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Resum
En els últims anys ha crescut l’interés en torn el reconeixement de l’activitat humana,

especialment en els camps de la salut on es pot utilitzar per a augmentar la qualitat de
vida, confort i seguretat de la població dependent i d’edat avançada. L’auge de l’internet
de les coses (IoT) i la tecnologia associada permeten als investigadors entrenar models
predictius a partir de cases intel·ligents equipades amb diferents tipus de sensors on els
residents poden dur a terme la seua vida diària. L’objectiu d’este treball consistix en una
anàlisi de l’efectivitat de diferents models de classificació a l’hora de reconéixer l’activitat
humana a partir de conjunts de dades ja desenrotllats. Particularment, utilitzarem dades
publicats pel projecte CASAS de la Universitat Estatal de Washington a l’hora d’exami-
nar l’efectivitat i precisió de diverses tècniques de preprocessament i models. El dipòsit
CASAS proporciona dades tant d’experiments controlats, on es busca examinar activitats
específiques, com a dades arreplegats de voluntaris vivint en cases intel·ligents, on inten-
ten dur a terme la seua rutina diària. En este treball es realitzarà una avaluació exhaustiva
de diversos models diferents, des d’un classificador de bayes ingenues fins a boscos ale-
atoris, identificant les seues fortaleses i debilitats a l’hora de tractar amb diferents fonts
de dades i diferents tècniques de preprocessament.

Paraules clau: reconeixement d’activitat humana, cases intel·ligents, models predictius,
classificador de bayes ingenues

Resumen
En los últimos años ha crecido el interés en torno el reconocimiento de la actividad

humana, especialmente en los campos de la salud donde se puede utilizar para aumentar
la calidad de vida, confort y seguridad de la población dependiente y de edad avanzada.
El auge del internet de las cosas (IoT) y la tecnología asociada permiten a los investigado-
res entrenar modelos predictivos a partir de casas inteligentes equipadas con diferentes
tipos de sensores donde los residentes pueden llevar a cabo su vida diaria. El objetivo
de este trabajo consiste en un análisis de la efectividad de diferentes modelos de clasi-
ficación a la hora de reconocer la actividad humana a partir de conjuntos de datos ya
desarrollados. Particularmente, utilizaremos datos publicados por el proyecto CASAS de
la Universidad Estatal de Washington a la hora de examinar la efectividad y precisión de
varias técnicas de preprocesamiento y modelos. El repositorio CASAS proporciona datos
tanto de experimentos controlados, donde se busca examinar actividades específicas, co-
mo datos recogidos de voluntarios viviendo en casas inteligentes, donde intentan llevar
a cabo su rutina diaria. En este trabajo se realizará una evaluación exhaustiva de varios
modelos diferentes, desde un clasificador bayesiano ingenuo hasta bosques aleatorios,
identificando sus fortalezas y debilidades a la hora de tratar con diferentes fuentes de
datos y diferentes técnicas de preprocesamiento.

Palabras clave: reconocimiento de actividad humana, casas inteligentes, modelos predic-
tivos, clasificador bayesiano ingenuo

Abstract
Research on human activity recognition in smart homes has drawn lately much atten-

tion as a means to improve the quality of life, comfort, safety and health care of elderly
and dependent people. The advancement of the technology in the Internet of Things
(IoT) and smart homes enables the utilization of dataset benchmarks in experimental
scenarios for testing appropriate predictive techniques of daily activities of residents at



v

home. The objective of this project goes in this research direction and presents a study
of the performance of different classification techniques in a sensor-based dataset of hu-
man activity. Particularly, we use the public datasets provided by the CASAS project of
the Washington State University and we examine the suitability and accuracy of various
classification techniques in scheduled activities as well as in daily life recordings. We
perform an exhaustive evaluation of various techniques that range from a Naive Bayes
classifier to Random Forests, identifying the strengths and weaknesses of the tested tech-
niques to each type of dataset.

Key words: human activity recognition, smart homes, predictive models, Naive Bayes
classifier
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CHAPTER 1

Introduction

1.1 Motivation

My first introduction to the field of Human Activity Recognition (HAR) is when Dr. Eva
Onaindía, professor at the Department of Computer Systems and Computation (DSIC)
and my tutor for this project, contacted me to participate in research in this field. The
topic HAR interested me as it sounded as a novel and challenging problem. HAR is
certainly a complex task due to the huge variety of data sources, data extraction methods
and Machine Learning (ML) techniques to solve the task. In addition, there is not a clearly
dominant technology that monopolizes the attention of the researchers, but instead an
outstanding number of proposed algorithms.

Advances in the field of HAR have seen application in the medical field. For exam-
ple, the work done by classifiers that use human vitals has been applied to monitor the
rehabilitation of patients with cardiovascular problems. [19]. Additionally, research in
activity recognition in smart homes puts specifically the focus on the development of so-
lutions that improve the quality of life of elderly and dependent people. Precisely, one
of the datasets used in this paper, the Daily Life Recording dataset, records and measures
signal of daily life activities of an elderly person in a monitored smart home. [9]. The
creators of this dataset have recently published a paper detailing the implementation of
a robotic support system which monitors and assists individuals in certain activities [31].

The quality of life of elderly and dependent people is a growing issue. For example,
in Spain recent estimates show that currently over 18.49% of the population is aged 65
years and older1, and it is expected to grow. Personally, I have two grandmothers that,
while not purely dependent, they do rely on their daughters for some tasks, such as
certain parts of housekeeping or carrying heavy objects. The problem is that both of
their daughters have full time jobs and can only offer help during their limited free time.
Solutions such as the ones developed in [31] would allow people who to take care of their
family members to do so without sacrificing so much of their personal time, as well as
being more convenient for the person taken care of.

During the project development I also realized that despite the lots of feature extrac-
tion methods and ML algorithms, there are hardly attempts to delve into the suitability of
classification techniques to specific datasets and to understand their strengths and short-
comings. In this sense, our aim is to cover this gap by analyzing three of the most well-
known classifiers used in the HAR field. The three classification techniques were chosen
according to three criteria: they are all compatible with the same set of features, they are
fundamentally different in nature and they present a varying degree of popularity and
success in HAR.

1The World Factbook - Central Intelligence Agency. Age Structure. https://www.cia.gov/library/
publications/the-world-factbook/fields/341.html#SP. Acessed: 2020-07-01
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2 Introduction

1.2 Objectives

The objectives we pursue in this project are the following:

1. Assessment of different classification techniques in handling the task of Human
Activity Recognition (HAR) in smart homes.

2. Identifying publicly available HAR datasets, how they differ in nature and how to
extract relevant features; to utilize several different nature datasets under a sim-
ilar representation during the evaluation of the classifiers so as to compare their
performance.

3. To study how the raw data coming from the sensors are interpreted and formatted
to be usable by different classifiers; to learn ways for adding contextual informa-
tion to samples to be used by non-contextual classifiers, such as sensor event based
windowing.

4. Investigating the type of features extractable from the sensor-based data, their use-
fulness and the type of information they attempt to capture; to experiment with dif-
ferent data pre-processing methods so as to increase the data quality, reduce data
noise and/or identify discriminative information such as the use of sensor and time
dependencies.

5. To compare the performance of a Naive Bayes, a Support Vector Machine and a
Random Forest classifier on the the task of HAR using different metrics such as
accuracy and F-score; analysis of the confusion matrices generated by the trained
models to observe how the nature of different daily activities affect the classifiers’
behaviour; to get the big picture on understanding the strengths and weaknesses of
each classification technique.

1.3 Organization of the document

This work is structured as follows. First, in Chapter 2, we will discuss the current state
of the art in Human Activity Recognition. In section 2.1 we will introduce the concept of
Human Activity Recognition, followed by section 2.2 which mentions the currently avail-
able datasets for HAR. The chapter ends with section 2.3 that addresses the classification
techniques used in the task of HAR.

Chapter 3 discusses the details of a HAR task applied to smart homes. First, in sec-
tion 3.1 we formally introduce the problem of HAR. Second, in section 3.2, we detail the
datasets used to evaluate the classification techniques in the following chapter. Sections
3.3 and 3.4 focus on the data processing and extraction of features from the datasets. Fi-
nally, section 3.5 presents the set of features that we will use to build the feature vectors.

In Chapter 4 we will evaluate the performance of three classification techniques on
the datasets presented in Chapter 3. Initially, section 4.1 explains the evaluation setup
and the metrics to use for the classifiers assessment. Each of the following sections is
devoted to a thorough evaluation of a classification technique, providing details on the
implementation and commenting the results across all the tested datasets. Section 4.2 is
devoted to Naive Bayes, 4.3 to SVM and 4.4 to Random Forest.

Chapter 5 summarizes the take-home lessons from this project and outlines some
future work directions.



CHAPTER 2

State of the art

In this chapter, we first briefly introduce the field of Human Activity Recognition. Then
we present various research and academic projects on this topic as well as a summary of
the most widely used state-of-the-art machine learning classification methods for activity
recognition.

2.1 Human Activity Recognition

Human Activity Recognition (HAR) is the study about the identification of the action of
a person based on sensor data. HAR is applicable to many contexts, mainly in smart
homes for eldercare and healthcare monitoring in combination with other technologies
like Internet of Things (IoT) [30].

Advances in HAR can be classified accordingly to the type of sensors utilized. Thus,
we can distinguish:

• Applications that principally utilize wearable body sensors and mobile devices.
These sensors can measure vitals from the participants, such as pulse meters, blood
pressure, the speed of the participants using accelerometers or other physical prop-
erties. This type of sensors are commonly used in smart healthcare monitoring
systems [28].

• Applications that rely on sensors located in the environment in which the activ-
ity takes place such as smart homes. These applications are meant to elderly care
and the purpose is to recognize daily living activities so as to identify anomalous
behaviours. Sensors typically used here are state-change sensors like motion or
temperature sensors [26].

Our work is positioned within the second type of applications, that is, detection and
recognition of activities in smart homes via sensors that monitor the presence and move-
ment of people, the utilization of items and utensils and room temperature. This type
of sensors are placed in the environment, typically take readings periodically or contin-
uously, and data is stored only when the measurement value of the sensor changes (as is
the case in the datasets used in this paper).

2.2 Projects in Human Activity Recognition

There exist various projects aimed at developing solutions for the task of Human Activity
Recognition. Following we present the most relevant ones.

3



4 State of the art

One of the most popular HAR projects is the one developed at the Center for Ad-
vanced Studies in Adaptive Systems (CASAS) at Washington State University (WSU)
1. CASAS originally started in 2005 with a focus on the problem of gathering informa-
tion from ’smart’ environments (like environments equipped with an array of sensors) to
build models of the behaviour of the people [33]. Since then CASAS has also expanded
into the study of wearable sensors to monitor patients with cardiovascular diseases [19].
When performing research in smart environments, CASAS sets up several testbeds con-
sisting in adapted homes and apartments equipped with a set of sensors where volun-
teers can perform daily activities. The CASAS project offers public access to the data col-
lected from the home residents via sensors with the aim to be used by other researchers.

The Opportunity Project is also known as Activity and Context Recognition with Op-
portunistic Sensor Configurations 2. This project is the result of the joint work of sev-
eral institutions coordinated by the ETH Zürich University and the European Union. Its
objective is researching ways to tackle the problem of HAR by developing general al-
gorithms that are applicable independently of the availability, placement and nature of
sensors. Researchers of the Opportunity project have published papers and organized
conferences from 2009 to 2013, related to the use of both wearable and environment sen-
sors.

There also exist several public datasets concerned with the study of HAR and pub-
lished by researchers involved in the field:

• Van Kasteren3: Besides the datasets of the project CASAS, the ones published by Dr.
Tim van Kasteren are the only public datasets that comprise data extracted exclu-
sively from sensors located in the environment rather than from wearable sensors.

• MHEALTH dataset [2, 3]: published by several professors from the University
of Granada, it encompasses data collected from participants wearing sensors that
measure movements and vitals while performing activities such as "Cycling" and
"Jogging".

• Human Activity Recognition Using Smartphones dataset (UCI HAR) [10]: a col-
laborative work of professors from the University of Genova and the Polytechnic
University of Catalonia, this dataset is built specifically for the task of HAR where
data is collected from a set of wearable sensors coordinated through a smartphone.

2.3 Classification techniques in HAR

The earliest publications on the application of classification techniques to the HAR task
was published by the CASAS project in 2005 [33]. In these first publications, authors used
Hierarchical Hidden Markov Models, a type of sequential model. Later in 2010, other
sequential models where introduced and compared, including Hidden Markov Models
(HMM), Hidden semi-Markov Models, Conditional Random Fields and semi-Markov
Conditional Random Fields [29]. Overall, sequential models seem like a natural fit for
HAR, as data captured by state-change sensors store data sequentially. However, the set
of features and information that can be extracted from the data is more limited than in
other models. Consequently, while they are still in use today, they are not the only viable
classification techniques and will often depend on the dataset.

1Center of Advanced Studies in Adaptive System. http://casas.wsu.edu/
2Activity and Context Recognition with Opportunistic Sensor Configurations. http://www.

opportunity-project.eu/
3Tim Van Kasteren. https://sites.google.com/site/tim0306/datasets

http://casas.wsu.edu/
http://www.opportunity-project.eu/
http://www.opportunity-project.eu/
https://sites.google.com/site/tim0306/datasets


2.3 Classification techniques in HAR 5

Among the early publications on HAR, the CASAS project published some works us-
ing Support Vector Machines (SVM). Originally as one of the most robust classifiers, SVM
also became one of the most popular classification techniques to deal with HAR along
with HMM and K-Nearest Neighbors algorithms. Unlike sequential models, SVMs are
more flexible regarding sample representation and have consistently shown a superior
performance across several datasets such as the Opportunity project, the Van Kasteren
dataset and the UCI HAR dataset [14, 13, 17]. However, they feature some limitations
on working with large datasets as the temporal cost of training an SVM increases rapidly
with the number of samples [7].

A powerful classification technique that has not been much used in HAR, despite its
wide success in other applications, are the Neural Networks. This may be due to a failed
attempt in 2012 of using an artificial neural network to classify different activities, which
ended up performing considerable worse and less consistently than other techniques [13].
Another explanation may be found in that current neural networks, with many more hid-
den layers than the network models used in 2012 had, require way more samples than
the current datasets contain. However as of recently, since 2016, we have seen papers at-
tempting to use Convolutional Neural Networks and Recurrent Neural Networks with a
higher degree of success [16, 1]. Overall, in spite of their shortfalls, deep neural networks
have been proven extremely effective in handling different problems, and they are also
highly flexible with the representation of the samples.

