
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/150363

Ramon-Raygoza, E.; Rivera-Solorio, C.; Giménez Torres, E.; Maldonado-Cortes, D.;
Cardenas-Aleman, E.; Cué-Sampedro, R. (2016). Development of nanolubricant based on
impregnated multilayer graphene for automotive applications: Analysis of tribological
properties. Powder Technology. 302:363-371. https://doi.org/10.1016/j.powtec.2016.08.072

https://doi.org/10.1016/j.powtec.2016.08.072

Elsevier



�������� ��	
�����

Development of nanolubricant based on impregnated multilayer graphene for
automotive applications: Analysis of tribological properties

E.D. Ramón-Raygoza, C.I. Rivera Solorio, E. Giménez-Torres, D. Maldonado-
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ABSTRACT 

This paper shows novel formulations of nanolubricants added with multi-layer graphene (MLG), multi-

layer graphene impregnated with copper (MLG-Cu), and multi-layer graphene impregnated with 

polyaniline (MLG-PANI) for applications in automotive engines. These nanofluids were prepared using 

commercial motor oil as the base fluid. The tribological properties were measured at 100 °C, and 

significant reductions were found in the coefficient of friction and wear. The concentrations used were 

0.5% and 2% by weight, obtaining reductions in the friction coefficient and wear of up to 43% and 63%, 

respectively, in the case of motor oil with copper-impregnated graphene. All formulations of MLG, 

MLG-Cu, and MLG-PANI did not show any sedimentation when dispersed in engine oil, even three 

months after being produced.  
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1. Introduction  

Lubricants are mainly used to eliminate contact between two parts in a sliding movement. The main 

applications of lubricants are focused in internal combustion engines, vehicle and industrial gearboxes, 

compressors, turbines, and hydraulic systems, where engine oil applications represent approximately 

50% of the global market [1]. Engine oils contain many additives in order to effectively and efficiently 

accomplish their functions. Some commonly used additives are antioxidants, detergents, dispersants, 

friction modifiers, anti-wear, viscosity modifiers, pour point depressants, tackifiers and antimisting, 

corrosion inhibitors, etc. [2] 

Because conventional additives fail at high temperatures (> 200 °C) and pressures (> 5000 psi), extreme 

pressure (EP) and anti-wear (AW) additives are needed. However, these types of materials are expensive 

and environmentally hazardous. In addition, EP additives have many technical limitations, such as 

ineffectiveness at slow speeds and low temperatures, high reactivity and corrosivity in contact with 

water, very limited operation at high temperatures, etc. [3] Due to the above reasons, there is a need to 

find new types of additives that are cost-effective and environmentally friendly [3]. Recently, it has been 

reported that metallic nanoparticles added to lubricant oils (nanolubricants) are able to act as anti-wear 

additives under extreme pressure [4]. These metallic nanoparticles are non-corrosive and are capable of 

working at very high temperatures. Therefore, they are very promising for establishing a new era of AW 

and EP additives [5, 6]. 

The main advantage of using nanoparticles as additives is that they are not degraded or modified with 

the temperature. Moreover, due to the small size of these particles, clogging problems are avoided in 

lubrication systems [5].  

Friction and wear, i.e., two of the main causes of material failure, have attracted more and more 

attention all over the world. Advances in nanotechnology have allowed the dispersion of nanoparticles 

in fluids without encountering sedimentation problems [5,7, 8]. Numerous studies have been conducted 

on improving the tribological properties of certain lubricant fluids by the addition of nanoparticles. 

Nanoparticles that have been used include graphite [9,10]; nickel [5]; nanodiamond [11]; boron nitride 

[12]; CuO [13]; fullerene [14]; silica, titanium dioxide, alumina, tin dioxide, magnesium oxide, cerium 

oxide, zirconia, and mixtures thereof [15]; molybdenum disulfide, tungsten disulfide, and calcium oxide 

[16]. In particular, carbonaceous nanoparticles, such as graphene, CNTs, fullerenes, etc., are the most 

studied [9-11, 14, 15, 17] due to large improvements in the wear and a friction coefficient reduction 

[18].  

Some of the recently published articles and patents related to nanolubricants are listed in Table 1.  
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Gulzar et al. [6] improved the anti-wear (AW) and extreme pressure (EP) abilities of chemically 

modified palm oil (CMPO) by adding CuO and MoS2 nanoparticles at low filler contents (1 wt. %). The 

morphology of the CuO nanoparticles was fairly spherical, with particle sizes between 50 and 300 nm. 

