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Abstract. A robot interacting with the environment requires that the end effector position is 
tracked and that the forces of contact are kept below certain reference values. For instance, 
in a rehabilitation session using a robotic device, the contact forces are limited by the al-
lowed strength of the human limbs and their complex-joints. In these cases, a control scheme 
which considers both position and force control is essential to avoid damage to either the end 
effector or the object interacting with the robot. This paper therefore develops a real-time 
force/position control scheme for a 3-DOF parallel robot whose end effector holds a DOF 
one translation (1T) and two rotations (2R). The implemented hybrid force/position control 
considers, as a reference, the normal force on the mobile platform, which is measured by 
means of a load cell installed on the platform. The position control is designed to track the 
orientations of the robot either in joint or task space using a model-based control scheme 
with identified parameters. Moreover, the force control is based on a PD action. The control 
scheme is developed through simulations, before being applied to an actual parallel robot. 
The findings show that with the implemented controller, the actual robot accomplishes the 
reference values for the normal force on the mobile platform, while at the same time the plat-
form accurately follows the required angular orientation. 

 

Keywords: Parallel Manipulator, Robot Control, Force Control, Mechatronics, Dynamics. 
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1 INTRODUCTION 
The inherent capabilities of a parallel robot (PR), compared with its counterpart a serial ro-

bot, have made it an interesting research topic in the robotic community. These capabilities 
can be summed up as follows: high stiffness, high load-carrying footprint ratio, high speed 
and accuracy. In these robots the end effector is attached to a mobile platform which is con-
nected by several kinematic chains (also known as legs) to a fixed based. The advantages over 
serial robots stem from the fact that the load on the end effector can be shared by the legs. The 
similarity with the human body is that when we are unable to carry a load precisely with one 
arm, we use both arms, thus giving us greater precision and stiffness, although we lose work-
space. The forward kinematics, dynamics model and control of PMs are also cumbersome. 
Given that in certain cases the advantages outweigh the disadvantages, researchers have de-
veloped several applications based on PRs, such as motion simulators, tire testing machines, 
flight simulators and medical applications. Different mechanical architectures of PRs can be 
found in the following references (Gough and Whitehall, 1962; Steward, 1965; Tsai, 1999; 
Merlet, 2000).  

Seminal papers on PRs have focused on platforms with six degrees of freedom (DOF): 
three translational (3T) and three rotational (3R), an idea that continues to be developed with 
new 6-DOF architectures nowadays (Cao et al., 2015). However, many applications require 
fewer than 6 DOF. In fact, one of the fastest PR architectures is based on 3T1R motion (Pier-
rot et al. 2009). Furthermore, pick-and-place tasks can be accomplished with three transla-
tional DOF (3T), the best example of which is the Delta Robot (Clavel, 1988). In addition, 
medical applications such as cardiopulmonary resuscitation equipment are accomplished with 
3T PRs (Li and Xu, 2007), as are tool heads for manufacturing facilities (Tsai, 1999). Other 
developments with 3T1R motion can be found in (Zarkandi, 2011). For low-cost applications, 
designers frequently search for robot architectures with fewer DOF. One such application has 
1T2R motion. In this case, the 3-PRS (Carretero, Podhorodeski and Nahon, 2000) and the 3-
RPS (Lee and Arjunan, 1991) architectures have been proposed. Note that R, P and S stand 
for revolution, prismatic and spherical joint at each leg, respectively.  

On the other hand, independently of the robot’s DOF, the trajectory at the end effector is 
controlled using position control: point-to-point or tracking control, joint or task space. How-
ever, a variety of applications require that the forces applied to the end effector are kept below 
certain reference values. For example, this is the case with robots involving assembly tasks 
where one or more parts need to be handled, ensuring proper contact, or industrial operations 
such as milling or deburring (Afonso, Pires and Estrela, 2007). New developments in parallel 
robots for medical applications involve interaction with delicate parts of the human body 
where the forces at the end effector must be applied carefully, e.g. robots for in vivo biopsy 
(Garg et al., 2014). For such applications, an accurate robot force control scheme needs to be 
developed. However, while different force control approaches have been implemented for se-
rial robots (Zeng and Hemami, 1997), the issue of force/position control of PRs has barely 
been addressed in the robotics literature (Bellakehal et al., 2011). 

