = Mp,q(X)‖f‖S q
Xp

(ξ) for all f ∈ X.

(b)⇒ (a) From Remark 4 it follows that the identity map I : X → X is p-strongly
q-concave. �

Note that under conditions of Corollary 4, if X is p-strongly q-concave with
constant Mp,q(X) = 1, then X = S qXp

(ξ) with equal norms.

5. q-summing operators on a p-convex B.f.s.

Recall that a linear operator T : X → E between Banach spaces is said to be
q-summing (1 ≤ q <∞) if there exists a constant C > 0 such that

( n∑
i=1

‖Txi‖qE
)1/q

≤ C sup
x∗∈BX∗

( n∑
i=1

|〈x∗, xi〉|q
)1/q

for every finite subset (xi)
n
i=1 ⊂ X. Denote by πq(T ) the smallest possible value of

C. Information about q-summing operators can be found in [6].
One of the main relations between summability and concavity for operators

defined on a B.f.s. X, is that every q-summing operator is q-concave. This is a
consequence of a direct calculation which shows that for every (fi)

n
i=1 ⊂ X and

x∗ ∈ X∗ it follows that

(4)
( n∑
i=1

|〈x∗, fi〉|q
)1/q

≤ ‖x∗‖X∗
∥∥∥( n∑

i=1

|fi|q
)1/q∥∥∥

X
,

see for instance [7, Proposition 1.d.9] and the comments below. However, this
calculation can be slightly improved to obtain the following result.

Let 1 ≤ p ≤ q < ∞. Every q-summing linear operator T : X → E from a B.f.s.
X into a Banach space E, is p-strongly q-concave with Mp,q(T ) ≤ πq(T ).
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Proof. Let 1 < r ≤ ∞ be such that 1
r = 1

p −
1
q and consider a finite subset

(fi)
n
i=1 ⊂ X. We only have to prove

sup
x∗∈BX∗

( n∑
i=1

|〈x∗, fi〉|q
)1/q

≤ sup
(βi)i≥1∈B`r

∥∥∥( n∑
i=1

|βifi|p
)1/p∥∥∥

X
.

Fix x∗ ∈ BX∗ . Noting that q
p and r

p are conjugate exponents and using the

inequality (4), we have( n∑
i=1

|〈x∗, fi〉|q
)1/q

= sup
(αi)i≥1∈B`r/p

( n∑
i=1

|αi||〈x∗, fi〉|p
)1/p

= sup
(βi)i≥1∈B`r

( n∑
i=1

|〈x∗, βifi〉|p
)1/p

≤ sup
(βi)i≥1∈B`r

∥∥∥( n∑
i=1

|βifi|p
)1/p∥∥∥

X
.

Taking supremum in x∗ ∈ BX∗ we get the conclusion. �

From Proposition 5, Theorem 4 and Remark 4, we obtain the final result.
Set 1 ≤ p ≤ q <∞. Let X be a saturated order semi-continuous p-convex B.f.s.

and consider a q-summing linear operator T : X → E with values in a Banach space
E. Then, there exists a probability Radon measure ξ on B+

(Xp)′ satisfying (1) such

that T can be factored as

X
T //

i
""

E

S qXp
(ξ)

T̃

<<

where T̃ is a continuous linear operator with ‖T̃‖ ≤ πq(T ) and i is the inclusion
map which turns out to be p-strongly q-concave, and so q-concave.

Observe that what we obtain in Corollary 5 is a proper extension for T , and not
just a factorization as the obtained in the Pietsch theorem for q-summing operators
through a subspace of an Lq-space.
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