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Abstract 

Hydrogen is considered to be the most promising candidate as a future energy carrier. 

One of the most used technologies for the electrolytic hydrogen production is alkaline 

water electrolysis. However, due to the high energy requirements, the cost of hydrogen 

produced in such a way is high. 

In continuous search to improve this process using advanced electrocatalytic materials 

for the hydrogen evolution reaction (HER), high area NiCo/Zn electrodes were prepared 

on AISI 304 stainless steel substrates by electrodeposition. After preparing, the alloys 

were leached of to remove part of the zinc and generate a porous layer (type Raney 

electrodes). The presence of a thin Ni layer between the substrate and the Raney coating 

favour the adherence of the latter. The porous NiCo/Zn electrode was characterized by 

SEM, EDX, confocal laser microscopy, and electrochemical impedance spectroscopy. 

HER on this electrode was evaluated in 30 wt.% KOH solution by means of polarization 

curves, hydrogen discharge curves, and galvanostatic tests. Results show that the 

developed electrode presents a most efficient behaviour for HER when comparing with 

the smooth Ni cathode. The high electrode activity was mainly attributed to the high 

surface area of the developed electrode. 
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1. Introduction 

Hydrogen is considered an ideal energy carrier that can be an alternative to fossil 

fuels. It is a clean and fully recyclable substance with a practically unlimited supply and 

has all the criteria considered for an alternative energy source [1-3]. The 

electrochemical production of hydrogen by alkaline water electrolysis is one of the most 

promising methods with great potential of using renewable energy sources, such as solar 

energy [4, 5]. Also it represents an environmentally friendly technology for production 

of high purity hydrogen [1, 6]. However, the high energy consumption of alkaline water 

electrolysis retrains its large-scale application at present. In order to make this technique 

more efficient and economical, both the decrease of the overpotentials of electrode 

reactions and the selection of inexpensive electrode materials with good electrocatalytic 

activity are needed. The electrode activity can be enlarged by increasing the real surface 

area and/or the intrinsic activity of the electrode material [7]. For this purpose, the most 

important and most studied electrode material is nickel, its alloys and compounds [8-

15]. Nickel type Raney coatings are usually employed as the cathodic material for HER, 

due to its capability to generate high currents per unit of external surface. This property 

is mainly based in its very high internal area originated in its cracks formations [8, 16]. 

In addition to the electrocatalytic activity, the other important parameters for selecting a 

material for electrolysis are its stability during long-term electrolysis and the corrosion 

resistance in the operation solution, because, during shut down periods, electrode 

materials can corrode and, as a result, lose their activity as well as decrease their life 

time. Divisek et al. [17] showed that the catalytic activity of the Raney-Nickel coatings 

is deteriorated with long-term electrolysis due to changes of the reaction mechanism, 

deposition of trace metals and/or dissolution of the catalyst components. 
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In order to obtain an electrochemically more stable electrode and provide 

adequate corrosion protection, it is necessary to use a thin nickel coating under the 

Raney-Nickel deposits [14]. The presence of this nickel layer considerably diminishes 

the disintegration of the Raney type coating during the continuous operation in strong 

basic media. Moreover, the nickel layer acts as a physical barrier for the access of the 

aggressive electrolyte through the porous surface to the substrate material, improving 

the corrosion properties of the material [14,15]. According to the last point, in a 

previous work [18] different Ni/Zn and NiCo/Zn electrode materials where 

morphologically characterized by electrochemical impedance spectroscopy. The aim of 

the present work is to carry out a complete electrochemical characterization of NiCo/Zn 

Raney type electrodes for HER. The porous Ni-Co/Zn electrodes synthesized were 

characterized by SEM, EDX, confocal laser microscopy, and electrochemical 

impedance spectroscopy (EIS). Their activity towards hydrogen evolution was assessed 

by recording polarization curves, hydrogen discharge curves, and series of galvanostatic 

tests, simulating the conditions in the normal operation of an alkaline electrolyser.    
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2. Experimental 

2.1. Preparation of electrodes 

The metallic coatings were deposited on an AISI 304 stainless steel cylindrical 

substrate, embedded in Teflon, leaving a cross-sectional available area of 0.5 cm2. AISI 

304 stainless steel as substrate material was mainly chosen due to its good mechanical 

and corrosion resistance at relatively low cost. 