In a previous work, the authors developed a low-cost PR with 3-PRS, its end effector hav-
ing one translation (1T) and two rotations (2R) DOF (Valles et al., 2012). This robot has the 
advantage that the control architecture is open, thus allowing model-based control schemes to 
be implemented and tested (Diaz-Rodriguez et al., 2013). One interesting application of 1T2R 
robots is an ankle rehabilitation device, but in a rehabilitation session using a robotic device 
the contact forces are limited by the allowed strength of the human limbs and joints undergo-
ing rehabilitation. Therefore, the aim of this paper is to develop a real-time hybrid 
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force/position control so that the normal force on the mobile platform follows a reference sig-
nal while simultaneously tracking the orientation of the platform. In order to implement the 
control scheme, the force is measured by means of a load cell installed on the end effector, 
with the force controller part based on a PD action. The position control is designed to track 
the orientations of the robot either in joint or task space using a model based control scheme 
(Rosillo et al., 2011), using an identified model (Farhat, 2008). Simulations conducted in a 
Matlab/Simulink environment have made it possible to develop the control scheme which is 
then applied to the actual PR. 

The paper is organized as follows: Section 2 briefly describes the test bed PR and develops 
the kinematic and dynamic models. Section 3 discusses the different control schemes using a 
simulated robot. Section 4 shows the results of the force/position control when it is applied to 
the actual prototype, and Section 4 presents the conclusions. 

2 THE TEST BED ROBOT  
The choice of the test bed robot architecture was determined by the need to develop a low-

cost robot which is capable of generating angular rotation on two axes, as well as a prismatic 
movement. Two different architectures were considered: 3-RPS and 3-PRS. The second was 
chosen after comparing the advantages and disadvantages of each proposal. For example, one 
advantage of the PRS architecture is that the actuators are located on the fixed base, while in 
the RPS architecture the actuators move with revolute joints. 

Fig. 1 shows the actual prototype. The physical system consists of three legs connecting 
the moving platform to the base. Each leg consists of a direct-drive ball screw (prismatic 
joints) and a coupler, as well as the motor. 

 
Figure 1: The test bed low-cost Parallel Robot 

The motors in each leg are brushless DC servomotors equipped with power amplifiers. The 
actuators are Aerotech BMS465 AH brushless servomotors. Aerotech BA10 power amplifiers 
operate the motors. The control system was developed on an industrial PC, which has several 
advantages: the first is that it is a completely open system, providing a powerful platform in 
which to program high-level tasks. Therefore, applications such as trajectory generation or 
control strategies based on external sensing (machine vision and force sensors, etc.) can be 
developed. The second significant advantage of the control system is its cost, given that the 
software architecture is based on free and open software. 

2.1 Kinematic model 
Robot force or position control algorithms involve establishing the direct and inverse kin-

ematic models. The inverse kinematic model is used to obtain the motion at the actuated joints 
corresponding to the motions required at the end effector. On the other hand, since the actuat-
ed joints are usually the variables that can be measured through incremental encoders, the di-
rect kinematic model is needed to determine the actual motion at the end effector. In order to 
develop both kinematic models, nine joint generalized coordinates are used to model the robot 
(qi, where i=1...9). Moreover, the end-effector motion is modeled though three Cartesian co-
ordinates ),,( zyx  and three Euler angles ),,( γβα . Fig. 2 shows a kinematic diagram of the robot. 

 
Figure 2: Kinematic diagram of the 3-PRS Parallel Manipulator, type of joints and generalized coordinates. 
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The modified Denavit-Hartenberg (D-H) convention is used for modeling purpose. The ro-
bot is cut open at the spherical joints shown in Fig. 2 as P2and P3, thus obtaining three legs. 
One leg consists of three links: a sliding rod, a coupler and the platform (coordinates q1..q5), 
and the two other legs consist of two links: a sliding rod and a coupler (coordinates q6..q7 and 
q8..q9). Numbers 1, 4 and 6 in the figure apply to the sliding rod which is attached to the cou-
pler (numbers 2, 5 and 7) by a revolute joint (R), and to the base by an actuated prismatic joint 
(P). The active coordinates q1, q6 and q8 are associated with the actuated prismatic joints, 
while the passive coordinates q2, q7 and q9 are associated with the revolute joints. Coordinates 
q3, q4 and q5 are associated with the spherical joint located at P1. Note that the spherical joint 
is modeled, according to the D-H parameters, as three orthogonal axes intersecting at the cen-
ter of an ideal sphere (representing the spherical joint).  

