
Dept. of Information Technology and Electrical Engineering
ETH Zürich

Escola Tècnica Superior d’Enginyeria Informàtica

Universitat Politècnica de València

Machine Learning for Decoding Neuronal Activity
DEGREE FINAL WORK

Degree in Computer Engineering

Author: López Andrango, Kevin Danilo

Tutor: Juan Císcar, Alfonso

Course 2019-2020

A mis padres, que con su apoyo
incondicional han hecho esto posible.

Abstract

Calcium imaging has been proved to be an effective technique to record
in-vivo neural activity. In this work we present a probabilistic generative
model that attempts to capture the relationship between the stimulus
and the recorded neural activity. However instead of working with in-
ferred spikes from the recorded activity, we work with raw calcium image
data. Working with raw calcium image data as well as with visual stim-
uli presents the challenge of dealing with high dimensional spaces, in
our work we address this problem by means of variational autoencoders.
The parameter estimation of a conditional probability distribution from
which we can sample neural activity given a stimulus was done using
variational inference. We also present a method to validate the quality
of the generated samples.

ii

Contents

Contents iii

0 Prologue 1

1 Introduction 3

1.1 Motivation . 3

1.2 Related Work . 4

1.3 Setup . 4

2 Representation Learning 7

2.1 The Learning Problem . 7

2.2 Neural Networks . 10

3 MLE with Neural Networks 13

3.1 Neural Encoding . 13

3.2 Maximum Likelihood Estimation 13

4 Latent Representations 19

4.1 Disentangled Representation . 19

4.1.1 Graphical Models . 19

4.1.2 Evidence Lower Bound 21

4.1.3 Autoencoding Variational Bayes 24

4.1.4 β Variational Autoencoder 26

5 Probabilistic Neural Encoding 31

5.1 Proposed Graphical Model . 31

5.2 Results . 34

5.3 Validation . 37

5.3.1 Decoding . 37

5.3.2 Method . 37

iii

Contents

6 Conclusion 41

Bibliography 43

iv

Chapter 0

Prologue

This work was the result of my exchange year at the ETH Swiss Federal
Institute of Technology back in 2018/2019, where I had the chance to take the
lecture Neural Systems which was the seed originating the following thesis.
There I discovered the potential that a computer scientist can also have by
working in the intersection of both fields, neuroscience and computer science.

The project was originally offered by the Institute of Neuroinformatics and
supervised by Prof. Dr. Mehmet Fatih Yanik from the ETH Neurotechonlogy
group. The thesis was already graded but since there was no defense, which at
ETH is only required at graduate studies, I had to follow the UPV guidelines
resubmit my thesis and do a defense in order to give academic validity to my
work.

I would like to express my continued appreciation to my daily advisor, Dr.
Markus Marks, for his support and excellent advises while I was working on
the project.

1

Chapter 1

Introduction

In this introductory chapter we briefly present the motivation of the project
and the setup used to collect the data.

1.1 Motivation

Although not biologically plausible, artificial neural networks [12] can be
proved [2] to be powerful function approximators capable of discovering highly
non-linear relationships between two, assumed to be related, data sources. In
this work we make use of recently developed algorithms in the literature, that
implicitly use the universal approximation capability of feed-forward neural
networks to estimate intractable probability distributions.

D. H. Hubel and T. N. Wiesel proved in their seminal paper [6] that there exist
neurons that selectively fire to a specific stimulus’ feature such as degree of
inclination in the case of a white light bar as showed in [6]. With this in mind
one could hypothesize that the spatial topology of a set of activated neurons
at certain point in time, encodes the response to a presented stimulus, and
consequently if the encoding is unique a mapping of stimulus to neural data
can be assumed to exist, but of course that reductionist assumption is prone
to error, and the neural activity at certain point in time is not only due to a
presented stimulus, more factors that are out of control of the experimenter
are also present and affect the neural activity observed. This raises the ques-
tion of how we can take only the valuable information from the signal (the
neural activity) and discard the part of the signal that is not informative to
our purposes. Is here where we believe that unsupervised machine learning
techniques can help, and consequently they play a major role in our work.

Along the development of this project we wanted to investigate up to what
amount we can employ machine learning techniques to address the problem
of neural population encoding and decoding. Trying to follow a structural

3

1. Introduction

organization similar to a research paper, chapters 2 , 3 , 4 can bee seen as the
methods part, in those chapters a detailed explanation of the required theory
to understand our work is presented. In chapter 5 we present the main result
of our work, and finally in chapter 6 we end with the conclusions.

