
Escola Tècnica Superior d’Enginyeria Informàtica
Universitat Politècnica de València

Approximate search for textual information in images
of historical manuscripts using simple regular

expression queries
DEGREE FINAL WORK

Degree in Computer Engineering

Author: José Andrés Moreno

Tutor: Enrique Vidal Ruiz

Experimental Director: Alejandro Hector Toselli

Course 2019-2020

Acknowledgements

I wanted to thank Enrique, for trusting in me and giving me the opportunity of devel-
oping this project at the PRHLT. Also, I wanted to thank Alejandro, for helping me to go
through the most technical parts of this project.

Finally, I wanted to thank all the people who have helped me get to this point.

« Mais non jamais, jamais je ne t’oublierai » - Edouard Priem

iii

iv

Resumen
Los archivos históricos así como otras instituciones de patrimonio cultural han estado

digitalizando sus colecciones de documentos históricos con el fin de hacerlas accesible a
través de Internet al público en general. Sin embargo, la mayor parte de las imágenes de
los documentos digitalizados carecen de transcripción, por lo que el acceso a su contenido
textual no es posible.

En los últimos años, en el Centro PRHLT de la UPV se ha desarrollado una tecnolo-
gía para la indexación probabilística de colecciones de estas imágenes (no transcritas). La
principal aplicación de estos índices es facilitar la búsqueda de información textual en la
colección de imágenes. El sistema de indexación desarrollado genera una tabla en la cual
se indexa cada palabra con todas sus posibles localizaciones en el documento. Específi-
camente, cada entrada de la tabla define una palabra con información de su localización:
número de página y posición en la página, y una medida de certeza (o confianza) calcu-
lada a partir de la probabilidad de aparición de dicha palabra en esa localización de la
imagen.

La disponibilidad de sistemas como este abre un nuevo horizonte en el marco de las
humanidades y en particular en el estudio de la historia. No obstante, para una mayor
flexibilidad en estas aplicaciones es necesario dotar a los sistemas de búsqueda de ca-
pacidades similares a las de los buscadores tradicionales. En particular, se ha permitido
a los usuarios formular sus consultas mediante expresiones regulares simples, así como
búsquedas aproximadas; es decir, palabras similares a las consultadas. Por ejemplo, para
buscar la palabra "France", ejemplos de consultas basadas en expresión regular podrían
ser ”Fran. ∗ ” o ”. ∗ ranc. ∗ ”. Así mismo, para una búsqueda aproximada se podría for-
mular alguna las siguientes consultas: ”Francia”, ” f rance”, ” f ranc”, etc.

Durante el proyecto se han explorado diferentes técnicas para realizar búsquedas
aproximadas y finalmente se han obtenido resultados favorables tanto a nivel de tiem-
po como a nivel de consumo de memoria. De esta forma, podemos concluir que se ha
logrado ampliar la funcionalidad del sistema con un consumo de recursos moderado.

Palabras clave: Procesado de Imágenes de Texto Manuscrito; Indexación Probabilística
de Palabras; Búsqueda y Recuperación de la Información; Expresiones Regulares; Dis-
tancia de Edición; Algoritmos Rápidos de Búsqueda

v

Abstract
Historical archives, as well as other cultural heritage institutes, have been digitizing

their collections of historical documents in order to make them accessible via the Internet
to the general public. However, most of the images in the digitized documents lack of
transcription, so access to their textual content is not possible.

In recent years, technology has been developed at the UPV, in the PRHLT Center for
the probabilistic indexing of collections of these images (not transcribed). The main ap-
plication of these indexes is to facilitate the search for textual information in the image
collection. The developed indexing system generates a table in which each word is in-
dexed with all its possible locations in the document. Specifically, each table entry defines
a word with information on its location: page number and position on the page, and a
measure of certainty (or confidence) calculated from the probability of the appearance of
said word in that location of the image.

The availability of systems like this opens a new horizon in the humanities frame-
work and in particular in the study of history. However, for greater flexibility in these
applications, it is necessary to provide search systems with capabilities similar to those
of traditional search engines. In particular, there is a need to allow users to formulate
their queries using simple regular expressions, as well as approximate searches; that is,
words similar to those consulted. For example, to search for the word "France", examples
of regular expression-based queries might be ”Fran. ∗ ”, or ”. ∗ ran. ∗ ”. Likewise, for an
approximate search, the following queries could be made: ”Francia”, ” f rance”, ” f ranc”,
etc.

During this project several techniques to perform approximate search have been ex-
plored and finally, we have achieved good results in terms of time performance with
reasonable memory consumption. Therefore, we can conclude that we have improved
the flexibility of the system with moderate memory usage.

Key words: Handwritten Text Image Processing, Probabilistic Word Indexing, Informa-
tion Search and Retrieval, Regular Expressions, Edit Distance, Fast Search Algorithms

Contents

Contents vii
List of Figures ix
List of Tables x
List of algorithms x

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 1
1.3 Thesis structure . 2

2 Description of the initial system 5
3 Wildcard search 7

3.1 Online techniques . 7
3.1.1 Regular expressions . 7

3.2 Offline techniques . 8
3.2.1 MARISA trie . 8

4 Approximate string search 11
4.1 Online techniques . 12

4.1.1 The dynamic programming algorithm 12
4.1.2 Regular expressions . 13

4.2 Offline techniques . 13
4.2.1 BK-Tree . 13
4.2.2 DAWG levenshtein . 16

5 Implementation and demonstrators 19
5.1 Implementation . 19
5.2 Bentham demonstrator . 20

6 Experimental results 25
6.1 Experiments on Bentham GT . 26

6.1.1 Wildcard search . 26
6.1.2 Approximate string search . 30

6.2 Experiments on Bentham . 35
6.2.1 Wildcard search . 35
6.2.2 Approximate string search . 37

7 Conclusions 39
7.1 Future work . 39
7.2 Degree relationship . 40
7.3 Transversal competences . 40

Bibliography 41

vii

List of Figures

2.1 Workflow diagram of the system. 5
2.2 Workflow diagram of the KWS and indexing tool phase. 6
2.3 Workflow diagram of the index ingestion phase. 6
2.4 Workflow diagram of the keyword search phase. 6

3.1 Automaton recognising the strings that start with the prefix "OFFEN". . . 7
3.2 Trie storing the words: "PAUL", "MARIA", "MARTHA", "MOTHER". . . . 8
3.3 Patricia trie storing the words: "PAUL", "MARIA", "MARTHA", "MOTHER". 9
3.4 Trie used as suffix tree storing the words: "PAUL", "MARIA", "MARTHA",