We can also find several other classifiers that have seen more limited use. Among
these, we can mention the Random Forests, which have only been used in the multires-
ident dataset of the CASAS project and in the Opportunity project [20, 15]. While Ran-
dom Forests are not so widely used and they are less popular than other classification
techniques such as SVM, they exhibit a strong performance in the research works that
experimented with this technique. There are also clustering methods, such as K-Nearest
Neighbors, which were originally introduced in 2014, but they have not kept up with
the latest classification techniques [12, 8]. Finally, Naive Bayes classifiers have also been
studied in several papers, although they are commonly used with the aim of comparing
different feature extraction techniques or providing a baseline method to which compare
other classifiers to [24, 8].





CHAPTER 3

Problem statement and data
processing

In this chapter we will first give a formal definition of the problem to solve. Then we
will introduce and analyze the smart home datasets used in the project. Later we will
explain why it is necessary to process data prior to the application of the classification
techniques and how this is done. Finally, the chapter presents various methods used to
extract features from the datasets.

3.1 Overview of the problem

The problem addressed in this project is the recognition of human activity in smart
homes. A smart home comes equipped with an array of sensors, which are distributed
across the house and measure different factors such as movement, human interaction
with objects like doors, or room temperature. When a sensor triggers, it emits what we
call a sensor event. The sensor event contains information about the sensor, the measured
value and the time it was triggered. Sensor events are stored in a file, as it may be seen
in Figure 3.1, where each row describes a single sensor event. The annotations at the end
of some of the sensor events represent the activity that was being done by the person
monitored within the home when the sensor event was emitted (e.g. Bed_to_toilet).
All the sensor events comprised between the begin and end of an activity correspond to
the triggered sensors during the performance of such activity.

We tackle the recognition of home daily activities as a classification problem, where
the collected sensor events are to become the samples and the activities to recognize are
the classes. We work under the assumption that only one participant is at home at a time
or, in the case of several residents, that they are all working in the same activity. The
classification techniques must also be able to work with streaming sensor data; that is,
when the sensor events are directly obtained from the array of sensors through a data
stream rather than from a file.

Formally, a sensor event e = 〈d, t, s, v〉 is a four-valued tuple which includes the date
d, the time t, the sensor identifier s, and the value measured by the sensor v. A dataset
may be interpreted as a list of N sensor events E = {e0, e1..., eN} in chronological order.
Datasets also contains annotations from a set of recognized activities A. Each sensor
event e ∈ E is uniquely associated with one of the activities a ∈ A.

7



8 Problem statement and data processing

Figure 3.1: Excerpt of sensor events belonging to the DLR dataset [9]

Figure 3.1 shows an excerpt of a listing of sensor events, each described with the
date, the time, the sensor identifier and the value of the sensor. We can observe some
sensor events are annotated with the begin/end of an activity. As we mentioned before,
all sensor events comprised within the sensors labeled as Bed_to_toilet begin (sensor
event #53) and Bed_to_toilet end (sensor event #64) are associated with the activity
Bed_to_toilet.

We can also observe in Figure 3.1 that some sensor events are not comprised within
the triggered sensors of any activity (e.g. the three sensor events before the event an-
notated with Bed_to_toilet begin). There are two ways to handle this: to associate all
of these sensor events to a virtual class called "Other", or outright ignore them. In this
project we chose the latter.

3.2 CASAS datasets

In this paper we will use the public datasets provided by the CASAS Project. In these
datasets the status of the residents and their physical surroundings are captured through
sensors and the environment is acted upon via controllers. As many other researchers we
utilize CASAS datasets for Human Activity Recognition (HAR) tasks with the purpose of
identifying the suitability and accuracy of various classification techniques to particular
smart home environments.

The main reason why we chose CASAS over other datasets is that most researchers
tend to create their own private datasets, so there are few publicly available data sources.
However, CASAS offers a higher number of smart home environments as they vary in
how data is collected, the types of sensors that are used and the measurable aspects of the
sensed environments. While there are some other public repositories besides the CASAS
and Van Kasteren datasets, they either use types of sensors that we do not consider in
this paper, such as wearable sensors; they attempt to classify simple actions rather than
more complex activities; or may lack annotations indicating the associated activities.
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Specifically, we used four different smart home environments from the CASAS datasets:

• Ordered Activities (OA) [23]. This is an experiment in which data is collected from
23 volunteers. Participants were asked to perform five activities in a specific given
order so as to be able to replicate common household activities. The activities were
performed in the following order: 1) Make a phone call; 2) Wash hands; 3) Cook;
4) Eat; and 5) Clean. Volunteers were given precise instructions on how to do the
activities. The number of sensor events per class may be seen in Table 3.1:

Activities Number of sensor events Relative frequency (%)

Cook 2172 35.15
Clean 1607 26.01

Make a phone call 1037 16.78
Eat 882 14.27

Wash hands 481 7.78

Table 3.1: Number of sensor events in the OA dataset

• Ordered Activities with Errors (OA-E) [23]. Data in this experiment is recollected
from 20 volunteers. The experiment records the same five activities as in OA but this
time participants were asked to commit a mistake while doing the activity. As in OA,
volunteers are instructed on how to perform each activity, including the ’mistake’.
For example, for the activity Make a phone call, participants would first dial an
incorrect number before the correct one. The number of sensor events per class
may be seen in Table 3.2:

Activities Number of sensor events Relative frequency (%)

Cook 2338 45.32
Make a phone call 1019 19.75

Eat 770 14.93
Clean 574 11.13

Wash hands 458 8.88

Table 3.2: Number of sensor events in the OA-E dataset

• Interweaved Activities (IwA) [25]. This dataset stems from an experiment with 20
volunteers where participants were requested to perform the following eight ac-
tivities once in any order: Fill medication dispenser, Watch DVD, Water plants,
Answer the phone, Prepare birthday card, Prepare soup, Clean, and Choose outfit.
Participants were also allowed to start one activity before finishing the activity that
was currently being done. This dataset was meant to compare the performance of
classifiers when activities are not done in any specific order. As a side note and due
to problems with the data of two participants, we will only work with the data of
18 residents. The number of sensor events per class may be seen in Table 3.3:
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Activities Number of sensor events Relative frequency (%)

Clean 1611 23.46
Prepare soup 1066 15.53
Watch DVD 976 14.21
Water plants 975 14.20

Prepare birthday card 766 11.16
Fill medication dispenser 550 8.01

Choose outfit 519 7.56
Answer the phone 403 5.87

Table 3.3: Number of sensor events in the IwA dataset

• Daily Life Recording (DLR) [9]. Unlike the other datasets, data in DLR does not
stem from a synthetic experiment, but instead captures data of only one volunteer
when doing her daily routines. Specifically, the volunteer is an adult woman who
lives in the house alone, although she is allowed to receive visits from her relatives.
This dataset is meant to contain more realistic data. Instead of performing a de-
tailed set of activities, the participant was simply asked to carry out her daily life
while the research team collected the sensor data. This dataset recognizes 11 activ-
ities, which are manually annotated by the research team. The activities of DLR are
Meal_Preparation, Relax, Eating, Work, Sleeping, Wash_Dishes, Bed_to_Toilet,
Enter_Home, Leave_Home, Housekeeping, and Resperate (usage of a portable elec-
tronic device that promotes slow, deep breathing). The number of sensor events per
class may be seen in Table 3.4:

Activities Number of sensor events Relative frequency (%)

Relax 374743 47.28
Meal Preparation 292158 36.86

Sleeping 63792 8.05
Work 17637 2.23
Eating 16651 2.10

Housekeeping 10938 1.38
Wash Dishes 10594 1.34
Enter Home 2041 0.26
Leave Home 1954 0.25
Bed to Toilet 1483 0.19

Respirate 571 0.07

Table 3.4: Number of sensor events in the DLR dataset

Each dataset is recorded within a so-called testbed. A testbed is a home adapted with
different sensors in order to record any activity within it. CASAS owns several testbeds
each one named after cities such as Kyoto, Aruba or Cairo. The OA, OA-E and IwA datasets
are built from the Kyoto testbeds, while the DLR dataset is built from the Aruba testbed.
The Kyoto testbed replicates a two-story house although more sensors were added to
IwA, while the Aruba testbed replicates a single-floor bungalow.
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3.2.1. Datasets OA and OA-E

The OA and OA-E datasets use the same testbed with the same sensor configuration shown
in Figure 3.2. In this figure, the blueprint on the left is the ground floor of the house where
activities take place and the map on the right shows the cabinet located above the kitchen
sink. These two datasets feature the following sensors:

• 26 motion sensors, referred to as M-01 through M-26 in Figure 3.2.

• nine sensors associated to different type of objects identified with names starting by
’I’. Some of the objects are located in the kitchen cabinet while others in the living
room:

– within the kitchen cabinet we can find:
∗ middle shelf: a medicine cabinet (I-06).
∗ bottom shelf: boxes with ingredients such as oatmeal (I-01), raisins (I-

02), sugar (I-03) and kitchen utensils such as a bowl (I-04) and measuring
spoon (I-05).

– a pot (I-07) located under the cabinet.
– a phone (indicated with an asterisk in the dataset but not shown in Figure 3.2,

and a phone book (I-08), both in the living room.

• one sensor attached to the door of the kitchen cabinet (D-01).

• one sensor attached to the stove (burner) in the kitchen (AD1-A).

• one sensor attached to the hot water faucet in the kitchen (AD1-B) and another one
to the cold water faucet (AD1-C).

Figure 3.2: Sensor distribution for the testbed in OA and OA-E [23]

We can also observe in Figure 3.2 that there is another type of sensor, labeled as T,
which represents temperature sensors. The researchers made the conscious choice to not
include the temperature sensors although the motivation behind it is unknown.
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3.2.2. Dataset IwA

In the case of the IwA dataset, the blueprint of the house (see Figure 3.3) is the same as in
datasets OA and OA-E but the set of sensors is slightly different. The blueprint of Figure
3.3 is the ground floor of the house, and the sensors readings in the IwA dataset are:

• the same 26 motion sensors as described for OA and OA-E datasets plus another
sensor, M-51, located in the bottom right corner which denotes a kitchen supply
closet.

• ten sensors attached to different objects. One of them, the phone in the living room,
is identified as sensor ’P-01’, while the other nine are identified with initial letter ’I’.
These are attached to the following objects:

– although not explicitly displayed on the figure, the kitchen features a cabinet
with a middle shelf (the medicine cabinet) that has two sensors (I-06 left and
I-04 right), and a bottom shelf with two sensors (I-01 left and I-02 right); there
is also a sensor I07 associated to the kitchen counter.

– sensors I-03 and I-05 are attached to the right and left TV shelf, respectively.

– I-08 is the phone book sensor, located at the living room.

– it is unclear what the object I-09 refers to; by analyzing the data we found
that this sensor triggers only when participants perform the activity Prepare
birthday card.

• five sensors attached to the doors of the house, labeled in Figure 3.3 from D-07 to D-
12, which indicate if the door is opened or closed. Sensors referred in the figure as
D-01 to D-06 are attached to the doors in the house, but the recorded sensor events
do not report readings on these sensors. The collected sensor events associated to
doors are the following:

– the kitchen’s cabinet door (D-07).

– the freezer’s door (D-08).

– the fridge’s door (D-09).

– the microwave’s door (D-10).

– the door of the closet at the bottom right of the figure (D-11). We checked the
dataset and noticed this sensors triggers when participants are either perform-
ing the Water plants activity or the Clean activity, so we may safely assume
this closet contains cleaning products and gardening tools.

– the door of the closet behind the kitchen (D-12). This sensor only triggers
during the activity Choose outfit, so it clearly functions as a wardrobe.

• one sensor attached to the stove in the kitchen (AD1-A).

• one sensor attached to the hot water faucet in the kitchen (AD1-B) and another one
to the cold water faucet (AD1-C).

• two temperature sensors, identified as T-01 and T-02, which measure the temper-
ature of the living room and the kitchen, respectively. These sensors are shown in
the blueprint of the ground floor shown in the right part of Figure 3.3.
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Figure 3.3: Sensor distribution for the testbed in IwA (ground floor) [25]

3.2.3. Dataset DLR

Finally, the DLR dataset uses a completely different testbed that features a different layout
as shown in Figure 3.4. This dataset is named Aruba in the CASAS project:

• 31 motion sensors, labeled in the figure from M-01 up to M-31. Out of these, sen-
sors M-019, M-020, M-007, M-024 and M-027, which are shown by their shades in
Figure 3.4, have a detection radius larger than the rest of motion sensors. These far-
reaching sensors aim to measure the presence of the resident in one of the rooms of
the house.

• four sensors attached to the doors of the house, where three of them are doors to
the outside (D-001, D-002 and D-004), and one of them is a door located within the
house (D-003).

• five temperature sensors, each one of them located in a different room:

– the bedroom (T-001)

– the living room (T-002)

– the kitchen (T-003)

– the main hall (T-004)

– the office (T-005)

The DLR testbed also reports two additional readings indicating if the participant
leaves or enters the house. However, the provided specifications do not indicate whether
these readings are added manually or they are also captured from sensors.
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Figure 3.4: Sensor distribution for the testbed in DLR [9]

3.2.4. Similarities and differences between datasets

When choosing the datasets to work with, our aim was to test different levels of difficulty,
using data coming from controlled experiments to data obtained from daily human ac-
tivity. In the latter, the time of the activities will be the usual time a person performs an
activity (e.g. sleep at night) but in the controlled experiments the time of the activities is
not necessarily an indication of the activity nature since participants perform each activ-
ity only once either in a predetermined order or in any order at the participant’s choice.
We also decided to bound the scope of the work and consider only data sets that collect
data from one participant at a time, or that two activities may not be performed simulta-
neously (not to be confused with interleaved, where one activity may be halted in order
to advance another one). This is to simplify the theoretical model in which our classifiers
are based upon.