Before the electrodeposition experiments, the stainless steel substrate was 

mechanically polished with emery paper down to 4000 grit, next it was degreased for 1 

minute with 25 wt.% NaOH at 90 ºC, immersed in HCl 18 wt.% during 1 minute, and 

anodically treated in 70 wt.% H2SO4 at 108 mA cm-2 for 3 minutes. Then the substrate 

surface was struck at -27 mA cm-2 in a Wood’s nickel solution (240 g L-1 NiCl2, 120 

mL L-1 HCl) for 5 minutes, in order to produce a thin, adherent deposit of nickel which 

serves as a base for the subsequent electrodeposition. Between each treatment the 

electrode was rinsed with distilled water.  

Ni-Co/Zn alloy depositions were performed galvanostatically, at a current 

density of -50 mA cm-2, from a modified Watts Bath (MWB) in which NaCl was 

substituted by NiCl2. The bath composition is detailed in Table 1. The reagents used for 

electrolyte preparation were of chemical grade and were no subjected to an additional 

purification. Distilled water was used to prepare electrolytes. The electrolyte 

temperature was kept at 50 ºC in all the electrodeposition experiments.  

Electrodepositions were carried out in a thermostated one-compartment cell 

made of Pyrex glass with a Teflon cover having adequate holes to lodge the electrodes 

and entrances to add reagents to the bath. The solution inside the cell had an initial 

volume of 50 mL and was stirred by means of a magnetically driven stirrer. The counter 

electrode was a large-area graphite electrode of high purity. The reference electrode was 



6 

a commercially available silver-silver chloride (Ag-AgCl) electrode with 3 M potassium 

chloride (KCl) solution. The experiments were accomplished by using an AUTOLAB 

PGSTAT302N potentiostat/galvanostat.  

After the electrodeposition, the electrodes were treated in 6 M NaOH at 50 ºC 

during 48 hours. Treatment in alkali dissolves a percentage of the electrodeposited zinc 

producing a porous nickel layer of high surface area [12,13]. The structures, 

morphologies and compositions of the Ni-Co/Zn alloys were examined by means of an 

OLYMPUS LEXT OLS3100-USS confocal laser scanning microscope, and a JEOL 

JSM-3600 scanning electron microscope (SEM) coupled with an Energy-Dispersive X-

Ray (EDX) Spectrometer. 

 

2.2. Electrochemical measurements 

The developed electrodes were characterized by means of polarization curves, 

electrochemical impedance spectroscopy, hydrogen discharge curves, and galvanostatic 

tests. All these tests were performed in oxygen free 30 wt.% KOH solutions, which 

were achieved by bubbling N2 for 15 min before the experiments. 

Polarization curves were potentiodynamically recorded from -1.60 V vs 

Ag/AgCl (-1.40 V vs SHE) up to the equilibrium potential, at a scan rate of 1 mV s-1, 

and at six different temperatures: 30, 40, 50, 60, 70 and 80 ºC. Before the tests, the 

working electrode was held at -1.60 V vs Ag/AgCl (-1.40 V vs SHE) in the same 

solution, in order to reduce the oxide film existing on the porous surface electrode layer, 

for the time needed to establish reproducible polarization diagrams.  

EIS measurements were performed after obtaining the polarization curves. 

Alternating current impedance measurements were carried out at different cathodic 

overpotentials, and at the following temperatures: 30, 50, and 80 ºC. The measurements 
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were made in the frequency range of 10 kHz to 3 mHz. Ten frequencies per decade 

were scanned using a sinusoidal signal of 10 mV peak-to-peak. The complex nonlinear 

least square (CNLS) fitting of the impedance data was carried out with the Zview 3.0 

software package. 

In order to obtain the hydrogen discharge curves, a progressively increasing 

voltage was applied, starting from 0 V between the anode (smooth Ni) and cathode 

(working electrode) and going up to - 3 V.  With the aid of these curves, the minimum 

discharge potentials were determined experimentally for each electrode pair. 

Finally, the galvanostatic experiments were carried out at three different applied 

current densities of 20, 50 and 100 mA cm-2 and at six different temperatures: 30, 40, 

50, 60, 70 and 80 ºC, during 1 hour. 