The particles of the MoS2 powder had larger sizes, ranging from 50 to 2000 nm. The AW/EP properties 

of the formulations were evaluated by four-ball and sliding wear tests. The wear scar diameter 

reductions at 120 kg loading were 6.65% and 11% for CMPO + 1% MoS2 and CMPO + 1% CuO, 

respectively. An average reduction of 16.6% at loads higher than 80 kg was achieved with the wear scar 

diameters. This reduction was higher than that achieved (10%) at a lower load range. 

Chen et al. [17] presented a study of a nanofluid based on multi-wall carbon nanotubes (MWCNTs) 

dispersed in pure liquid paraffin at a concentration of 0.45 wt.% MWCNTs, where the nanotubes were 

surface modified by means of oxidation via refluxing in stearic acid (SA). The maximum friction and 

wear reduction reported were approximately 10% and 40%, respectively.  

Madhusree et al. [20] experimented with a nanofluid in order to improve the viscosity behavior. They 

used spherical CuO nanoparticles with diameters of 40 nm and gear oil as the base fluid. The CuO 

volume fraction was between 0.005 and 0.025, and the prepared nanofluids were stabilized by adding 

oleic acid (surfactant). The prepared nanofluids did not show any visual sedimentation of CuO 

nanoparticles, even after keeping the fluids stationary for more than 30 days. By increasing the CuO 

nanoparticle content to more than 0.025 wt. % at 30 °C, the nanofluid viscosity was enhanced by nearly 

three times compared to the gear oil viscosity. 

Chou et al. [21] presented a study of a nanofluid based on Ni nanoparticles dispersed in polyalphaolefin 

(PAO6) as the base oil. Ni nanoparticles were dispersed in the lubricant at concentrations of 0.5, 1, and 2 

wt. %.  The suspension with 0.5 wt. % exhibited the best tribological behavior, i.e., 54% wear reduction, 

and the worst performance was found for the 2 wt. % suspension, which gave a 5% wear reduction. 

Hernández et al. [13] and Madhusree et al. [22] reported a nanofluid formulation using spherical CuO 

nanoparticles dispersed in gear and PAO oil for improving lubrication properties. CuO nanoparticles 

were evaluated in the range between 0.005 and 2 wt. % of the filler content. 

Zhamu et al. [18] patented a nanolubricant-based multi-layer graphene (MLG) dispersed in the lubricant 

fluid. The content of MLG ranged from 0.001 to 75 wt. %, with an average thickness less than 10 nm 

and length or width less than 500 nm. Compared with graphite or carbon nanotube-modified lubricants, 

MLG-modified lubricants exhibited much better thermal conductivity, friction-reducing capability, anti-

wear performance, and viscosity stability.  

Most of the earlier studies focused on thermophysical properties of nanofluids based on single 

nanoparticles, and in particular, graphene-based nanofluids provided the best results [23]. However, the 

synthesis of hybrid nanofillers and the preparation of nanofluids based on hybrid nanofillers to evaluate 

their synergistic effects are still very new areas of research. Two examples of the preparation of water-

based nanofluids with hybrid nanofillers are the addition of graphene-copper oxide (GNP-CuO) [23] and 

graphene-silver (GNP-Ag) [24]. In both types of nanofluids, water was the base fluid, and only thermal 

and rheological properties were evaluated. Therefore, it will be interesting to analyze the behavior of 

hybrid nanofillers dispersed in oil to evaluate their capabilities as nanolubricants. 

In this work, the tribological properties of metallic nanoparticles with a spherical shape (Cu) and 

polymer nanoparticles with a tubular shape (PANI), in synergy with multi-layer graphene, dispersed in a 
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commercial engine oil (EO), were evaluated. All experiments were conducted at 100 °C because this is 

very close to the temperature at which vehicle engines work. Morphology analyses of multi-layer 

graphene (MLG), multi-layer graphene impregnated with copper (MLG-Cu), and multi-layer graphene 

impregnated with polyaniline (MLG-PANI) were conducted.  Moreover, characterization of worn 

surfaces using MLG and hybrid nanofillers (MLG-PANI and MLG-Cu) was conducted. Finally, the 

stability of nanoparticles in the base fluid was analyzed.  