1.2 Related Work

To the best of our knowledge not so many work has been done on using raw
calcium image data to design and train generative models of neural activity,
nevertheless the variational inference framework , that plays a major role in
our work, has been successfully applied to the analysis of neural spike activity
and different researchers in the community have worked within this framework.
A recent example can be seen in [11] in which the authors propose a generative
model of cortical responses using sequential variational auto encoders.

Neural networks in general have also been used to predict spiking activity
in response to natural images [1], further interesting work with relation to
neuroscience has also been done and the interested reader is referred to [8], [3],
to see more examples. We believe that these examples demonstrate empirically
that the understanding and correct use of artificial neural networks can help
neuroscientific research, and even though there exists certain skepticism in
the neuroscience community about their inclusion as a common method to
employ while doing research, this skepticism is mostly argued based on the
lack of interpretation that a neural networks offers, however we believe that
when we are dealing with highly dimensional data with thousand of degrees of
freedom interpretation cannot be well defined, and therefore a well designed
experiment that at some stage makes use of neural networks, should allow to
empirically test the results without a strong dependency on the interpretation
of the trained artificial neural network.

1.3 Setup

In order to carry out our work first a recording experiment was designed in
which a continuous random walk of stimulus with the shape of a ball was pre-
sented to mildly anesthetized rats. A glass window was implanted in the brain
region of interest, and then the imaging was done using 1-phothon widefield
calcium imaging using the indicator GCaMP6f, this indicator was previously
transfected to the rats via a virus. The presentation of the stimuli and the
acquisition of the neural data was done using a Nikon AZ100 and custom
python software. In figure 1.1 we can see a diagram of setup used. After
the neural data was acquired standard motion correction algorithms as well
as image enhancement techniques were applied to improve the quality of the
recordings.

4

1.3. Setup

Figure 1.1: Setup of the recording.

5

Chapter 2

Representation Learning

In this chapter we introduce the principle of Empirical Risk Minimization [13]
that proposes a framework to design algorithms with the objective of solving
the learning problem, we follow this principle to perform neural population
decoding in future chapters. In addition to it, the machine learning model
that we use along this thesis will also be presented.

2.1 The Learning Problem

In the following we will consider the problem of object classification, in which
we represent an object as a variable x, and its corresponding class as a cate-
gorical or discrete variable c which takes values in {1, 2, . . . , k}, where k is the
total number of classes 1. We will assume that there exists a function that
perfectly maps every object to its class

c = f∗(x) (2.1)

which is of course unknown for us. Therefore our objective will be to find a
function f̂ within a set of functions such that

f∗(x) ≈ f̂(x) (2.2)

for all x in the object space. Having established our objective, remains the
question of how we can design an algorithm that provides us with the proper
function f̂ . A natural approach for obtaining our desired function f̂ , can
be deviated inspired on how we learn to recognize objects. Usually a set of
examples is presented to the learner and based in our inherent ability to gen-
eralize, we use the previous set of examples to further classify unseen objects.
Consequently an algorithm A that mimics that procedure will also need a set
of examples. The previous defined procedure is what in the literature is also

1We should keep in mind that no particular representation of the object x is assumed.

7

2. Representation Learning

f̂ ∈ H

D

A

Figure 2.1: Abstract representation of the learning algorithm.

know as supervised learning, in this setting we usually represent a set of ex-
amples as a dataset D = {(x(1), c(1)), (x(2), c(2)), . . . , (x(n), c(n))} in which each
tuple in the set contains an object and its corresponding class, the diagram
in figure 2.1 can serve as an illustration of how supervised learning works, an
input D is passed to A and as output we get a hypothesis f̂ .

Having defined an abstract procedure to mimic the process of learning, we can
now move into the problem of how the algorithm will choose a proper function
from a given set of functions that we call the hypothesis space H. This is done
by establishing a partial ordering in the hypothesis space such that for all the
functions fi within H we have

f̂1 ≤ f̂2 ≤ f̂3 ≤ f4 . . . (2.3)

this partial ordering is induced by the algorithm A and a function R, usually
called risk, that evaluates how well a particular hypothesis f̂ performs relative
to the assigned task, R can be more formally defined as

R : H −→ R (2.4)

f̂ 7−→ e (2.5)

The reader should keep in mind that by selecting a risk function R among
others, we are imposing a bias towards some particular functions, and it can
be the case that R ranks f̂i < f̂j but it’s actually fj who better approximates
the true but unknown function f∗.