The electrochemical measurements were carried out in an electrochemical cell 

developed by the Dpto. Ingeniería Química y Nuclear of the Polytechnic University of 

Valencia [19]. It is a three-electrode cell that allows monitoring the volume of gas 

generated at the anode and the cathode. Also, this system has a heating circuit to control 

the temperature. A Luggin capillary, whose tip was set at a distance of about 1 mm from 

the surface of the working electrodes, was used to minimize the variations due to jR 

drop in the electrolytes (see Fig. 1). 
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3. Results and discussion 

Stainless steel substrates have a thin naturally protective oxide film which forms 

quite quickly when exposed to air, for this reason these substrates are difficult to coat 

with adherent electrodeposits [20]. To prevent this problem, between the pre-treatment 

steps the substrate material was quickly rinsed and immersed in the bath of the 

following step, in order to avoid the contact with air. Furthermore, the Wood’s nickel 

strike produces a thin, adherent deposit of nickel which serves as a base for subsequent 

coatings. This Ni layer enhances the activity and stability of the electrode material for 

alkaline water electrolysis [14].  NiCo/Zn coatings deposited electrolytically show good 

adhesion to the AISI 304 stainless steel substrate and good physical stability. 

Figure 2 shows a micrograph of the developed coatings, obtained using a 

confocal laser scanning microscope. The cracks considerably enlarge the surface area of 

the electrode. Moreover, the cracked surface can increase the activity of HER. Hence, 

the energy requirements (overpotential) to obtain a specific hydrogen production 

(current density) can be diminished [21]. The NiCo/Zn layer, after the leaching 

treatment, contains about 77 wt.% of nickel, 19 wt.% of zinc, and 3 wt.% of cobalt. 

Therefore, the chemical composition analysis revealed that after the leaching treatment, 

there is still a high percentage of zinc present in the coatings, which corresponds to the 

zinc occluded down to a NiCo layer. 

In order to investigate the catalytic activity of the prepared layers, Tafel linear 

polarization measurements were performed in 30 wt.% KOH solutions, and the 

corresponding electrochemical parameters (Tafel slope, exchange current density, 

transfer coefficient) were derived from the recorded curves. Fig. 3 shows a set of Tafel 

curves recorded at different temperatures on the catalyst layer investigated. The curves 

performed on commercial smooth Ni electrode were also included to compare the 
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obtained results. The curves were corrected with respect to the reversible HER potential 

at the given conditions and for the jR-drop. The Tafel curves obtained for the NiCo/Zn 

layer (Fig. 3) show a classical Tafelian behaviour, indicating that the HER on this 

electrode is a purely kinetically controlled reaction described by the Tafel equation [22, 

23]: 

jba log+=h  (1) 

where h (V) represents the applied overpotential, j (A cm-2) the resulting (measured) 

current density, b (V decade-1) the Tafel slope, and a (V) is the intercept related to the 

exchange current density j0 (A cm-2) through the equation: 

0log)/()3.2( jFnRTa e ´= b . (2) 

The other parameter of interest is b, the symmetry factor, which can be calculated from 

the Tafel slope 

)/()3.2( FnRTb eb-= , (3) 

where ne represents the number of electrons exchanged, F (=96,485 C mol-1) is the 

Faraday constant, and R (= 8.314 J mol-1 K-1) is the gas constant. Since the NiCo/Zn 

curves in Fig. 3 do not show any significant change in the Tafel slope, the same HER 

reaction mechanism should be valid through the entire overpotential region investigated. 

The values of the kinetic parameters are reported in Table 2. The mechanism of HER in 

alkaline solution involves the formation of an adsorbed hydrogen atom (adatom) 

intermediate, MHads (Volmer reaction, Eq. (4)), the electrodic desorption of hydrogen 

into solution (Heyrovsky reaction, Eq. (5)) and/or a chemical desorption by the 

combination of two adatoms (Tafel reaction, Eq. (6)):  

-- +®++ OHMHeMOH ads2  (4) 

-- ++®++ OHMHeMHOH ads 22  (5
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) 

MHMHMH adsads 22 +®+  (6

) 

where M is a free site on the metal surface and MHads is the metal surface occupied by 

hydrogen adatoms. When the mechanism is determined from the rate-determining step 

(rds) of a multi-step reaction, the Tafel slope plays an important role in estimating the 

mechanism [24, 25]. It has been widely accepted that the value of the charge-transfer 

coefficient, a, depends on the rds for multi-step reactions [12, 26-29].  Note that for the 

Volmer step the symmetry factor, b, is equal to the transfer coefficient, a (i.e. a = b), 

while for the Heyrovsky step the transfer coefficient is equal to a = 1+b [23, 30]. 