The OA dataset is gathered from a controlled environment where participants were
asked to do the five activities in a same given order. The only source of variation between
participants is in how they perform the activities themselves, but this is minimized as
participants are given detailed instructions on how to perform each activity. Given the
simplification of the contextual model of the activities in OA, this experiment may not
bring a significant insight towards activity recognition but serves as a basis to test the
predicatability of linear models.

The experiments with OA-E and IwA attempt to relax some of the controlled aspects in
the OA experiment and to better reflect real human activity: in the OA-E dataset partici-
pants force mistakes while performing the activities, and in IwA participants are allowed
to change the order of the activities. As such, we can study the effects of each restriction
in the effectiveness of each classifier and how much they distort the results. The DLR
dataset, however, collects data that come from daily human activity, i.e., from a partici-
pant performing the same tasks she would normally do in her daily life. In this case, the
participant may or may not do the same activities in the same order, make mistakes while
performing them or repeat the same tasks at given days and times. This dataset would
allow us to see how different classifiers will perform in real scenarios.
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3.3 Data segmentation

As commented in section 3.1, the classification techniques must be able to perform ac-
tivity recognition with sensor events stored in a file as well as in an online or streaming
fashion. In the first case, the sensor events of a file unambiguously identify the performed
activity. In the case of streaming data, data are continuously generated by the different
sensors. However, a single sensor event does not contain enough information on its own
to allow a classifier to make a reasonable prediction of the activity associated to it. This
is why we need to divide up the sequence of sensor events in groups in order to form the
samples that will be used to feed the classification algorithms. This process is called data
segmentation.

The aim of data segmentation is to divide data into segments or sensor windows which
are appropriate for activity recognition. Then we will extract features on each sensor win-
dow to build the feature vectors that will be used as instances for the learning and testing
phases of the classification algorithms. There are several ways of creating these sensor
windows such as picking the set of sensor events comprised within a fixed duration or
time slot [18]. Some works also suggest using unsupervised methods to create the sensor
windows for the classifier [22].

The method we chose instead is the sensor event based windowing, which consists in
creating windows with a fixed number of consecutive sensor events [18]. Given an or-
dered list of events E and one single event ei ∈ E, we define a window of size k as the list
of events {ei−k+1, ei−k+2, . . . , ei}. For example, in the sequence of sensor events shown in
Figure 3.1, if we select a window size of six sensor events, we would extract one window
ranging from sensor event 49 to 54, another window from sensor event 50 to 55 and so
on.

Sensor event based windowing also determines that the associated activity to a sensor
window is the activity that the last sensor event of the window is associated to, indepen-
dently of the other sensor events. Therefore, in the previous examples both sensor win-
dows would be associated with the activity Bed to Toilet since the last sensor event in
the window [49-54], (i.e, 54), and the last sensor event in the window [50-55], (i.e., 55) are
both associated to such activity, even though these two windows include sensor events
not associated with the activity Bed to Toilet.

We note that the definition of a sensor-event windowing does not prevent a sensor
event from appearing in more than one window. It is also in our best interest to extract
the largest amount of samples that follow this definition from the datasets. To do so,
given a window size k, we extract as many segments of k consecutive sensor events as
possible. In the case of obtaining the sensor events from a file, where we would have a
finite list of N sensor events, {e1, e2, ..., eN}, we would extract N − k segments, starting
at {e1, e2, ..., ek}, {e2, e3, ..., ek+1} and ending at {eN−k, eN−k+1, ..., eN}. In contrast, in the
case of handling sensor events from a data stream, we need to store the latest k sensor
events, and each time a new sensor event is received we will replace it with the oldest
sensor and build a new sensor window out of the currently stored events. This approach
consisting in creating a new sensor window each time one sensor event is advanced at a
time is known as a sliding window.

Note that applying this type of windowing will not affect the prior probabilities of
the activities. This is because there will be one window created per each sensor event,
with the exception of the first k events. As such, given enough sensor events, the effect of
having k fewer samples will be insignificant on the relative frequency of each activity.
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3.4 Feature extraction

In this section we present the features to extract on the sensor windows explained in the
preceding section. There exists a large variety of features that can be extracted from the
information contained in a window. The ones we propose in this project are applicable in
all the considered datasets and require the least possible data pre-processing. The basic
features we chose are:

1. Day of the week of the last sensor event of the window;

2. Number of seconds elapsed between midnight and the last sensor event of the win-
dow;

3. Number of seconds elapsed between midnight and the first sensor event of the
window;

4. Seconds elapsed between the first and last sensor events of the window;

5. A count of the times that each sensor is triggered within the window.

The first feature, the day of the week, is aimed to differentiate activities according
to the week day they take place. It may be expected that daily routines of a resident
would change across the days of the week, especially between weekdays and weekends.
We note that this feature represents a category, not a continuous value. Since categorical
variables are incompatible with the continuous features we will work with in this project,
we will use one-hot encoding to convert them to numerical variables. In one-hot encoding,
we split a categorical feature into a set of dummy features that take on an integer value
0 or 1. For this feature, we used 7 dummy features, each one representing one day of the
week. A dummy feature takes on the value 1 if it corresponds to the day of the week
in which the activity was performed or 0 otherwise. For example, Monday would be
represented as [1,0,0,0,0,0,0], Tuesday as [0,1,0,0,0,0,0] and so on.

The second and third feature, number of seconds elapsed from midnight to the last
and first sensor event, respectively, aim to measure the time of the day at which the last
and first event in the window occurs. These are used to differentiate activities according
to the time of the day they are performed. We believe this is specially important for
certain activities that require to be done at given times of the day, such as, for instance,
the activity of sleeping. We expect these two features to be particularly useful in the DLR
dataset since the activities of the other datasets are realized at arbitrary dates and times
and thereby no meaningful temporal information is retrievable about the activities of the
participants from these datasets.

We note that using either the first and last event of the window provides similar tem-
poral information. One could argue that using the last event is marginally better than
using the first event since the latter may belong to another activity all together. In prac-
tice, however, the difference in seconds between both events tend to be insignificant to
the number of seconds in the day. Additionally, by using any of these two features plus
the seconds elapsed in the sensor window, we can derive the other one. We found in the
literature that other researchers also use both of them in their own classifiers. When we
started developing our code, we quickly tested how using the first sensor event, the last
one or both would affect the accuracy of a Gaussian Naive Bayes. The results revealed
that the accuracy was the same using either of them but slightly improved when using
both. In the end, this seems to be the main reason for using both. It is also worth men-
tioning that the number of features in our problem is not too large so adding one more
dimension does not have a big impact in the accuracy of the classifier.
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The fourth feature measures the duration of the window. Given that the number of
sensor events within a window is always constant by our data segmentation, the duration
of the window also tells us how often sensors are triggered during the current performed
activity. Thus, a short duration window is an indication that the activity triggers a large
number of sensors. This allows a classifier to differentiate between active activities and
passive activities. By active we mean activities that trigger sensors frequently, therefore
creating windows with a smaller time span than passive activities, which are the ones
that trigger sensors infrequently. For example, the activity Cooking in the OA dataset
frequently triggers the item sensors connected to all the ingredients within the kitchen,
so we will commonly have several dozens of sensor events in less than a minute. On the
other hand, the activity Sleeping of the DLR dataset is likely not to trigger any sensor
during its duration, leading to windows with sensor events which are minutes, even
hours, apart from each other.

The last feature, the count of sensor triggers, counts the number of times each sensor
appears within the window. We stress that we interpret a triggering when the sensor
emits an event, independently of the emitted value. As such, the count for a given sensor
is the number of events within the window that are emitted by such sensor. Since the total
number of sensor events per window is fixed, this feature also indicates the proportion
of triggers for each sensor within the window. The sensor count is used by the classifiers
to identify the most frequently triggered sensors in one activity.

Figure 3.5: Sample window of sensor events belonging to the OA dataset [23]

Let’s see an example on how the BASE features are extracted from a sample window
as the one shown in Figure 3.5:

• The last sensor event took place on February 27, 2008, which was a Wednesday.
Thus, the feature indicating the day of the week would be encoded as [0,0,1,0,0,0,0].

• The last sensor event triggered at 12:43 and 30 seconds. Therefore, the amount of
seconds elapsed since last midnight is equal to 12× 360 + 43× 60 + 30 = 6930.

• The first sensor event triggered at 12:43 and 27 seconds. Therefore, the amount of
seconds elapsed since last midnight is equal to 12× 360 + 43× 60 + 27 = 6927.

• Three seconds elapsed between the first and last sensor event of the window.

• As we can see from the sensor identifiers, sensor M-07 triggered twice, sensors M-
01, M-08, M-09, M-14, and M-23 triggered once, and the remaining sensors were
never triggered in this sensor window.

We want to highlight that none of these features actually use the values of the sensor
events. This is a conscious choice as we wish to compare the results across datasets and
we need a common set of features to do so. Since each dataset uses a different set of sen-
sors with a different set of ranges, it is not possible to include all of them in the common
representation.
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Besides this basic set of features, other researchers investigated the use of additional
levels of pre-processing so as to improve the samples obtained from the feature extrac-
tion. In the following we will explore other techniques to enrich the feature vector. Ul-
timately, we aim to have various features configurations and test the classifiers with all
of them in order to check whether some configurations offer advantages over others and
why.

3.4.1. Time Dependency

The concept of time dependency (TD) refers to the time elapsed between two sensor
events and it is used to measure how relevant the two events are to each other [18].
When applying TD we make the assumption that two sensor events that are temporally
close to each other are more likely to belong to the same activity than two sensors that
are wide apart. For example, two sensor events that are milliseconds from each other are
probably caused by the same action, but two sensor events separated minutes and even
hours apart are more likely to be part of different activities.

For the application of the TD we will refine the feature that represents the count of
times each sensor is triggered in the window. Since the idea behind sensor event based
windowing is that all sensor events within the window are to provide context for the
last event, we will include the temporal information that TD brings inside the count.
Now, given a window w and a sensor event e, each time e appears in w, i.e. e ∈ w,
instead of increasing the count by one we will increase it by the coefficient C(e, e′), where
e′ is the last event in the window w. This coefficient is a value between zero and one,
which becomes exponentially smaller as the number of seconds elapsed between e and e′

increases. Specifically, the formula used to define this coefficient is:

C(e, e′) = exp(−χ∆(e, e′))

where ∆(e, e′) is the number of seconds elapsed between the events e and e′ and χ is
a normalization parameter. We will use the value χ = 2−3 in our experiments as this is
reported value in the scientific literature that returns the best results [18].

3.4.2. Sensor Dependency

The idea behind sensor dependency (SD) is to measure how often a set of sensors is
triggered together across several windows as an indication that such set of sensors is
being used in the same activity. For example, we can imagine that the activity Cooking is
likely to trigger the sensors of the water faucet and the burner. Therefore, it is likely they
will commonly appear together in several windows. On the other hand, it is reasonable
to assume that the item sensor of the TV remote is needed for the activity Watching TV
but not for Cooking and so it is unlikely this sensor appears in the same window that the
burner or the water faucet. And even in the case they do appear in the same window,
this is a highly probable indication that the two sensors belong to two different activities.

The way sensor dependency is implemented in this work is inspired by the ideas pre-
sented in two topic-related papers. The first paper is authored by the same researchers
that proposed the TD feature introduced in section 3.4.1 [18]. The second paper, devel-
oped by Nawel Yala, Belkacem Fergani and Anthony Fleury, presents some modifications
over the contribution of the first paper in order to design a more flexible feature [32]. Our
proposal inherits from the ideas presented in [32] but unlike this work we will use the
sliding windows that result from the data segmentation process explained in section 3.3.
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The sensor dependency is modeled through the creation of a data structure named
the Window Mutual Information (WMI) matrix. Let S be the set of the sensors identifiers
used by a dataset and {w1, w2, ..., wN} a set of N windows of sensor events. The WMI
matrix has |S| rows and |S| columns, where each value at row i and column j shows the
dependency between the sensor si and sensor sj, si, sj ∈ S. The values in WMI range
from zero to one: a value of one indicates that sensors si and sj are highly dependant,
meaning they always appear together in the N windows of the dataset, while a value of
zero means that the sensors never triggered within the same window.

Specifically, the value of a cell in the WMI matrix is obtained through the following
formula:

WMI(si, sj) =
1
N

k=N

∑
k=0

δ(wk, si)δ(wk, sj)

where

δ(w, s) =

{
1 if ∃e, s ∈ e ∧ e ∈ w
0 otherwise

When adding the sensor dependency to our features we first need to calculate the
WMI matrix. This is done offline using the windows that will be later used for the train-
ing of the classification models. Once the WMI matrix is obtained, we use the values of
the matrix to modify the count of the sensor triggers. Now, given a window w, a sensor
event e = 〈de, te, se, ve〉 ∈ w and the last sensor event of the window, e′ = 〈de′ , te′ , se′ , ve′〉,
each time the sensor se appears in w, instead of increasing the count of se by one we will
increase it by the coefficient WMI(se, se′)

Note that it is possible to apply both the TD and SD features to the count of sensor
triggers as the two techniques are compatible to each other. In the scenarios where we
want to apply so, given a window w and a sensor event e = 〈de, te, se, ve〉, each time e
appears in w, instead of increasing the count by one we will increase it by the product
C(e, e′) ·WMI(se, se′).

3.5 Sample Generation

Now that we have defined several features that can be extracted from the sensor windows
we will explain the sample generation that our models will use. For each window of
sensor events, we will obtain one sample made up of a set of features. Each sample
will also have one associated class. The associated class of the sample is the activity
associated to the last sensor event of the window. In this paper we will test four different
configurations of features:

1. BASE configuration: consists of

(a) Day of the week of the last sensor event of the window;

(b) Number of seconds elapsed between midnight and the last sensor; event of
the window;

(c) Number of seconds elapsed between midnight and the first sensor event of the
window;

(d) Seconds elapsed between the first and last sensor events of the window;

(e) A simple count of the times that each sensor is triggered within the window.
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2. BASE + TD configuration: same set of features as the BASE configuration plus the
Time Dependency applied to the count of sensor triggers;

3. BASE + SD configuration: same set of features as the BASE configuration plus the
Sensor Dependency features applied to the count of sensor triggers;

4. BASE + TD + SD configuration: same set of features as the BASE configuration
but applying both Time Dependency and Sensor Sependency to the count of sensor
triggers.

