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Resumen
Buscar información en documentos científicos impresos es un reto problemáti-

co que recientemente ha recibido atención especial por parte de la comunidad de

investigación de Reconocimiento de Formas. Las Expresiones Matemáticas son

elementos complejos que aparecen en documentos cientificos, y desarrollar téc-

nicas para localizarlas y reconocerlas requiere preparar data sets que pueden ser

utilizados como punto de referencia. La mayoría de las técnicas actuales para

lidiar con Expresiones Matemáticas están basadas en técnicas de Reconocimien-

to de Formas y Aprendizaje Automático y por tanto, estos data sets tienen que

ser preparados con información sobre el ground-truth para entrenamiento y test

automático. Sin embargo, preparar data sets grandes es muy costoso y requiere

mucho tiempo. Este proyecto introduce un data set de documentos científicos que

ha sido preparado con el fin de reconocer y buscar Expresiones Matemáticas. Este

data set ha sido generado automáticamente a partir de la versión LATEX de los do-

cumentos y consecuentemente puede ser aumentado fácilmente. El ground-truth

incluye la posición a nivel de página, la versión LATEX de las Expresiones Mate-

máticas integradas y aisladas del texto y la secuencia de símbolos representados

como unicode code points que se han utilizado para definir estas expresiones. En

base a este data set, se han extraído estadísticas como por ejemplo el número total

y el tipo de las expresiones, el número medio de expresiones por documento y las

frecuencias de distribución de todo el conjunto de expresiones. En este documen-

to también se introduce un experimento de clasificación de símbolos matemáticos

que puede ser utilizado como punto de partida.

Palabras clave: LATEX, aprendizaje automático, expresiones matemáticas, recono-

cimiento de formas, redes neuronales convolucionales
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Abstract
Searching information in printed scientific documents is a challenging prob-

lem that has recently received special attention from the Pattern Recognition re-

search community. Mathematical Expressions are complex elements that appear

in scientific documents, and developing techniques for locating and recognizing

them requires preparation of data sets that can be used as benchmarks. Most

of the current techniques for dealing with Mathematical Expressions are based

in Machine Intelligent techniques and therefore these data sets have to be pre-

pared with ground-truth information for automatic training and testing. How-

ever preparing large data sets with ground-truth is a very expensive and time-

consuming task. This project introduces a data set of scientific documents that has

been prepared for Mathematical Expression recognition and searching. This data

set has been automatically generated from the LATEX version of the documents

and consequently can be enlarged easily. The ground-truth includes the position

at page level, the LATEX version for Mathematical Expressions both embedded in

the text and displayed and the sequence of mathematical symbols represented

as unicode code points used to define these expressions. Based on this data set,

statistics such as the total number and type of expressions, the average number

of expressions per document and their frequency distribution were extracted. A

baseline classification experiment with mathematical symbols from this data set

is also reported in this paper.

Key words: data set, LATEX, machine-learning, mathematical expressions, ground-

truth, pattern recognition, convolutional neural networks
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CHAPTER 1

Introduction

Searching in documents related to science, technology, engineering and mathe-

matics (STEM) is one of the most usual activities for researchers, scholars and

scientists worldwide. Searching plain text in electronic STEM documents created

in the digital era in massive collections is considered a solved problem. One of

the challenges related to searching for information in STEM documents is to deal

with complex structures like chemical formulas, plots, draws, maps, and math-

ematical expressions, among many others. This paper focuses on mathematical

expressions (MEs) in electronic STEM documents [2].

1.1 Motivation

Searching for plain text in electronic documents is considered a solved issue,

whether it involves digital images or editable documents. Searching in editable

text can be done based on regular expressions, however, searching for MEs in

large collections of digitally printed images still poses a significant challenge.

One of the many challenges such a search poses relates to the method of type-

setting a ME within a document. MEs can be either embedded along the lines of

the plain text or isolated from the text. We refer to the first ones as inline MEs and

to the second ones as displayed MEs.

Locating displayed MEs is a challenge already solved. Because displayed MEs

are separated from the text, profile projection methods provide accurate results.

Exceptions still occur since MEs are not the only non-text structures that can be in-
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2 Introduction

cluded in texts, other examples including tables, figures, plots and other graphic

elements. Developing a functional, universal method for locating inline MEs is

still ongoing, since inline MEs can easily be confused with the surrounding text.

Current technology for searching MEs in documents is based on machine in-

telligent methods that need large amounts of training data [3, 4] with the neces-

sary ground-truth. However, this ground-truth is usually prepared manually. In

fact this is one of the bottle-necks for research on automatic methods. Developing

techniques for preparing large data sets with ground-truth (GT) is a real need and

one of the motivating factors behind this paper.

A second obstacle for inline ME identification, besides having access to large

enough labeled data sets, refers to identifying ME symbol relationships. ME sym-

bol classification is a well-studied problem that currently is not a main issue [5].

Letters contained in MEs can be interchangeable or not depending on whether

they represent variables or not. As a result, MEs can be represented in several

ways without changing their meaning. However, the relationship between the

symbols of a ME is meaningful, posing thus a bigger challenge. Developing tech-

niques that are able to capture these relationships and use them in a search engine

is currently an interesting challenge [2]. This means that data sets that contain this

information have to be created in order to develop a machine intelligent system

than can be trained automatically. As a result, as secondary objective of this pa-

per, we chose to create a data set of mathematical symbols encountered in the

MEs extracted. The reason for creating this data set was to illustrate the potential

uses of the main data set created. To further illustrate the potential, we conducted

an experiment of classifying mathematical symbols that could serve as a precur-

sor to a ME recognition system.

Besides using the ground-truth for ME symbol recognition, we also found it

interesting to use extracted MEs for analyzing their occurrence frequency distri-

bution. Being able to group MEs into clusters of similar expressions, opens the

way to building a tolerant search engine within large collections of digital docu-

ments.

We chose to support the IBEM project by building a 200 STEM document,

labeled data set with a rich ground-truth extracted automatically, accompanied
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by a secondary data set of mathematical symbols and characters extracted from

the main data set, as well as by a ME frequency distribution analysis. The current

paper provides both the resources for indexing and searching MEs on a large

scale as well as the first stages of analysis of the ground-truth.

To be able to deliver the 200 document data set, we had to overcome several

difficulties such as:

1. Copyright issues - many scientific documents are under some type of intel-

lectual property rights protection form and parsing such data sets is either

expensive or simply not possible.

2. The data set has to be large - the methods of writing a ME vary greatly

based on the document’s topic, field and area, on the author’s preference,

on the type of document (e.g. articles or slides), on the publisher’s require-

ments, etc. As a result, the data set needs to be large enough to capture this

variability.

3. The data set needs to be scalable - it should be possible to increase the data

set in time and also enrich its GT with as much information as possible.

4. Automated processing - the data set should be optimized for automated

processing.

Out of the issues presented, we consider the first one - copyright issues - as

the most relevant, since all the other can-not be tackled without solving the first.

To summarise, generating a large enough data set of STEM documents with GT,

that is not affected by copyright infringements but is optimized for automated

processing is a considerable challenge and the focus of this project.

On a more personal note, this project introduces an opportunity for me to

learn how data sets are processed and created. Information extraction was a

topic I have been interested in, and this project gives me a clearer perspective

on how to tackle real life problems and convert them into information that can be

used for building machine learning algorithms capable of improving automati-

cally through experience.
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Having said that, this paper introduces a data set of printed scientific docu-

ments for ME searching and recognition research. The data set has been prepared

automatically from a public set of documents. The preparation of the GT for each

document is carried out from the LATEXversion. This makes this data set scalable

to include thousands of documents that can be used for researching and devel-

oping efficient searching techniques. This paper also includes a baseline classifi-

cation experiment with mathematical symbols from this data set.

1.2 Objectives

The main objective of this project is to create a data set of 200 STEM documents

with a rich ground-truth containing information about the position of each ME

and their LATEX transcript.

In Machine Learning related literature, ground-truth refers to data character-

istics that are important for algorithm training. The ground-truth for this project

refers to characteristics that we considered that would be of importance for giv-

ing a solution to the challenge of searching for MEs in large collections of digitally

printed images. The ground-truth would serve as a baseline for measuring the

accuracy of algorithms that provide a solution for this challenge.

The main objective has been divided into several specific objectives listed be-

low:

• Automatically process 1 000 STEM documents from a publicly available

data set in order to extract the ground-truth. Out of these 1 000 documents,

the ground-truth of 200 documents will be visually validated in order to

create the primary data set.

The core ground-truth for these documents would include: the ME location (page

number and page coordinates), the ME LATEX transcript, the type of ME (inline or

displayed), as well as several other characteristics.

• Develop a software system with an accuracy of at least 20%, capable of pro-

cessing LATEX files and correctly extract the ground-truth
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The software system would be capable of extracting the core ground-truth men-

tioned above. The results obtained by the software system would have to be

manually validated. For this reason, we choose a volume of 200 documents. Val-

idation of the processed documents is conducted by visually checking that the

highlighted bounding boxes are in the correct position and have the correct di-

mensions. As a result, the process of validation is very time consuming. In the

future our aim is to reach a volume of 600 documents, but for this project we

consider that reaching a data set of 200 documents is a very good result.

• Conduct an experiment that generates and analyzes a secondary data set of

images of all the symbols that define the MEs extracted from the primary

data set.