In the forward position problem, the position of the actuators is known (q1, q6 and q8 are 
known) but the remaining coordinates need to be found. Due to the fact that the length be-
tween the locations of the spherical joints Pi and Pi+1 is constant and equal to lm (rigid body 
assumption), the following equation can be written as follows: 

 

( ) 02
11111

=−++−+
+++++ mPBBAAAPBBA lrrrrr

iiiiiiiiii

  (1) 

 

with i=1,2,3 and when i=3 then i+1=1. ABr  denotes the vector from point A to B.  

Equation (1) constitutes a set of three nonlinear equations relating the known variables q1, 
q6 and q8 to the unknown (q2, q7 and q9). The Newton-Raphson (N-R) numerical method is 
chosen to solve this nonlinear problem. The method converges rather quickly when the initial 
guess is close to the desired solution (Jalón and Bayo, 1994). After finding coordinates q2, q7 
and q9, the position of each point Pi can be found. Thus, the coordinates associated with the 
spherical joints P1 can be obtained in a straightforward manner, making it possible to find an-
gles β, γ at the end effector. Since the location of the spherical joints forms an equilateral tri-
angle, the heave (z) of the end effector is determined by the mean values of the points P1..P3. 

On the other hand, the inverse kinematics problem consists of finding the movement of the 
linear actuators from the roll (γ ), pitch ( β ) and height (z) of the platform. Following a similar 
procedure to that presented for the case of an RPS parallel robot (Tsai, 1999,), the positions of 
the actuators for the PRS parallel robot can be obtained with the following expression: 

 

( ) 22222
1 222 hguhgxgzuyuxuhzyxq xzyx ++−−+++++=  (2) 

 

( ) ( )
( ) ( ) ( ) 22

222
6

2/32/33        

3

hgvvhguuhgyxg

zvyvxvhzuyuzuhzyxq

yxyx

zyxzyx

++−+−+−+

+++++−++=  (3) 

 

( ) ( )
( ) ( ) ( ) 22

222
8

2/32/33       

3

hgvvhguuhgyxg

zvyvxvhzuyuxuhzyxq

yxyx

zyxzyx

++−+−−−+

++−++−++=  (4) 
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In equations (2-4), 3mlh = , 3blg = , yhux −= , ( )yvxuhy −−= , bl  is the distance between 1+ii AA , and u 

and v can be obtained from the rotation matrix of the moving platform. That is: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) 










=
















=

−
−+
−−

βcosγcosβcosγsinβsin
γsinαcosγcosβsinαsinγcosαcosγsinβsinαsinβcosαsin
γsinαsinγcosβsinαcosγcosαsinγsinβsinαcosβcosαcos

zzz

yyy

xxx

p

wvu
wvu
wvu

R0  (5) 

 

2.2 Jacobian matrix 
The kinematic model of a robot seeks relationships between end-effector coordinates and 

the actuated joint position. The relationship between the velocities of the joint coordinates and 
the position and orientation of the robot is obtained through the Jacobian matrix. Furthermore, 
transposing this matrix provides the relationship between the external forces applied to the 
end effector (often called the wrench) and the actuated joint forces. Thus, the matrix is useful 
for both the velocity and the force problem. In order to obtain the Jacobian, the following vec-
tor expression can be obtained from Fig. 2: 

iriOAPPOP rlrqrrr
iicc 211


⋅+⋅+=+   (6) 

where ir ,1

  and ir ,2

  are unit vectors in the direction of iiBA  and iiPB , respectively, rl  is the length 
of the coupler, 

cOPr is the position vector from the global coordinate system to the end-effector 
location, and 

ic PPr
 is the position vector between the end effector and the spherical joint Pi. Fi-

nally, 
iOAr defines the position vector between the intersection of the line defining the pris-

matic joint motion with the base plane and the global coordinate system. 