2. Experimental details 

2.1 Materials 

Commercial graphite powder (<20 m) was utilized as the graphene precursor. The base fluid was a 

commercial engine oil (SAE 25 W-50).  

Sulfuric acid with a purity of 95-98%, nitric acid with a purity of 68.0-70.0%, potassium chloride with a 

purity ≥ 99.0%, aniline with a purity of 99.5%, ammonium persulfate with a purity of > 98%, 

hydrochloric acid with a purity of 37%, tetraamminecopper (II) sulfate monohydrate, and ammonium 

hydroxide solution were used as reagents.  

 

2.2 Materials Preparation 

 

Synthesis of MLG. Graphite powder was oxidized using a modified Staudenmaier’s method to produce 

graphite oxide (GO) [27, 28]. In this work, graphite (5 g) was first mixed with sulfuric acid (87.5 mL) 

and nitric acid (45 mL), and the mixture was stirred for 15 minutes. When graphite was dispersed 

uniformly, potassium chlorate (55 g) was added slowly and stirred for over 96 h. Once the oxidizing 

reaction was finished, the mixture was added to deionized water and then filtered. The GO was rinsed 

repeatedly and re-dispersed several times in a 5% solution of HCl. It was then washed continuously with 

deionized water until the pH of the filtrate was neutral. The GO slurry was dried and pulverized twice. 

Finally, the GO was heated to 1050 °C in an inert atmosphere for 1 min to form MLG. A summary of 

the entire MLG chemical exfoliation process described above is represented in Figure 1. 

 
 

Fig. 1 MLG chemical exfoliation process. 

 

 

Synthesis of MLG-Cu. To obtain MLG-Cu nanoparticles, a natural graphite powder was first oxidized 

using the same modified Staudenmaier’s method described before. Then, the GO (0.20 g) was dispersed 

into an NH3 solution (pH 9.5) using ultrasonic sonication for 15 min. Then, [Cu (NH3)4] SO4 (0.07 g) 

was added to the solution and stirred for 24 h. The obtained compounds of Cu complexes and GO (Cu–

GO) were calcined gradually by putting them into a furnace at room temperature and then heating them 

to 400 °C at a rate of 5 °Cmin
-1

. The specimens were kept for 30 min at the heating temperature to 

obtain MLG-Cu nanoparticles [25]. The synthesis of MLG-Cu is shown in Figure 2 below. 

 

 
 

Fig. 2 Synthesis of MLG-Cu nanoparticles. 
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Synthesis of MLG-PANI. The preparation of MLG-PANI nanoparticles was based on the process 

described by Li and colleagues [28]. Briefly, the process employed for the preparation of MLG-PANI is 

as follows: (1) 0.94 g of aniline was added to 30 mL of deionized water, with 2 wt. % to 5 wt. % of 

MLG; (2) a sonotrode was used to agitate the solution for 30 minutes at 24 KHz, followed by magnetic 

stirring at 100 rpm; (3) a solution containing 5.705 g of ammonium persulfate and 2.5 mL of 

hydrochloric acid was prepared, followed by the addition of 30 mL of deionized water; (4) the two 

solutions were mixed and magnetically stirred at 100 rpm for 12 h; (5) the solution was washed by 

adding 200 mL of deionized water and then filtered; and (6) the obtained product was vacuum dried at 

60 °C for 12 h. 

 

 

2.3 Measurements  

Morphology  

The morphology of the wear scar was analyzed by optical microscopy using an OLYMPUS microscope 

(model BX63) containing an UIS2 optical system. 

 

The transmission electron microscope (TEM) used in this study was a JEOL JEM-1230 with an electron 

gun at 120 kV. Samples were prepared on a copper grid (200 mesh) and coated with Formvar/carbon 

film. 

In addition, energy dispersive X-ray spectroscopy (EDX) analysis was conducted. All elements were 

analyzed, and peaks at 8.036 and 8.899 keV, corresponding to the copper cells, were omitted. The 

quantification method used was the Cliff Lorimer thin ratio section, with only one iteration. 