Starting from the core ground-truth that includes the ME LATEX transcript, image

representations of each symbol shall be extracted, with the purpose of labelling,

classifying and analyzing each symbol.

• Conduct an experiment that analyzes the MEs and calculates their occur-

rence frequency distribution.

Both experiments aim to illustrate the potential uses of the primary dataset ob-

tained. The further use of the resulting database is explored under chapter 7, as

well as several ways to improve or adapt the ME identification methodology.

1.3 Paper Structure

This paper has been divided in several sections in order to facilitate the assess-

ment of the degree of fulfilment of the objectives set for this project, and to pro-

vide a clear guide of the steps needed for replicating the results presented.

After an initial analysis of the motivation behind this project in chapter 1 and

the related work in chapter 2, this paper presents the design of the IBEM data set

(chapter 3) starting with data collection and the process of establishing features

of the data set that would be of interest when creating the ground-truth.
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In chapter 4 we detail the process of extracting the ground-truth and the vali-

dation phase, after which we present a secondary data set with the purpose of en-

riching the ground-truth with information about the mathematical symbols used

to define the MEs. In this chapter we also perform an analysis of the MEs by car-

rying out a clustering experiment in order to group together similar expressions

and calculate their frequency distribution.

The structure of the IBEM data set is presented in chapter 5 where we detail

all the information (textual or visual) presented in the data set as it will be made

publicly available.

Once the structure of the data set is presented, the paper introduces a math-

ematical symbol classification experiment (chapter 6) based on the information

extracted from processing MEs. This experiment consists of designing a classifi-

cation model, presenting the data used to train it, and the results obtained from

testing the model.

Potential future uses of the data set are analyzed in chapter 7. This chapter

also explores some improvements that can be brought to the ME highlighting

module presented in the paper.

Finally, this paper concludes with chapter 8 with a summary of the key points

of this project. In addition, we provide a description of the architecture of the soft-

ware system presented in this paper and how to launch the project into execution

(Appendix A), and also present some of the most important regular expressions

used for automating the processing of the ground-truth (Appendix B).



CHAPTER 2

Related Work

There are several data sets of typeset MEs that have been used in the past for sev-

eral researches. The UW-III data set [6] is a well-known data set but the amount

of data is not very large. It consists of 1600 scanned images of English documents

for which the ground-truth was manually edited. The GT can be used for symbol

classification and the LATEXversion is also available.

In this data set, various bounding boxes have been inserted for each image,

highlighting amongst others text and non-text zones, lines, words, page frames

and other. It is important to note that the quality of the scans was not consistent

throughout the data set. The scans were not always done based on the original

documents, but sometimes on copies of copies (to the nth degree) were included,

as well as images where the scan of a page included sections of the additional

next page. While this situation proved useful for several research projects [7],

using UW-III for ME detection would not have yielded optimum results. First of

all, the scans would have had to be processed using OCR technology to enable

ME identification. This step would have had limited success, as OCR technol-

ogy is directly dependent on high quality scans for correct interpretation of each

character and even with high quality input it does not always relay correct re-

sults. Secondly, inserts of the next page into the same image as the processed

page would have led to situations where MEs are detected on the surplus section

and then again when processing the next page.

7



8 Related Work

Another data set is the InftyCDB-1 data set [8]. This data set and its later ver-

sions were developed in the Infty project 1. The Infty project - Research Project

on Mathematical Information Processing - is often referenced in papers related

to identification of mathematical expressions in digital documents. Though the

project covers the entire process of building a data set, as well as building and

training an algorithm that can extract MEs from OCR-ed documents, for the pur-

pose of this paper, it is interesting to analyze the steps took for building the data

set.

The data set is available in four different versions, shown in Table 2.1. Since

the project aims to correctly identify the characters in mathematical expressions

from scanned documents, when building the data set, a limited number of articles

were selected.

The approach used to build the data sets shown in Table 2.1 included scan-

ning documents at 400 dpi and "depending on when it was selected, a symbol

may have been scanned into a gray image and then converted into binary images

using different thresholds to produce character images of different density from

one original sample, while some others are scanned directly into binary image

from scanner using medium threshold" 2. One of the drawbacks this data set is

that the ground-truth is extracted from articles that are not copyright free. For

this reason these articles are not provided with the data sets, making the testing

and comparing of systems more complicated. Also, this data set does not include

matrices, tables and figures and the relationship among symbols in a ME was

defined manually, and the markup language is not included in the GT.

Another important data set is the IM2LATEX-100K [3]. This data set has 103 556

different LATEX MEs along with rendered pictures. The MEs were extracted by

parsing LATEX sources of papers from tasks I and II of the 2003 KDD cup [9]. The

problem that we identified in this data set is that it is usefull for researching on

MEs parsing but not for the detection of MEs in the context of the article they

come from. This issue is pointed in [4], and therefore they proposed a new data

set that contains 47 articles with 887 pages, but the total number of MEs is not

1http://www.inftyproject.org/en/index.html
2http://www.inftyproject.org/download/AboutInftyCDB-3_en.txt

http://www.inftyproject.org/en/index.html
http://www.inftyproject.org/download/AboutInftyCDB-3_en.txt
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data set Number of arti-

cles

Number of MEs and pages

in selected documents

InftyCDB-1 – A Ground Truth

Database of Characters, Symbols

words and Formulas in Mathemat-

ical Documents; First Distribution,

March 18, 2005

30 articles in En-

glish

21 056 mathematical expres-

sions,

476 pages.

InftyCDB-2 – A Ground Truth

Database of Characters, Symbols,

words and Formulas in Mathemat-

ical Documents; Second Distribu-

tion, December 27, 2006

26 articles in En-

glish, 4 articles in

French and 7 arti-

cles in German

21 056 mathematical expres-

sions.

number of pages n/a

InftyCDB-3 – A Ground Truth

Database of Characters, Symbols

in Mathematical Documents; Third

Distribution, October 2006

20 articles (a sub-

set of those used

in InftyCDB-1)

mathematical expression

structure is not included,

346 pages.

Infty-MDB-1 – A Ground Truth

Database of Mathematical Expres-

sions, August 12, 2009

32 articles 4 400 mathematical expres-

sions

number of pages n/a

Table 2.1: Infty project data set.

provided. Finally, it is worth mentioning that this last data set has been used in a

competition on MEs detection [2].

All these limitations make necessary the development of a data set that over-

come these problems: thousands of images of pages from scientific documents,

with MEs located and annotated, with the markup language available. This data

set will be made available for research purposes.





CHAPTER 3

Design of IBEM data set

3.1 Data Collection

As stated previously in section 1.1 of the introduction, the data set chosen for the

purposes of this paper had to meet several criteria: it had to be publicly avail-

able, and contain a large number of STEM documents written in LATEX in order to

facilitate the automation of the extraction of the ground-truth. For this reason we

chose the KDD Cup data set [9]. This data set is well known and is being used for

knowledge discovery and data mining purposes. More importantly, this collec-

tion of documents is publicly available and it allowed us to overcome copyright

issues.

The KDD Cup data set is a large collection of research papers from the year

1992 until 2003 inclusive, with approximately 29 000 documents in total with 1.7

gigs of data. The LATEX sources of all papers are available for downloading. These

papers are indexed by the publishing year and have been assigned a unique ran-

dom paper id between 1 and 100 000.

As the KDD Cup contains papers published from 1992 until 2003, we started

selecting papers from the year 2000 onward to avoid compatibility issues with

older versions of libraries potentially used by the authors.

In addition to selecting the papers according to the year, we removed those

documents that did not compile with the 2019 version of texlive (TEX 3.14159265).

11



12 Design of IBEM data set

This compilation error was due to obsolete versions or missing auxiliary files

given that only the main LATEX source was provided.

Table 3.1 shows the resulting number of documents after these two filters.

Table 3.1: number of documents

Total no. of documents 29 556

No. of documents since 2000 10 611

No. of documents that compiled correctly 2 791

3.2 Ground-Truth

Having access to the LATEX sources of these papers would provide us a good way

of automating the extraction of the ground-truth. We developed a set of prelim-

inary regular expressions (regex) that would detect the tags of these delimiters

and create statistics for the documents that compiled correctly to give us an idea

of the potential of this data set.

One of the characteristics of writing equations in LATEX is using the full name

of the delimiters provided by LATEXfor enclosing the expressions in a mathemat-

ical environment. There is an alternative solution to this by defining macros to

abbreviate the formal notation and make writing easier for the authors. By re-

naming the LATEX standard delimiters and separating them from the definition of

MEs, the complexity of the process of detection would increase. We noticed that

many authors preferred this latter approach. Considering that we used regular

expressions to insert LATEX commands for extracting the ME, the situation raised

syntax problems too complex to solve by means of regular expressions. Out of

a total of 2 791 documents approximately 1 000 documents did not rename the

delimiters of the mathematical environments, therefore we decided to focus only

on these documents. Table 3.2 indicates the characteristics of this collection of

documents.

Out of these documents we extracted as much information as possible. This

ground-truth would contain information about the position of the MEs, their type

and LATEX transcript. We also decided to highlight the bounding boxes of the MEs



3.2 Ground-Truth 13

Table 3.2: statistics about the collection of papers.

Total no. of documents 957

Total no. of pages 14 408

No. of displayed MEs 102 921

No. of inline MEs 450 339

Average no. of pages per document 15.06

Average no. of displayed MEs per document 107.55

Average no. of inline MEs per document 470.57

which would allow us to create color inverted images of the pages with only the

definition of the MEs. Highlighting the MEs would also provide a way of visually

verify and validate the ground-truth.