At this point we would like emphasize that it might be foolish to assume that
an observation x that comes from nature does not carry any inherent noise,
therefore in the following we will define an observation x as

x = Object + ε (2.6)

8

2.1. The Learning Problem

this addition of uncertainty to our observations lead us to naturally work in
the framework of probability theory and therefore we will assume the existence
of an unknown probability distribution of the observations p(x). Within this
framework any function that we define on the random variable x will implic-
itly define a new probability distribution, hence f∗ will implicitly define a
probability distribution p(c |x), we make this point here in order to justify
the following derivations.

For now on assume that we have access to f∗ and our algorithm A has given
us one particular f̂ . A common approach in the context of object classification
is to define R as

R(f∗(x), f̂(x)) =

{
1 if f∗(x) 6= f̂(x)

0 otherwise
(2.7)

once we defined a risk function a reasonable next step will be to minimize the
following expectation

E[R(c, ĉ)] =
∑
c

(∫
R
R(c, ĉ) p(c,x) dx

)
(2.8)

where ĉ = f̂(x) and where the joint probability distribution p(c,x) is obtained
by the definition of conditional probability

p(c,x) = p(c |x)p(x) (2.9)

we can see equation 2.8 as a functional over the hypothesis space H that maps
a function to the expected risk of miss classifying a random sample. Therefore
our objective can be stated as follows:

arg min
f̂∈H

F(f̂) = E[R(c, ĉ)] (2.10)

however as it’s obvious p(c,x) is unknown to us, which implies that it’s im-
possible to minimize the above equation. Nevertheless by the law of large
numbers we know that we can estimate the expectation by:

E[R(c, ĉ)] ≈ 1

N

N∑
i=1

R(c(i), f(x(i))) (2.11)

and in the limit the result will converge to the true expectation, the N samples
that we use to approximate the expectation are the samples that belong to
our dataset D, and we assume that each tuple inside D is sampled from the
true joint distribution p(c,x). We call the above equation the empirical risk,
since it depends on empirical data.

9

2. Representation Learning

What the principle of Empirical Risk Minimization states is that the learning
algorithm A should a output hypothesis function f̂∗ such that

f̂∗ = arg min
f∈H

1

N

N∑
i=1

R(c(i), f(
(i)
x) (2.12)

and we hope that although that learning algorithm doesn’t have full access to
the true distribution of the data, p(c,x), the returned hypothesis will general-
ize to new unseen samples, machine learning models such as neural networks
in conjunction with their training algorithms follow this principle. Theoretical
guarantees of the ERM principle have been shown for the learning problem
but will not be presented in this thesis, the interested reader can look for more
information in [14].

2.2 Neural Networks

Back in the 80’s David E. Rumelhart, Geoffrey E. Hinton & Ronald J. Williams
published their seminal paper ’Learning representations by back-propagating
errors’, in which they successfully applied the backpropagation algorithm (al-
ready know in the control theory literature) to train a multi-layer perceptron
also know as a feed-forward neural network. Neural networks have gained high
popularity among the last years due to their outstanding results in fields such
as computer vision or natural language processing.

Neural networks enter within the gradient based learning approach in which a
differentiable risk function L (θ), also known as loss or error, is used to guide
the optimization method. We emphasize the importance of being differentiable
since due to this constraint the 0-1 loss function cannot be used in the learning
algorithm in case we are dealing with a classification problem. A diagram of
the model can be seen in figure 2.2, for a more detailed detailed description
we refer the reader to [12].

At a glance a neural network can be defined as composite parametrized func-
tion that process the input X0 by a set of feed-forward layers, this can bee
seen better in the following way

Xn = F (Yn) (2.13)

Yn = WnXn−1 (2.14)

in which Wn represents the weights of the model at layer n, one mandatory
requirement that this type of functions should have it’s a non-linear differen-
tiable function in at least one layer. As described in [12] the training consists
on recurrently updating the weights of the model by applying the following

10

2.2. Neural Networks

...

...
...