 

Deriving equation (6) and multiplying both sides of the equation by ir ,2

 : 

( ) ii,i,PPPciPci, qrrrrvr ic 

1222 ⋅=×⋅+⋅ ω   (7) 

where [ ]T
Pc zyxv 


= contains the components of the linear velocity at the end effector and
[ ]TzyxPc ωωωω =

  contains the components of the angular velocity.  

 

Equation (7) can be applied to each leg. Defining 
ic PPi rb 

=  the following equations hold: 
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×
×
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
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
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
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
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



⋅
⋅

⋅

z

y

xtt
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z
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x
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rbr
rbr

q
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q
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rr

ω
ω
ω
























23323

22222

21121

8

6

1

1323

1222

1121

00
00
00   (8) 

 

We can therefore verify that: 
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Pcxq xJqJ 



 ⋅=⋅    (9) 

However, it is important to bear in mind that not all the variables of the Pcx

 vector are inde-

pendent given that only three of the coordinates at the end effector are independent. Conse-
quently, the relationship between the end-effector coordinates has to be determined. The 
revolute joints, at points iB , impose the constraint that each leg moves on a plane whose 
normal vector corresponds to the axis of the revolute joint. Taking this into account, the fol-
lowing set of equations can therefore be written: 

)cos()sin(
l

x m βα
3

−=    (10) 

( ))cos()cos()sin()sin()sin()cos()cos(
l

y m γαγβαβα −−−=
3

2  (11) 

)cos()cos( 
)cos()sin()tan(
βγ

βγa
+

=    (12) 

 

The partial derivatives of equations (10)-(12) provide the 6 x 3 Jacobian matrix relating the 
dependent end-effector coordinates to the independent ones. That is: 

 

[ ] [ ]γβγβα  zJzyx r
T ⋅=    (13) 

where: 































=

δβ
δα

δγ
δα

δ
δα

δβ
δ

δγ
δ

δ
δ

δβ
δ

δγ
δ

δ
δ

z

yy
z
y

xx
z
x

J r

100
010
001    (14) 

 

The above equations provide the relationship, including the change in platform angle over 
time. Nevertheless, the Jacobian matrix needed by the wrench has to be written with respect to 
the angular velocity at the end effector. Based on the fact that the angular velocity is related to 
the change in the angles over time, this matrix can be obtained by the following equations: 

 

[ ] [ ]TT
zyx

)sin(
)cos()cos()sin(
)sin()cos()cos(

γβα
β

αβα
αβα

ωωω ⋅
















−

−
=

10
0
0    (15) 

 

Thus, from equations (9), (13) and (15), the following relationship can be written as fol-
lows:  
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[ ] [ ]Tyxp
T

yxrxq zJzJJJq ωωωω 

 ⋅=⋅⋅⋅= −1    (16) 

where pJ  is the Jacobian matrix relating the coordinates of the end effector to the actuated 
joint space. The equation relating the wrench at the end effector with the actuation forces can 
be written as follows: 

 

[ ]Tyxz
T

p NNFJ ⋅=τ    (17) 

 

Equation (17) can be used to find the required actuation forces caused by the external force 
applied to the end effector, which is useful for developing force control. 

 

 

2.3 Dynamic model 
In order to implement dynamic controllers, the equation of motion of the parallel robot can 

be described as follows: 

( ) ( ) ( ) τ











=Φ+⋅Φ+⋅Φ ,,,, qGqqqCqqM  (18) 

From equation (18), it can be seen that the system mass matrix M, the vectors correspond-
ing to the centrifugal and Coriolis forces C

C
, and the gravitational forces G


 depend on the dy-

namic parameters Φ
 and the external generalized forces τ . It is worth noting that (18) is valid 

only when the system is modeled by a set of independent generalized coordinates. In this pa-
per, a coordinate partitioning procedure has been considered to model the system using a set 
of independent generalized coordinates. The actuated joint coordinates are the set chosen as 
the independent coordinates [ ]Tqqqq 861=

 . 