"MOTHER". 9

4.1 Automaton accepting strings with at most 2 edit operations from "OFFEN". 11
4.2 BK-Tree storing the words: "CAT", "CUT", "MAP", "HOT", "CATS" 14
4.3 The strings "TOP", "TOPS", "TAP" and "TAPS" stored in a trie (left) or in a

DAWG (right). 16

5.1 Workflow diagram of wildcard query "offen*". 19
5.2 Workflow diagram of approximate string query "committted∼1". 19
5.3 Screenshot of the HOME level of the Bentham demonstrator 21
5.4 Result of the search "offen*" at HOME level 21
5.5 Result of the search "offen*" at BOX level 22
5.6 Matched spot for query "offen*" on page 14. 22
5.7 Pseudowords that matched the spot on page 14 for query "offen*". 23
5.8 Pseudowords that matched the spot on page 24 for query "offen*". 24
5.9 Pseudowords that matched the spot on page 3 for query "committed 1". . 24

6.1 Number of pseudowords in Bentham GT according to their length. 26
6.2 Elapsed time according to prefix length. 27
6.3 Elapsed time according to suffix length. 27
6.4 Number of pseudowords retrieved according to prefix length. 28
6.5 Number of pseudowords retrieved according to suffix length. 28
6.6 Elapsed time according to prefix length. 29
6.7 Elapsed time according to suffix length. 29
6.8 Elapsed time according to pseudoword length allowing one error 30
6.9 Number of pseudowords retrieved according to query length. 31
6.10 Elapsed time on performing a query according to query length. 32
6.11 Frequency of the number of pseudowords that overlap 33
6.12 Number of unique pseudowords matched according to query length . . . 34
6.13 Number of pseudowords in Bentham according to their length. 35
6.14 Elapsed time according to prefix length. 36
6.15 Elapsed time according to suffix length. 36
6.16 Number of pseudowords retrieved according to prefix length. 37
6.17 Number of pseudowords retrieved according to suffix length. 37
6.18 Number of pseudowords according to query length. 38

ix

6.19 Elapsed time on performing a query according to query length. 38

List of Tables

4.1 Example of table filled for calculating the distance between "ELISSABETH"
and "ELISABETHA". 13

4.2 Table calculating levenshtein distance between "TAPS" and "TOP", and ta-
ble to calculate levenshtein distance between "TAPS" and "TOPS". 16

6.1 Table comparing the efficiency between MARISA and TRE regexp 26
6.2 Table comparing the efficiency of the techniques seen in chapter four. . . . 30
6.3 Recall, misses and false positives of standard search and approximate string

search allowing one, two or three edit operations. 32

List of algorithms

4.1 The Wagner–Fischer algorithm. 12
4.2 Insert string into BK-Tree. 14
4.3 Search string in a BK-Tree. 15

x

CHAPTER 1

Introduction

1.1 Motivation

Since the invention of writing, the humanity has stored and shared knowledge in hand-
written documents. Over the centuries, the amount of handwritten documents has in-
creased considerably and therefore, we find massive historical handwritten text collec-
tions stored in thousands of kilometers of shelves in archives and libraries. In these doc-
uments, we can find relevant information about the history and evolution of our litera-
ture, philosophy, politics and the human language. Unfortunately, these documents are
useless in this format, as the relevant information for experts is hidden inside the large
amount of texts that are archived.

In order to help the experts to discover the relevant information in these documents
and making them more accessible, the Pattern Recognition and Human Language tech-
nology (PRHLT) at UPV, in collaboration with other research groups all over the world,
has developed an initiative to recognize historical handwritten texts, index them and
allow searches over them, in a project called tranScriptorium.

As part of the tranScriptorium project, the PRHLT has developed a search engine able
to perform queries over the historical documents. This engine allows the classic boolean
queries (AND, OR, NOT), sequence queries, and proximity queries.

1.2 Objectives

Despite the success of the system among the users, sometimes it is difficult to find infor-
mation in the documents for various reasons:

Firstly, the user might be not sure about the spelling of a word. As the human
language evolves through time, there might be differences in the spelling between the
spelling of the query performed by the user and the spelling of the word at the historical
epoch where the text was written.

Secondly, the word that we are looking might be well written on the text, but our
system didn’t recognize it properly.

These reasons would not allow the user to retrieve the information, notwithstanding
it is present on the text. For example, in some historical texts the word "Elisabeth" could
be spelled like "Elisabet", "Elisabetha" or "Elisabeta". Given this, the users would like to
be able to search words which they are not sure about their spelling. Also, they would
like performing searches of variants of a word. Thus, the users would like to perform
approximate searches.

1

2 Introduction

Approximate search is the search of the words that match approximately a pattern.
In this thesis, we will distinguish between two types of approximate search queries: the
wildcard queries and the approximate string queries.

A wildcard query is a query where we find a wildcard, which is a symbol that repre-
sents a sequence of zero or more characters. It is very helpful to search variants of a word
or when we do not know the correct spelling of a word.

An approximate string query is a query where we specify the number of character
insertions, deletions and substitutions that we allow in our search. Therefore, it is very
useful to perform queries of words that we are not sure about their spelling.

Both techniques can be modelled through regular expressions, given that a regular
expression can be defined as a sequence of characters that conforms a search pattern.
The example mentioned before could be modelled as a wildcard query using the regular
expression "Elisabet.*", where the "." represents any character and the "*" represents the
empty string or a sequence of any length of the last character before him, in this case ".".
Using approximate string search and allowing 1 errors, it could be modelled as ".?lisa-
beth" | "E.?isabeth" | "El.?sabeth" |"Eli.?abeth" | "Elis.?beth" | "Elisa.?eth" | "Elisab.?th"
| "Elisabe.?h" | "Elisabet.?". where the symbol "?" represents 0 or 1 occurrences of the
preceding symbol, in this case ".".

However, the use of regular expressions as queries implies two main difficulties:

Firstly, the users must learn regular expression syntax in order to perform queries and
secondly, regular expressions can be too computationally demanding if they are not used
with care. Given that the users only want to perform two concrete cases, wildcard search
and approximate string search, of all the possibilities that regular expressions offer, we
have developed in this thesis an interface to make the searches easier for them.