As a result, given a dataset made out of readings from S different sensors and for all
the set of features above, we have a feature vector with S + 10 dimensions:

• seven dimensions for the day of the week using the one-hot encoding conversion
explained in section 3.4;

• one dimension for the number of seconds elapsed between midnight and the last
sensor event;

• one dimension for the number of seconds elapsed between midnight and the first
sensor event;

• one dimension for the duration of the window;

• S dimensions for the counts of each sensor.



CHAPTER 4

Classification Techniques for
Human Activity Recognition

In this chapter we will examine the performance of different classifiers on the task of
human activity recognition using the datasets and features presented in chapter 3. First
the chapter starts with a quick review of which metrics we will use to evaluate each
classifier. Then we will go through each classification technique, explaining in detail
how it works and how it fared. The classifiers to be commented are naive Bayes, Support
Vector Machine (SVM) and Random Forests.

4.1 Evaluation setting

As we detailed in Chapter 3, the collection of samples we will work with in this project is a
set of labeled samples, that is, the class of the samples is known, and hence all the studied
classifiers are examples of supervised learning. The labeled samples are partitioned into
a training set and a testing set. A supervised classifier uses the training set to build a
model from (training phase) and once this is complete the learnt model is used to classify
the samples of the testing set (testing phase).

We ran the classifiers using the datasets and features as proposed in Chapter 3, and
measured their accuracy, precision, recall and F-score. Since the ideal window size depends
on both the dataset and features extracted from the data, we tested the classification tech-
niques along a range of window sizes and calculated the average values across them. In
order to define the accuracy, precision, recall and F-score we first review the terms of true
positives, false positives, true negatives and false negatives:

• true positives (TP): samples that belong to a class and that the classifier correctly
classifies as belonging to such a class;

• true negatives (TN): samples that do not belong to a class that the classifier correctly
classifies as not belonging to such a class;

• false positives (FP): samples that do not belong to a class and that the classifier
incorrectly classifies as belonging to such a class;

• false negatives (FN): samples that belong to a class and that the classifier incorrectly
classifies as not belonging to such a class.

21
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Let A be the set of activities in a dataset (e.g. for the OA dataset it would be A =
{Make a phone call, Wash hands, Cook, Eat, Clean} and |A| = 5), N the total number of
samples and TPa the number of correctly classified samples for an activity a (e.g. a = Wash
hands). The classification accuracy is the percentage of correctly classified samples over
all the activities:

accuracy =
1
N ∑

a∈A
TPa

In unbalanced datasets, the accuracy measure may be highly influenced by the correct
classification of the most populated classes in the dataset. This is the case, for instance, if
we have only 10 samples of the activity Clean, and half of them correctly classified, and
we have 200 samples of Cook, and all of them are correctly classified. The obtained accu-
racy would be equal to 205/210, which reflects how well the classifier performs globally,
but it does not reflect how it performs individually on each class. This means that if the
dataset has unbalanced classes and a classifier obtains a high accuracy we may not distin-
guish if it is due to correctly classifying samples from all classes or instead only samples
from the most common classes.

In this paper we will also evaluate the classifiers using the F-score. The F-score shows
the average percentage of correctly classified samples per class and is calculated on the
precision and recall for a given activity a:

precisiona =
TPa

TPa + FPa
recalla =

TPa

TPa + FNa

Precision shows how many samples that the classifier returns as belonging to the class
or activity a actually belong to activity a. Recall gives an idea of completeness of the
classifier for a particular activity a; that is, it measures how many samples out of all the
samples that belong to class a are actually correctly classified as belonging to class a.

The F-score of an activity a is interpreted as a weighted average of the precision and
recall of such activity. Specifically, in this work we will use the balanced F-score, which
gives equal weight to both values and it is formally defined as:

F-scorea =
2 · precisiona · recalla

precisiona + recalla

Then, to obtain the global F-score we compute the weighted average of the individual
F-score for each activity a. The weight of an activity a in F-score is proportional to the
number of samples of such activity a in respect to the total amount of samples. This is
known as a weighted-averaged F-score:

F-score = ∑
a∈A

Na

N
· F-scorea

where Na is the number of samples of class a and N is the total amount of samples over-
all. Note that this measurement is also biased to the performance of the classes with a
higher number of classes in the case of unbalanced datasets. Therefore, it raises the ques-
tion of why considering the F-score as well. In a nutshell, accuracy gives a precise view
of the correctly classified samples but it fails to account for the non-correctly classified
ones. That is, accuracy gives more importance to TP and TN while F-score is used when
knowing what the classifier has done wrong (FP + FN) is also relevant.
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Additionally, the F-score emphasizes that the importance of having a high value for
precision or recall does not exclude having a low value for the other. For example, it is
clear that an algorithm that returns a low precision and high recall for a class means that
the classifier is unable to correctly identify the samples belonging to such class. However,
a class with high precision and low recall means that the classifier does not necessarily
identify all the samples of that class but instead classifies most samples it receives as
belonging to such class. To make sure that a classifier correctly identifies a class it must
have both high values of precision and recall.

Furthermore, in order to evaluate in detail how classifiers handle each individual
class we will examine the generated confusion matrices. Samples in the diagonal of the
matrix are the ones that are correctly classified. The row cells of the confusion matrix
associated to an activity a, excluding the diagonal cell, shows the percentage of samples
of class a that are classified in each of the possible classes; i.e, the set of FN for activity
a. And the values of the column of activity a represent all the samples of class a that are
incorrectly classified as such; i.e., the set of FP of class a.

Finally, we will evaluate the classifiers using cross-validation with 10 blocks. This
means that, given a classifier and a set of samples, we divide the samples into 10 blocks.
This division is done at random as to make sure each block has a balanced number of
samples of each class and avoid over-training. Then we make one run per block, where
one block is used for the evaluation of the model and the remaining ones for training. The
results obtained from the evaluation are then the average of the partial results obtained
at each run. Unlike simply partitioning data into one set for training and another for
testing, this method makes a better use of the data and it is less prone to over-fitting1.

4.2 Naive Bayes

Naive Bayes (NB) is one of the simplest probabilistic models, typically used as a baseline
to compare other models against [11]. A NB classifier is one of the fastest models to train,
it is highly scalable and the number of features barely affects the time taken to train and
run the model, while still being reasonably accurate compared to other more complex
classification techniques.

As the name suggests, Naive Bayes is an example of a Bayesian classifier. A Bayesian
classifier attempts to obtain the class c∗ of a sample x ∈ X using the posterior probability.
The posterior probability is the conditional probability that a given sample x belongs to
the activity c. This is expressed as P(c|x). If we obtain the posterior probability for all
classes then the classifier makes the prediction that the correct class is the one with the
highest posterior probability:

c∗ = arg max
c∈C

P(c|x)

Given that the posterior probability is a conditional probability, we are able to decom-
pose it by using Bayes’ rule:

c∗ = arg max
c∈C

P(c|x) = arg max
c∈C

P(x, c)
P(x)

= arg max
c∈C

P(x, c)

Note that, we are simply trying to find the class which maximizes the posterior proba-
bility and that P(x) is a constant factor for all classes. Therefore, calculating c∗ comes
down to calculating the joint probability P(x, c) since obtaining the class that maximizes
the joint probability is the same as the one that maximizes the posterior probability.

1Scikit-learn. Cross-validation: evaluating estimator performance. scikit-learn.org/stable/
modules/cross_validation.html. Accessed: 2020-05-21

scikit-learn.org/stable/modules/cross_validation.html
scikit-learn.org/stable/modules/cross_validation.html
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Naive Bayes is a type of generative classifier since it performs this classification by
obtaining the joint probability. This joint probability can be split as:

c∗ = arg max
c∈C

P(x, c) = arg max
c∈C

P(x|c)P(c)

In our work, the prior probability of a class, P(c), is obtained from the data collected
in each dataset. The likelihood that the sample x belongs to class c, P(x|c), is computed
by the NB classifier. Naive Bayes makes the assumption that all the features within the
feature vector x are independent. That is, given a feature vector composed of n features,
∀i ∈ [1, n], P(xi|c, x1, ..., xn) = P(xi|c). Therefore, we may simplify the expression as:

c∗ = arg max
c∈C

P(x|c)P(c) = arg max
c∈C

P(c)
n

∏
i=1

P(xi|c)

The likelihood of the individual features is calculated by using a probability distribu-
tion, which will depend on the nature of the features. For continuous variables a Gaus-
sian distribution is usually the best choice but for categorical variables the most popular
probability distributions are Multinomial NB or Bernoulli NB.

4.2.1. Design

The implementation of Naive Bayes is carried out with the API Scikit-learn 0.22.2 [6].
Specifically, we chose to use a Gaussian Distribution to model our features. In a Gaussian
distribution, we assume that the likelihood for each combination of feature and class
follows a normal distribution: p(xi|c) ∼ N (µc,i, σc,i):

p(xi|c) =
√

1
2πσ2

c,i
exp(− (xi − µc,i)

2

σ2
c,i

)

During the training phase, the probability distributions are obtained in terms of the
mean and the standard deviation according to the maximum likelihood estimation method.
A Gaussian distribution has the advantage of being compatible with all the features pro-
posed in our work, such as the day of the week represented through a one-hot encoding,
the sensor count which is represented by an integer number, and the sensor count with
dependencies which use real numbers instead.

While training the Gaussian model we also must introduce variable smoothing over
the variance of each distribution. Variable smoothing is introduced as to avoid over
trained classifiers, but more importantly it avoids computational errors. For example,
in a Gaussian Distribution the variance cannot be equal to zero, otherwise it would cause
a division by zero. However, it may be the case that with a particular set of training sam-
ples we obtain a variance of zero, or a too small value to be represented with a floating
point representation, thus leading to execution errors.

The variable smoothing included in the Scikit-learn library is achieved by increasing
the variance of the modelled Gaussian distributions. Specifically, our classifier will model
for every feature a Gaussian distribution for each of the classes in the data set. For each
feature, the variance of all classes is increased by adding a factor equal to the product of
the largest variance for the given feature and a parameter λ ∈ [0, 1]. In our case we use a
value of λ = 10−7 as it prevents over fitting while causing minimum disturbance to the
outcomes.
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4.2.2. Results

In this section we will evaluate the performance of the Naive Bayes classifier to the four
datasets introduced in the preceding chapter. Table 4.1 shows the accuracy obtained for
every combination of dataset, feature configuration and window size, as well as the aver-
aged accuracy across all window sizes for each combination of dataset and set of features.
Likewise Figure 4.1 displays the average F-score across all window sizes for each combi-
nation dataset+features.

This section is structured as follows. First, we will discuss global trends, specifically
how the application of the features sensor dependency (SD) and time dependency (TD)
affects the results. Then we will comment on the impact of the various window sizes
across all datasets. Finally, we will provide a thorough discussion on the relative perfor-
mance on each dataset, OA, OA-E, IwA and DLR, commenting on the efficiency in terms of
global accuracy and F-score as well as studying the confusion matrices for each configu-
ration.

Dataset
Set of Window Sizes

Features 10 20 30 40 50 Average

OA

Base 0.7309 0.7830 0.8355 0.8470 0.8488 0.8090
Base + TD 0.6661 0.6682 0.6705 0.6844 0.7051 0.6789
Base + SD 0.6087 0.6806 0.6887 0.7243 0.7680 0.6941

Base + TD + SD 0.5399 0.5674 0.5822 0.6087 0.6390 0.5874

OA-E

Base 0.7998 0.8274 0.8131 0.8269 0.7971 0.8128
Base + TD 0.7751 0.7759 0.7777 0.7771 0.7901 0.7792
Base + SD 0.6937 0.7554 0.7759 0.7536 0.7545 0.7466

Base + TD + SD 0.6220 0.6591 0.6796 0.6974 0.7310 0.6778

IwA

Base 0.6259 0.6131 0.5534 0.5247 0.5062 0.5647
Base + TD 0.6123 0.6019 0.5911 0.5912 0.5894 0.5972
Base + SD 0.4138 0.4689 0.4680 0.4560 0.4584 0.4530

Base + TD + SD 0.3429 0.4228 0.4784 0.4940 0.4920 0.4460

DLR

Base 0.8929 0.8855 0.8695 0.8538 0.8386 0.8680
Base + TD 0.6251 0.5600 0.5348 0.5268 0.5238 0.5541
Base + SD 0.5996 0.6855 0.7411 0.7731 0.7871 0.7173

Base + TD + SD 0.4161 0.4411 0.4485 0.4564 0.4619 0.4448

Table 4.1: Accuracy (%) obtained with naive Bayes by dataset and set of features

I. Impact of the feature configurations

We start by analyzing the impact of the features TD and SD across all datasets. By
observing the numbers in Table 4.1 and Figure 4.1, we realize that using TD and SD
affect negatively both the accuracy and the F-score of the models. This effect worsens
when both dependencies are used simultaneously. This may be due to unforeseen conse-
quences of the implementation of these dependencies into the feature vector.
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Figure 4.1: F-Score obtained with a Naive Bayes classifier by dataset and set of features

We recall that calculating the value of TD and SD consists in multiplying a factor
between zero and one to the count of the sensors. As a result the average sensor count
decreases independently of the class the sensor belongs to. Additionally, the average sen-
sor count is already close to 0 due to the number of sensor events in a window is usually
very small compared to the number of existing sensors. The resulting effect is that, for
a given sensor, the application of the TD and SD will likely yield a very similar average
sensor value over all classes, thus preventing the classifier from correctly differentiating
them.

Interestingly enough it seems that the effect of TD or SD is also highly dependent
on the dataset. The OA and DLR datasets benefit more from using SD than TD than OA-
E and IwA datasets. The large number of sensors of DLR is a factor that clearly benefits
this dataset from using the feature SD. Still, we can observe in the figures of Table 4.1
and Figure 4.1 that the Base configuration is the one that provides the best results across
the board. Exceptionally, applying TD is generally more effective than the Base config-
uration in the IwA dataset. We can also see in Table 4.1 that when compared with the
Base set of features, using TD diminishes the negative effect of increasing the window
size. The purpose of TD is to reduce the impact of the sensor events of a window that
belong to an activity other than the activity associated to the window. And it is in the
IwA dataset where participants are more prone to keep changing the activity they per-
form, and therefore it is likely that the sensor windows of IwA contain a higher number
of events that belong to other classes. As such, it is reasonable to assume that this is the
scenario where applying TD outweighs the negative effect over the data.
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II. Impact of the window size

According to Table 4.1, the accuracy of OA and OA-E datasets increase with the win-
dow size. In the OA dataset the accuracy increases along with the increment of the win-
dow size, while the OA-E reaches its highest accuracy at a window size of 40. On the other
hand the IwA and DLR datasets behave completely the opposite, their accuracy decreases
as the window size increases.