According to the general model for the HER mechanism, when the rds is Eq. (4), or 

Eq (4) coupled with Eq (5), or Eq (4) coupled with Eq (6), the value of a is 0.5. 

Therefore, the Tafel slope becomes 120 mV dec-1 at 30 ºC, and 140 mV dec-1 at 80 ºC. 

Other possibilities are a = 1.5 and b = 40 mV dec-1 at 30 ºC, when Eq. (5) is rds; and 

a = 2 and b = 30 mV dec-1 at 30 ºC, when Eq. (6) is the rds [31-33]. Here, the Tafel 

slope ranges between 80 mV dec-1 and 120 mV dec-1 at 30 and 80 ºC, respectively, and 

the a = b values are close to 0.5 for the NiCo/Zn catalyst (see Table 2).  

  In contrast to the behaviour reported for the developed electrodes, the 

polarization curves recorded on the smooth Ni electrode (Fig. 3) display two potential-

dependent regions related to the HER. As depicted in Table 2, the Tafel slopes decrease 

from higher values at overpotentials less cathodic than approximately - 200 mV, blh, to 

lower values at more cathodic overpotentials, bhh. The existence of two Tafel regions has 

already been reported in literature on Ni-based catalysts [10, 26, 32, 34-37]. At low 

cathodic overpotentials the Tafel slopes (blh) are higher than 120 mV dec-1 at 30 ºC, 
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which may indicate the presence of some oxides on the surface of the Ni electrode [22, 

34]. 

   In Table 2 it is also reported the overpotential values at a fixed current density of 

-100 mA cm-2, h100. This parameter gives an indication on the amount of energy 

(overpotential) that has to be invested to produce a fixed amount of hydrogen. The 

developed electrode is characterized by higher exchange current density, j0, and lower 

hydrogen overpotential, h100, compared with the smooth Ni electrode, thereby 

indicating an improvement of electrocatalytic activity. 

The information obtained from the Tafel polarization data demonstrate that the 

investigated Ni-based catalyst is very active for the HER, showing a higher catalytic 

activity than the smooth Ni electrode. However, since the Tafel curves are normalized 

to the geometric area of the catalyst and not to the real electrochemical area, the results 

discussed above cannot offer a definite conclusion if the observed electrocatalytic 

activity is a result of only an increased surface area of the catalysts, or if an 

improvement in the intrinsic (electronic) electrocatalytic properties of the catalyst 

material is also a contributing factor. Therefore, in order to obtain information on the 

intrinsic activity of the investigated layer in the HER, the curves presented in Fig. 3 

should be normalized to the real electrochemically active surface area. In this work, an 

EIS technique has been proposed as the most appropriate to determine the real surface 

area in electrochemical systems, as previously used in literature [38-40]. 

EIS measurements were made at different selected overpotentials of the 

previously obtained polarization curves: h1, corresponding to the equilibrium potential, 

0 mV; h2, a cathodic overpotential at which it is not manifested the hydrogen evolution; 

h3, an overpotential at which the hydrogen production takes place at a very low rate; 

and h4, at which hydrogen is vigorously generated. Figure 4 shows the effect of both 
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applied cathodic overpotential (Fig. 4.a) and temperature (Fig. 4.b) on the Nyquist plots 

of the impedance of the NiCo/Zn electrode. The EIS spectra recorded reveals the 

presence of two overlapped semicircles (i.e. two different time constants), the first one 

at high frequencies (HF), and the second one at low frequencies (LF). From Fig. 4 it is 

clear that the diameter of both semicircles considerably decreases with both the cathodic 

overpotential and temperature, indicating that both semicircles are related to the 

electrode kinetics [13]. As the overpotential increases, the LF semicircle in the 

impedance plots becomes smaller and smaller, even disappears at very high cathodic 

overpotentials. This is due to the fact that the adsorption process is facilitated and the 

charge-transfer process dominates the impedance response as the potential increases. 