In this interface, the wildcard search will be modelled as a query with the "*" symbol,
which specifies that in that position there could be a sequence of characters of any length.
The approximate string search is modelled with the "∼" symbol and a number after it,
which represents the number of errors allowed.

Therefore, the objectives of this project are:

1. Develop the wildcard (prefix, suffix and interfix search) and the approximate string
search in our search engine, in order to handle misspellings.

2. Perform these searches in a reasonable time with a reasonable memory usage.

3. Measure the improvement of the approximate search over regular search in the
system.

1.3 Thesis structure

In order to explain the whole process of developing the wildcard and approximate search,
this thesis is structured in six chapters.

In the second chapter, we will describe in detail the actual search system, as well as
some key concepts that will be useful for the rest of the thesis.

In the third and fourth chapter, you will find an explanation of what is wildcard
search and an approximate string search respectively, as well as a sum up of the different
techniques that have been tried to perform these queries.

In the fifth chapter, you will find details of how the techniques seen in chapters three
and four are used in combination with the already existing search engine, in order to

1.3 Thesis structure 3

perform approximate searches. Also, you will be able to see a demonstrator working
with this software.

In the sixth chapter, you will find the experimental results of the techniques seen
in the previous chapters in terms of speed and memory usage. We will also assess the
performance of the system using other classical information retrieval measures.

Finally, in the last chapter you will find the conclusions and further work of this
project, as well as an explanation of the relationship between the degree and this the-
sis.

CHAPTER 2

Description of the initial system

In this chapter we will describe in detail the already existing search engine.

In our system, we can distinguish three different phases:

Firstly, the KWS and indexing tool. In this phase we pre-compute the probabilis-
tic indices from the images. Secondly, the ingestion phase, where we create the actual
database where our system will perform the queries. This two phases are offline phases,
as they are only computed once. Finally, we find the keywords search phase, where the
system analyses the queries of the users, searches the relevant information and displays
the retrieved images. This last phase must be fast.

Figure 2.1: Workflow diagram of the system.

In the KWS and indexing tool phase, we use of Keyword Spotting techniques to gener-
ate probabilistic indexes. In our system, we require a small dataset of transcribed images
to train optical and language models.Then, these models are used in the contextual word
recognizer, in order to create intermediate rich structures, such as character and or word
latices. Finally, these rich substructures are used by the KWS and indexing process to
generate the page-level probabilistic indices.

5

6 Description of the initial system

Figure 2.2: Workflow diagram of the KWS and indexing tool phase.

In the ingestion phase, the page-level probabilistic indexes are stored in an adequate
data structure that allows to retrieve the information demanded by the user. In this phase,
a set of processes are performed on the data: char and diacritics folding, word grouping
(index by lemma rather than by word) and trim the index to the desired indexing density.
The term density refers to a relevance probability threshold or a number specifying how
many spots per page, per image region, or per running word should be indexed.

Figure 2.3: Workflow diagram of the index ingestion phase.

In the keyword search phase, the user interacts with the GUI in order to perform a
query. The query performed by the user is analysed by the system, which retrieves the
relevant information for it. Finally, the system displays the images that correspond to the
query made by the user.

Figure 2.4: Workflow diagram of the keyword search phase.

The work of this thesis will focus on the query analysis process, as we will analyze
the approximate query performed by the user, in order to convert it into a regular OR
search of the words that match the pattern.

CHAPTER 3

Wildcard search

Wildcard search is a query where we find a wildcard, which is a symbol that represents
a sequence of zero or more characters. It is very helpful to search variants of a word or
when we do not know the correct spelling of the word. In our system, the chosen symbol
is "*". For example, we could perform the query "offen*" to search for "offend", "offense",
"offenses", "offender", "offending", etc.

start
O F F E N

*

Figure 3.1: Automaton recognising the strings that start with the prefix "OFFEN".

The techniques and data structures used to perform approximate search, can be grouped
in two main categories: online and offline. In the online category, the whole search pro-
cess is done at runtime, unlike in the offline group, where some pre-computation of the
vocabulary is done before in order to improve the search performance. On the one hand,
we find that the main advantage of the online group is that they do not consume hard
disk space for storing any data structure, as all the computation is done at runtime. On
the other hand, the offline group does use hard disk space for storing the data into an
appropriate data structure. However, it is expected that the offline group has a better
time performance, as it has already done some pre-computation.

3.1 Online techniques

3.1.1. Regular expressions

As online method, we have used regular expressions to perform wildcard searches. A
regular expression can be defined as a sequence of characters that conforms a search
pattern. In combination with string searching algorithms, they are used to retrieve the
words that match the pattern.

The library used as regular expressions matching engine is TRE. This library makes
use of regular expressions with POSIX syntax. It also allows performing approximate
string search. The temporal cost of the matching algorithm employed by TRE is O(M2N),
where M is the length of the regular expression and N is the length of the word against
which we are trying to match the pattern.

7

8 Wildcard search

To perform our wildcard search, we will compare every word of our lexicon with the
pattern. Taking this into account, the runtime cost will be O(WM2N), where W is the
number of word that conform the vocabulary.

3.2 Offline techniques

3.2.1. MARISA trie

As offline method, we have used a MARISA trie, which is an specific case of a search trie.

Firstly, a trie, also known as prefix tree, is a search tree where strings with common
prefixes are grouped. With this purpose, each edge represents a character of a string and
every node represent the string that is formed by the concatenation of the edge labels
from the root node to him. The cost of performing a lookup on the trie is O(M), where M
is the length of the search string.

P

A

U

L

M

A

R

I

A

T

H

A

O

T

H

E

R

Figure 3.2: Trie storing the words: "PAUL", "MARIA", "MARTHA", "MOTHER".

Secondly, a PATRICIA Tree is a compressed binary trie, where, unlike in the standard
trie, the labels of the edges can be strings and not only characters. These strings, in a
PATRICIA trie represent which position of the binarized string is going to differentiate
between the left and right sub-trees. Moreover, all the nodes that are the only child are
merged with their parent. This fact makes our data structure more compact than a stan-
dard trie, as it requires less nodes for representing the same words. The cost is O(K)
where K is the length of the largest word that its in it.

Finally, a MARISA trie [1] is a static trie that that consists of recursively compressed
Patricia tries, where its edge labels are encoded using another Patricia trie.