Before explaining the impact of the window size in the datasets, we first need to
introduce the concept of noisiness in a sensor window. We define noise as the sensor
events within a window associated to an activity other than the window’s activity. A high
noise level in a window affects the features of the sample, making it harder to differentiate
from samples of other classes. Ideally, the more noisy the windows, the harder is for the
classifier to differentiate the activities from each other.

Overall, we expect the accuracy to increase as the window size increases. Larger win-
dows promote sensor counts to be less disperse, carry more information and increase the
variance that the feature "number of seconds between the first and last sensor events"
brings. However, the larger the window the higher the chance that sensor events from
other activities are included within a window, therefore increasing their noise and mak-
ing it harder to classify.

On the one side, the least amount of noise is found in the windows extracted from OA
and OA-E. In these datasets, the activities are completed in one go and in a specific order.
Therefore, the chance that a window has sensor events belonging to other activities is
low, and even if sensor events from other activities appear is easy to predict from which
activity they come from. For example, a window associated to the activity Wash Hands
may have sensors associated to the activity Wash Hands or Make a phone call (given
that Make a phone call is ordered before Wash Hands), and therefore the sensor events
coming from other windows are easy to predict and differentiate. Consequently, these
two datasets benefit from using a larger windows.

On the other side, the DLR and IwA datasets produce the noisiest windows. In DLR al-
though activities are usually completed in one go, the order at which they are completed
is not predefined. For example a window associated to the activity Relax may comprise
sensors associated to any of the 11 possible activities instead of only 2. As a result the
windows in DLR will contain a higher level of noise than the OA and OA-E datasets. On
the other hand, the activities in the IwA are not completed in one sitting, and instead the
participants tend to change quickly between one activity and another, resulting in very
noisy windows. As a result, DLR and IwA benefit from small windows as this diminishes
the amount of noise in them.

III. Analysis of the OA and OA-E datasets

As explained in section 3.2, the data in OA and OA-E come from the same five activi-
ties, which are Make a phone call, Wash hands, Cook, Eat and Clean. These are the only
datasets in which participants perform the activities in a specific given order (the par-
ticular order is shown in the enumerated activities above). Thereby OA and OA-E gather
data from two controlled environments and the only difference between them lies in that
residents in OA-E deliberately commit a mistake when doing the activity.

Figure 4.1 shows the F-score for OA (the blue bar) and OA-E (the orange bar). We can
observe the F-score values are almost the same for the two datsets when using the Base
configuration and significantly higher for OA-E under the other feature configurations.
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Figure 4.2: Confusion Matrices of applying naive Bayes to the OA dataset

These values are also consistent with the average accuracy shown in Table 4.1, where the
accuracy for the Base configuration is practically the same in both datasets and the accu-
racy of OA-E is slightly higher for the rest of configurations. The committed mistakes in
OA-E may increase the sensor counts of the most discriminative sensors, allowing samples
to be classified more easily.

Figures 4.2 and 4.3 show the confusion matrices of OA and OA-E, respectively. Com-
paring figures 4.2a and 4.2b of OA we can see that the activities Wash Hands, Eat and
Clean (second, fourth and fifth row respectively) are better recognized in the window of
size 50 and overall the values of the diagonal are higher in 4.2b than in 4.2a. When sam-
ples of one class are consistently getting classified as samples of another class, such as it
happens with Wash hands getting recognized as samples of Make a phone call, it means
that the likelihood for both classes is very similar and consequently the prior probability
of the classes becomes a determinant factor. In both OA and OA-E the prior of the activity
Make a phone call is higher than Wash hands (see Tables 3.1 and 3.2).
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Figure 4.3: Confusion Matrices of applying naive Bayes to the OA-E dataset

Similarly, the accuracy in OA-E increases with large size windows (see the confusion
matrices in Figures 4.3a and 4.3b). Unlike OA, in OA-E the classifier struggles to correctly
classify samples of activity Eat even using large size windows. We can also observe that
the number of correctly predicted samples of classes such as Make a phone call, Cook
and Clean is greater in OA-E than in OA, thus justifying the higher values of the overall
accuracy and F-score in OA-E.

Finally, figures 4.2c and 4.2d show the confusion matrices of the dataset OA when
using using the features TD and SD respectively. Adding dependencies make it more
difficult to correctly classify samples from all activities, as the values in the diagonal
are lower here compared to the Base configuration (see Figures 4.2a and 4.2b). We also
see that when using dependencies, specially SD (Figure 4.2d), a significant number of
samples from all classes are classified as Cook, shown by the amount of samples present
in the third column in the matrix. This shows that the classifier struggles telling samples
from each class apart and chooses to tag them as Cook as this is the activity with the
highest prior probability (35% in the OA dataset, according to Table 3.1).

IV. Analysis of the IwA dataset

In this dataset participants were requested to complete the following eight activities
in their preferred order: Fill medication dispenser, Watch DVD, Water plants, Answer
the phone, Prepare birthday card, Prepare soup, Clean and Choose outfit. Partici-
pants were also encouraged to stop one activity and resume it later.

The worst accuracy values shown in Table 4.1 correspond to the IwA dataset. Partic-
ularly, the configurations Base, Base+SD and Base+TD+SD feature the lowest accuracy
among all datasets. Figure 4.1 also shows that the F-score of IwA (green bars) is the lowest
for all configurations, with the exception of configurations that use TD, which boast the
second lowest. As mentioned in the section about the window size, IwA is the dataset
with the noisiest windows, and therefore it is expected that the classifier struggles with
samples from this dataset.



30 Classification Techniques for Human Activity Recognition

Fill
 m

ed
ica

tio
n d

isp
en

ser

Watc
h D

VD

Wate
r p

lan
ts

Answ
er 

the
 ph

on
e

Pre
pa

re 
bir

thd
ay

 ca
rd

Pre
pa

re 
sou

p
Clea

n

Cho
ose

 ou
tfit

Predicted class

Fill medication dispenser

Watch DVD

Water plants

Answer the phone

Prepare birthday card

Prepare soup

Clean

Choose outfit

Tr
ue

 c
la

ss

0.748 0.058 0.018 0.022 0.020 0.081 0.054 0.000

0.035 0.648 0.089 0.012 0.121 0.021 0.036 0.037

0.029 0.033 0.823 0.001 0.006 0.036 0.041 0.030

0.176 0.094 0.060 0.211 0.216 0.072 0.074 0.097

0.022 0.078 0.005 0.004 0.824 0.016 0.030 0.021

0.161 0.028 0.093 0.012 0.035 0.638 0.023 0.012

0.046 0.076 0.300 0.029 0.061 0.020 0.426 0.041

0.014 0.050 0.094 0.000 0.050 0.016 0.044 0.733

(a) Base set of features, window size 10

Fill
 m

ed
ica

tio
n d

isp
en

ser

Watc
h D

VD

Wate
r p

lan
ts

Answ
er 

the
 ph

on
e

Pre
pa

re 
bir

thd
ay

 ca
rd

Pre
pa

re 
sou

p
Clea

n

Cho
ose

 ou
tfit

Predicted class

Fill medication dispenser

Watch DVD

Water plants

Answer the phone

Prepare birthday card

Prepare soup

Clean

Choose outfit

Tr
ue

 c
la

ss

0.753 0.013 0.057 0.008 0.057 0.036 0.034 0.042

0.152 0.196 0.049 0.074 0.198 0.088 0.137 0.106

0.151 0.027 0.656 0.007 0.000 0.026 0.079 0.054

0.191 0.005 0.052 0.417 0.082 0.000 0.141 0.112

0.048 0.048 0.016 0.017 0.656 0.079 0.102 0.033

0.219 0.019 0.166 0.006 0.081 0.326 0.124 0.060

0.057 0.033 0.144 0.063 0.049 0.060 0.552 0.042

0.050 0.021 0.123 0.021 0.128 0.040 0.064 0.553

(b) Base set of features, window size 50

Figure 4.4: Confusion Matrices of applying naive Bayes to the IwA dataset
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Figure 4.4: Confusion Matrices of applying naive Bayes to the IwA dataset (cont.)

Figures 4.4a and 4.4b show the confusion matrices of IwA, when using the Base config-
uration, for window size 10 and 50, respectively. Looking at the values of the diagonals
in both matrices, we can generally affirm that increasing the window size worsens the
results. This is not the case, however, of the activity Answer the phone. At window size
10, Answer the phone is the class with the fewest correctly classified samples, as evi-
denced by the fact that samples are found evenly across the row rather than accumulated
in the diagonal. This is consistent with the fact that Naive Bayes, as a generative classifier,
struggles with classes that have a low prior probability, which is the case of the activity
Answer the phone (see Table 3.3).

Interestingly, the proportion of correctly classified samples of Answer the phone in-
creases with window size 50. This is explained because the classifier is able to use the
additional information in the windows to correctly identify samples of this class. How-
ever, this seems to apply only to Answer the phone (from value 0.211 in Figure 4.4a to
0.417 in Figure 4.4b) and Clean (from 0.426 in Figure 4.4a to 0.552 in Figure 4.4b).

The two worst performing classes with window size 50 are Watch DVD (second row
with value 0.196) and Prepare soup (sixth row with value 0.326). Since these two activ-
ities have relatively high prior probabilities, it is unlikely that the cause of their misclas-
sification is due to prior probability alone. However, these two activities can be easily
done in the background while performing other activities and so they are the most in-
terweaved of all. This in turn increases the noisiness of their associated windows even
further, making them hard to tell apart from other classes.
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When we examine the confusion matrix of the configuration Base+TD with window
size 50 in Figure 4.4c, we see that overall the values of the diagonal are higher than in 4.4b.
We also find several activities in which the majority of their samples are still misclassified,
meaning that their values in the diagonal are under under 0.500. These activities are
Prepare soup (sixth row), Answer the phone (fourth row) and Clean (seventh row). It
is unlikely that these misclassifications are only due to Naive Bayes favoring the classes
with highest prior probabilities. For example, most samples of Prepare soup are getting
classified as samples of Fill medication dispenser. This is evidenced as the value in
the first cell of the sixth row in Figure in 4.4c is higher than the cell in the diagonal.
However Prepare soup has a higher prior probability than Fill medication dispenser
(see Table 3.3). In this case, we believe that adding dependencies is actually altering
sensor counts differently and it is mostly affecting sensor counts of the most identifiable
sensors of these activities.

In general, we can say that the naive Bayes classifier performs worse in IwA than in
OA and OA-E. However, adding the time dependency comparatively lowers the loss of
performance. We can thus conclude that adding TD to the feature configuration benefits
this dataset, albeit not enough to reach the performance obtained by the other datasets.

V. Analysis of the DLR dataset
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Figure 4.5: Confusion matrix for the DLR dataset using Base features and window size 10

As we detailed in Chapter 3, DLR is a dataset made up of 11 activities, done by a
single participant: MealPreparation, Relax, Eating, Work, Sleeping, Wash Dishes, Bed
to Toilet, Enter Home, Leave Home, Housekeeping and Resperate. As in IwA, partici-
pants are allowed to perform the activities in any order. DLR is the only dataset with no
instructions on how a person must complete an activity.
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Figure 4.6: Confusion matrix for the DLR dataset using Base + SD features and window size 10

Under the Base feature configuration, DLR scores the highest F-score (Figure 4.1, red
bar) and the highest accuracy (a value of 0.8680 in Table 4.1) out of all datasets and set
of features configurations. It performs though badly under other configurations with
the exception of Base+SD. Although this is globally the most difficult dataset due to its
more relaxed environment, higher number of sensors (and therefore larger vector size)
and higher number of classes, a thorough inspection of the confusion matrix reveals that
the imbalanced data of DLR (when the number of data available for the different classes
is different) may explain its abnormally high accuracy values.

The confusion matrix for the Base configuration (Figure 4.5) returns the best scores.
The activities Meal_Preparation (first row) and Relax (second row) are the ones with the
highest recall; i.e., the cell in the diagonal has a value close to one while the rest of the
cells in the row have values close to zero. However, these are also the activities with the
lowest precision as events from other activities are commonly categorized in one of these
them, as indicated by the high values of all the cells except the ones in the diagonal in the
first two columns.

The lowest classification rate is for the activity Wash_Dishes (sixth row) which is com-
pletely dominated by Meal_Preparation (first column), but it also happens for other ac-
tivities such as Leave_Home (ninth row) and House_Keeping (tenth row). An activity is
dominated by another one when most, if not all, samples of the such class are getting
exclusively classified as belonging to the other one. For example, Wash_Dishes is com-
pletely dominated by Meal_Preparation since 90.7% of Wash_Dishes samples are clas-
sified as Meal_Preparation, while only 3.9% of its samples are correctly classified (see
sixth row of Figure 4.5). As a result, several classes have values close to 0 in the diagonal,
meaning that most of their samples are misclassified. However, given that the percent-
age of correctly classified samples of Meal_Preparation and Relax exceed 90% and that
according to Table 3.4 they make up over 80% samples in the dataset, the classifier scores
at least an accuracy over 72%.
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The question that raises here is why the Naive Bayes classifier tends to classify most
samples in these two classes. The answer is once again due to how generative classi-
fiers favor the classes with high prior probability. DLR is a very unbalanced dataset so
unless the difference in the likelihood of the classes is large enough, most samples will
be classified as either Meal_Preparation or Relax. For example, it is easy to understand
that Wash_Dishes can be mistaken with Meal_Preparation since both activities proba-
bly occur within the same space and trigger similar sensors. In contrast, the activity
Respirate (last row), has the lowest prior probability of all, over 500 times smaller than
Meal_Preparation (see Table 3.4), but the singular features of this activity make it to not
get misclassified.