In order to identify the dynamic parameters, the model needs to be written in linear param-
eters (Díaz-Rodriguez et al., 2010): 

( ) τ







=Φ⋅qqq ,,K  (19) 

Equation (19) represents a set of three linear equations, thus ( )qqq






 ,,K  is a 3 x 25 matrix 
which is a function of the positions, velocities and accelerations of the generalized coordi-
nates. In addition, Φ���⃗  is the 25 x 1 vector of dynamic parameters. As can be seen, the systems 
of equation hold a number of equation which is less than the unknown parameters. Thus, in 
order to identify the dynamic parameters, equation (19) has to be applied to a set of several 
robot states so that an overdetermined system is built up, which can be solved using Least-
Square Techniques. The states of the robot which are needed to build the overdetermined sys-
tem are obtained by measuring the position and forces of the robot when it follows a pre-
scribed trajectory. The trajectory is designed so that all the parameters in the model contribute 
to the actuation torques (Díaz-Rodriguez et al., 2010). However, even with a well-designed 
trajectory, some of the dynamic parameters are irrelevant in terms of their contribution to the 
actuation torques. In this paper, only those relevant parameters which contribute to the dy-
namics model are identified and used for model-based control. This approach was used in the 
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author’s previous work, of which the procedure followed and the dynamics parameters can be 
seen in (Díaz-Rodriguez et al., 2013). 

The gravitational term G


  is obtained, taking into account that it depends only on the gen-
eralized coordinates. Thus, by zeroing the generalized velocities and accelerations, the follow-
ing expression is obtained: 

( ) ( )qGq,q,qK 





 =⋅== Φ00  (20) 

The columns in the system mass matrix can be determined as follows: 

( ) ( ) ( )qMqGe,q,qK ii



 =−⋅= Φ0  (21) 

In the last equation, ( )qi


M is the i-th column of the mass matrix and [ ]Tie 010 


=  a 
column vector with 1 in the i-th position. 

Finally, by once again zeroing the generalized accelerations in equation (19), the centrifu-
gal and Coriolis terms (which depend on the generalized coordinates and velocities) can be 
obtained. 

3 DEVELOPMENT OF THE SIMULATED PARALLEL ROBOT  

3.1 Position joint space control 
After the dynamic problem has been solved and the dynamic parameters have been ob-

tained and validated through parameter identification of the parallel robot, the real-time con-
trol can be addressed. In this work, various joint space control strategies based on inverse 
dynamics have been implemented. This type of control is discussed in more detail in (Craig, 
1989; Spong and Vidyasagar, 1989; Yoshikawa, 1990; Canudas, Siciliano and Basting, 1996). 
These strategies are potentially very useful given that they reduce the nonlinear control prob-
lem to the control problem of a linear system, for which many tools are available. Assuming 
the dynamic model as: 

u)x(b)x(fx )n(  ⋅+=  (22) 

where )x(f  and )x(b  are nonlinear functions and u is the control input. 

If the control input has the expression: 

[ ])x(fa
)x(b

u 


 −=
1

 
(23) 

the nonlinearities will be cancelled, and the simple input-output relation will be obtained: 

ax )n(  =  
(24) 

where a  is a new input vector to be defined below.  

In the case of robot systems, the dynamic model is expressed by Equation (18). Working 
with this expression: 



Cazalilla, J., Vallés, M., Valera, A., Mata, V., Díaz-Rodríguez, M. 

 10 

( ))q(Gq)qq(C)q(Mq c
CCC


C


CCCCC
 −⋅−= − ,τ1

 
(25) 

the following terms can be defined:  

( ))q(Gq)qq(C)q(M)x(f CCC


C


CCCC −⋅−≡ − ,1
 (26) 

)q(M)x(b  1−≡  (27) 

Using the general expression (23): 

( )[ ])q(Gq)qq(C)q(Ma
)q(Mc

CCC


C


CCCC
C

C −⋅−−= −
− ,1

1
1τ  

(28) 

the controllers based on the inverse dynamics could be viewed as particular cases of the fol-
lowing control law: 

)q(Gq)qq(Ca)q(Mc
CCC


C


CCCCC +⋅+⋅= ,τ  (29) 

The inverse dynamics control (29) shows how the nonlinearities, such as Coriolis vector 
qqqC C


C


CC
)( , , as well as the gravity term )(qG 

can be simply compensated by adding these forces 
to the control input.  