3.2 Offline techniques 9

PAUL M

AR

IA THA

OTHER

Figure 3.3: Patricia trie storing the words: "PAUL", "MARIA", "MARTHA", "MOTHER".

To perform wildcard search, we have two MARISA tries, one which is the regular
prefix tree and another one as a suffix tree. In order to model a suffix tree with a trie,
we create it taking as input the reversed dictionary. Given this, if we want to perform a
prefix search, we will need to perform the search on the prefix tree. If we want to perform
a suffix search, we will have to reverse the word that we want to lookup, perform the
search and reverse the words that are retrieved. Finally, if we want to perform an interfix
search, we will have to perform the intersection between the result of the prefix and suffix
search.

A

I

R

A

M

H

T

R

A

M

L

U

A

P

R

E

H

T

O

M

Figure 3.4: Trie used as suffix tree storing the words: "PAUL", "MARIA", "MARTHA",
"MOTHER".

CHAPTER 4

Approximate string search

An approximate string query is a query where we specify the number of character oper-
ations that we allow in our search. It is very useful when we are not sure about spelling
of a word.

As we are using levenshtein distance as distance metric, there are three different char-
acter operations:

1. Insertion: Lisabeth→ Elisabeth (Insert character "E" at the beginning).

2. Deletion : Elissabeth→ Elisabeth (Deletion of the character "s").

3. Substitution : Maria→Mario (substitution of "a" for "o").

These three operations have a cost of 1, unless when the substitution replaces the
exact same character, in that case its cost is 0.

In our system, the chosen symbol for denoting this operation is "∼" and it is followed
by the number of allowed character operations that we allow. For example, we could
perform the query "offen ∼ 2" to find "ofen", "offense", "ofend", etc.

start
O F F E N

O F F E N

O F F E N

*

*

ε , *

ε , *

*

*

ε , *

ε , *

*

*

ε , *

ε , *

*

*

ε , *

ε , *

*

*

ε , *

ε , *

*

*

Figure 4.1: Automaton accepting strings with at most 2 edit operations from "OFFEN".

In the figure above, please notice that "ε" represents the empty string and "*" repre-
sents any character. Therefore, the horizontal transitions represents a substitution with
cost 0, as we are substituting a character by itself, the vertical transitions represent a
character insertion, the diagonal transition with "ε" represent a deletion and the diagonal
transition with "*" represents a substitution of a different character.

11

12 Approximate string search

4.1 Online techniques

4.1.1. The dynamic programming algorithm

Firstly, we are going to discuss the dynamic programming approach. Dynamic program-
ming could be defined as an algorithm design technique which splits a problem into
subproblems and then it calculates the optimal answer to the them. Once they are calcu-
lated, they are stored in order to avoid to recompute them again if there is any overlap.
This technique allows us to explore all the possible solutions, avoiding repeating previ-
ous computations.

In this problem, we are going to compute the number of edit operations that have
been performed to match the ith first characters of string X to the jth characters of string
Y that have been matched. The solution presented by the Wagner–Fischer algorithm [3]
follows the bottom-up approach, where we start solving the base cases to finally achieve
the computation of the minimal edit distance between X and Y, which can be retrieved
at table[n][m]. An example of table filled with this algorithm can be seen in table 4.1.

Algorithm 4.1 The Wagner–Fischer algorithm.

Let X and Y be the two strings that we want to compare, and n and m their length

for i = 0 to n do
table[i][0] = i;

end for

for j = 0 to m do
table[0][j] = j;

end for

for i = 1 to n do
for j = 1 to m do

if X[i-1] == Y[j-1] then
cost = 0

else
cost = 1

end if
table[i][j] = minimum(1 + table[i-1][j], 1 + table[i][j-1], cost + table[i-1][j-1])

end for
end for

return table[n][m]

The time cost of this function is O(NM) where N is the length of string X and M is the
length of string Y. If we assume that N ≈M, we get that the time cost is O(N2). Moreover,
as we are comparing the searched word against the whole vocabulary, the runtime cost
will be O(WNM), where W is the number of word that conform the vocabulary.

4.2 Offline techniques 13

E L I S S A B E T H
0 1 2 3 4 5 6 7 8 9 10

E 1 0 1 2 3 4 5 6 7 8 9
L 2 1 0 1 2 3 4 5 6 7 8
I 3 2 1 0 1 2 3 4 5 6 7
S 4 3 2 1 0 1 2 3 4 5 6
A 5 4 3 2 1 1 1 2 3 4 5
B 6 5 4 3 2 2 2 1 2 3 4
E 7 6 5 4 3 3 3 2 1 2 3
T 8 7 6 5 4 4 4 3 2 1 2
H 9 8 7 6 5 5 5 4 3 2 1
A 10 9 8 7 6 6 5 5 4 3 2

Table 4.1: Example of table filled for calculating the distance between "ELISSABETH" and "ELIS-
ABETHA".

4.1.2. Regular expressions

The second online approach employed to perform the approximate string search is regu-
lar expressions. As library, we have employed TRE, which has already been discussed in
Section 3.1.1.

4.2 Offline techniques

4.2.1. BK-Tree

As first offline technique, we have employed a BK-tree [2], which is a concrete case of
metric tree.

Firstly, a metric tree is a tree data structure that index the data in a metric space.

A metric space is a representation space for data that satisfies the next three proper-
ties:

1. d(p, q) = 0⇔ p = q (identity of indiscernibles)

2. d(p, q) = d(q, p) (symmetry)

3. d(p, q) + d(q, r) ≥ d(p, r) (triangle inequality)

Secondly, a BK-tree is a metric tree designed to retrieve the strings that are in a given
distance range from a given string. This data structure was proposed by Burkhard and
Keller in 1973, in their paper "Some approaches to best match file searching".

As distance measure between two strings, it uses the well-known levenshtein dis-
tance, which is explained at the begining of this chapter. It is suitable for this case as it
fulfills the three properties described above.

14 Approximate string search

First, to create the BK-Tree, we will select arbitrarily one pseudoword of our vocabu-
lary as the root of the tree. Then, we will take every pseudoword present in our lexicon
and we will calculate its distance to the root string. If there is no child of the root with
this number of editions in the tree, we add it with a edge cost equal to the number of
editions. If there is already a child with the same number of editions, we compute the
edit distance from the child to the pseudoword that we are trying to insert, and we repeat
the process described before. This process is described formally in Algorithm 4.2. Also,
an example of BK-Tree can be found in Figure 4.2.