 

Production of nanolubricants 

In the first stage of the production process of nanolubricants, the nanoparticles were mixed in the engine 

oil (EO) for 10 to 15 min using magnetic stirring. Subsequently, the mixture was placed in an ultrasonic 

bath for 60 min at 25 ºC. Finally, the mixture was sonicated for 1 hour in a UP200S sonicator (200 W, 

24 kHz) in an ice-water bath. The device parameters were set to a cycle of 0.5 and amplitude of 80%. In 

the preparation process of these samples, pH adjustment and the addition of surfactants were removed 

from the general two-step method used to prepare nanofluids without MLG. This was because the 

purpose of these steps was to ensure the stability of nanoparticles in the base fluid, as MLG had intrinsic 

stability in EO. 

Tribological testing 

The tribometer used was a T05-block-on-ring wear tester (Figure 3) for the evaluation of lubricants and 

engineering materials [5, 13]. The machine was manufactured by the Institute for Terotechnology in 

Poland. Experiments were carried out in accordance with the ASTM D 2981, D 3704, G 77, and D 2714 

standards. 

 
Fig. 3 Block on ring T05 tribology tester. 

 

The geometry and measurements of the block and ring (Figure 4), as well as the procedure of the wear 

test employed, were based on the ASTM G77 standard. The ring was manufactured from carbon steel 
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with a hardness of 62 HRC, while the block was manufactured from AISI-1045 steel with a hardness of 

48 HRA. The outer diameter and concentricity with the inner diameter are the critical parameters of the 

ring. The inner diameter is optional depending on the machine design during the test; the friction force, 

lubricant temperature, and vertical displacement of the block were recorded.  

 
Fig. 4 Block and ring lay out according ASTM G77 standard 
 

Calculation of Block Scar Volume (WEAR) 

 

In order to obtain the block scar volume, three repetitions of each experimental combination were 

conducted, and the scar in each block was analyzed by optical microscopy. The preferred method for 

calculating block scar volume is via a geometric equation approach, which can be programmed on a 

calculator or computer. In this work, the wear scar volume was calculated geometrically according to 

Equation 1 and is represented in Figure 5.  

 

 

 

 

 

where r = disc radius, b = scar width, and t = specimen width. 

 

 

 

 
Fig. 5 Schematic drawing of the wear calculation. 

 

The radius of the disk was 17.5 mm and the block width was 6.35 mm, both of them were constant for 

all the experiments. For the determination of the scar width, the scar was measured along three points 

(Figure 6), and the values were averaged. Finally, the averaged scar width values were substituted into 

Equation 1 to obtain the volumetric wear.  

 
Fig. 6 Sketch of the measuring method of scar width 
 

 

 

Coefficient of friction 

 

The coefficients of friction were calculated from the friction force values according to Equation 2 as 

follows: 

 

µ = F /W                                                         (2) 

 

where µ = coefficient of friction, F = measured friction force (N), and W = normal force (N). 

 

The friction force was measured by a load cell and was graphed in real time during each experiment. 

The magnitude of the force corresponds to the force exerted by the arm for holding the block in contact 

        
 
        

 

    
                    (1) 
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with the ring and moving in normal direction to the load cell. The normal force was constant for all the 

experiments and corresponds to the load applied under the block. 

 

Test parameters 

 

The parameters of the block-on-ring test were as follows: 

load of 200 N; speed of 300 rpm; distance of 1000 m; and chamber temperature of 100 °C. 

 

The parameters were selected according to a literature review [5, 31, 32], which allows for a comparison 

between all formulations versus engine oil without nanoparticle additives. The temperature of the test 

(100 °C) was selected because the temperature that is reached in the engine is very close to this 

temperature. 

 

 

 

3. Results and discussion  

3.1 Morphology analysis 

 

The morphology of MLG was observed by transmission electron microscopy (TEM). The TEM 

micrograph obtained is shown in Figure 7. The analysis of the TEM micrographs showed that the MLG 

obtained (< 10 layers of thickness) exhibited an average area of 0.5 μm x 1.5 μm. The shape of the MLG 

was irregular and folded because of the exothermic reaction in the last stage of synthesis. Finally, the 

MLG was observed to be free from impurities.  

 

 
Fig. 7 TEM micrograph of synthesized MLG at a magnification of 20,000 X. 

 

The TEM micrograph of MLG-Cu is depicted in Figure 8. The Cu nanoparticles on graphene sheets 

were distributed with sizes <100 nm and a density ranging between 50-80 Cu nanoparticles for each 

MLG. A nonhomogeneous morphology with both well-dispersed areas and aggregated areas was 

observed. 