Another aspect to consider is why both accuracy and F-score significantly drop when
adding dependencies. Figure 4.6 shows the confusion matrix for DLR when using Base+SD
configuration. We can observe that that most cells in the first column have values over
0.5, while the majority of cells in the rest of the matrix have values close to zero with,
meaning that activities are essentially classified as Meal_Preparation. This is likely be-
cause the SD makes samples from every class hard to tell apart from each other, and so
Naive Bayes classifiers default to tagging them as one of the two most common classes.

4.3 Support Vector Machine

Support Vector Machine, or SVM, is one of the most used techniques both for classifica-
tion and regression [27]. SVMs do not require many samples to provide adequate results
and their performance can also be improved through the use of soft-margins and kernels.

Imagine we have a set of samples X, made of n features. Each sample x ∈ X is
interpreted as a n-dimensional vector within the space Rn and it belongs to one of two
classes. We assume the samples are linearly separable, that is, the samples of each class
are separable through an Rn−1 hyperplane. The hyperplane is used to quickly identify
the class a sample belongs to. Figure 4.7 shows a two dimensional example with samples
from one of two classes, red or blue, and the hyperplane separating them.

Figure 4.7: Example of an hyperplane separating a set of samples

The theory behind SVMs supports how to obtain the best possible hyperplane [27],
which is one that besides correctly separating the samples of both classes maximizes
the margin. The margin of the hyperplane is the distance to the closest sample, inde-
pendently of its class. Therefore, if the margin is maximized, the hyperplane is equally
distant to the closest samples of each class. In Figure 4.7 we see that the closest samples
to the hyperplane are the ones in bold circle borders. If we move or tilt the hyperplane in
any direction, one of those samples will end up closer to the hyperplane than the other
two, thus decreasing the margin. As such, the hyperplane of Figure 4.7 is the optimal
separation for this example.
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A hyperplane is defined by a set of samples named the support vectors, which are
found on the margin of the hyperplane itself. In Figure 4.7 those samples are the ones
with the bold circle borders. The process of obtaining the best hyperplane consists in
finding the support vectors samples and the weight each one of them will have on the hy-
perplane. This process is essentially an optimization problem solved through gradient
descent. The process of finding the support vectors has a pseudo-cubic temporal com-
plexity defined as the product of the number of samples, the number of features and the
number of iterations, which may be problematic for large datasets [7].

Unlike Naive Bayes, SVMs do not work with joint, prior and posterior probabilities.
Instead SVM attempts to directly predict the class of the sample from its features. This
is why SVM is referred to as a discriminative classifier, as opposed to a generative classi-
fier such as naive Bayes. While generative classifiers obtain the joint probability P(c, x),
discriminative classifiers base their predictions directly on the likelihood P(x|c) or by
directly associating a class to a sample, like SVM does. This is because generative clas-
sifiers are based on understanding the similarities between samples of the same class,
while discriminative classifiers are based on identifying the differences between samples
of different classes. Overall, it has been proven that discriminative classifiers take longer
to train but they have a lower error rate than their generative counterparts in the task of
classification [21].

So far we have introduced SVMs as linear classifiers and presented a two-class ex-
ample where data is linearly separable. We can expand this concept of SVM to support
multi-class problems and non-linearly separable data.

In order to deal with with multi-class problems we will simply train one SVM per
pair of classes in the problem. By the end of training, we will have C(C − 1)/2 trained
SVMs, where C is the number of classes. Classifying a new sample requires applying
this process to all our two-class SVMs, and then hold a vote. The class that receives more
’votes’ is selected as the predicted class. This is known as a "one-against-one" approach
[7]. This process is simple but it has some drawbacks. First, the amount of SVMs to
train increases quadratically with the number of classes and no simple solution exists to
overcome this limitation. Second, there is a chance of a tie in the vote, but this can be fixed
through a simple tiebreak such as selecting one of the most voted classes at random, or
through a more complex voting procedure that prevents ties.

When handling non-linearly separable problems we have to define soft-margins and
kernels, although usually both are applied simultaneously. Applying soft-margins consists
in modifying the optimization formula of the SVM to accommodate a degree of tolerance
for incorrectly classified samples [27]. Consequently, these SVMs have one additional
parameter C that regulates how ’tolerant’ the SVM should be to misclassified samples.
There is no algorithmic way to obtain the ideal value of C for a given problem, but instead
it must be adjusted manually using empiric measurements.

The use of kernels consists in applying a transformation to the non-linearly separable
data used in the SVM to a new space that, ideally, becomes linearly separable [27]. This
method is highly popular because it can be implemented without affecting the temporal
cost of the SVM, and because there exists a large variety of kernels. Some examples of
kernels are the polynomial kernel or the hyperbolic tangent kernel [27].
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4.3.1. Design

For this work we opted for using the implementation of SVM provided by the API Scikit-
learn 0.22.2, which in turn is a wrapper for the LIBSVM implementation by Chang and
Lin [6, 7] 2. The implementation used has support for multi-class classification through
the "one-against-one" approach described earlier, and the use of both soft margins and
kernels. The kernel used for this data is a Gaussian Radial Basis Function (RBF) kernel.
We chose the kernel and the parameters empirically after trying out some test runs with
different configurations.

We also had to apply some additional modifications to the feature vectors before us-
ing them into the model. First of all, for SVM to work correctly, all features must be
on the same scale. This is not the case for our samples, as we combine one-hot encod-
ing features, ranging between zero and one, with a feature that measures the number of
seconds in a day, which ranges between zero and 86400. Therefore, we applied a fea-
ture standarization, named Z-Score Standarization, where we assume the samples form a
Gaussian distribution and we replace them with their z-score values in such distribution.

In order to do so we first calculate the Gaussian distribution defined by the original
values and then we obtain the values of the features across the set of samples. From
these values we define a Gaussian distribution and we extract its mean µ and standard
deviation σ. Finally, we the z-score of each value is computed as:

z-scorex =
x− µ

σ

The mean and standard deviation of the features are obtained from the training set
of samples, but these two measurements must be applied to all the samples used during
the training or evaluation of the classifier.

One more transformation is needed to make sure the feature vector is normalized and
so that the magnitude is equal to 1. This is because the formula that the SVM internally
optimizes is based on the dot product of the different samples. This normalization does
not affect how samples are interpreted by the SVM or the results, it will just reduce the
temporal cost of training the model.

Finally, it is also worth mentioning that the impact of the temporal complexity of op-
timization of the model hinders the ability of SVM to work with large datasets. This is
especially relevant when working with the DLR dataset, which comprises over 600, 000
sensor events, while the Scikit-learn documentation indicates that the SVM implementa-
tion "may be impractical beyond tens of thousands of samples"3. In order to overcome
this limitation, if we have more then 30, 000 samples in our training set, we will choose
randomly up to 30, 000/|C| samples of each class, where |C| indicates the number of
classes in the dataset. This is the number of samples that we can use to train our models
in a reasonable amount of time without significantly affecting our results.

2The paper that details the LIBSVM implementation has since been updated as the library was expanded.
The updated version may be found at https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf.

3Scikit-learn. sklearn.svm.SVC. https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html.
Accessed: 2020-05-21

https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf


4.3 Support Vector Machine 37

4.3.2. Results

Table 4.2 and Figure 4.8 show the accuracy and F-score, respectively, for the four datasets
of our study and all combinations of features and window sizes. Additionally, Table 4.3
showcases a comparative summary of the differences in accuracy between Naive Bayes
(NB) and SVM. Similarly to the evaluation of NB, we will start discussing the effect of
adding dependencies in the datasets, followed by the evaluation of the impact of the
window sizes. Finally, we will comment each dataset individually, utilizing the obtained
confusion matrices.

Dataset
Set of Window Size

Features 10 20 30 40 50 Average

OA

Base 0.9245 0.9573 0.9566 0.9585 0.9596 0.9513
Base + TD 0.8731 0.9126 0.9207 0.9212 0.9248 0.9105
Base + SD 0.8654 0.9220 0.9390 0.9464 0.9539 0.9253

Base + TD + SD 0.8143 0.8687 0.8819 0.8928 0.8979 0.8711

OA-E

Base 0.9405 0.9642 0.9563 0.9573 0.9627 0.9562
Base + TD 0.9064 0.9364 0.9373 0.9395 0.9387 0.9317
Base + SD 0.8954 0.9351 0.9369 0.9477 0.9435 0.9317

Base + TD + SD 0.8568 0.8954 0.9074 0.9128 0.9179 0.8981

IwA

Base 0.8604 0.9339 0.9485 0.9517 0.9602 0.9309
Base + TD 0.7983 0.8613 0.8668 0.8644 0.8593 0.8500
Base + SD 0.6841 0.8346 0.8654 0.8855 0.8954 0.8330

Base + TD + SD 0.6053 0.6977 0.7275 0.7492 0.7670 0.7093

DLR

Base 0.6948 0.7538 0.7873 0.8106 0.8349 0.7763
Base + TD 0.6326 0.6379 0.6372 0.6372 0.6382 0.6366
Base + SD 0.6852 0.7281 0.7569 0.7729 0.7840 0.7454

Base + TD + SD 0.6476 0.6456 0.6466 0.6470 0.6469 0.6467

Table 4.2: Accuracy (%) obtained with SVM by dataset and set of features

I. Impact of the feature configurations

Similarly to NB, adding dependencies to the feature vectors has a negative impact in
the SVM classifier as can be observed in Table 4.2 and Figure 4.8. Likewise, introducing
TD and SD may accidentally make the average values of the sensors of each class be closer
to each other and this may also be the cause that classes become non-linearly separable.

In the case of OA, OA-E and DLR datasets, the negative impact is actually not very big.
For example, in the SVM figures of Table 4.2, the accuracy of the Base configuration in
the dataset OA is 95%, while it drops to 87% when using Base+TD+SD, making a gap of
about 8%. Exceptionally, the drop of accuracy is more pronounced in the IwA dataset. If
we look at Table 4.2, the Base configuration returns the highest accuracy for IwA (93%)
and the lowest is just under 71%, thus leading to a gap of 22%.

In conclusion, we can say that SVM performs essentially well with the Base configura-
tion. Also, albeit SVM has proven to be a better classification technique, it is still unable to
compensate for the side effects of adding the dependencies TD and SD. This is especially
notable in IwA, which has the most noisy windows out of the entire data collection.
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Figure 4.8: F-Score obtained with a SVM classifier by dataset and set of features

Dataset
Set of Accuracy (%)

Features Naive Bayes SVM Improvement

OA

Base 0.8090 0.9513 0.1423
Base + TD 0.6789 0.9105 0.2316
Base + SD 0.6941 0.9253 0.2312

Base + TD + SD 0.5874 0.8711 0.2837

OA-E

Base 0.8128 0.9562 0.1434
Base + TD 0.7792 0.9317 0.1525
Base + SD 0.7466 0.9317 0.1851

Base + TD + SD 0.6778 0.8981 0.2203

IwA

Base 0.5647 0.9309 0.3656
Base + TD 0.5972 0.8500 0.2528
Base + SD 0.4530 0.8330 0.3800

Base + TD + SD 0.4460 0.7093 0.2633

DLR

Base 0.8680 0.7763 -0.0917
Base + TD 0.5541 0.6366 0.0825
Base + SD 0.7173 0.7454 0.0281

Base + TD + SD 0.4448 0.6467 0.2019

Table 4.3: Improvement in accuracy (%) from Naive Bayes to SVM
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II. Impact of the window size

Unlike Naive Bayes, enlarging the window size positively benefits the SVM outcomes
(this is confirmed by looking at the numbers in Table 4.2). In section 4.2.2 we discussed
that large size windows increase the amount of noise –sensor events belonging to activi-
ties others than the window activity– and that this caused a major impact in IwA and DLR.
However, SVM turns out unaffected by the increase of the window size. We will further
analyze the confusion matrices to observe in more detail how the window size improves
the results.

III. Analysis of the OA and OA-E datasets
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Figure 4.9: Confusion Matrices of applying SVM to the OA dataset
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Figure 4.10: Confusion Matrices of applying SVM to the OA-E dataset

Table 4.2 shows very high values of accuracy for both OA and OA-E datasets, reaching
95% accuracy with the Base configuration. Similarly, the F-scores for both datasets are
consistently above 90%, with the exception of the Base+TD+SD configuration (see Figure
4.8, where the blue bars represent the OA dataset and the orange ones the OA-E data).
While both datasets have similar scores, OA-E performs marginally better. This is more
evident in Figure 4.8, where the orange bars are slightly longer than the blue ones for
all feature configurations. As before, our hypothesis is that the better behaviour of OA-
E is due to the induced ’mistakes’ that participants make on doing the activities, which
provides additional sensor events.
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The confusion matrices of the OA and OA-E datasets are the following:

• Figures 4.9a and 4.9b show the matrices of applying the Base set of features to the
OA dataset with a window size of 10 and 50, respectively. In the matrix with a
window size 10 we see the values in the diagonal are overall high, ranging from
0.861 up to 0.983, which indicates a high rate of correctly classified samples. In
the matrix with window size 50, the activities fall into one of two groups. The
first two activities Make a phone call (first row) and Wash hands have a mediocre
percentage of correctly classified samples, 0.514 and 0.657, respectively, and a large
portion of their samples are getting classified as being of the activity Cook. The
other three classes instead have a high percentage of correctly classified samples,
above 0.97.

We can conclude that, with small windows, SVM identifies better the whole set
of activities, and the number of false positives (FP) of Cook is significantly lower
than with a larger window. In contrast, the accuracy of some classes is higher with
window size 50, thus resulting in an overall higher accuracy.

• Figures 4.9c and 4.9d show the matrices of OA when applying the the Base+TD and
Base+SD feature configurations, both for a window size 50. Basically, we observe
the same behaviour here as with the Base configuration for window size 10 and 50;
that is, an increase in the number of FP for class Cook with SD as well as a lower
accuracy for Make a phone call and Wash hands.

• Figures 4.10 show the matrices of the OA-E dataset. We can observe a behaviour
and trend similar to OA except that in OA-E the values in the diagonal are slightly
higher, especially so for the first two classes.

The reason why the SVM classifiers favors the activity Cook over the others may stem
from activity Cook being the tie-braking vote (see section 4.3 for an explainattion of the
SVM performance). It may also be the case that in a two-class SVM that has Cook as one
of its classes, somehow Cook secures more votes during the voting procedure, thus giving
Cook an unfair advantage.