CAT

CUT

CATS

MAP

HOT

1

2

2

3

Figure 4.2: BK-Tree storing the words: "CAT", "CUT", "MAP", "HOT", "CATS"

Algorithm 4.2 Insert string into BK-Tree.

Let T be the BK-Tree, w be the word that we want to insert
if T is empty then

T = word
else

currentWord = T.root
children = T.getChildren(currentWord)
while TRUE do

childAtDistance = null
distance = levenshteinDistance(w, currentWord)
for child in children do

if levenstheinDistance(child, w) == distance then
childAtDistance = child
break

end if
end for
if childAtDistance == null then

children[distance] = w
break

else
currentWord = childAtDistance

end if
end while

end if

4.2 Offline techniques 15

Second, in order to perform a query on a BK-Tree, we will take advantage of the
triangle inequality property. Firstly, we will calculate the distance between the query
and the root node. Next, we will add to the results list the root string if the distance is
smaller or equal to the levenshtein distance that has been specified. Then, as the triangle
inequality must hold, we know that all the possible results must hold in the interval [d
- n, d + n], where "d" denotes the distance between the root node and the query, and "n"
denotes the number of edit operations that are allowed. So, we insert the children of the
root node that are in the interval described before, into a list of candidate nodes, and we
repeat the process performed on the root node over each element of the candidates list.
We repeat this process until the candidates list is empty and finally, we return the results
list. This process is described formally in Algorithm 4.3.

Algorithm 4.3 Search string in a BK-Tree.

Let T be the BK-Tree, w be the query string and n be the maximum number of edit
operations allowed
if T is empty then

return []
end if
candidates = [T.root]
result = []
while candidates is not empty do

candidate = candidates.pop()
children = T.getChildren(candidate)
distance = levenshteinDistance(w, candidate)
if distance ≤ n then

result.append(candidate)
end if
lowerBound = distance− n
upperBound = distance + n
for child in children do

childDistance = levenshteinDistance(candidate, child)
if (childDistance ≥ lowerBound)&& (childDistance ≤ upperBound) then

candidates.append(child)
end if

end for
end while
return results

The search cost is O(N ∗M ∗ log(W)), where N is the average length of a word in our
lexicon, M is the length of the word that is used as query, log(W) is the estimated depth
of the BK-Tree, where W is the number of nodes.

16 Approximate string search

4.2.2. DAWG levenshtein

The second offline technique that we have employed is a DAWG allowing levenshtein
search.

Firstly, a DAWG (Directed Acyclic Word Graph) is a data structure designed to rep-
resent a set of strings. With this purpose, each edge represents a character of a string
and each node represents the strings that are formed by all the possible paths from the
root to itself. The main difference between a trie and a DAWG is that a DAWG elimi-
nates the prefix, interfix and suffix redundancy, meanwhile the trie only eliminates prefix
redundancy. An example can be seen in Figure 4.3.

T

O

P

S

A

P

S

T

P

S

O A

Figure 4.3: The strings "TOP", "TOPS", "TAP" and "TAPS" stored in a trie (left) or in a DAWG
(right).

Now, we want to be able to calculate the levenshtein distance in an efficient way,
taking advantage of the structure of the DAWG. If we take a look at table 4.2, we can
observe that all the rows except the last one are equal to the rows on the left table. This
is due to the fact that the word TOP is a prefix of the word TOPS. Thus, we observe that,
if we have already calculated the edit distance table of a prefix of a word, to calculate the
edit distance of that word we will only have to calculate the remaining rows of the table.

T A P S
0 1 2 3 4

T 1 0 1 2 3
O 2 1 1 2 3
P 3 2 2 1 2

T A P S
0 1 2 3 4

T 1 0 1 2 3
O 2 1 1 2 3
P 3 2 2 1 2
S 4 3 3 2 1

Table 4.2: Table calculating levenshtein distance between "TAPS" and "TOP", and table to calculate
levenshtein distance between "TAPS" and "TOPS".

4.2 Offline techniques 17

Taking this information into account, when we want to perform a search in the DAWG,
we will calculate the edit distance of every node against the searched word, using the ta-
ble calculated by the precedent node if any, in order to avoid recomputations [4]. Also, as
we are only interested in knowing if a word is within a given edit distance, if there is no
position where the cost is within the admitted edit distance in the last row that we have
analysed for a branch, we will prune the search, as it will be impossible that any other
word of that branch has a smaller or equal cost than the allowed one. The search cost is
O(K ∗ N), where K is the largest length of a string in our lexicon and N is the number of
nodes in our DAWG.

CHAPTER 5

Implementation and demonstrators

In this section we will show details about the implementation of the project, as well as
some real examples of how the system works.

5.1 Implementation

As briefly mentioned in chapter 2, the work of this thesis is focused on the keyword
search phase, concretely in the query analysis. Firstly, the system checks if the query that
is going to be performed is an approximate search. If that is the case, the system performs
the approximate search operation, using the appropriate technique explained in chapter
three if wildcard search or in chapter four if approximate string search, and retrieves as
result a list with all the strings that match the pattern. Then, the system searches each
string of the list and retrieves the images that match with each word. Finally, the web
server combines all the images which are retrieved by the index server and show them to
the user.

Figure 5.1: Workflow diagram of wildcard query "offen*".

Figure 5.2: Workflow diagram of approximate string query "committted∼1".

19

20 Implementation and demonstrators

In this project, we have implemented the programs to retrieve the lexicon of the col-
lection, detect the approximate searches, handle them using the appropriate library, and
transforming the list of words that match the query into an OR search. Also, we have
used our own code for the dynamic programming approach explained in section 4.1.1.
Finally, we have also developed programs to measure the performance of each of the
different techniques explained in the precedent chapters.

With this purpose, the libraries that have been used are:

• TRE [9], as regular expressions library. It has been employed in wildcard search and
approximate string search. It is developed in C++ and it is under the BSD 2-clause
license.

• libmarisa [10], as MARISA trie library. It allows to perform regular lookups and
prefix search. It is developed in C++ and it is under the BSD 2-clause license.

• Bk-Tree [11], as BK-tree library. It is developed in C++ and it is under the GPL-3.0
License.

• dawg-levenshtein [12], as DAWG library. It allows the creation of a DAWG and
the approximate string search, using levenshtein distance as metric, over it. As it is
inside the "brmson" project, its license is open source.