Therefore, according to the results obtained from both Tafel and EIS studies, one can 

assume that the Volmer-Heyrovsky mechanism must control the HER on that electrode. 

As it was discussed in a previous paper [18], the two-time constants parallel 

(2TP) electric equivalent circuit (Fig. 5), proposed by Armstrong and Henderson [41], 

properly models and describes the AC response of the NiCo/Zn layer. The 2TP model 

reflects the response of a HER system characterized by two time constants, the first time 

constant, t1 (CPE1, R1), related to the charge transfer kinetics, and the second one, t2 

(C2, R2), related to the hydrogen adsorption [13, 22, 42, 43]. Table 3 shows the best-fit 

estimates of the different 2TP EEC parameters obtained from the impedance 

measurements on the NiCo/Zn electrode at 80ºC. The average double layer 

capacitances, C1, for the catalytic coatings were determined using the relation suggested 

by Brug et al. [44]: 

11 /1)1(1
1

1
11 ])/([ nn

S RRQC --- +=  (7) 

where Q1 and n1 are the CPE1 constant and exponent, respectively; RS is the solution 

resistance; and R1 the HER charge transfer resistance. Considering a value of 20 µF cm-
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2 for the double layer capacitance, Cdl, of a smooth nickel surface, used earlier in the 

literature [12, 26], the real active surface area, in terms of surface roughness factor (Rf), 

may be estimated by comparing the Cdl related to the HER charge-tranfer kinetics of 

porous/rough and smooth electrodes [45]. The plots of the electrode surface roughness 

factor as function of the HER overpotential are displayed in Fig. 6. As it is clear from 

Fig. 6, the values of Rf decrease when increasing the cathodic potential, up to a 

convergence value of about 700. This may be due to a blockage of a fraction of the 

inner surface of the electrode during HER due to gas bubbles shielding, and hence not 

electrochemically accessed by the electrolyte [38, 46-48], and an interface shifting as 

the electrode surface is not real flat. The Rf data allows us to evaluate the relative 

intrinsic catalytic activity of the investigated catalyst, by subtracting the effect of the 

surface area. For this purpose, the Tafel plots were normalized to the true surface area 

by dividing the curves by the corresponding surface roughness factor, see Fig. 7. As 

depicted in Fig.7, at high overpotentials the current density of the smooth Ni electrode 

is lower than that reported for the NiCo/Zn layer. Although there is a high percentage of 

Zn in the obtained coating, the superficial catalytic electrode layer is mainly composed 

of Ni, with a little percentage of Co, due to the fact that superficial Zn is rapidly leached 

out in the alkaline media used. Moreover, as it was shown in a earlier work [49] the 

presence of Co in this composition range does not manifest the synergism among the 

catalytic properties of nickel (low hydrogen overpotential) and of cobalt (high hydrogen 

adsorption). According to this, the developed electrode can be considered as a pure Ni 

layer. Therefore, the increase in the catalytic activity on the NiCo/Zn electrode at high 

overpotentials can be explained by a different magnitude of the standard adsorption 

energy on the substrates analyzed. In the case of the smooth Ni electrode subjected to 

mechanical polishing the surface layer presents some degree of amorphization, which 
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implies a disordered surface structure. On the contrary, the electrodes obtained by 

electrodeposition are highly crystalline and the surfaces have a more ordered structure. 

As a result, the polished nickel electrode shows a lower hydrogen equilibrium surface 

coverage than the macroporous electrodeposits, which affects the hydrogen production 

at most cathodic overpotentials [37]. 