 
 

 

Fig. 8 TEM micrograph of synthesized MLG-Cu at a magnification of 20,000 X.  

 

Table 2 shows the EDX analysis of the MLG-Cu sample, from which we can observe that Fluor existed 

as a trace element, which was used during the process of copper reduction. 

 

 

The TEM micrograph of MLG-PANI particles is shown in Figure 9. The polyaniline morphology on the 

MLG was hollow-tubular with an average size of 40 nm width x 150 nm length. The polyaniline form 

observed was emeraldine, which was doped with the imine nitrogens protonated by ammonium 

persulfate in the presence of MLG. This molecular structure of dopant was responsible for the length 

and diameter values of the nanotubes. Emeraldine is regarded as the most useful form of polyaniline due 
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to its high stability at room temperature, and the emeraldine salt obtained from the synthesis of 

polyaniline is highly electrically conducting. 

 

 

Fig. 9 TEM micrograph of synthesized MLG-PANI at a magnification of 15,000 X.  

Table 3 shows the EDX analysis of the MLG-PANI sample.  From the EDX analysis, we can see that 

MLG-PANI was composed of carbon, oxygen, and nitrogen. The presence of oxygen was due to the 

carboxylic groups on the surface of MLG, while the presence of nitrogen was due to the polymeric chain 

of polyaniline. 

 

 

 

 

3.2 Coefficient of friction  

 

The coefficients of friction for MLG and MLG-Cu and MLG-PANI formulations with 0.5 wt. % and 2 

wt. % concentrations were evaluated and measured (Table 4). The results of the friction coefficient 

versus distance are plotted in Figure 10. 

 
 

 

 
Fig. 10 Average friction coefficient from 1000-m sliding tests at 95% confidence level (Cl) as a function of the nanoadditive 

type, i.e., MLG, MLG-PANI, or MLG-Cu. The base fluid was engine oil with 0.5 wt.% and 2 wt. % loading tested at 100 °C. 

 

The friction reduction behaviors of the MLG formulations evaluated were related to the fact that the 

nano-sheets can be piled up on wear tracks forming a tribo-film between contact junctions, thus 

protecting sliding surfaces. For the case of MLG-Cu and MLG-PANI, these nano-sheets piled up below 

and above Cu and PANI nanoparticles [19]. On the other hand, similar to the work reported by Li et al. 

[30], the MLG could become a mono-layer because it can be mechanically peeled off. Based on these 

reports, it was speculated that a tribo-film may have been formed by repeated exfoliation and deposition 

of MLG. Therefore, MLG, MLG-Cu, and MLG-PANI sheets can reduce friction due to the layered 

structure and the continuous exfoliation between them, allowing for easier surface sliding. This 

mechanism can allow for the generation of a tribo-film even at an infinitesimal amount of MLG, which 

can be enough to protect sliding surfaces [19]. Details of the reductions in the friction coefficient with 

respect to the engine oil without nanoadditives for all evaluated formulations are shown in Figure 11. 

 
 
Fig. 11 Average friction coefficient reduction percentage as a function of nanoadditive type, i.e., MLG, MLG-PANI, and 

MLG-Cu.  

 

 

For the case of engine oil added with MLG at 0.5 wt. and 2 wt. %, the reductions in the coefficient of 

friction were approximately -2.8% and 4.8%, respectively. The negative decrease in friction coefficient 

using MLG may be due to its low concentration (0.5 wt. %) and the thinness (<10 nm) of the nano-



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

sheets dissolved, i.e., there may not have been enough material to form a tribo-layer between contact 

junctions. This was improved by using a higher concentration (2 wt. %) of MLG, allowing the formation 

of a tribo-layer that was slightly thinner than the mixed and boundary lubrication regimes (< 250 nm). In 

addition, the mechanical exfoliation of the MLG during the sliding also contributed to the friction 

reduction. 

 

For the case of engine oil filled with MLG-Cu at 0.5 wt. % and 2 wt. %, the friction reductions were 

approximately 33% and 43%, respectively. These large reductions may be due to the copper 

nanoparticles acting as spacer elements between the tribo-layers formed by graphene. This allowed the 

formation of a tribo-layer that was thicker than the mixed and boundary lubrication regimes. 