An example of the output described before can be seen in Figure 3.1.

(a) Original page. (b) Highlighted BBs. (c) Color inverted.

Figure 3.1: output obtained by processing page three of paper 0001129 [1].
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The GT obtained from this data set is generated in different formats:

• Jpeg images corresponding to each page of the original and the modified

pdf format, in which MEs are enclosed in a bounding box highlighted in

color. While images of the original pages can directly be used for testing

ML algorithms, pages of the modified pdf format are included for visually

checking the ground-truth used for training and could prove useful when

evaluating these algorithms.

• Color inverted images of each page containing only the definition of the

MEs. These color inverted images can be used as binary masks that can

prove very useful for ME extraction.

• A text file containing all the inline MEs detected per document. Useful for

analyzing the definitions of inline MEs and perform experiments like the

ones presented in section 4.4 and chapter 6.

• A text file containing all the displayed MEs detected per document. Use-

ful for analyzing the definitions of displayed MEs. Useful for analyzing the

definitions of displayed MEs and perform experiments like the ones pre-

sented in section 4.4 and chapter 6.

• A text file containing the coordinates of the bounding boxes enclosing the

MEs. Useful for training algorithms for detecting and extracting MEs.



CHAPTER 4

Preparing the data set

4.1 Extracting the Ground-Truth

As one of the most important parts of this paper, this section presents the process

of extracting the ground-truth from LATEX STEM documents, with the challenges

that arose during implementation and the solutions given to these challenges. In

order to develop a software system capable of processing LATEX files and automat-

ically extract the GT, we used a mixture of techniques such as regular expressions,

LATEX macro programming and computer vision.

Most of the challenges we faced were related to the use of regular expressions,

while some were due to the flexibility of LATEX typesetting and the high variability

in the definition of MEs expected when working with large collections of docu-

ments. These are the most important challenges we faced, and their solutions,

organized in ascending order by difficulty:

• The data set included a large number of LATEX mathematical environments

that is sure to increase in time. Given that MEs are searched for and detected

through regular expressions, the list of mathematical environments needs

to be updated and maintained in order to assure that all types of MEs are

processed.

• In LATEX there are two types of MEs, inline and displayed. Inline expressions

are embedded along the lines of the plain text while displayed expressions

15
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are isolated from it. Given that these two type of MEs are rendered accord-

ingly to the surrounding elements, we had to treat each type separately.

• It was essential that the original structure of the documents does not suf-

fer modifications when inserting LATEX macros for extracting and highlight-

ing the definitions of MEs. Given that in LATEX, macros can contain both

commands and typeset characters, it is very easy to insert unwanted blank

spaces when defining these macros. The solution to this problem was to

compare the appearance of the documents before and after introducing any

new macros. There are tools that compare pdf formats by overlaying one

document on top of each other highlighting the differences.

• The definition of MEs can run in more than a single line, making the cor-

rect detection of the expression more complex. This challenge arose due

to the way in which text stream editors work by processing the document

one line at a time for matching regular expressions. One solution to this

problem was to append multiple lines in the search buffer. This behaviour

introduced a new problem of incorrectly joining the definition of MEs if de-

fined close to each other. This was solved by using a neutral character like

the commentary symbol that we inserted after each ME definition in order

to signal the ending of such definition. This neutral character was later re-

moved so as not to introduce any unwanted behaviours.

• Highlighting the bounding boxes of MEs introduced several difficulties due

to the geometrical position of MEs. We had to take into account all the

special cases that could arise given the high variability in the typesetting of

MEs. The solution to this problem was to increase the number of coordinate

measurements in order to better approximate the position and dimension of

the bounding boxes. This greatly increased the complexity of the solution

which favoured imprecisions in the highlighting process.

• Some parts of the ground-truth, such as the page number of MEs, could

not be accurately calculated within LATEX, due to inconsistencies in the ship-

out routine of LATEX that could suffer changes after the highlighting and

extraction phase. Therefore, the ground-truth had to be extracted after fi-
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nalizing the renderization of these documents, which would guarantee that

the ground-truth would not suffer any other modifications. This was done

using computer vision techniques for performing shape analysis on the re-

sulting highlighted MEs.

All of the above problems and their solutions will be explored with greater

detail in this section.

As explained previously, there are two types of MEs in LATEX, inline and dis-

played, enclosed in special math delimiters. Inline equations can be defined by

using the $. . .$ or \(. . . \) delimiters. In the case of displayed equations the usual

delimiters are $$. . .$$, \[. . . \] and \begin{mathEnv}. . . \end{mathEnv}, where “. . .”

denotes the definition of the equation and mathEnv stands for mathematical envi-

ronments like the eqnarray, align, equation, gather, multline, displaymath en-

vironments among others. All these delimiters are available by default in LATEX or

by importing libraries such as Amsmath [10].

Even though the use of the eqnarray environment is not recommended [11],

there are papers in this data set making use of this environment, and we decided

not to modify them so as not to change the original structure of these documents.

While modifying the original documents would affect the reproducibility of this

project and of the results presented in this paper, changing the structure of the

documents resulted from processing the original files would render the ground-

truth obtained not usable. Any unwanted shift on the x or y axis of the bounding

boxes of MEs would affect the accuracy and quality of the ground-truth.

In order to obtain the ground-truth and the output shown in Figure 3.1, we

divided the process in two parts. The first part consisted in creating LATEX macros

for highlighting and extracting MEs which would be inserted into the documents

by means of regular expressions created in the second part.

The extraction of MEs was done by creating LATEX macros that would write

the definition of MEs to a file differentiating between inline and displayed ex-

pressions. In this case, the regular expressions designed had the sole purpose of

automating the process by detecting the tags of the delimiters presented before

and inserting the macros we created. For this reason we decided to only focus on



18 Preparing the data set

documents that did not rename these tags. Examples of the regular expressions

used for inserting LATEX macros are shown in Appendix B.

Since the number of regular expressions would be quite large given the many

alternatives of environments that LATEX provides for defining MEs, in this project

we used SED [12] as the preferred text stream editor considering that SED works

by making only one pass over the input, thus making it very efficient.

Special care was needed to create the regular expressions used to insert these

macros, since the starting and ending delimiters were usually not on the same

line and knowing that SED processes the text one line at a time. In order to give

solution to this problem, we took advantage of the fact that SED uses two buffers

(pattern buffer and hold buffer) for the matching process. The hold buffer is an

auxiliary buffer that SED allows access to and is used to save all or part of the

SED pattern space for future retrieval. Information can be appended/swapped

between the pattern and the hold space by using a set of functions:

• H: Append a newline to the contents of the hold space, and then append

the contents of the pattern space to that of the hold space.

• x: Exchange the contents of the hold and pattern spaces.

With these functions we were able to create a SED command for appending

consecutive lines into the hold pattern until an empty line would appear, thus

making possible to search patterns in paragraphs instead of having to restrict the

search to only individual lines. Figure 4.1 shows the code snippet of the com-

mand used.

Figure 4.1: command used for searching patterns in paragraphs.

Another characteristic of text stream editors is that they function in a greedy

way as explained in [12]: “Note that the regular expression matcher is greedy, i.e.,

matches are attempted from left to right and, if two or more matches are possible starting

at the same character, it selects the longest”. This behaviour could incorrectly join
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the expression of two or more MEs if defined close to each other. This posed a

problem since we previously changed the normal pattern matching mechanism

of SED by now searching in paragraphs instead of just individual lines. To solve

this, our approach had been broken down into these following steps:

1. Firstly, we eliminated all the comments written in the document. Elimi-

nating comments had no effect on the rendered version of the text, as com-

ments are not shown in the output. We did not remove lines containing only

the comment symbol (%), as these lines served the purpose of suppressing

unwanted space resulting from line breaks.

2. Once all comments were removed, the next step was to insert the % symbol

after the definition of every ME.

3. Given that SED has a greedy behaviour, when creating the regular expres-

sions for detecting MEs we made sure that SED’s regular expression matcher

would search for the delimiters presented before and match as many char-

acters possible as it could without including the % symbol, thus avoiding

pairing MEs defined successively.

4. Lastly, we removed the trailing % symbols as to not introduce unwanted

behaviour when compiling the LATEX source of the documents.

Highlighting the bounding boxes of MEs was more complex as we had to take

into account some special cases that we will discuss below. First of all, we had

to calculate the position of the MEs as rendered on the page. It is important to

remark that detecting the geometrical position of a ME introduces several diffi-

culties such as:

• An inline ME can run in more than one single line.

• An inline ME can run in more than one single line, and in different pages.

• An inline ME can run in more than one single line, and in different pages,

and/or in different columns.

• An inline ME can appear in a caption, in a footnote, in a draw, or in a plot.
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• A displayed ME can run in more than one page and/or column.

• A displayed ME can include a numbering.

These situations had to be taken into account when processing the data set.

For each type of MEs, inline or displayed, we used different approaches to

compute the location of the bounding boxes. We made use of the module savepos

provided by the package zref [13] to get the absolute coordinates of the starting

and ending points of the expressions as rendered on the page. Once these coor-

dinates were calculated, the dimensions of the bounding box were computed by

measuring the rendered definition of the expression. It is important to know that

we compiled each LATEX source three times. Twice to get the correct coordinates

and a third in order to compute the bounding boxes using these coordinates. The

third compilation was necessary since every expression is processed in a sequen-

tial manner and it was impossible to use the ending coordinate if it was not pre-

viously calculated. With these dimensions and with the absolute position of each

bounding box determined we were able to highlight the expressions.