In order to evaluate the suitability of the developed cathode for the most 

economical electrolysis process, both current-cell potential curves (hydrogen discharge 

curves) and galvanostatic tests have been carried out. All these tests where performed in 

the P200803389 cell [19]. It is a thermostated three-electrode cell that allows 

monitoring the volume of gas generated at the anode and the cathode. Figure 8 shows 

the hydrogen discharge curves obtained using as cathodes both the NiCo/Zn and the 

smooth Ni electrodes in 30 wt.% KOH solution. After the discharge of gasses, there is a 

rapid increase in the current with increasing applied voltage, because of the evolution of 

hydrogen at the cathode and oxygen at the anode. As seen in Fig.8, the discharge of 

gasses starts at lower potential for the NiCo/Zn electrode, and the current passing 

through the solution is larger with this cathode, compared with the smooth Ni cathode, 

at all potentials. The minimum hydrogen discharge potentials (Eexp), given in Table 4, 

were experimentally determined by extrapolating the linear part of the hydrogen 

discharge curves (between 2 and 3 V) to the zero current, as described elsewhere [50]. 

The Eexp values decrease with temperature due to the increased conductivity of the 

electrolyte and higher electrode activities. The reversible discharge potential for water 

splitting (Erev) also reduces with an increase in operating temperature as given by the 

relation [51, 52]:  

2853 1084.9ln10523.9105421.15184.1)/( TTTTKTErev ××+×××+××-= ---

 
(8) 
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The difference between the measured and theoretical calculated values of these systems 

(Eexp-Erev) can be taken to be the experimental overpotential that represents the voltage 

in excess of the thermodynamic voltage, required to overcome the losses in the cell (h). 

As it is clear from the data in Table 4, the obtained overpotential for the NiCo/Zn 

coating is lower than that registered for the smooth Ni electrode. This reduction can be 

attributed to the lower cathodic overpotential associated with the reaction kinetics 

(electrode polarization effects) in the synthesized electrode with respect to the smooth 

commercial Ni electrode. It is also seen in Table 4 that the cathode overpotentials 

remain almost constant with the temperature for both electrodes. 

When temperature is considered it is accurate to use the higher heating value 

voltage (EHHV) for efficiency calculation [52]. EHHV corresponds to the heat content of 

the dry product gases with respect to the liquid water at 25 ºC. Therefore, 

cell

HHV

E
E

=e . (9) 

where e is the energy efficiency, and Ecell is the cell voltage. 

The absolute temperature dependence of EHHV can be given by the relation [52, 53]: 

284 100.110205.24146.1)/( TTKTEHHV ××+××+= --  (10) 

EHHV increases slightly with temperature, taking a value of 1.494 V at 80 ºC. In order to 

determine the maximum efficiency of the hydrogen evolution process, the minimum 

hydrogen discharge potentials, Eexp shown in Table 4, can be used as the cell voltage 

(Ecell) in Eq. 9. As it is shown in Fig. 9, higher energy efficiencies for a hydrogen 

production are obtained at higher operating temperature conditions, because of an 

increase in the mobility of the molecules and ions. Moreover, the NiCo/Zn electrode 

efficiency is higher than that reported for the smooth Ni electrode, due to the 

improvement in the catalytic activity of the developed electrode.  
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Galvanostatic tests have been carried out in order to verify the performance 

behaviour of these alloys in long duration experiences for the HER, at different current 

densities and temperatures. Fig 10.a reports the cell voltage for a temperature of 50 ºC 

at different current densities. Notwithstanding the small potential oscillation, the 

registered cell voltage (between anode and cathode) can be considered to be rather 

stable. It can be appreciated an increase in the cell voltage with the current density. The 

inverse effect in the cell voltage is obtained when the temperature is increased for a 

same current density (50 mA cm-2, in Fig. 10.b). On the other hand, as it is shown in the 

histograms of Figure 10, the hydrogen production remains practically constant with the 

variation in temperature, increasing directly with the current density applied. It has not 

been recorded loses in the catalytic activity, unexpected increases in the cell potential 

for a same current density applied, during the application of the set of galvanostatic 

tests, consolidating the stability of the Raney-Nickel coatings developed on smooth 

Nickel deposits. 

The energy requirements for the electrolytic hydrogen evolution process are 

calculated using the relation:  

2Hmole
tUIQ ××

=  (11) 

where Q is the energy consumption per one mole of hydrogen evolved (kJ mole-1), I is 

the absolute applied current in A, U is the cell voltage in V and t is the time in seconds. 