 

Finally, for the case of engine oil filled with MLG-PANI at 0.5 wt. % and 2 wt. %, the friction 

reductions were approximately 30% and 20%, respectively. Similar to Cu, PANI nanotubes acted as 

spacers between the tribo-layers. However, because polymers have a lower hardness than metals, a 

lower resistance between the contact junctions was produced, causing the reductions in the friction to be 

less than that achieved by MLG-Cu. On the other hand, it was observed that as the concentration of 

MLG-PANI increased (2 wt. %), a lower decrease in the coefficient of friction was achieved. This may 

be due to the formation of inhomogeneous morphologies produced by the entanglement of PANI 

nanotubes. 

 

It is important to remark that the above reductions were achieved at 100 °C, i.e., a temperature at which 

the viscosity of the lubricant suffered a substantial decrease. Thus, a proportional reduction in its 

carrying capacity can lead us to infer that the nanofillers used can serve as additives for high 

temperatures. Moreover, the high temperature may also have contributed to the process of 

tribosinterization of the nanoparticles. 

 

3.3 Wear 

 
 

The average wear for the engine oil was approximately 1.28 mm
3
. For the case of engine oil added with 

MLG at 0.5% wt. % and 2 wt. %, the wear values were approximately 1.02 mm
3
 and 0.89 mm

3
,
 

respectively. For the case of engine oil added with MLG-Cu at 0.5 wt. % and 2 wt. %, the wear values 

were approximately 0.47 mm
3
 and 0.46 mm

3
, respectively. Finally, for the case of engine oil added with 

MLG-PANI at 0.5 wt. % and 2 wt. %, the wear values were approximately 0.93 mm
3
 and 0.84 mm

3
, 

respectively (Figure 12).  

 
 
Fig. 12 Average wear from the two repeated measurements with a) the standard error of the mean (SEM) and b) 95% 

confidence levels as a function of nanoadditive type, i.e., MLG, MLG-PANI, and MLG-Cu. The base fluid was engine oil 

with 0.5 wt. % and 2 wt. % loading tested at 100 °C. 

 

In general, the most common anti-wear mechanism of MLG, MLG-Cu, and MLG-PANI additives is the 

tribosinterization of nanoparticles on the wear surface. When tiny particles are used, the process of 

sinterization begins immediately after room temperature is reached [33], forming boundary films with 

excellent mechanical properties on the rubbed surfaces. 
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The greater wear reductions achieved using the MLG-Cu formulations were mainly due to the presence 

of copper nanoparticles on the wear surface. From the mechanism of colloidal solid dispersion and 

taking into account that the lubricant film thickness for mixed and boundary lubrication regimes was 

thinner (< 0.025 µm) than the Cu nanoparticle diameter (100 nm), it can be inferred that nanoparticles 

were blown and contacted by the surface, achieving an improvement in the tribological behavior of the 

engine oil. In addition to the colloidal effect, Cu nanoparticles can also behave as tiny bearings, 

increasing the load carrying capacity by surface hardness effects of the lubricant and leaving the contact 

surface later on [33]. 

 

Details of the reductions in wear with respect to engine oil without nano-additives for all of the 

evaluated formulations are shown in Figure 13. 

 

 
Fig. 13 Average wear reduction percentage as a function of nanoadditive type, i.e., MLG, MLG-PANI, and MLG-Cu. 

 

The wear reductions of engine oil added with MLG at 0.5 wt. % and 2 wt. %, were approximately 20% 

and 30%, respectively. Smaller degree of wear was observed with increasing concentration of MLG, 

which may be due to the fact that when the concentration of nano-sheets in the lubricant increased, there 

was a higher amount of tribo-sinterized nanoparticles protecting the wear surface. 

 

For the case of engine oil added with MLG-PANI at 0.5 wt. % and 2 wt. %, the wear reductions were 

approximately 27% and 35%, respectively. These reductions achieved were slightly higher than that 

obtained by adding only MLG. This result indicated that the tribosinterization of PANI nanotubes 

contributed marginally in reducing the wear of contact junctions and that the predominant effect in 

reducing the wear was the MLG tribosinterization on the wear surface.  