5.2 Bentham demonstrator

In order to try our implementation, we have adapted an existing demonstrator, which
provided full search and retrieval capabilities for probabilistically indexed datasets, but
it did not support queries including wildcard or approximate string search.

First, we have made the appropriate changes in the parser, in order to detect the ap-
proximate search query. Then, the system calls to the programs explained in the previous
section and finally, it receives an OR search with all the words that match the pattern.
This query is performed as usual by the search engine.

We have used the Bentham Papers collection as dataset. This collection is formed by
89111 images of manuscripts written in English by the philosopher and reformed Jeremy
Bentham (1748-1832) and his secretarial staff.

This collection has been structured in three different search levels: HOME, BOX and
PAGE:

The HOME levels corresponds to the set of documents that conform the full collec-
tion. The BOX level corresponds to the box where they are archived in the UCL archives.
Finally, the PAGE level corresponds to the paper image. In order to prevent the high
computational cost that might suppose the use of the wildcard search and approximate
string search, some constraints have been added to the queries. In wildcard search, there
are required 4 characters (without the "*") at HOME level, 2 at BOX level and 1 at PAGE
level. In approximate string search, the difference between the length of the query (with-
out the ’∼’) and the specified number of edit operations allowed must be greater than 3
at HOME, 1 at BOX level and 0 at image level.

In the search interface the user has the option of choosing a minimum confidence
threshold and/or limiting the number or results displayed by page.

5.2 Bentham demonstrator 21

Figure 5.3: Screenshot of the HOME level of the Bentham demonstrator

In the next figures, you will find how a user would interact with the search system
when performing a wildcard query. Firstly, the user would perform the query at the
HOME level and the system would retrieve the boxes that match the query.

Figure 5.4: Result of the search "offen*" at HOME level

Then, the user would select the box where he wants to search, in this case we select
box002.

22 Implementation and demonstrators

Figure 5.5: Result of the search "offen*" at BOX level

Finally, the user select the page that he wants to see in detail. When the user clicks on
a page, the system displays the selected page and highlights the spot or spots that match
the query.

Figure 5.6: Matched spot for query "offen*" on page 14.

If the user clicks on a spot, he can visualize a list of possible pseudowords, ranked by
their probability, that could be written on that concrete spot.

5.2 Bentham demonstrator 23

Figure 5.7: Pseudowords that matched the spot on page 14 for query "offen*".

24 Implementation and demonstrators

Figure 5.8: Pseudowords that matched the spot on page 24 for query "offen*".

The procedure would be exactly the same for the approximate string search. In the
figure below you can observe an example for the query committed∼1.

Figure 5.9: Pseudowords that matched the spot on page 3 for query "committed 1".

CHAPTER 6

Experimental results

Firstly, from this collection we are going to use only 357 transcribed page images as exper-
imental dataset, in order to determine which are the optimal techniques for this dataset,
as well as to evaluate the performance of our new query system. This reduced dataset is
the "Bentham GT" collection. Secondly, we will measure the costs, time and performance
of the full Bentham collection, formed by more than 89111 page images.

Please note that the query sets used for the experiments are all the possible prefixes
and suffixes for the wildcard experiments and all the pseudowords for the approximate
string search experiments. They were conducted on a sample of these query sets for
each prefix, suffix or word length with a 95% confidence interval and a 1% margin of
error. Moreover, in the plots where you find error bars, they represent two standard
deviations of the mean of the experiment. Please note that when you find asymmetry on
the errorbars is due to the fact that two times the standard deviation is greater than the
average, and then the plotting software truncate them.

25

26 Experimental results

6.1 Experiments on Bentham GT

This collection is formed by 357 page images, with 89870 running words, a lexicon size of
6988 words and 5974668 different pseudowords. In figure 6.1 we can observe that most
of the pseudowords have a length between four and sixteen.

Figure 6.1: Number of pseudowords in Bentham GT according to their length.

6.1.1. Wildcard search

First, we are going compare the different techniques explained in Section 3, in order to
determine which of them is the optimal for this collection.

If we take a look at Table 6.1, we can observe that both memory consumption are very
reasonable, taking into account that we are storing almost six millions of pseudowords.
However, we can observe that the MARISA trie has a better performance, as it consumes
only a tiny amount of hard disk and RAM memory.

MARISA TRE regexp
Hard Disk space 27.7 MB -
RAM space 28 MB 135 MB

Table 6.1: Table comparing the efficiency between MARISA and TRE regexp

Next, if we take a look at Figure 6.2 and 6.3, we observe that the MARISA trie perfor-
mance is much better than the TRE regexp performance. This is due to the fact that the
MARISA trie does some pre-computation at index time, meanwhile the TRE regexp does

6.1 Experiments on Bentham GT 27

all the computation at runtime. We can also observe that the elapsed time for TRE regexp
and MARISA trie is almost constant, except the case of length 1 for MARISA trie. Taking
this information into account, we have chosen as optimal technique the MARISA trie, as
it is always faster than TRE regexp.

Figure 6.2: Elapsed time according to prefix length.

Figure 6.3: Elapsed time according to suffix length.

28 Experimental results

Now, if we take a look into the figures 6.4 and 6.5, we can observe that, the smaller
the prefix or the suffix, the bigger the number of retrieved words is. Furthermore, we can
observe that the most informative prefix and suffix length are between the lengths 4 and
8, given that they match a reasonable number of words. The prefixes and suffixes with
a length in the intervals 1 to 3 match too many words and the ones with a length larger
than 8 match less than 2 words on average, which might be not very informative. Finally,
we can observe that there is a huge variability on the number of retrieved words, which
means that some prefixes are very rare and others are very common. Please note that,
when we make reference to prefix or suffix length of a string, we do not take into account
the "*" symbol for the calculation of it.

Figure 6.4: Number of pseudowords retrieved according to prefix length.

Figure 6.5: Number of pseudowords retrieved according to suffix length.

6.1 Experiments on Bentham GT 29

If we take a look at the time plots, we can see that the query that takes more time is
the one with a prefix or suffix length of 1. This fact makes sense as it is the length that
matches more pseudowords. The rest of the length queries take a similar time.

Figure 6.6: Elapsed time according to prefix length.

Figure 6.7: Elapsed time according to suffix length.

30 Experimental results

6.1.2. Approximate string search

First, we are going to compare the different techniques explained in section 4, in order to
determine which of them is optimal for this collection.