To obtain the correct number of hydrogen moles, the hydrogen pressure was determined 

as follows: 

)()(
2

TPghTPP vatmH -+= r  (12) 

where Patm is the atmospheric pressure, r(T) is the mass density of a 30 wt. % KOH 

solution, g is the gravitational acceleration, h is the height difference between the liquid 
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levels of the cathodic and central compartments, and Pv(T) is the water saturation 

pressure in 30 wt.% KOH solutions. In this way, the moles of evaporated water at the 

temperature conditions can be subtracted from the measured volume in the cathodic 

compartment of the voltammeter. The obtained results are presented in Fig. 11 as a 

three-dimensional diagram of energy consumption. In Fig. 11 it is shown an expected 

type of dependence: increase of the energy consumption with the increase of current 

density. On the other hand, the energy requirement decreases with increasing 

temperature. In principal, that means the higher the temperature the higher the reaction 

rate, thus the lower voltage requested for a certain current density. As it is clearly shown 

in Fig. 11, energy consumption of the electrolysis cell decreases for about 20 % using 

the NiCo/Zn catalyst coating as cathode, with respect to the commercial smooth Ni 

electrode. 

The energy efficiency, e, was also determined for each point of the surface plot 

of Fig.11, obtaining Fig.12. As it is shown, the efficiency of the electrolysis is inversely 

proportional to the cell potential [54]. Therefore, as the cell potential increases with the 

electrolysis current, it can be seen that the efficiency slightly decreases at increasing H2 

production. The obtained efficiencies of the unity electrolysis cell can not be compared 

to that reported in literature, due to the specific cell geometry. Nevertheless, it has been 

observed an improvement in the energy efficiency of about 10-35 % when comparing 

with the commercial nickel electrode.  
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4. Conclusions 

NiCo/Zn stainless steel-based electrodes, produced by electrodeposition, were 

characterized both morphological and electrochemically for hydrogen evolution reaction 

in alkaline media, showing significant electrocatalytic effects. Polarization curves and 

AC electrochemical impedance spectroscopy (EIS) measurements allowed us to 

determine the mechanism and kinetics of the HER. It was shown that the HER on 

NiCo/Zn catalyst is controlled by the Volmer-Heyrovsky mechanisms. Values for 

exchange current densities were in the range of 10-3-10-2 A cm-2. EIS results suggest that 

the improvement in the HER electrocatalytic activity observed for the NiCo/Zn catalyst 

is mainly attributed to the increased surface area. The decrease of surface roughness 

factor (Rf) values with rise of cathodic overpotential was ascribed to the occlusion of 

pores by gas bubbles due to the intensification of the HER at more negative 

overpotential. 

From the galvanostatic tests it has been pointed out that energy savings per mass 

unit of electrolytically evolved hydrogen from alkaline aqueous solutions on the 

NiCo/Zn electrode, can be beyond 20% in some cases, compared with the standard 

nickel electrodes. Moreover, NiCo/Zn electrode shows a most efficient behaviour than 

that obtained for the smooth pure Ni electrode. 

The electrocatalytic achievement and obtained stability of the NiCo/Zn 

electrode, appears valuable in the view of the significant energy savings, which is 

relevant for the possible use in industrial applications. 
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 Table 1. Bath composition used in the 
electrodeposition of electrocatalytic coatings on an 
AISI 304 stainless steel substrate. 
Catalyst 

NiCo/Zn 
 Composition (g L-1)  
 NiSO4·6(H2O) 300 
 NiCl2·6(H2O) 45 
 H3BO3 37 
 ZnCl2 20 
 CoSO4·6(H2O) 19 
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Table 2. Kinetic parameters of the HER obtained from the polarization curves recorded 
in 30 % wt KOH solution at different temperatures. 
Catalyst Temperature (ºC) 