 

Finally, for the case of engine oil added with MLG-Cu, both concentrations offered almost the same 

wear reduction (> 60%), i.e., the largest reduction achieved among all evaluated formulations. Thus, we 

can speculate that the effect of MLG tribosinterization on the wear surface, in combination with the ball-

bearing effect of copper nanoparticles, led to a positive synergistic effect in the wear reduction. 

Additionally, the fact that almost the same reduction in wear was observed for both concentrations may 

indicate that the ball-bearing effect of copper nanoparticles was predominant in reducing the wear. That 

is, regardless of the concentration of MLG-Cu, the size and physical properties of copper nanoparticles 

did not change, which offered the same spacing and load capacity between contact junctions.  

 

3.4 Surface characterization: Atomic Force Microscopy (AFM) 

 

To analyze the topography of the worn surfaces, atomic force microscopy (AFM) was conducted in peak 

force tapping mode using NanoScope Analysis Version 1.40. The AFM was equipped with a 

SCANASYST-AIR cantilever with a nominal spring constant K= 0.4 N/m and a resonant frequency 

between 50 and 90 kHz. The mean roughness (Ra) was used as a parameter for the analysis, and peaks 

were removed to calculate the Ra values. The Ra values of the worn surfaces using engine oil without 

nanoparticles, engine oil added with 2 wt. % of MLG-PANI, and engine oil added with 2 wt. % of 

MLG-Cu as lubricants were 658 nm, 109 nm, and 40.8 nm, respectively (Figures 14 and 15). 
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Fig. 14 AFM 3D topographic images of the worn surfaces using the following lubricants: a) Engine oil (EO), b) EO+MLG-

PANI at 2 wt. % loading, and c) EO+MLG-Cu at 2 wt. % loading. For the MLG-PANI and MLG-Cu samples, the scanning 

rate was 0.250 Hz, and 256 samples per line were recorded; the scan size was 70.0 µm, the amplitude setpoint was 250 mV, 

and the drive amplitude was 122.38 mV. For the engine oil sample, the scanning rate was 0.500 Hz, and 256 samples per line 

were recorded; the scan size was 25.0 µm, the amplitude setpoint was 357.79 mV, and the drive amplitude was 122.38 mV. 

 

 

 Fig. 15 Peak force error and deflection error of the AFM 3D topographic images of the worn surfaces using the following 

lubricants: a) Engine oil (EO), b) EO+MLG-PANI at 2 wt. % loading, and c) EO+MLG-Cu at 2 wt. % loading.  

 

From the AFM analysis, we can observe a more polished surface when using engine oil added with 

MLG-Cu at 2 wt. % loading. This may be due to the ball bearing effect of the Cu nanoparticles, which 

was also responsible for the friction reduction.   
 

3.4 Stability  

 

All formulations of MLG, MLG-Cu, and MLG-PANI did not show any sedimentation when dispersed in 

engine oil, even three months after being produced. This stability may be due to the aspect ratio and 

surface functionalization (chemical affinity) of the MLG.  

The aspect ratio (length/thickness) of MLG was very high because its length was approximately 0.5-2 

µm and its thickness was approximately 1-10 nm. Wohner et al. [33] reported the influence of 

compactness on the stability of MLG in a base fluid and chose rectangular shapes with different aspect 

ratios. They found that the cohesive energies increased significantly at higher aspect ratios.       

Surface functionalization accomplished during graphite oxidation can be another way to improve the 

stability in the fluid. In this stage, hydroxy and carboxylic functional groups were linked on the graphite 

oxide surface, which remained until MLG exfoliation [33]. When the modified MLG was dispersed in 

the engine oil, the long hydrocarbon segment stretched very easily into the base lubricant, resulting in 

the formation of steric hindrance force. The steric hindrance force was able to conquer the van der 

Waals interaction between MLGs, thereby separating them from each other. At the same time, the steric 

hindrance force was able to conquer gravity and prevent MLG agglomeration and sedimentation [17].  

 

4. Conclusions 

Engine oil added with MLG and MLG impregnated with nanomaterials showed the ability to integrate a 

friction modifier with an anti-wear modifier in a single lubricant, even at temperatures up to 100 °C, i.e., 

the typical working temperature of the conventional engine vehicles. 