We can conclude that the OA and OA-E perform better with the SVM classifier than
Naive Bayes. From Figure 4.3 we may see that both OA and OA-E datasets have a higher
accuracy in SVM across all sets of features. Also by comparing the confusion matrices of
SVM (figures 4.9 and 4.10) with those of Naive Bayes (figures 4.2 and 4.3), we conclude
that SVM gets more samples correctly classified than NB.

IV. Analysis of the IwA dataset

The accuracy in the IwA dataset reaches 93% accuracy with the Base set of features (see
Table 4.2). This high value is also reinforced by the F-score in Figure 4.8 (green bars). The
confusion matrices are the following:

• Figure 4.11a shows the matrix of applying the Base set of features with a window
size 10. The values in the diagonal range from 0.738 to 0.947, while the rest of cells
have values close to zero. Exceptionally, the number of FP (false positives) for Clean
is abnormally high.

• Figures 4.11c and 4.11c show the matrices when using window size 50 with the
Base+TD and Base+SD configurations, respectively. They show a similar distribu-
tion to Figure 4.11a with a slightly lower accuracy for almost all the classes and a
notable increase of FP for the activity Clean.
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(c) Base + TD set of features, window size 50
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(d) Base + SD set of features, window size 50

Figure 4.11: Confusion Matrices of applying SVM to the IwA dataset

• Interestingly, Figure 4.11b, the confusion matrix when applying the Base configura-
tion with a window size 50, show a significantly higher values in the diagonal and
a noteworthy drop in the number of FP of Clean.

In conclusion, the SVM has a tendency to misclassify samples as being samples of
Clean. Overall, it seems that as the number of misclassified samples increases, rather
than being classified across all possible activities, SVMs tends to always classify them
under the same class, in this case Clean. As in OA and OA-E where misclassified samples
are categorized as Cook, this may be explained by the behaviour of the classifier’s voting
procedure in multi-class problems.

Observing Table 4.3 we see that IwA is the dataset that benefits the most out of SVM.
This is especially true for the Base and Base+SD sets of features, with accuracy increments
of 36% and 38%, respectively, from Naive Bayes. The confusion matrices of SVM (Figure
4.11) compared with those of the Naive Bayes (Figure 4.4) also clearly show that the
values of the diagonal are much higher in SVM, overall indicating a higher amount of
correctly classified samples for each activity.
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(a) Base set of features, window size 10
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(b) Base set of features, window size 50

Figure 4.12: Confusion Matrices of applying SVM to the DLR dataset
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(c) Base + TD set of features, window size 50

Figure 4.12: Confusion Matrices of applying SVM to the DLR dataset (cont.)

V. Analysis of the DLR dataset

By observing the figures in Table 4.2 and Figure 4.8 (red bars) we may conclude that
the DLR dataset is the worst performing dataset across all feature configurations, the only
exception being the Base+TD+SD set of features where it has a marginally better F-score
than the IwA dataset. These results are consistent with the more difficult characteristics
of this dataset, particularly a significantly higher number of classes and a much less con-
strained environment compared to the other datasets. Still, the confusion matrices show
a more positive result:

• Figure 4.12a shows the matrix of applying the Base set of features with a win-
dow size of 10. While most values outside the diagonal are close to zero, we
can observe some distinctive characteristics. For example, the percentage of sam-
ples Wash_Dishes classified as Meal_Preparation is of 19.2%, while the other way
around is of 23.8%. The are also several values in the column of Housekeeping with
abnormally high values, indicating a large number of FP for this activity. The values
in the diagonal are generally over 0.8 with the notable exceptions for the activities
Meal_Preparation (first row), Relax (second row) and Wash_dishes (sixth row).

• Figure 4.12c shows the matrix of applying the Base+TD feature configuration with
a window size 10. Compared to Figure 4.12a, the values in the diagonal are smaller,
the number of False Positives for activity Housekeeping is higher and as before sam-
ples Wash_dishes are classified as Meal_Preparation and vice versa. However, in
this matrix there is also a significant percentage of samples Leave_Home misclassifed
as Enter_Home (19.7%) and vice versa (18.8%).
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• Figure 4.12b shows the matrix of applying the Base set of features with a window
size 50. Compared with the previous two matrices, this matrix has higher values
in the diagonal, consistently over 0.8, while the remaining cells have values close
to zero. There also is not a class with an abnormal amount of FP, as it was the case
with Housekeeping.

In a nutshell, when using small windows or dependencies, the SVM classifier strug-
gles identifying samples correctly. This is noticeable in these two aspects:

• A high amount of false positives for the activity Housekeeping (this was also ob-
served in OA and OA-E with Cook and in IwA with Clean)

• The swapping of the classification of activities Meal_Preparation and Wash_Dishes
between each other, and likewise, but to a lesser extent, the swapping of activities
Leave_Home and Enter_Home from each other. This can be explained by the similar-
ity of the samples of the interchanged classes.

From the analysis of the results we have two contrasting pictures. On the one hand,
according to Table 4.3, the application of the Base set of features to DLR is the only case
that yields a less accuracy in SVM than in NB. On the other hand, comparing the con-
fusion matrices of the SVM classifier (figures 4.12a and 4.12b) with the ones from NB
(Figure 4.5), we see the SVM matrix is diagonally dominant, which in Naive Bayes is not,
and overall the values outside the diagonal are much smaller in SVM. Therefore, how are
these two views able to coexist?

This ends up being a consequence of the imbalanced nature of the DLR dataset. As
a remainder, according to Table 3.4, the samples of Meal_Preparation and Relax make
over 84% of the entire dataset. As such, both the F-score and accuracy are heavily in-
fluenced by the performance of these two classes. In NB the percentages of correctly
classified samples of Meal_Preparation and Relax are higher than any other class, in-
flating the global accuracy and F-score. However, in SVM the opposite occurs; i.e., the
percentages of correctly classified samples of Meal_Preparation and Relax are the lowest
of the dataset, negatively impacting the global scores.

4.4 Random Forests

Random Forests (RF) is a powerful ensemble model that has found application in the
task of human activity recognition [4]. A RF is made up of hundreds of decision trees,
which in itself is a type of discriminative model. While SVMs attempt to classify samples
directly, a decision tree (and consequently a Random Forest) classifies samples through
the likelihood P(x|c) of a sample x for a given class c, and then tagging the sample with
the class that returns the highest likelihood, ignoring the prior probability of each class.

In this work, we focus on a type of decision tree also known by Classification And
Regression Trees (CART) [5]. Similarly to SVM, a decision tree interprets data vectors
within a vector space but unlike SVMs that define a hyperplane dividing the elements
of two classes, decision trees define boundaries splitting data into partitions, ideally in
a way that samples of different classes are separated from each other [5]. The major
strength of a decision tree is its ability to deal with one feature at a time, using only the
ones that provide the most discriminative information.

On the left part of Figure 4.13 we can see a set of samples of a two-class problem
(red and blue). On the right we can see the boundaries created by a decision tree that
partitions the data into four regions.
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Boundaries are specified as:

1. the query x1 ≤ k defines two regions, say R1 on the left and R2 on the right

2. on R2, the query x2 ≤ k′′ defines in turn two regions, one at the top with three blue
samples, and one at the bottom with four red samples

3. on R1, the query x2 ≤ k′ defines two new regions, the one at the top with three red
samples and the one at the bottom with five blue samples

Once we have the partitions, given a sample that satisfies x1 < k, then if it holds
x2 < k′ the sample will be classified as blue. Otherwise, it belongs to the red class. On
the other hand, a sample in which x1 > k and x2 < k′′ will be classified as belonging to
class red; otherwise it belongs to the blue class.

A close look at the samples on the left part of Figure 4.13 reveals that neither Naive
Bayes nor SVM would work correctly: the classes are not linearly separable and the fea-
tures x1 and x2 are dependent on each other (samples belonging to the blue class have
similar values for both features, while the opposite is true for samples in the red class).

x1

x2

x1k

k''

k'

x2

Figure 4.13: Example problem applied to a decision tree

This line of thinking can be modeled into a binary tree, hence the name decision tree,
as the one showed at Figure 4.14. A sample to be classified starts at the root node of the
tree. Intermediate nodes guide samples along the tree until they reach a leaf node. The
path a sample follows all the way down to a leaf node defines the probability of reaching
such node.

x1 ≤ k

x2 ≤ k''

True

x2 ≤ k'

False

Blue Red Red Blue

True FalseFalse True

Figure 4.14: Inner workings of decision tree for the example in Figure 4.13
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In order to train a decision tree we need a way to measure the impurity of a node,
which is the uncertainty associated to taking a decision in the node, which in turn is
related to the number of samples of each class in the node. Hence, a pure node is one
formed only by samples of a single class, while a fully impure node is one that comprises
the same number of samples of each possible class. There exist several ways to measure
the node impurity, all of them based on the proportion of samples of each class in a given
node. Let n be the node of a decision tree, C the number of classes and Xn the number of
samples in n; the proportion of samples of class c ∈ C in node n is equal to:

pnc =
Xnc

Xn

where Xnc indicates the number of samples of class c in node n. One way to measure
impurity is, for example, the Gini criterion [5]:

HGini(Xn) = ∑
c∈C

pnc(1− pnc)

Regardless on how the impurity is measured, when a node with X samples is selected
to be partitioned, the data will be split into two partitions Xr (right partition) and Xl
(left partition). The partition will be chosen as to minimize the average impurity of the
resulting nodes, weighted by the number of samples in each partition:

min
∀Xr ,Xl

Xr∪Xl=X
Xr∩Xl=∅

|Xr|
|X| H(Xr) +

|Xl |
|X| H(Xl)

It is important to note that it not needed to repeatedly split the partitions of a tree
until we get all pure nodes. Instead, we can stop partitioning a node when a threshold
of impurity or a minimum number of samples is reached in the node. When the split
stops at a node n, n is declared as a leaf node and the probability of each class c in n is
calculated as pnc.

The main disadvantage of decision trees is that too many splits may cause lack of
generalization and thus overfitting. Additionally, the training process is hard and expen-
sive, as finding the ideal partition at a given node is a NP-Complete problem. As such,
decision trees have a set of parameters that limit the growth of the tree such as, but not
limited to:

• Minimum number of samples that a node requires to exist;

• Minimum number of samples that a node requires to split;

• Minimum threshold of impurity that a node requires to split;

There also ways to avoid overfitting in an already built tree through pruning, but we will
not cover such aspect in this paper.

Random Forests also deal with overfitting, albeit in a different manner. The hundreds
of decision trees of a RF are each trained with a subset of the set of training samples so
that every tree will be slightly different. This is known as bagging, and the result is that
the RF is more stable and less prone to overfitting than any individual decision tree that
forms it [4]. RFs have the same parameters that the decision trees, with the addition of a
new one that indicates the number of decision trees in the model.
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When a samples is fed to be classified, the following steps occur:

1. Each tree classifies the sample individually and outputs the probabilities that the
given sample belongs to each of the classes

2. The Random Forest will get the class probabilities from all its trees and average it

3. The Random Forest will classify the sample as the class with the highest average
class probability

4.4.1. Design

For this work, we opted for using the implementation of Random Forest provided by the
API Scikit-learn 0.22.2 [6]. The trees within the RF are "an optimised version of the CART
algorithm"4, which was explained above. For our models we used the Gini measure of
impurity and we used 100 decision trees, the default amount by the library. This number
of trees proves to be ideal, as it takes a reasonable time to train and increasing the number
of trees does not have any noticeable effect in the accuracy of the model.

We also did not limit the growth of our decision trees in any way, in other words,
we did not impose a maximum depth to the tree or a minimum amount of samples in a
node to be split besides the fact that a node must have at least one sample. While this
configuration may jeopardize the model towards overfitting, our results showed that this
was not the case.

4.4.2. Results

Base Base + TD Base + SD Base + TD
+ SD

Set of features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F-
Sc

or
e 

(%
)

Datasets
OA
OA-E
IWA
DLR

Figure 4.15: F-Score obtained with a RF classifier by dataset and set of features

4Scikit-learn. 1.10. Decision Trees. https://scikit-learn.org/stable/modules/tree.html#
tree-algorithms-id3-c4-5-c5-0-and-cart. Accessed: 2020-06-30.

https://scikit-learn.org/stable/modules/tree.html#tree-algorithms-id3-c4-5-c5-0-and-cart
https://scikit-learn.org/stable/modules/tree.html#tree-algorithms-id3-c4-5-c5-0-and-cart
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Dataset
Set of Window Sizes

Features 10 20 30 40 50 Average

OA

Base 0.9714 0.9859 0.9884 0.9905 0.9903 0.9853
Base + TD 0.9751 0.9880 0.9918 0.9915 0.9927 0.9878
Base + SD 0.9528 0.9753 0.9820 0.9845 0.9850 0.9759

Base + TD + SD 0.9645 0.9852 0.9895 0.9911 0.9929 0.9846

OA-E

Base 0.9773 0.9866 0.9889 0.9895 0.9926 0.9870
Base + TD 0.9837 0.9885 0.9902 0.9922 0.9938 0.9897
Base + SD 0.9667 0.9774 0.9812 0.9815 0.9849 0.9783

Base + TD + SD 0.9759 0.9849 0.9884 0.9881 0.9890 0.9853

IwA

Base 0.9515 0.9693 0.9631 0.9676 0.9703 0.9644
Base + TD 0.9402 0.9658 0.9705 0.9726 0.9723 0.9643
Base + SD 0.9087 0.9382 0.9403 0.9518 0.9567 0.9391

Base + TD + SD 0.9056 0.9506 0.9562 0.9637 0.9614 0.9475

DLR

Base 0.9820 0.9941 0.9970 0.9977 0.9982 0.9938
Base + TD 0.9744 0.9860 0.9898 0.9913 0.9922 0.9868
Base + SD 0.9730 0.9853 0.9901 0.9922 0.9934 0.9868

Base + TD + SD 0.9687 0.9814 0.9863 0.9885 0.9896 0.9829

Table 4.4: Accuracy (%) obtained with RF by dataset and set of features

Dataset
Set of Accuracy (%)

Features Naive Bayes Random Forests Improvement

OA

Base 0.8090 0.9853 0.1763
Base + TD 0.6789 0.9878 0.3089
Base + SD 0.6941 0.9759 0.2818