In the case of inline MEs, it was sufficient to only take two coordinates for the

starting and ending point of the expressions. By comparing these coordinates we

deducted if these expressions were rendered on one line or more, or even if they

were split over two pages.

Highlighting one-lined expressions is trivial and can be done directly by en-

closing the definition of these MEs in a colored box or by drawing a box over the

background, taking into account that we previously computed both the location

and the dimensions of the MEs. This was not the case for expressions rendered on

two or more lines, because enclosing the definition in a colored box, would force

the ME to be rendered on one line not allowing for line breaks or page breaks

and therefore would modify the original structure of the document. In this case

we used the package tikz [14] to be able to draw directly on the background of

the page. The first line of the expression was highlighted by drawing a colored

rectangle from the first coordinate to the end of the line. Between the first and

last line, in case the expression was rendered on more than two lines, we drew

line long rectangles by looping until we reached just above the ending coordi-
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nate. The last line was highlighted in similar fashion as the first one, by drawing

a rectangle from the beginning of the line to the ending coordinate of the expres-

sion. Figure 4.2 shows how to determine if an inline ME is split over more than

one line.

Figure 4.2: inline mathematical expression running over two lines.

The height and width of ME are calculated within LATEX by making a copy of

the expression and enclosing that expression in a paragraph box that can be mea-

sured directly. In Figure 4.2 it can be observed that by checking if the difference

between the y components is greater than the height of the line, then the expres-

sion is rendered on more than one line. By dividing that difference between the

height of the line, we can calculate over how many lines the expression is split.

In the case of displayed MEs, taking the beginning and ending coordinates to

compute the upper left and lower right corner of the bounding box did not guar-

antee that the first and last symbols of the expression were rendered as extreme

points. Figure 4.3 shows an example of this situation.

Figure 4.3: example of a displayed ME rendered on page 18 of paper 0001129 [1].

In order to take into account situations like the one in Figure 4.3, macros were

inserted to take coordinates before and after each newline symbol and also be-

tween the symbols of some mathematical elements such as fractions, sums, prod-

ucts, integrals, etc., which could have superscript or subscript elements making

them be rendered in an upper or lower position than the first or last symbol, re-
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spectively. Figure 4.4 shows some of the key points in the definition of a ME

where coordinate macros were inserted.

Figure 4.4: LATEX transcript of the displayed ME shown in Figure 4.3.

Considering that LATEX macros are quite verbose which would make the regu-

lar expressions unnecessary long, instead of inserting the LATEX code of the macros,

we created a package file that would work as a library with the definition of these

macros. In Figure 4.4 it can be seen that the ME is defined inside an eqnarray

mathematical environment. An example of a regex for inserting coordinate macros

for this expression, would be to search for \begin{eqnarray} and immediately

add after, the call to the \coord{} macro that would take the starting coordi-

nate of the ME. It is important to notice that the starting (\coord{}) and ending

coordinates (\coordE{}) are inserted inside the eqnarray environment, because

LATEX treats the environment as a paragraph adding padding space around it to

separate it from the adjacent paragraphs. Inserting the coordinates on the outside

of the environment would shift the coordinates to take into account this added

blank space and the bounding box would be measured incorrectly.

In Figure 4.4 all coordinate macros are colored with green. It can be seen

that such macros were inserted before and after the newline symbol \\ marked

with a red box. It can also be seen that in the second line of the definition of the

ME, we inserted a coordinate macro just after opening the \sum expression. As
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explained before, sums, products or integral expressions, can have superscript

or subscript elements that would be rendered at a different height than the rest

of the symbols. Given that such expressions follow a syntax like \sum_{lower

part}ˆ {upper part}, we inserted the macro in that position in order to be taken

into account when computing the lower rightmost corner of the ME. Given that

this instance of the \sum expression does not have an upper part, no \leftCoord{}

macro was inserted in the definition in the definition of the sum.

At the same time we inserted the call for the starting and ending coordinates,

we also inserted the call for the macro \boxAlignEqnarray{...} that is colored

yellow in Figure 4.4. This macro receives 6 arguments such as: 1) the definition

of the ME; 2) a negative shift to be applied if necessary; 3) and 4) the number of

coordinates to take into account when computing the upper left and lower right

corners of the bounding box; 5) a copy of the definition of the ME (marked in

Figure 4.4 with a red open parenthesis) that would be used for measuring the

dimensions of the bounding box; and 6) a boolean value that would be set to 1

if the environment in question is eqnarray. This parameter exists because the di-

mensions of eqnarray environments are a bit more trickier to measure as a result

of the alignment between elements of the expressions.

When highlighting displayed MEs, as in the case of inline MEs, we had to

take into account that the equation could be split over two pages or columns.

This was done by processing the coordinate points in sequential order until there

was a significant difference in the y coordinate which would imply a vertical gap

in the definition of the ME and the need to treat each part of the expression inde-

pendently.

A special case we encountered that was briefly mentioned before, was the use

of negative spaces declared in the definition of MEs. This negative space would

shift the position of the expression as rendered on the page and would create a

misalignment in the highlighting of the bounding box. Vertical negative space

would not pose problems, since such space would generally be declared above

the definition of the expression in order to shift the whole expression upwards

and reduce the space between it and the paragraph above. This negative space

would be processed by LATEX before reaching the coordinate macros we inserted
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and the computation of the position of the bounding box would not be affected

by it. This was not the case for horizontal negative space that would be declared

between symbols of the expression, and which could shift parts of the expressions

outside of the highlighted bounding box if such space is not taken into account.

Figure 4.5 is an example of such a case.

Figure 4.5: example of the misalignment in the highlighting process caused by a horizon-

tal negative space.

The solution to this problem was to design a regular expression that would

detect if any negative space was declared in the definition of the ME, and if it was

the case pass the value as an argument to the macro that computes the bounding

box taking the shift into account.

Once the MEs were highlighted (green for inline, yellow for displayed), we

compiled the resulting LATEX file to obtain a pdf format and convert each pdf

page into an image for each page. Each such image was later processed1 and

passed through an yellow and green color filter in order to remove the running

text and focus only on the definitions of the MEs. The output of this process was

a negative similar to the one that is shown in Figure 3.1.

By performing a shape analysis on this negative we directly obtained relative

coordinates of each ME by detecting the contour of these expressions. Figure 4.6

shows some of the coordinates obtained by processing the example shown in

Figure 3.1.

1https://opencv.org/

https://opencv.org/
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Figure 4.6: example of some of the coordinates obtained by processing page three of

paper 0001129 [1].

The coordinates shown in Figure 4.6 could have been obtained directly from

within LATEX since we already had to compute these coordinates in order to high-

light the MEs. The problem with this approach was that after the highlighting

phase, the page could still be further modified before being shipped-out and the

coordinates calculated before would not be valid even if the highlighted output

of the page would be correct. For this reason we chose to process these pages

after the renderization process would finalize. A second reason was that by post-

processing the documents, the color inverted images shown in Figure 3.1 were

obtained as a by-product of calculating the coordinates, which would be more

complex to obtain from within LATEX or by using the LATEX generated coordinates.

With the process of obtaining the ground-truth concluded and with it the de-

veloping of the software system complete, the next step of was to validate the

generated data and analyze it.

4.2 Data Validation

Bearing in mind that the ground-truth of the data set presented in this paper

was generated automatically from a collection of scientific papers, there was no

previous information about the position of MEs in these documents. In light of

this fact, data validation had to be done by visually checking that the bounding

boxes of the MEs present were in the correct position and of the right dimension.
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For this reason, the validation of the data generated from this data set was one of

the most time consuming steps.

It’s important to say that since the ground-truth was generated automatically

and given the high variability of the methods of typesetting MEs, some cases

where the data extraction process would fail were expected.

One of the first things we had to ensure, was that we did not modify the struc-

ture of the documents by inserting LATEX commands in the definition of MEs. For

this reason, the correctness of both the regular expressions and the LATEX macros

inserted had to be verified. Any undesired added space could shift elements of

the MEs and invalidate the ground-truth of the document in question. Verifying

if the layout of the original pdf format of the documents and their corresponding

modified version where the expressions were highlighted was done by compar-

ing both pdfs with the application diffpdf 2.

The diffpdf application allows comparison of pdf documents by appearance

giving the option to use an XOR function to calculate and highlight the differ-

ence between the documents. Unfortunately this application could not be used

to automatically scan the whole data set as it provided a boolean output for an

exact match, and because it sometimes had pixel deviations when loading the

documents which would invalidate the result. However, it was of great use for

visually checking the difference between the documents because the pixel errors

when loading the files were minor and did not affect the visual comparison. Fig-

ure 4.7 shows the comparison between the original and the highlighted version

of page three of paper 0001129 shown in Figure 3.1. The difference between these

two versions is shown by highlighting the pixels that do not match 4.7a, or by

applying an XOR to the pixels of these pages 4.7b.

In Figure 4.7 it can be seen that the differences between the documents come

from the colored pixels that form the bounding boxes of the MEs and some small

pixel errors when loading the files.