Depending on the expression used in a , different control strategies can be obtained. In this 
work, a trajectory controller has been implemented. For this controller, the a  expression is: 

eKeKqa pdd


 −−=  (30) 

where dq-qe  = , dq-qe 






 = , Kd, and Kp are diagonal and positive-definite matrices and 

)(tqd
 , )(tqd

 and )(tqd


  is the time-varying trajectory and its successive derivatives which de-

scribe the desired velocity and acceleration, respectively. 

The control law of equations (29) and (30) applied to the robot dynamics gives the close-
loop equation: 

0=−− eKeKe pd




  (31) 

The error equation (31) is exponentially stable by a suitable choice of the matrices Kd and 
Kp.  Figure 3 shows the inverse dynamics controller proposed. The figure shows how nonline-
arities, such as Coriolis, gravity and inertia terms, can easily be compensated for by adding 
these forces to the control input. The proportional and derivative terms compose the linear 
auxiliary control input a . 

 
 

Figure 3: Point-to-point inverse dynamic controller 
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In order to validate the methodology proposed in this paper, various Matlab/Simulink 
schemes have been developed. Fig. 4 illustrates the reference and real position of the robot 
joint q1. As can be seen, a good response is obtained in following the trajectory. The response 
is quite similar for joints q6 and q8. 

 
Figure 4: Reference and robot position 

3.2 Position task space control 
Control of parallel robots is naturally achieved in the joint space, since the control inputs 

are the joint torques. Nevertheless, the user specifies a motion in the task space, and thus it is 
important to extend the control problem to the task space. This can be achieved by following 
the equation below (Canudas, Siciliano and Basting, 1996), for example: 

( ) )q(Gq)q(JK)q(JxxK)q(J d
T

dp
T

c



 +⋅⋅⋅−−⋅⋅=τ  

(32) 

where dx is the desired robot location vector, x is the robot location vector, J is the Jacobian 
matrix, q and q are the robot position and velocity, and )(qG 

is the robot gravity term. Fig. 5 
shows the task space controller that has been developed. 

 

Figure 5: Task space controller 

As in the previous cases, simulations have also been implemented with this controller. Fig. 
6 shows the height (z) reference for the platform and the robot height, while Fig.7 illustrates 
the parallel robot platform orientation: the gamma and beta angles.  

 
Figure 6: Response task space controller: robot height 

 
Figure 7: Response task space controller: robot gamma and beta angles 

 

3.3 Force control 
In addition to controlling position, force control is increasingly being used in industrial ro-

bots. Various types of control strategies can be chosen to establish force control, the first of 
which is based on typical force control and consists of following a force reference. This con-
trol is restricted to a linear (Volpe and Khosla, 1993) control, such as PID force control. The 
effect of the three parameters of a PID controller is well known and has been extensively de-
scribed in the literature, e.g. (Astrom and Murray, 2008). The integral term ensures zero track-
ing error while the function of the derivative term is to dampen the system. The resulting 
force control law is given in equation (33): 

)fF(
dt
dKdt)fF(K)fF(K refdrefIrefpf −+−+−= ∫t  (33) 
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where τf is the force control action, Fref is the force reference, f is the measured force and Kp, 
Ki and Kd are proportional, integral and derivative constants.  

A Matlab/Simulink scheme has been developed in order to simulate and analyze force con-
trol. This scheme uses the force control of equation (33) and follows the control architecture 
presented in (Valera et al., 2011). As mentioned above, due to the configuration of the parallel 
robot, it has three degrees of freedom: the height (z) of the platform and the orientation (γ and 
β). Thus, the robot has an established control force/position: force control in z axis and orien-
tation control of the robot’s platform. The figure below illustrates a control scheme developed 
for this work. 