  30 40 50 60 70 80 
Smooth Ni       
 blh (mV dec-1) 255.7 235.6 240.3 223.6 256.3 249.8 
 bhh (mV dec-1) 97.9 103.7 107.5 122.8 137.3 171.4 
 i0 (µA cm-2) 0.07 0.16 0.44 0.92 2.00 4.77 
 b 0.61 0.60 0.60 0.54 0.50 0.41 
 h100 (mV) 503 496 470 496 502 555 
NiCo/Zn       
 b (mV dec-1) 81.1 87.1 94.1 105.5 111.9 120.3 
 i0 (mA cm-2) 3.3 5.4 7.9 12.8 20.63 28.27 
 b 0.77 0.69 0.68 0.63 0.61 0.58 
 h100 (mV) 119.6 109.1 104.0 94.2 76.7 66 
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Table 3. EEC parameters of the 2TP model obtained by fitting EIS experimental 
spectra recorded in 30 % wt. KOH solution at various overpotentials and at 80 ºC 
on the NiCo/Zn coating. 
Parameter Overpotential 
 h1 ( = 0 mV) h2 ( = 19.3 mV) h3 ( = 34.7 mV) h4 ( = 71.9 mV) 
c2 1.51·10-4 6.30·10-5 1.04·10-4 1.03·10-4 
RS (W cm2) 0.40 0.41 0.41 0.41 
R1 (W cm2) 1.30 0.52 0.35 0.32 
R2 (W cm2) 36.03 6.60 1.42 0.15 
Q1 (W-1 cm-2 sn) 0.425 0.353 0.270 0.190 
n1 0.91 0.90 0.89 0.91 
C1 (F cm-2)* 0.348 0.270 0.188 0.138 
C2 (F cm-2) 2.39 2.41 3.03 5.88 
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Table 4. Experimental discharge potentials (Eexp) and overpotentials (hexp) obtained 
from the H2 discharge curves recorded in 30 % wt. KOH solution at different 
temperatures. 
Catalyst Temperature (ºC) 

  30 40 50 60 70 80 
Smooth Ni      
 Eexp (V) 1.830 1.820 1.810 1.801 1.794 1.780 
 hexp (V) 0.605 0.603 0.602 0.601 0.602 0.596 
NiCo/Zn       
 Eexp (V) 1.620 1.600 1.581 1.570 1.560 1.551 
 hexp (V) 0.395 0.383 0.373 0.370 0.368 0.367 
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Figure 1. Electrochemical cell (P200803389) and electrical connections. 
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Figure 2. Confocal Laser Scanning micrograph of the NiCo/Zn catalyst after the 

alkaline leaching. 
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Figure 3. Linear Tafel polarization curves recorded on NiCo/Zn (solid symbols), and 

smooth Ni (open symbols) electrocatalysts in 30 % wt. KOH solution at: ○ 30 ºC, △	50 

ºC, □ 80 ºC. 
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Figure 4. Nyquist representation of the impedance data obtained for the NiCo/Zn 

catalyst in 30 % wt. KOH solution at: a) 80 ºC (effect of overpotential); and b) h2 

(effect of temperature). Symbols are the experimental points and solid lines are 

modelled data.  
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Figure 5. Two-time constants parallel model (2TP) used to explain the EIS response of 

the HER on the NiCo/Zn electrode. 
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Figure 6. Surface roughness factor, Rf, as a function of the overpotential for the 

NiCo/Zn electrode in 30 % wt. KOH solution at: ○ 30 ºC, △	50 ºC, □ 80 ºC. 
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Figure 7. Linear Tafel polarization curves recorded on NiCo/Zn (solid symbols), and 

smooth Ni (open symbols) electrocatalysts in 30 % wt. KOH solution, corrected 

considering the surface roughness factor, Rf, at: ○ 30 ºC, △	50 ºC, □ 80 ºC. 
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Figure 8. Hydrogen discharge curves recorded on NiCo/Zn, and smooth Ni 

electrocatalysts in 30 % wt. KOH solution at 30 ºC. 
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Figure 9. Effect of temperature on the maximum efficiency of NiCo/Zn (solid 

symbols), and smooth Ni (open symbols) electrocatalysts in 30 % wt. KOH solution. 
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Figure 10. a) Effect of applied current density on the cell voltage and the hydrogen 

production for the NiCo/Zn electrocatalyst at 50 ºC. b) Effect of temperature on the cell 

voltage and the hydrogen production for the NiCo/Zn electrocatalyst at 50 mA cm-2. 
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Figure 11. 3-D diagram of the energy consumption per 1 mol of H2 produced. 

Comparison between the smooth pure Ni and NiCo/Zn cathodes. 
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Figure 12. 3-D diagram of the efficiency. Comparison between the smooth pure Ni and 

NiCo/Zn cathodes. 

 

 