After all the LATEX macros and regex were slowly introduced and tested for

errors, we started visually verifying the 957 papers, that did not rename the de-

2http://manpages.ubuntu.com/manpages/trusty/man1/diffpdf.1.html

http://manpages.ubuntu.com/manpages/trusty/man1/diffpdf.1.html
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(a) Highlighted difference. (b) XOR difference.

Figure 4.7: output generated with diffpdf when comparing the original and the high-

lighted version of page three of paper 0001129 [1].

limiters of the mathematical environments, in order to compile a collection of 200

documents.

When validating the data set, we encountered two types of errors, one that

could be more easily corrected than the other. These errors were related to the

use of regular expressions for automating the insertion of LATEX macros.

Regular expressions have limitations in the sense that they tend to be too rigid

and for this reason, given the high variability in writing styles, there were cases

where macros were not inserted because of discrepancies in the pattern match-

ing process. This type of errors could be fixed by creating new regex to take

into account the special cases that we gradually encountered or by increasing the

complexity of the regex already created in order to make them more flexible. The

latter approach could be more dangerous because changes in the definition of

regex could introduce unwanted behaviour in expressions that previously were

correct. Once changes like this were made, the validation process had to be taken

from the start in order to guarantee that documents that were previously vali-

dated did not suffer modifications.
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The second type of errors we encountered were caused by macros that the

authors had created in order to typeset subexpressions that were repetitive and

large. If these subexpressions contained sums, products integrals or other ele-

ments with superscript or subscript symbols, the regular expressions would not

be able to detect them and could cause inaccuracies in the highlighting of MEs.

Figure 4.8 captures such a case.

Figure 4.8: example of an error of highlighting a ME.

Considering that an error like the one presented in Figure 4.8 could invali-

date the whole document and render the ground-truth unusable, we separated

the highlighting phase from the extraction of the ground-truth. This modular

architecture would allow for manual correction of errors in highlighting before

launching the extraction of information from the data set.

Out of the approximately 1000 documents we set apart for creating the data

set, we manually chose 200 documents that were visually validated and we pro-

ceeded with extracting the ground-truth. Table 4.1 highlights the characteristics

of the resulting data set.

4.3 Complementary data set

Once we created the data set of MEs, we decided to expand the scope of our

project and also create a data set of images of all the symbols and characters con-

tained in these MEs. The approach we used was to process and tokenize the

LATEX definition of each ME in order to extract the symbols and characters that

describe the expression.

We created a lua script, adapted from the LuaTex manual [15], that would be

executed when LATEX launches its output routine. This output routine of LATEX con-

sist of gradually making boxes of each element present, then combining these
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Table 4.1: statistics about the data set.

Total no. of documents 200

Total no. of pages 2 460

No. of displayed MEs 16 598

No. of inline MEs 77 631

Average no. of pages per document 12.3

Average no. of displayed MEs per document 83.0

Average no. of inline MEs per document 388.2

boxes to create a line box, which combined with other lines, creates a paragraph

box, and so on, until LATEX obtains a container for the whole page by aligning

and stacking smaller boxes. Each ME would be converted to a linked list of

tokens, where each token would represent a glyph of the character/symbol to

be rendered or the allocated space between individual characters/symbols and

between words. Of these tokens we were only interested in the glyphs, where

each symbol and character would have a different glyph, depending on the font

used to typeset the given element. For transforming the written text into glyphs,

LATEX assigns to each character and symbol an entry to a font table containing all

the glyphs defined for that font. Since we wanted to create individual LATEX files

of these glyphs which would later be compiled and converted to images, we

saved both the table entry and the font name to be able to reproduce the exact

same character or symbol.

After obtaining the LATEX files, we analyzed their corresponding pdf repre-

sentations and we noticed that there were many similar glyphs representing the

same character or symbol, and that their font name or index was not the same.

This posed a problem, because we could not use this information to be able to

group these representations together and assign them the same class label. Since

all the glyphs representing the same symbol or character had the same unicode,
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the solution was to map the corresponding font table indexes to the unicode code

point of the glyphs to be able to group them together. The LATEX distributions

contain .htf files of different fonts with such mappings for nearly all the glyphs

used. These files are under the LaTeX project public license, found at [16] and since

they can be found in every LATEX distribution, we will not provide them. These

.htf files can also be generated as explained in [17].

By processing the expressions found in the 200 documents presented in this

paper, we obtained 539.509 glyphs, representing a total number of 268 different

symbols and characters. These symbols and characters follow an exponential

distribution similar to Zipf’s Law. In this case the frequency of the symbol (

made up for 6, 71% of the total number of glyphs, closely followed by the symbol

) with 6.62% (as expected). The next most frequent character was the digit 1 with

a percentage of 4.90%.

Once we were able to group up similar characters and symbols and correctly

label them, we converted their pdf representations into images which we later

centered, scaled and padded to a 28× 28 pixels dimension. The exact format of

this data set will be presented in chapter 5.

4.4 Data Analysis

In this section we will present a clustering experiment applied to the edit distance

between pairs of MEs. This experiment is useful for understanding the frequency

distribution of MEs, which could prove interesting for developing a search engine

with tolerance where STEM documents are indexed by MEs.

The experiment had two parts. The first part involved identifying all the

unique MEs in order to calculate the editing distance between every pair of MEs.

The second part consisted of applying a clustering algorithm to the editing dis-

tances previously calculated with the purpose of grouping up MEs based on their

similarity.

After obtaining the ground-truth, we analyzed the definitions of the MEs de-

tected in the data set in order to calculate their reoccurrance frequency. Therefore,
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it was necessary to group up MEs based on their definition. However, consider-

ing that LATEX is quite flexible and that it provides the user with many alterna-

tives when it comes to typesetting MEs, an exact matching of the LATEX transcript

of MEs would not correctly identify different definitions with the same represen-

tation. We solved this problem by transforming each ME into its corresponding

unicode symbol sequence.

When creating the complementary data set presented in section 4.3, we no-

ticed that many LATEX commands and symbols ended up having the same uni-

code code points, therefore we transformed each expression into its correspond-

ing unicode symbol sequence in order to maximize the matching between differ-

ent definitions of the same representation. We also had to take into consideration

that the variables used to define a mathematical expression could vary from au-

thor to author. For this reason, after a preliminary matching, we computed the

Levenshtein distance for every pair of expressions giving less weight to substitu-

tion. In Figure 4.9 we highlighted the substitution weight that we modified for

Figure 4.9: Levenshtein distance with standard weights (source Wikipedia).

this experiment. By giving this weight a value of 0.75 instead of the standard 1

for deletion and/or insertion of mathematical symbols/characters, pairs of ex-

pressions in which one variable was replaced were more likely to be considered

similar. As a result, an example such as a + b + c = d is now more likely to be

paired with the expression a + b + c = e.

Figure 4.10 shows the occurrence frequency of the 24 766 MEs resulting after

the initial exact matching. This frequency distribution will be used as a base-

line for interpreting the occurrence frequency of the MEs given an edit distance

tolerance.

Considering that the degree of similarity between two expressions was highly

dependant on the length of these expressions, we calculated the post-normalized

edit distance by dividing the edit distance by the length of the longest expression
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Figure 4.10: frequency of occurrence of the MEs after the initial matching.

of the two. Even though the post-normalized edit distance violates the triangular

inequality and is sub-optimal, it has a computational cost of O(nm) where n and

m are the lengths of the two expressions. This computational complexity makes

the post-normalized edit distance more efficient to calculate than the algorithm

presented in [18] which as stated has "a linear increase in computational complex-

ity with respect to the classical unnormalized edit distance procedure". Taking

into account that there are approximately 25.000 different expressions after the

initial matching, applying the optimal algorithm for calculating the normalized

edit distance between every pair of mathematical expressions was not feasible.

In order to calculate the occurrence frequency of the expressions in the data

set with a certain tolerance, we computed the post-normalized edit distance be-

tween every pair of MEs and stored it into a matrix. Given that such matrix was

symmetrical, we only computed the upper triangular part of the matrix in order

to avoid repetitive calculations. Once the pairwise distance between all MEs had

been calculated with a substitution weight of 0.75 and a deletion and insertion

weight of 1, we applied a clustering algorithm for grouping up similar MEs. We

chose a substitution weight of 0.75 in order to balance the use of substitution

when calculating the distance between two expressions. A weight lower than

0.75 would lead to incorrect results for pairs of expressions with the same length



4.4 Data Analysis 33

but different semantics, while a weight higher than 0.75 would not be sufficiently

tolerant for pairing expressions with the same semantic but different variables.

Given that we could not know the number of clusters beforehand, we choose

the DBSCAN clustering algorithm [19] that would calculate these clusters based

on the density of the data, connecting MEs within a distance threshold of 20%.

There were a total of 20 049 clusters obtained from 24 766 MEs. Figure 4.11 shows

the frequency of the clusters resulting after grouping up similar MEs (green)

against the frequency of MEs obtained in the initial matching process (magenta).

Figure 4.11: occurrence frequency of MEs and their corresponding clusters.

In order to demonstrate how the frequency of the clusters was calculated, we

chose the cluster number 9757 that is made up of two MEs that are highlighted in

Figure 4.11. The representation of these two MEs, with an occurrence frequency

of 25 and 14 respectively, can be seen in Figure 4.12.