If we take a look at Table 6.2, we can observe that both memory consumption are
very reasonable, taking into account the amount of stored pseudowords. However, we
can observe that the best performances are achieved by the dynamic programming al-
gorithm and DAWG levenshtein, as both of them have a RAM consumption of 86MB.
Finally, we would like to remark that BK-Tree does not consume hard disk space because
the library that we are employing does not have any method to store the created tree.
However, the elapsed time to construct the tree is less than one minute, so this approach
stills reasonable.

DP TRE regexp BK-Tree DAWG levensthein
Hard disk space - - - 21,1MB

RAM space 86MB 282,62MB 909,31MB 86MB

Table 6.2: Table comparing the efficiency of the techniques seen in chapter four.

Next, if we take a look at Figure 6.8 we observe that the best performing techniques
belong to the offline techniques group, as expected. This is due to the fact that the of-
fline techniques make some pre-computation at index time. From the offline techniques,
the best performing technique is the DAWG levenshtein, as it takes less time than the
BK-Tree. However, both techniques seem suitable for this collection, as both have a rea-
sonable time performance.

Figure 6.8: Elapsed time according to pseudoword length allowing one error

6.1 Experiments on Bentham GT 31

Taking all this information into account, we can affirm that DAWG levenshtein is the
best approach to perform approximate string search, as it is the technique that has the
better performance in terms of time and memory consumption.

Finally, if we observe the results obtained in the comparison of the different tech-
niques for wildcard search and approximate string search, we can conclude that the of-
fline techniques outperform the online techniques when we are searching over a large
dictionary, as they have a faster time performance than the online techniques and their
memory consumption is very reasonable. However, we would like to empathise the fact
that online techniques could have very good results with a smaller lexicon and, in the
concrete case of the regular expressions, they would also allow to the user to perform
every type of query that has been defined in the regular expressions syntax.

Now, if we take a look at the first plot we can observe that the most useful number
of allowed errors are 1 and 2, as 3 errors retrieves usually too many words. Also, we can
observe that the most informative word lengths are between 4 and 23, as they retrieve a
reasonable and similar number of words. In the second plot we can observe that the time
to perform a search increases with the number of errors allowed, as it was expected to
happen. Finally, we can see that the search time slightly increases with the length of the
query.

Figure 6.9: Number of pseudowords retrieved according to query length.

32 Experimental results

Figure 6.10: Elapsed time on performing a query according to query length.

Now, we will evaluate the approximate string search using some standard informa-
tion retrieval measures:

Firstly, the precision is the percentage of relevant retrieved documents in the set of
retrieved documents. It indicates to which extent retrieved documents are relevant.

Secondly, the recall is the percentage of relevant retrieved documents over the set of
all relevant documents. It indicates to which extent relevant documents are retrieved.

Now, as one of the approximate search purposes is to use it when we are not really
sure about the spelling of a word, we have used as queryset a list of 652 queries, which
are present on the manual transcription of the pages but not on the probabilistic indexes
that are provided by our system.

Over this query set, we have measured the recall over this queryset using approxi-
mate string search allowing one, two and three errors:

RCmx Misses False positives
STD 0.000 652 2583

SEARCH∼1 0.417 380 43496
SEARCH∼2 0.701 195 252817
SEARCH∼3 0.833 109 1021018

Table 6.3: Recall, misses and false positives of standard search and approximate string search
allowing one, two or three edit operations.

Firstly, we observe that the recall of the standard search is 0, as expected. Also, we
can observe that, allowing one and two errors, the recall has improved drastically while
maintaining a suitable number of false positives. Finally, if we take a look at results
when allowing three errors, we observe that we could improve even more the recall, but
we would have a huge number of false positives, which is impractical.

6.1 Experiments on Bentham GT 33

Despite the success of approximate string search in this context, there is still one main
problem: We give the same probability to each word that has been expanded from the
query. For example, if we perform the approximate string search “case 1”, we observe
that we give the same probability to “cases”, the plural of “case”, than to other non se-
mantically related words like “cast”, “cash”, “chase”, “came”, “cause”.

With the purpose of measuring how informative a concrete expansion of a query is,
we are going to calculate the overlap between queries. While using this measure, we
suppose that if the query match only a few strings, it will probably be more informative
than other queries that match more strings.

In the figure Figure 6.11, we can observe that most of the words match 2 words or
less, apart from itself, when performing approximate string search allowing 1 error. This
fact tells us that most of the queries are probable to be relevant, as the don’t overlap with
many words.

In order to complement this information, we have repeated this experiment taking
into account the length of the query. To make make it more visual, we have added a
little perturbation to the plot, in order to avoid the visual overlap. We can observe in
Figure 6.12 that the queries with length smaller than three are not very informative, as
they usually match more than 2 words. Also, we can observe in general that, the larger
the pseudoword is, the less overlap there is.

Figure 6.11: Frequency of the number of pseudowords that overlap

34 Experimental results

Figure 6.12: Number of unique pseudowords matched according to query length

6.2 Experiments on Bentham 35

6.2 Experiments on Bentham

This collection is formed by 89111 page images, with 25487932 running words and 37172635
different pseudowords. In figure 6.13 we can observe that most of the pseudowords have
a length between four and sixteen.

Figure 6.13: Number of pseudowords in Bentham according to their length.

6.2.1. Wildcard search

Firstly, the hard disk space usage of the MARISA trie is 89,6 MB and the RAM usage is
1.2GB. Again, we can affirm that both memory usages are very reasonable, taking into
account the number of strings that are stored there.

Secondly, if we take a look at Figures 6.14 and 6.15, we can observe that the shape of
the plot is very similar to the observed on the precedent chapter, but with a higher order
of magnitude on the y axis. Also, we find again that the query that takes most time is
the one with prefix or suffix length 1. Finally, we can affirm that the results of the queries
are retrieved in a reasonable time, as it usually takes about 0.1 seconds to retrieved the
results.

36 Experimental results

Figure 6.14: Elapsed time according to prefix length.

Figure 6.15: Elapsed time according to suffix length.

6.2 Experiments on Bentham 37

If we take a look at Figures 6.16 and 6.17, we can observe again that the plot shape
is very similar to the one found on the precedent chapter, but with a higher order of
magnitude on the y axis.

Figure 6.16: Number of pseudowords retrieved according to prefix length.

Figure 6.17: Number of pseudowords retrieved according to suffix length.