Base + TD + SD 0.5874 0.9846 0.3972

OA-E

Base 0.8128 0.9870 0.1742
Base + TD 0.7792 0.9897 0.2105
Base + SD 0.7466 0.9783 0.2317

Base + TD + SD 0.6778 0.9853 0.3075

IwA

Base 0.5647 0.9644 0.3997
Base + TD 0.5972 0.9643 0.3671
Base + SD 0.4530 0.9391 0.4861

Base + TD + SD 0.4460 0.9475 0.5015

DLR

Base 0.8680 0.9938 0.1258
Base + TD 0.5541 0.9868 0.4327
Base + SD 0.7173 0.9868 0.2695

Base + TD + SD 0.4448 0.9829 0.5381

Table 4.5: Improvement in accuracy (%) from Naive Bayes to Random Forests
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Dataset
Set of Accuracy (%)

Features SVM Random Forest Improvement

OA

Base 0.9513 0.9853 0.0340
Base + TD 0.9105 0.9878 0.0773
Base + SD 0.9253 0.9759 0.0506

Base + TD + SD 0.8711 0.9846 0.1135

OA-E

Base 0.9562 0.9870 0.0308
Base + TD 0.9317 0.9897 0.0580
Base + SD 0.9317 0.9783 0.0466

Base + TD + SD 0.8981 0.9853 0.0872

IwA

Base 0.9309 0.9644 0.0335
Base + TD 0.8500 0.9643 0.1143
Base + SD 0.8330 0.9391 0.1061

Base + TD + SD 0.7093 0.9475 0.2382

DLR

Base 0.7763 0.9938 0.2175
Base + TD 0.6366 0.9868 0.3502
Base + SD 0.7454 0.9868 0.2414

Base + TD + SD 0.6467 0.9829 0.3362

Table 4.6: Improvement in accuracy (%) from SVM to Random Forest

Table 4.4 contains the accuracy obtained with Random Forest for every combination
of dataset, set of features and window size, and Figure 4.15 shows the average F-score.
We present two more tables to compare the accuracy of Random Forests with Naive Bayes
(Table 4.5) and SVM (Table 4.6). We will follow the same structure for explaining the
results of RF that we used for NB and SVM: impact of the feature configuration, impact
of the window size and finally an analysis per dataset.

I. Impact of the feature configurations

In Figure 4.15 we can observe that the four color bars are essentially the same for all
feature configurations, indicating that the effect of adding dependencies is minimal. The
only dataset with a more visible effect in F-score is the IwA dataset (green bar), as this is
the dataset has the noisiest windows.

The numbers in Table 4.4 support the F-score results as there is hardly significant dif-
ferences in accuracy across the different feature configurations except for the IwA dataset,
which shows the lowest values. Still, the difference in accuracy between the best and
worst configuration in the IwA is minimal in comparison with the NB and SVM classifiers:
only a difference of 2.53%. It is noteworthy that Base+TD does show here a marginally
better result, something that did not happen with NB and SVM.

We can pose the question, why Random Forests are not so negatively affected by
adding dependencies as NB and SVM classifiers? The reason is that the functioning of
RF itself applies a more controlled and individualized treatment of the features and so it
avoids the unintended effect of making the sensor counts be very similar across classes.
For example, if the samples of one class have an average value of 1.000001 for a given
dimension and the samples of another class average a value of 1.000002, a decision tree
is able to differentiate between them and choose samples with a value equal or smaller
of 1.000001. In addition, the boundary placed by a SVM is conditioned by the other
dimensions and a NB classifier would obtain the same likelihood for both samples and
so it would need to resort to using the prior probability to make the distinction.



4.4 Random Forests 51

II. Impact of the window sizes

Table 4.4 confirms that the effect of the window size on the accuracy in RF is much
smaller than in the NB and SVM classifiers. Even though larger window sizes do lead
to higher accuracy, overall the difference in accuracy between the smallest and largest
window is equal or smaller to 2%. This contrasts, for example, with the SVM results,
where the largest difference in accuracy is 14% for the Base configuration of the DLR
dataset (see Table 4.2) or 6% in NB (see Table 4.1).

Consequently, how are Random Forests able to utilize the additional information pro-
vided by the windows while minimizing the added noise? The most probable explana-
tion is related to the way individual decision trees are built. At each node split, a query
about a feature must be selected and, while choosing the optimal split is costly, the ad-
vantage is that decision trees are able to select the features that maximize the ability of the
classifier to differentiate among classes. As such, RF benefit from the extra information
of wider windows while they tend to skip features that are not helpful in distinguishing
classes and avoid the features most affected by the increasing noise.

III. Analysis of the OA and OA-E datasets
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Figure 4.16: Confusion Matrices of applying Random Forest to the OA dataset

Table 4.4 and Figure 4.15 show that OA and OA-E score very well in both metrics,
accuracy and F-score. F-score is practically the same in both datasets while OA-E slightly
outperforms OA in accuracy. The slight edge in scores that OA-E has over OA with the NB
and SVM classifiers is not shown here. Random Forest performs admirably well in both
datasets and there is little room for improvement.

Regarding the confusion matrices:

• In Figures 4.16a and 4.16b we show the configurations that lead to the lowest (Base+SD)
and highest (Base+SD+TD) accuracy, respectively, for the OA dataset (according to
Table 4.4).

• In Figures 4.17a and 4.17b we show the configurationa that lead to the lowest
(Base+SD) and highest (Base+TD) accuracy, respectively, for the OA-E dataset.
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Figure 4.17: Confusion Matrices of applying Random Forest to the OA-E dataset

Across all confusion matrices we see the same common characteristics. Matrices in
Figures 4.16 and Figures 4.17 are almost diagonal, indicating that most samples are classi-
fied in their respective class. Also all values outside the diagonal are close to 0, indicating
that no class has an abnormally high value of false positives or false negatives.

Overall, Random Forests is clearly the best classifier as it is able to identify all classes
correctly, independently of the window size and feature configuration. Tables 4.5 and
4.6 show that RFs clearly outperform NB and SVM across all configurations. Also, if we
compare the confusion matrices of RF (Figures 4.16 and 4.17) with the matrices of Naive
Bayes (Figures 4.2 and 4.3) and SVM (Figures 4.9 and 4.10), we can observe the percentage
of samples correctly is significantly higher in RF over the other two classifiers.

IV. Analysis of the IwA dataset

According to Table 4.4, the IwA dataset has the lowest accuracy of all the datasets, and
this is also corroborated by the F-score green bar (see Figure 4.15).

As for the confusion matrices, Figure 4.18a shows that the configuration Base+TD+SD
reports the lowest accuracy, while the configuration Base+TD in Figure 4.18b reports the
highest accuracy. Similarly to the datasets OA and OA-E, the RF classifier is able to cor-
rectly classify all the activities in the dataset, independently of the window size and fea-
ture configuration.

The values for IwA in Tables 4.5 and 4.6 show that Random Forests outperform NB and
SVM in all configurations. If we compare the RF confusion matrices with those of SVM
(Figure 4.11), although in both cases the matrices are diagonally dominant, the values
in the diagonal are higher for Random Forests. Also the outcomes of Random Forests
do not feature an abnormal amount of false positives for any class. If we compare the
confusion matrices of RF with the matrices of Naive Bayes (Figure 4.4), we observe the
values in the diagonal are all significantly higher and the rest of values are significantly
lower, meaning that more samples are correctly classified.
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Figure 4.18: Confusion Matrices of applying Random Forest to the IwA dataset

V. Analysis of the DLR dataset

DLR is the dataset that reports the highest accuracy and F-score when using the Base
set of features as well as comparable results with those of OA and OA-E for the rest of
feature configurations (Table 4.4 and Figure 4.15 (red bar)). We can say the results are
impressive considering that DLR is the most difficult dataset. Random Forests is the tech-
nique that benefits the most from using more samples during training, and DLR is indeed
the dataset that has significantly more sensor events than any other dataset (see the tables
from Chapter 3), which gives it a competitive advantage.

The confusion matrices are the following:

• Figure 4.19a shows the Base set of features with a window size 10. While most of the
values in the diagonal are higher than 0.8, indicating a high rate of correctly clas-
sified samples, the value in the sixth column (activity Wash_Dishes) is abnormally
low, only 0.582. Additionally, the percentage of samples of Wash_Dishes misclassi-
fied as Meal_Preparation is of 40.1%.

• Figures 4.19c and 4.19d show the matrices when using the Base+TD and the Base+SD
configurations, respectively, with window size 10. Similarly to Figure 4.19a, the val-
ues in the diagonal are high with the exception of Wash_Dishes. There is also a large
number of samples of Wash_Dishes misclassified as Meal_Preparation (0.622 and
0.599 for Base+TD and Base+SD, respectively) as well as more than 10% of samples
of Eating and Housekeeping misclassified as Meal_Preparation.

• In Figure 4.19b, the Base set of features with a window size 50, we observe very
high values in the diagonal, the smallest one being 0.882. Also the rest of the values
outside of the diagonal are all very close to zero. As a result, it is clear that almost
all the activities are correctly identified.
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The high number of Wash_Dishes samples classified as Meal_Preparation is not a
new scenario as we observed the same in both SVM and Naive Bayes (see Figures 4.12
and 4.5). However, unlike SVM, in RF the amount of samples of Meal_Preparation mis-
classified as Wash_Dishes is very small with (around 0.1%). What happens in RF is that
the proportion of samples of each activity in the dataset affects the probabilities of the
tree and the leaf nodes, which in turn affects the classification probability of each sample.
As a result, the trees of the RF classifier will contain inflated class probabilities for the
activities with most samples.

Finally, a comparison of the accuracy of RF with NB (see Table 4.5) and with SVM (see
Table 4.3) reveals that RF has the highest accuracy of any of the tested classifiers. Compar-
ing the confusion matrices with those from NB (see Figures 4.5 and 4.6) we can see that al-
though both classifiers tend to misclassify samples of Wash_Dishes as Meal_Preparation,
in general the number of correctly classified samples is higher in Random Forests for all
the activities. A comparison of the confusion matrices from RF with those from SVM
(see Figure 4.12) displays a smaller number of misclassified samples of Wash_Dishes and
Bed_to_Toilet. in SVM. However, the percentage of correctly classified samples of the
two largest classes, Meal_Preparation and Relax, is much higher in Random Forests.
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Figure 4.19: Confusion Matrices of applying Random Forest to the DLR dataset
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(c) Base + TD set of features, window size 10
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Figure 4.19: Confusion Matrices of applying Random Forest to the DLR dataset (cont.)



CHAPTER 5

Conclusions

In this project we managed to accomplish the objectives we proposed ourselves in Chap-
ter 1. After analyzing the performance of the Naive Bayes, Support Vector Machine and
Random Forest classifier, we are ready to summarize our experience with this work as
well as highlighting the strengths and weaknesses of the three classifiers.

By using four different datasets we were able to give a complete picture of each classi-
fier. The OA and OA-E datasets played the role of a control group, as the ’easiests’ datasets,
and also showed how the repetition of a wrongly executed activity of the participant af-
fects classification. Ultimately, the results of OA-E turned out to be positive since par-
ticipants take overall longer to complete the tasks, generating more information in the
process. The performance on the IwA dataset evidences how classifiers are able to handle
a significant amount of noise. Finally, the DLR is the more challenging dataset, not only
because of an increasing amount of noise, but also for being a very unbalanced dataset, as
a result of the lack of restrictions on the participants activities. Additionally, we were able
to gauge the amount of information and noise in each sample by changing the window
size of the event windows.

Overall Random Forests proved to be the most adequate classification technique thanks
to its high flexibility in placing the class boundaries. Specifically, the ability to distinguish
activities by choosing the most adequate features enables RF to perform correctly across
all the tested datasets. Not only it has performed correctly in all of them, but also no sig-
nificant drop of accuracy and F-score was reflected in the results. We can thus conclude
that Random Forests is the most robust classification method. In addition, the analysis of
the confusion matrices enabled us to examine in detail the results of each classifier and
thus corroborate our conclusion that RF has proved to be the best classifier.

We can also argue that Naive Bayes falls short in the most difficult datasets. The
amount of noise makes NB struggle to correctly identify the classes with fewer sensor
events in the DLR dataset. SVM did not either perform as well as Random Forests since
the results showed a large number of false positives for certain classes across datasets.
Besides taking much longer to train, SVMs also struggle with the DLR dataset due to the
large quantity of samples of pairwise classes with exchanged labels, heavily worsening
its metrics.

We can also conclude that it is not recommendable to apply the sensor and time de-
pendencies to future classifiers. In the end, the negative side effects made the classifiers
worse at differentiating activities from each other. While there are some scenarios in
which they proved useful, the results obtained when applying dependencies were ulti-
mately too inconsistent. A proper application of these dependencies would require some
further study.
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Due to the extensiveness of the field dedicated to the study of Human Activity Recog-
nition, our work may be expanded in several ways:

• Evaluate classifiers other than the ones commented in this work. Looking back at
the state of the art, sequential models have been commonly used for the task of
HAR. In this project, we decided to focus on non-sequential models as they are able
to use the same feature representation, making the comparison between them fairer.
Sequential models require a completely different representation that does not rely
on data segmentation. A similar analysis as the one presented here is doable fo-
cusing only in sequential models such as Hidden Markov Models and Conditional
Random Fields.

Other non-sequential models that are also prevalent but have not been tackled in
this work are Deep Neural Networks.

• Evaluate the classifiers using a different data segmentation method. In this work
we experienced with the sensor event based windowing but other more complex
methods such as "change point detection-based activity segmentation" [22] can be
tested. This type of segmentation is based on training an unsupervised model that
attempts to detect when there was a change in the participants behaviour in order
to try to build a window encompassing all the events of a single activity.

• The same analysis is also doable in more complex scenarios of HAR, beyond the
restrictions included in our definition in section 2.1, namely datasets with two or
more participants at a time, multi-resident environments, or scenarios with two
or more activities being realized at a time, in which case it becomes a multi-label
classification problem. Also it is possible to work with data coming from wearable
sensors rather than environment sensors, as the MHEALTH and UCI HAR datasets.

• In this project a large amount of information was left unused in each dataset so
as to make sure the same set of features are extracted from each dataset. Another
interesting research direction lies in extracting more highly specific features which
fully utilize the information provided by the data.
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