It is clear that the normalized edit distance between the MEs shown in Fig-

ure 4.12 is less than the 20% threshold we established for the clustering algorithm,

with a difference of only one symbol. Grouping up MEs, such as the ones shown

above, into clusters resulted in the redistribution of the occurrence frequency that

can be seen in Figure 4.11.
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(a) #1 ME of cluster 9757. (b) #2 ME of cluster 9757.

Figure 4.12: MEs of cluster 9757.

Even though for this project, the clustering algorithm had been only applied

to a Levenshtein distance calculated with a weight of 0.75, 1, 1 for substitu-

tion, insertion and deletion, respectively, the results of the experiment shown

in Figure 4.11 illustrates the usefulness of enriching the ground-truth with the

LATEX transcript of MEs.

Given that the clustering algorithm returns the cluster label assigned to each

ME, applying a clustering algorithm to the pairwise distance between the defini-

tions of MEs can be of interest when implementing a search engine with a certain

degree of tolerance.



CHAPTER 5

Structure of IBEM data set

The data set is distributed between three folders. The first folder consists of im-

ages obtained by breaking down pdfs of the original documents into images of

each page. For every image, we provide a text file containing the coordinates and

type of each one of the MEs detected in the corresponding page. Figure 4.6 gives

an example of such data.

The second folder consists of a collection of sub-folders, where each sub-folder

contains a scientific paper in LATEX and pdf formats from which data was ex-

tracted. The name of each sub-folder starts with two digits indicating the pub-

lishing year of the paper, followed by five digits indicating the number assigned

to the paper. Along with the original document we also provide the LATEX file

created by highlighting MEs, their pdf representation and a folder named Index-

ing_results where we include the output generated during each step of the pro-

cess.

The third folder contains images of each symbol and character found in the

definition of the MEs, a file containing a list with all the classes assigned to each

image and a file with the values of the pixels in these images.

To facilitate the traceability and replicability of the methods described in this

paper, we have not changed the names of the files extracted from the KDD data

set.
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5.1 Text Data

• A text file corresponding to each processed page is stored in the Dataset

folder. The text file contains relative coordinates for every ME, stored as a

numpy matrix as shown in Figure 4.6.

• In the Indexing_results folder corresponding to each paper:

1. A text file with LATEX coordinates for every inline ME detected.

2. A text file with LATEX coordinates for every displayed ME detected.

3. A text file containing the definition of every inline ME detected.

4. A text file containing the definition of every displayed ME detected.

5. A text file containing the absolute page number of every inline ME

detected.

6. A text file containing the absolute page number of every displayed ME

detected.

7. A Json file with the coordinates, type, page number and LATEX defini-

tion of every ME.

• A text file containing the class labels of each glyph contained in the defini-

tion of the MEs.

5.2 Image Data

The images described here are obtained with a density of 300dpi, a dimension of

1477× 2048 pixels for the definition of the MEs and a dimension of 28× 28 for

the glyph representations of symbols and characters.

• An image file corresponding to each page of the original paper is stored in

the data set folder.

• In the Indexing_results folder corresponding to each paper:

1. An image file for every page of the highlighted document as shown in

the second image of Figure 3.1.
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2. An image file for every page of the original document consisting of

a negative containing only the detected MEs, as shown in the third

image of Figure 3.1.

3. An image file per ME detected, representing the renderization of the

expression.

• An image file corresponding to each symbol and character. The frequency

and class of these symbols and characters are codded into the image’s name.





CHAPTER 6

Experimental Results

This chapter introduces an experiment based on this data set as a baseline. Sev-

eral types of experiments can be carried out with this data set, given that it has

GT at different levels: ME detection and extraction, ME recognition, ME search-

ing, etc. This experiment targets ME recognition, a step that takes place once the

definition of MEs has been detected and extracted. By performing a symbol clas-

sification experiment we would lay the foundation for interpreting MEs while il-

lustrating the possible problems when developing a ME recognition system. Our

goal was to perform an experiment that could be easily replicated. The motiva-

tion behind the experiment is based on our desire to illustrate one of the possible

uses of including the LATEX transcript of MEs into the ground-truth. Since the GT

of the data set already facilitates ME detection and extraction, the next challenge

would have been ME recognition. To tackle this challenge, symbol classification

was necessary. Therefore, the goal of this experiment was to provide a starting

point for solving the ME recognition challenge. This symbol classification exper-

iment was conducted with current technology based on Convolutional Neural

Networks (CNN).

6.1 Classification Model

Mathematical symbol classification experiments were performed with a CNN

with a usual architecture. This model has the ability to learn key spatial features

of an image and understand the sophistication of the image, that is, differenti-
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ate between the symbols given the inherent variability of each class as a result of

changes in font representations of these symbols.

We built a sequential model with 3 convolutional layers of 32, 64 and 128

filters respectively. For all these layers we defined a convolutional window of di-

mension 3× 3 with a stride of 1× 1 along the x and y axis of the input image. We

also activated zero padding to allow the kernel to process the entire surface of the

images, given that the size of each such image is 28× 28 pixels. We chose ReLU

as the activation function to be applied after the convolutional process of these

layers. In order to reduce the dimensionality of the data and extract dominant

features which are rotational and positional invariant, following each convolu-

tional layer we placed a Max Pooling Layer, given that they usually exhibit a

better result [20] than other pooling layers. To reduce over fitting we introduced

a dropout regularization of 25% after each pooling layer. As the last layer we

added a single fully connected layer with 268 neurons with a softmax activation

classifier. Figure 6.1 captures the architecture of the CNN model.

Figure 6.1: CNN architecture.

We chose accuracy as a metric and a categorical cross-entropy as a loss function

for optimizing the predictive model. After choosing a batch size of 100 images

and 10 epochs we started training the network.

The training process of the CNN, that can be observed in Figure 6.2, indicates

a rapid convergence of the model in under 10 epochs. While the learning rate is

quite high, we obtained a validation accuracy of 0.9991 and a validation loss of

0.0544 with little to no over-fitting.
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Figure 6.2: CNN training phase.

6.2 Data Statistics

As mentioned before, there are a total number of 539 509 images in this data set,

one per glyph encountered in the definition of the MEs of the 200 documents.

Since we decided to carry out the classification experiment as simple as possible,

the glyphs were grouped in the same class if they represented the same symbols,

that is, different fonts of the same symbols were grouped in the same class. This

is a clear simplification because sometimes MEs have the same symbol with a

different meaning. In this way, the number of classes was reduced to 268.

We partitioned the data assigning 80% for training and 20% for testing. Out

of those 80% images, we chose a 20% subset for validation. Table 6.1 shows the

main statistics.

6.3 Results and Discussion

The final result on the test set after training the CNN model was 0.07% error rate.

Note that this is a very good results, but we have to take into account the the

amount of training data was really large.
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Table 6.1: partitions of the data set.

No. of images in training set 345 285

No. of images in validation set 86 322

No. of images in test set 107 902

Out of the 107 902 images in the test set we had 80 cases of misclassification.

Out of these 80 errors, 18 were a result of assigning a different class to the same

character when labeling the data set. This happened due to the fact that char-

acters had different font representations and their font table entries were miss-

ing from the mapping files we used to translate the font glyphs into their corre-

sponding unicodes. By modifying and correcting these font files, we could have

improved the accuracy by 0.01%. Of the remaining 62 misclassifications, we pro-

vide some examples to illustrate where the classifier learned wrong features that

led to errors in the prediction of the test classes. Table 6.2 shows some of these

misclassification examples.

Table 6.2: test symbol vs. predicted symbol

These are some of the most representatives examples of errors of prediction

that we encountered by analyzing the prediction output generated by the neural

network. The first example represents many of the variants of left/right floor

and left/right ceil symbols being incorrectly classified as open or closed brackets.



6.3 Results and Discussion 43

There were a total of 15 such cases. There were 6 cases of the second example.

These misclasifications are a result of the rotational and translational invariance

characteristic of convolutional networks. The third example could be considered

very similar to the first one, where a small feature could significantly change the

meaning of the symbol. There were 6 test samples that fit this case. It is important

to know that the occurrence frequency of this exact glyph representing the letter

l was 737 and of its class 4 673, while the frequency of the symbol | was 472,

therefore this was not a sign of over-fitting of the model.





CHAPTER 7

Future work

This chapter will explore potential improvements that could be brought to the

process of obtaining the ground truth, as well as suggesting additional informa-

tion for enriching the ground-truth already obtained.

One of the key areas that could be improved relates to the module for detect-

ing and highlighting MEs. Since this module precedes the ground-truth extract-

ing section, any improvements brought to it will directly improve the accuracy

of the ground-truth. There are two ways to improve the MEs detecting and high-

lighting method used in this paper. The first relates to expanding the number of

environments for which detection and highlighting can be done with the meth-

ods employed in this project, while the second relates to detection of MEs that

have been defined using sub-macros.

One of the drawbacks of employing regular expressions for detecting MEs, is

the lack of adaptability to new ways of typesetting ME. These regular expressions

need to be adapted and maintained in order to provide full support to changes

in the definition of mathematical environments. This project provides regexes for

the most common environments, therefore new sets of regular expressions need

to be developed in order to provide functionality for environments we do not

cover.