6.2.2. Approximate string search

Firstly, the hard disk space usage of the DAWG is 169.3 MB and the RAM usage is 3.07GB.
Again, we can affirm that both memory usages are very reasonable, taking into account
the number of strings that are stored there.

38 Experimental results

Secondly, if we take a look at the Figure 6.18, we can observe that it has the almost
the same shape than the plot presented in the previous section, as it is smoother. Also, in
Figure 6.19 we can observe that despite the increase of the lexicon size, we still have very
reasonable response times for queries allowing 1 or 2 errors.

Figure 6.18: Number of pseudowords according to query length.

Figure 6.19: Elapsed time on performing a query according to query length.

CHAPTER 7

Conclusions

At the beginning of this project, we had three main objectives: The first one was develop-
ing the wildcard and approximate string search in the existing search engine. The second
one was to able to perform these queries in a reasonable time with a reasonable memory
usage. Finally, the third one was to measure the improvement of approximate search
over regular search in the system.

For the first objective, we have made an empirical research of different alternatives
that satisfy it. Also, we had to modify the query analysis part of the search engine, in
order to convert the approximate query into an OR query formed by the words to which
the query has been expanded.

For the second objective, we have chosen the techniques that gave us the better per-
formance in terms of time and memory consumption.

Finally, we have measured how the approximate string search can improve the re-
trieved results in some cases, as for example when the recall is low.

7.1 Future work

As possible future works for this project we find:

• Measure the impact of the wildcard search in the system over the regular search.

• Implement other approximate search operators, like the "?", which matches 0 or one
characters in that position, or the "+", which matches 1 character in that position.

• Change the current search engine by another commercial search engine, as for ex-
ample SOLR.

• Try other edit distance metrics, as for example the Damerau-Levenshtein distance
[5], which considers the transposition of two adjacent characters as one operation.

• Try to calculate custom weights for each edit operation, in order to improve the
retrieved results of the system [6].

• Try to estimate the probability of expasion of a query into a concrete word. This
could be done continuing with the overlap between queries mesaure that has been
proposed in this project. Other alternatives have been proposed in [7] .

• Try other algorithms that take into account phonetics. This could be done using the
Methaphone algorithm [8].

39

40 Conclusions

7.2 Degree relationship

In this project, I have had the opportunity of practising concepts that I have studied
during the degree and the specialization that I have chosen.

Firstly, as my work belongs to a search engine, I have found useful many concepts
that I learnt at "Information storage and retrieval systems".

Secondly, the main chapters of the project are closely related to "Data Structures and
Algorithms" and "Algorithmics". In these subjects, I have learnt the basis for understand-
ing data structures and algorithms in general, as well as how to measure them and how
to choose which is the optimal for each situation.

7.3 Transversal competences

Finally, during the realisation of this project, I have improved on several transversal com-
petences:

• "Comprehension and integration", as I had to understand how the parts that form
the search system interacted between them, in order to be able to develop and im-
plement the approximate search in the engine.

• "Application and practical thinking", as I have used quality information sources
and cited them properly. Also, I have clearly defined the objectives that we wanted
to achieve doing this project.

• "Analyzing and solving problems", as I have tested several techniques in order to
determine which is the best one.

• "Ethical, environmental and professional responsibility", as I had to check that all
the employed libraries are under a license that allows their free use.

• "Life-long learning", as I had to search different techniques to perform approximate
search.

• "Effective communication", as I had to write properly this thesis in English, using
the appropriate vocabulary and expressions of a technical academic work.

• "Specific tools", as I had to learn how to code in C++ because it was the language
that was used on the existing search engine.

Bibliography

[1] YATA, Susumu. Dictionary compression by nesting prefix/patricia tries. Proc. 17th
Meeting of the Association for Natural Language. 2011.

[2] BURKHARD, W. A. and KELLER, R. M. Some approaches to best-match file search-
ing. Communications of the ACM. 1 April 1973. Vol. 16, no. 4, p. 230–236.

[3] WAGNER, Robert A. and FISCHER, Michael J. The String-to-String Correction Prob-
lem. Journal of the ACM (JACM). January 1974. Vol. 21, no. 1, p. 168–173.

[4] S. Hanov. Fast and Easy Levenshtein distance using a Trie, 2011. http://
stevehanov.ca/blog/index.php?id=114.

[5] DAMERAU, Fred J. A technique for computer detection and correction of spelling
errors. Communications of the ACM, 1964, vol. 7, no 3, p. 171-176.

[6] HAUSER, Andreas W.; SCHULZ, Klaus U. Unsupervised learning of edit distance
weights for retrieving historical spelling variations. Proceedings of the First Workshop
on Finite-State Techniques and Approximate Search. 2007. p. 1-6.

[7] PUIGCERVER, Joan; TOSELLI, Alejandro H.; VIDAL, Enrique. Querying out-of-
vocabulary words in lexicon-based keyword spotting. Neural Computing and Appli-
cations, 2017, vol. 28, no 9, p. 2373-2382.

[8] PHILIPS, Lawrence. Hanging on the metaphone. Computer Language, 1990, vol. 7,
no 12, p. 39-43.

[9] TRE — The free and portable approximate regex matching library. https://
laurikari.net/tre/

[10] MARISA trie. https://github.com/s-yata/marisa-trie

[11] BK-Tree library. https://github.com/oliversno/BK-Tree

[12] DAWG-levenshtein. https://github.com/brmson/dawg-levenshtein

41

http://stevehanov.ca/blog/index.php?id=114
http://stevehanov.ca/blog/index.php?id=114
https://laurikari.net/tre/
https://laurikari.net/tre/
https://github.com/s-yata/marisa-trie
https://github.com/oliversno/BK-Tree
https://github.com/brmson/dawg-levenshtein

	Contents
	List of Figures
	List of Tables
	List of algorithms
	Introduction
	Motivation
	Objectives
	Thesis structure

	Description of the initial system
	Wildcard search
	Online techniques
	Regular expressions

	Offline techniques
	MARISA trie

	Approximate string search
	Online techniques
	The dynamic programming algorithm
	Regular expressions

	Offline techniques
	BK-Tree
	DAWG levenshtein

	Implementation and demonstrators
	Implementation
	Bentham demonstrator

	Experimental results
	Experiments on Bentham GT
	Wildcard search
	Approximate string search

	Experiments on Bentham
	Wildcard search
	Approximate string search

	Conclusions
	Future work
	Degree relationship
	Transversal competences

	Bibliography