The TEM micrographs showed that the MLG obtained (< 10 layers of thickness) had an average area of 

0.5 μm x 1.5 μm, which exhibited an irregular shape and was folded due to the exothermic reaction in 

the last stage of synthesis. Regarding MLG-Cu, the TEM micrograph showed that Cu nanoparticles 

(<100 nm) were distributed on graphene sheets with a density ranging between 50-80 Cu nanoparticles 

for each MLG. Finally, the TEM micrograph of MLG-PANI showed that the acquired polyaniline 
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morphology was tubular, with an average size of 40 nm width x 150 nm length. The polyaniline form 

observed was emeraldine. 

Regarding the coefficient of friction, engine oil added with MLG-Cu and MLG-PANI nanoparticles 

showed higher reductions in comparison with MLG fillers without decoration. Engine oil added with 

MLG-Cu and MLG-PANI showed the best results at 2 wt. % and 0.5 wt. %, achieving average 

reductions of 45% and 30%, respectively, which may be because copper and PANI nanoparticles acted 

as fillers between the tribo-layers created by graphene nanosheets, allowing the formation of a tribo-

layer that is thicker than the mixed and boundary lubrication regimes. In this case, because PANI 

nanotubes were formed by polymers (with lower hardness than metals), they opposed less resistance 

between contact junctions, causing reductions in friction with values lower than that achieved by MLG-

Cu. 

Regarding the wear, all formulations showed significant reductions. However, the MLG-Cu 

formulations showed the highest reduction of approximately 60%, which may be due to the synergistic 

effect of MLG tribosinterization on the wear surface with the ball-bearing effect of copper nanoparticles. 

For the case of engine oil added with MLG and MLG-PANI, the wear reductions were very similar, 

ranging between 25-35%. In this regard, it can be concluded that the tribosinterization of PANI 

nanotubes contributed marginally in the wear reduction and that the predominant effect in reducing the 

wear was the MLG tribosinterization on the wear surface.  
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Table 1  
Nanofluids used in lubricant applications.  
 
 

 

Nanoparticle 

Base 

fluid 

Size(nm) Wear 

reduction 

(%) 

Friction 

reduction 

(%) 

Concentration  

CuO GO, PAO 40  45 0.005-2 vol. % [2,5,1

3] 

Graphene LO 500 20-68 40-70 0.001-30 wt. % [18] 

Graphite LO 500   1-30 wt. %. [9,10,

16] 

CNT MWNT, 

fullerene, 

Diamond 

EO, GO 200 40-50 10-55 0.001-30 wt. % [9- 

11,14, 

15, 

17] 

BN 

h-BN 

PAO, GO 150 15 20 1 wt. % [1,7,1

2, 19] 

TiO2, Al2O3, 

SiO2, MoO2 
LO, EO 40-100   0.01-10 wt. % [10,15

,16] 

GO = Gear oil; LO= Lubricant oil; EO = Engine oil; PAO = polyalphaolefine 

 

 

Table 2 

 EDX analysis of the MLG-Cu nanoparticles. 

 

Element Atomic % 

C 69.8 

F 2.12 

Cu 28.04 
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Table 3 

EDX analysis of the MLG-PANI nanoparticles 

 

Element Atomic % 

C 53.94 

N 36.43 

O 9.63 

 

 

Table 4 

Average Friction Coefficient with the standard error of the mean for different nanoadditives. 

 

Nanoadditive Mean friction 

coefficient 

Standard error of the 

mean 

 (SEM) 

Engine Oil 0.128 0.0064 

MLG, 0.5 wt. % 0.132 0.0058 

MLG, 2 wt. % 0.122 0.0063 

MLG-Cu, 0.5 wt. % 0.086 0.0061 

MLG-Cu, 2 wt. % 0.073 0.0049 

MLG-PANI, 0.5 wt. % 0.090 0.0051 

MLG-PANI, 2 wt. % 0.102 0.0045 
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Figure 1  
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Figure 6  
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Figure 8  
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Figure 9  
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Figure 10  
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Figure 11  
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Figure 12a  
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Figure 12b  
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Figure 13  
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Figure 14a  
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Figure 14b  
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Figure 14c  
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Figure 15b  
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Highlights 

 Nanolubricants based on functionalized multilayer graphene were developed. 

 Important reductions in friction and wear were obtained for the nanolubricants. 

 Tribological properties of engine oil with nanoparticles were improved even at 100°C.  

  Nanolubricant formulations remain stable even after three months of being prepared. 