Related to the highlighting process, we found that there are authors that de-

fine LATEX macros to facilitate typesetting of repetitive sub-expressions. As men-

tioned in Chapter 4 these macros could cause inaccuracies in the highlighting of

MEs. These imprecisions occur when sub-expressions, that have been defined
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with macros, contain complex elements with superscript or subscript symbols

that could be rendered at a different height than the rest of the symbols defining

the ME. This situation would cause the regular expressions in charge of detect-

ing such sub-expressions to fail, which would result in not inserting coordinate

points to include these elements when calculating the position of the bounding

box of the ME. Currently, situations such as this are detected by measuring the

bounding boxes of MEs independently of the position on the page. If the distance

between the upper left corner and lower right corner coordinate is not equal to

the dimensions we measured, there must be an element not taken into account

when calculating the coordinates. Because we could not know the position of

such an element, we split the height difference between the upper and lower part

of the bounding box, reducing the inaccuracies of the highlighting process. This

process could be improved by parsing the documents beforehand and replacing

all instances of the LATEX macros created by the authors with their definition. This

would allow the detection of sub-expressions and would improve the accuracy

of the highlighting by adjusting the bounding boxes more tightly around MEs.

Another improvement that should be explored is the automation of the val-

idation process. Currently this process is done manually, thus if the aim is to

create a data set with thousands of documents, the validation phase would take a

significant amount of time and people, not to mention possible errors that could

be committed due to fatigue.

In addition to the ground-truth already presented in this paper, we consider

that the definitions of MEs could be further analyzed, which would provide inter-

esting information for enriching the data set. Besides extracting the sequence of

unicode code points, representing the glyphs of characters and symbols defining

the MEs, it is also interesting to extract information such as the location of these

symbols and characters in relation to the ME, and also if they are rendered as a

superscript or subscript element. Information such as this could prove invaluable

when studying the relationship between the symbols of a ME.

Considering that the order of the elements of MEs is important, which gives

these expressions semantic meaning, understanding the relationship between these

elements could allow us to transform MEs through mathematical properties. Hav-
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ing this information would allow for building a ME search engine more robust,

providing more flexibility and tolerance for matching queries.





CHAPTER 8

Conclusions

As stated, the objective of this paper was to generate a labeled data set derived

from digital STEM documents containing mathematical expressions. The data set

had to include information about the location and the content of said mathemat-

ical expressions. Several specific objectives have been targeted, amongst which:

developing a software system for GT extraction, building a secondary data set

of symbol and character images and conducting an analysis of ME occurrence

frequency.

In reaching these objectives, several challenges occurred, such as the diversity

of methods for typesetting mathematical expressions in LATEX, the availability of

large volumes of STEM documents, as well as potential copyright issues derived

from processing them. We consider these challenges solved within the bound-

aries of the current project. Other challenges, such as adjusting the identification

software to include more environments with which MEs can be written in LATEX or

adjusting it to correctly deal with situation where repetitive sub-expressions are

defined using macros remain to be solved.

Out of the approximately 1000 documents that have been processed for this

project, we’ve met the 200 document threshold set as the primary objective. As

a result, the identification software has the desired accuracy of 20%. It should

be stated, that since the results of the highlighting process have to be checked

manually, which is time consuming and effort intensive, the real accuracy of the

software could be much higher than the targeted 20%. In fact, based on further
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investigation we consider that the accuracy of the software is greater than 60%,

but for the purposes of this project, the lower threshold was considered sufficient.

In relation to the secondary data set of symbol and character images extracted

from the MEs, we have obtained a set of 539 509 images, corresponding to 268

unique symbols. This secondary data set allowed us to calculate the prior proba-

bility of each symbol.

The ME analysis experiment has resulted in valuable output that can be used

as a starting point in building a tolerant search engine of MEs within large collec-

tions of digital documents.

Based on this information, we consider that the objectives of the project have

been successfully met.

On a personal note, the project represented a means of exploring data set cre-

ation realities. On this level, my personal objective has also been met and I believe

I have gained a much better grasp of data set creation and its challenges and op-

portunities.

This project has been developed as part of a larger project, IBEM [21]. An

article based on the project presented in this paper has been submitted for publi-

cation in the ICPR2020 conference [22]. This article has passed the first round of

a two-round review system, and is currently under the process of revision.

We have also put forth the idea of organizing a ME detection competition

starting from a subset of the corpus presented in this paper. So far this idea has

been presented to ICPR unsuccessfully, and it is scheduled to be submitted to

ICDAR conference taking place in 2021. The results of the second submission are

currently not available.

Once the IBEM project is finalized, we will commit to uploading the complete

corpus resulted from this project to the ZENODO platform (and/or GitHub).
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APPENDIX A

System Configuration

In this appendix we will cover the architecture of the software system presented

in this paper by briefly presenting the components that form it. In order to be able

to launch the program into execution and to be able to reproduce the results ob-

tained in this project some software resources need to be available by installing or

configuring them. In this chapter we will also explain how to execute individual

functionality modules of the system if such a need arises.

A.1 Software Structure and Requirements

The software system built in this project consists of a series of scripts, written in

shell and python code, that are linked together in order to provide the function-

ality described in this paper. This system is divided in two. One part is in charge

of creating the data set of STEM documents and extracting the ground-truth from

this documents (presented in chapter 4), while the second part is in charge of

analyzing the sequence of symbols that form the MEs that were extracted from

the previous data set, and creating a complementary data set of images of glyphs

representing these symbols (presented in chapter 4.3). This secondary data set is

then used in the training and testing of a symbol classifier presented in chapter 6.

Of the component in charge of highlighting MEs and extracting ground-truth

the most important scripts are:

• main_script.sh, that as the name suggest is the main entry point of this com-

ponent. The script is written in bash and offers access to the different mod-
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ules that provides the functionality of the component. This script processes

one document per execution,

• lanza.sh, bash script created for processing more than one document by

launching the main_script.sh in a sequential manner,

• find_coordinates.py, python script for creating negatives like the one shown

in Figure 3.1c and for extracting coordinates like the ones shown in Ta-

ble 4.6,

• createDB.sh, bash script for creating individual LATEX files for each one of the

MEs extracted from the IBEM data set,

• latex2png.sh, bash script that as the name suggest, converts the LATEX file of

each ME into png of its corresponding graphical representation,

• SED.txt, SED script for inserting commands and calls to LATEX macros for

extracting the LATEX transcripts of the MEs detected in the IBEM data set,

• SED_cajas.txt, SED script for inserting commands and calls to LATEX macros

for highlighting MEs,

• useful_macros.sty, library package with the definition of the LATEX macros

used for extracting and highlighting MEs,

• symbols.lua, LUA script for processing MEs and breaking them down into

sequences of glyphs used for creating the data set of mathematical symbols

presented in 4.3.

Of the second component in charge of analyzing the sequences of symbols

that form the MEs, and creating a complementary data set of images of glyphs,

the most important scripts are:

• proc_symbols.py, python script for creating the data set of mathematical sym-

bols.

• CNN.py, python script for creating and training a CNN mathematical sym-

bol classifier.
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All the scripts presented above require that some software resources be present

for a correct execution. It is important to know that this project has been devel-

oped under the Ubuntu Operating System, therefore all the following software

resources that we detail were configured for this OS:

• SED, a stream editor for performing text transformations by means of reg-

ular expressions.

• Python 3.7, interpreted programming language.

• OpenCV 3.2+, an open source computer vision library used in this project

for performing shape analysis on the highlighted MEs.

• LATEX, a document preparation system with a descriptive markup language.

• ImageMagick 6.9.10-23, tool for creating, editing, composing, or converting

bitmap images.

• pdfinfo 0.86.1, a Portable Document Format (PDF) document information

extractor.

• Keras 2.3.1, a Python deep learning framework built on top of TensorFlow.

• TensorFlow 2.1.0, an end-to-end open source platform for machine learning.

• CUDA Version: 10.2, a parallel computing platform and application pro-

gramming interface (API). Prerequisite for using TensorFlow.

• cuDNN Version: 7.6, a GPU-accelerated library of primitives for deep neural

networks. Prerequisite for using TensorFlow.

A.2 Execution Modules and Prerequisites

The scripts presented in the anterior section form up the different modules that

the project was divided into. As mentioned before, the main entry point for ac-

cessing these modules is through the bash script file main_script.sh. This script
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can receive several arguments that control which modules will be launched dur-

ing the execution of the program, with a syntax like the following:

main_script.sh LATEX_SOURCE [OPTIONS]

where LATEX SOURCE is a mandatory argument containing the path to the

LATEX file to be processed, and the optional arguments are:

’- c’: option for compiling the LATEX source file, highlighting the bounding

boxes of MEs (example shown in Figure 3.1b), and extracting the LATEX tran-

script of these MEs.

Prerequisite: the main LATEX file of the document to be compiled needs to be

in an individual folder, separated from the other documents.

’- m’: option for breaking down the PDF format, resulting from the compi-

lation phase, into images of each page which are then processed in order to

extract the coordinates of each bounding box.

Prerequisite: the LATEX file has to have been previously compiled in order

to generate the PDF format with the bounding boxes of MEs highlighted

(option ’-c’).

’- o’: option with the same functionality of option ’-o’, however the ground-

truth is better structured (example shown in Figure 4.6). A negative of the

images with just the definition of MEs is also generated with this option

(example shown in Figure 3.1c).

Prerequisite: the LATEX file has to have been previously compiled in order

to generate the PDF format with the bounding boxes of MEs highlighted

(option ’-c’).

’- l’: option for creating individual LATEX files and png representations of

each MEs highlighted in the document.

Prerequisite: the LATEX file has to have been previously compiled in order to

extract the LATEX transcript of MEs (option ’-c’).