 
Figure 8: Force control scheme developed 

Fig. 8 shows the controller developed in this work. The position reference for the parallel 
robo is xd, while fd is the force reference that the robot shall apply to the environment. The 
specific force control algorithm is programmed in the “Force Controller” block using the error 
signal between the force reference and the force measured on the robot’s platform. Finally, 
new position references qd are computed and sent to the joint space robot controller. These 
references are obtained through the outputs of the parallel robot’s inverse kinematics (𝑞�𝑑) and 
the force controller (∆𝑞). 

In Figure 9 the force applied by the robot (in red) follows the reference with a very small 
degree of error.  

 
Figure 9: Parallel robot force controller response. 

4 DEVELOPMENT OF FORCE CONTROL OVER THE ACTUAL PROTOTYPE 
An industrial PC has been used to implement the control architecture for the parallel robot. 

It is based on a high performance 4U Rackmount industrial system with 7 PCI slots and 7 ISA 
slots. It has a 2.5 GHz Intel® Pentium® Core 2 Quad/Duo processor and 4 GB SDRAM.  

The industrial PC is equipped with two Advantech™ data acquisition cards: a PCI-1720 
and a PCL-833. The first is used to supply the control actions for each parallel robot actuator 
and the second is used to read the encoder measurements.  

The force control is established with the ATI sensor Delta SI-330-30. This is a sensor made 
of silicon strain gauges with 6 DOF which can measure forces and moments on the XYZ axes, 
providing a measurement error of nearly zero. The control unit measures these signals using 
the Network Force/Torque sensor system. It provides an Ethernet/IP communication interface. 
Fig. 10 illustrates the control architecture developed for this robot.   

 

 

Figure 10: Actual robot positions  
 

The parallel robot is controlled using the C++ programming language (with Orocos mid-
dleware). The PC is equipped with the Linux Ubuntu system, patched with Xenomai (a real-
time kernel). Thus, real-time features are available. Using this environment, joint space con-
trol strategies based on inverse dynamics have been implemented. The sample time used for 
the control algorithm is 10mS.  
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Fig 11a shows the reference and the real position (for the joint q1) of the parallel robot. As 
can be seen in Fig. 11b, a high accuracy is obtained. 

   

(a)                                                                      (b) 

Figure 11: Actual robot position and error  

Based on the calculated Jacobian matrix, a task space position controller has also been im-
plemented using the actual parallel robot and Orocos middleware. The sample time is the 
same as for the joint space controller: 10mS. Fig. 12 shows the robot height while Fig. 13 
shows the platform orientation (roll in Fig 13a and pitch in Fig. 13b). As occurs with joint 
space control, errors in the executions are very small.  

 
Figure 12: Height of the robot platform 

 
(a)                                                                                       (b) 

Figure 13: Robot platform orientation 

 

Finally, the force robot control has been implemented with the parallel robot. The sample 
time of this controller is 10mS. Fig. 14 illustrates the reference and the force applied by the 
robot on the z axis. For the first seven seconds (approximately), the force applied by the robot 
is zero as during that time the platform is moving down and has no contact with the environ-
ment. From that point on, the terminal element collides with the environment and the control 
force is established, using a sinusoidal force reference. As can be seen in the figure, the force 
applied by the robot follows the reference very accurately. Fig. 15 shows the control action 
for the actuator of coordinate q1. 

 
Figure 14: Reference and actual robot force 

 

Figure 15: q1 control action 

 

5 CONCLUSIONS 
This paper studied the position and force control of a parallel robot with 3 DOF. In addi-

tion to designing the robot, a completely open and flexible control system (based on an indus-
trial PC) was developed. The PC was equipped with card D/A converters, encoder reading 
and a force sensor. Programs and control applications were developed with the programming 
language C++. 

In order to establish control of the robot, direct and inverse kinematic models of the robot 
were solved, as well as the dynamic model and the Jacobian needed to implement force con-
trol. 
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A model-based controller was chosen to develop the position control. The response ob-
tained with this position control, both in simulations and with the real robot, showed accurate 
response in terms of position error. 

A hybrid force/position controller was also implemented in this paper. A force sensor was 
installed on the platform in order to measure the forces and torques applied by the robot. The 
performance obtained from simulations and with the actual prototype demonstrated that the 
robot can accomplish the required task. 
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