’- s’: option for generating statistics about the number of displayed and in-

line MEs detected, and the number of pages of the document. If the option
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is activated through launching the lanza.sh script, it also generates global

statistics about the average number of inline and displayed MEs per docu-

ment, and the total number of expressions and pages of the data set.

Prerequisite: the LATEX file has to have been previously compiled in order to

extract the LATEX transcript of MEs (option ’-c’).

’- t’: option for processing the LATEX transcript of each ME, previously ex-

tracted, in order to generate sequences of glyphs of each symbol and char-

acter that composes the definition of the ME.

Prerequisite: the LATEX file has to have been previously compiled in order to

extract the LATEX transcript of MEs (option ’-c’).

’- a’: enables all of the above options.

If more than a document needs to be processed, then the recommended script

to be used is lanza.sh. This script has a syntax similar to the one presented for

main_script.sh:

lanza.sh DIR_SOURCE [OPTIONS]

where DIRECTORY SOURCE contains the path to a directory containing sub-

folders with individual LATEX files to be processed, and the optional arguments

are the same as the ones for the script main_script.sh.

While the creation of the IBEM data set and its associated ground-truth ex-

tracted from MEs can be obtained by launching lanza.sh or main_script.sh with the

appropriate options, the creation of the complementary data set of mathematical

symbols is obtained by launching the python script proc_symbols.py. This script

requires a text file containing information about the font name and font table en-

try of every symbol and character found in the definition of MEs extracted from

the IBEM data set. This file is generated by launching the processing of STEM

documents with the option -t. The syntax of the script proc_symbols.py is as fol-

lows:

proc_symbols.py DST_PATH DIR_MAPPINGS

where DST_PATH is the directory path where the data set of symbols will be

created, and DIR_MAPPINGS is the directory containing mapping files for con-

verting glyphs to unicode code points.
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Lastly, in order to train and create the CNN clasiffier we need to launch the

python script CNN.py that accepts only one argument:

CNN.py data set_DIR

where data set_DIR is the directory containing the data set created with the script

proc_symbols.py.



APPENDIX B

Regular Expressions

In this appendix, we will introduce some of the most important regular expres-

sions used for inserting LATEX macros and commands. These macros and com-

mands, as explained before, had the function of calculating and highlighting the

bounding box of MEs or the function of extracting the LATEX transcript of MEs. In

this appendix we will only present regular expressions related to the highlighting

process given that the regexes developed for extracting the LATEX transcripts are

simplifications of the former.

This appendix might result harder to follow for persons not familiar with

SED’s syntax 1 or LATEX typesetting 2. All of the regular expressions presented

in this appendix can be found in the SED_cajas.txt file.

First of all, we will introduce the regex used for importing the LATEX package

file containing the definition of the LATEX macros used in this project:

1 /^%/! s/\\begin { document } .∗/\\ usepackage { useful_macros }\n&/g

This regex has two parts, where the first part conditions the second. The first

part checks that the line to be processed does not start with the commentary sym-

bol ’%’. With this check, lines that have been commented out by the authors are

ignored in order to make sure we only import the package file useful_macros once.

In order to insert the loading of the package, we use SED’s command substi-

tute with the syntax ‘s/regex/replacement/flags’. Therefore, in the second part of

1https://www.gnu.org/software/sed/manual/sed.html
2https://en.wikibooks.org/wiki/A_Brief_Introduction_to_the_LaTeX_Typesetting_

Environment/Typesetting:_The_Basics
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the regex we search for the LATEX command \begin{document} (seen in the regex

part and denoted by ’&’ in the replacement part of the substitute command) and

prepend the LATEX command for loading package files. The flag used in this case

and in the majority of the regular expressions shown in this appendix is the ’g’

flag that stands for global replacement of all the matches of the regex.

The two regular expressions we are going to present next, are the ones in

charge of inserting the macros shown in yellow in Figure 4.4:

1 s/\\begin { eqnarray\∗\?}/&\\coord {}\\ boxAlignEqnarray {\\ lef tCoord { } / g

2 s/\\end { eqnarray \∗\?}/} {0mm} { 1 } { 1 } { c o n t r o l } { theequat ion } { 1 } \ \ coordE

{}&\%\%/g ;

The first regex matches the beginning of the eqnarray environment and in-

serts the macro for the starting coordinate and the macro for highlighting and

computing the dimension and location of the expression (\boxAlignEqnarray).

The second regex matches the ending of the eqnarray environment and inserts

the default arguments of the highlighting macro. The "control" and "theequation"

arguments are used as marks for correctly identifying the rest of the arguments

in order to be able to modify them as needed. The argument "theequation" is re-

placed with the definition of the ME as written by the author before inserting the

calls to the macros we created. Given that we insert some of these macros before

copying the definition of the expression, we created a regex for filtering out these

macros after making the copy. The "control" mark is deleted once the arguments

shown as [1][1] are overwritten with the number of left and right coordinates to

be processed when computing the dimensions and location of the bounding box.

The following regular expressions are the ones that pass and clean the defini-

tion of MEs:

1 s /\(\\ begin { eqnarray . \ ? } \ ) \([^%]∗\) \ ( } { 0mm} { . . \ ? } { . . \ ? } { c o n t r o l } { \ )

theequat ion \ ( } { 1 } \ \ coordE {}\\ end { eqnarray \∗\?}\) /\1\2\3\2\4/g ;

2 : repeat1

3 s / \ ( { . . \ ? } { c o n t r o l } { [^%]∗\)\\rightCoord {}\([^%]∗ }\\ coordE {}\\

end { \ ) /\1\2/g ;

4 /{ c o n t r o l }{[^%]∗\\ rightCoord { } / t repeat1

5 : repeat2
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6 s / \ ( { . . \ ? } { c o n t r o l } { [^%]∗\)\\lef tCoord {}\([^%]∗ }\\ coordE {}\\ end

{ \ ) /\1\2/g ;

7 /{ c o n t r o l }{[^%]∗\\ lef tCoord { } / t repeat2

8 : repeat3

9 s /\({ c o n t r o l } { [^%]∗\)\n∗\s∗\\p\? l a b e l \s ∗ { [ ^ } ] ∗ } \ s∗\n∗\([^%]∗}\\

coordE {}\\ end { \ ) /\1\2/g ;

10 /{ c o n t r o l }{[^%]∗\\p\? l a b e l \s ∗{/ t repeat3

There are four sets of regular expressions shown in the code above. The

first one, numbered as 1, is the regex in charge of making a copy of the ME.

This regex detects everything defined in the eqnarray environment and sepa-

rates it into blocks of LATEX code. Since we previously inserted the call to the

\boxAlignEqnarray macro with the default corresponding arguments, we know

that the ME is defined before the "control" mark. Therefore, we copy the LATEXcode

that precedes the control mark (shown in the regex as \2), overwriting the "thee-

quation" argument (shown in the regex between the blocks \3 and \4). After

copying the definition of the ME, we created regular expressions that filter this

definition by looping over it as long as there still are \rightCoord{} macros (lines

2 to 4), and \leftCoord{} macros (lines 5 to 7). The third set of regular expres-

sions (lines 8 to 10) has the task of eliminating the labels defined in the ME, since

duplicating these labels would cause compiling errors.

There are similar regular expressions to the ones presented above, defined for

all the mathematical environments that we presented in chapter 4.

Once the definition of the copy of the ME had been cleaned, we could count

the number of left and right coordinate macros present in the mathematical envi-

ronment. Given that stream editors like SED don’t have arithmetic capabilities,

we had to create as many regular expressions as we wanted to detect:

1 s /\(\(\\ lef tCoord { } [^%]∗\) \{1\}\) \ ( { [ ^ } ] ∗ } \ ) { . . \ ? } \ ( { . . \ ? } { c o n t r o l } \ )

/\1\3{1}\4/g ;

2 s /\(\(\\ lef tCoord { } [^%]∗\) \{2\}\) \ ( { [ ^ } ] ∗ } \ ) { . . \ ? } \ ( { . . \ ? } { c o n t r o l } \ )

/\1\3{2}\4/g ;

3 . . .

4 s /\(\(\\ lef tCoord { } [^%]∗\) \{79\}\) \ ( { [ ^ } ] ∗ } \ ) { . . \ ? } \ ( { . . \ ? } { c o n t r o l } \ )

/\1\3{79}\4/g ;
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5 s /\(\(\\ lef tCoord { } [^%]∗\) \{80\}\) \ ( { [ ^ } ] ∗ } \ ) { . . \ ? } \ ( { . . \ ? } { c o n t r o l } \ )

/\1\3{80}\4/g ;

In the code shown above, it can be seen that each regular expression detects a

different number of left coordinate macros, ranging from 1 to 80. A similar set of

regular expressions has been created for detecting the right coordinate macros.

Considering that the number of left and right coordinate macros we can detect

is limited by the number of regular expressions created, there can be the case

of MEs where the number of coordinate macros inserted exceeds the number of

coordinate macros detected. If such a case is given, there might be problems with

computing the correct location of the bounding box since not all the coordinates

will be processed. This problem would appear only if the ending coordinate is

not an extreme point in the definition of the ME.

The rest of the regular expressions in charge of inserting coordinate macros

between the symbols of some mathematical elements such as fractions, sums,

products, integrals, etc. or before and after each newline symbol, can be found in

the SED_cajas.txt file.
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