Input
layer

Hidden
layer

Ouput
layer

Figure 2.2: Diagram of a Neural Network with one hidden layer

equations [9]

∂L

∂Yn
= F ′(Yn)

∂L
∂Xn

(2.15)

∂L
∂Wn

= Xn−1
∂L
∂Yn

(2.16)

∂L
∂Xn−1

= W T
n

∂L
∂Yn

(2.17)

gradient descent can be now applied to minimize the loss function L.

11

Chapter 3

MLE with Neural Networks

In this chapter we briefly present the assumptions that we take in order to
perform neural population encoding with the recorded data, we also review
maximum likelihood estimation of probability distributions parametrized by
artificial neural networks, which will help us in the encoding task.

3.1 Neural Encoding

In our approach we assume that the relation between the neural activity and
the stimulus follows an invertible deterministic mapping

x = F(s) (3.1)

in which s represents the stimulus and x represents the neural activity. In
our work we aim to find F as well as F−1. However due to the nature of the
data and the techniques we use to record the neural activity, it is reasonable
to expect that an observation x carries some implicit noise, and therefore the
mapping of our observations actually follow

x = F(s) + ε (3.2)

and consequently instead of trying to find F we should try to estimate p(x|s).
Before addressing the problem of estimating p(x|s) we will first introduce to
the reader an easy example of how we can make use of feed-forward neural
networks in the context of maximum likelihood estimation.

3.2 Maximum Likelihood Estimation

As explained in the introduction we used a random walk to generate the
stimulus dataset S = {s(1), s(2), . . . , s(n)}, each s(i) is represented by a vector
in BM in which B = {0, 1}, this binary representation allows us to easily define

13

3. MLE with Neural Networks

a probability distribution of a stimulus s, by assuming statistical independence
between neighbors pixels so that the distribution of s can be factorized as

p(s ; θ) =
∏
j≤M

p(sj ; θ) (3.3)

in which each p(sj ; θ) follows a bernoulli distribution Bern(λ). Although
one can argue that the assumption of independence between pixel neighbors
does not match reality, we will see later on that for the purpose of modeling
simple visual stimulus does not suppose a big problem, nevertheless if more
complicated stimulus are needed to be modeled one can stablish a partial
ordering over the set of al pixels and factorize the probability distribution as
follows

p(s ; θ) =
∏
j≤M

p(sj |sj−1, sj−2, . . . , s1 ; θ) , (3.4)

this type of models are called autoregressive models.

After fitting p(s ; θ) we will be able to assign probabilities to any possible bi-
nary visual stimulus, and for instance, in a regression or classification setting
in which s is the ground truth and ŝ is the estimate log pθ(s = ŝ) can serve
as metric to measure the quality of the estimation. However for future exper-
iments we would like to not only be able to assign probabilities, but also to
control how the stimulus is generated based on a set of representative features
that are in control of the experimenter. These set of representative features
should be as small as possible so that few degrees of freedom are involved in
the experiment.

In the context of visual stimulus that lives in a high dimensionality space, the
choice of which features are representative is highly non-trivial for instance
when we deal with natural images, we believe that this choice should be made
as objectively as possible, and for that purpose latent variable models play a
major role as we will see in future chapters. Since in our project the stimu-
lus is just a circular blob with fixed radius that moves around a square, we
temporarily take the freedom to assume that the set of representative vari-
ables is formed by the x and y coordinates of the plane that are located in
the middle of the blob, this assumption will be avoided in the next section
and we take it here just to easily show the use of neural networks on fitting
probability distributions. In figure 3.1 we can see a set visual stimulus with
centroid coordinates in red.

The visual stimulus dependence on the centroid will be modeled as follows

p(s | c ; θ) =
∏
j≤M

p(sj ; F(c)j) (3.5)

in which the vector of parameters θ is produced by the output of the function
F(c), note that as can bee seen in the above equation, F provides the λ

14

3.2. Maximum Likelihood Estimation

Figure 3.1: Visual stimulus with the computed centroid at different time
steps of the random walk.

parameter for each bernoulli probability distribution that governs a pixel in
the image as we defined in 3.3. A slightly more formal definition of F is

F : C −→ RM (3.6)

c 7−→ θ (3.7)

The decision of modeling the dependence by a non linear deterministic function
allows us to given input coordinates sample visual stimulus from p(s | c ; θ) i.e
we can control the generation of visual stimulus and therefore create patterns
of stimuli with just a set of representative features, in our case the centroids.

As stated at the start of the section 3.1, we will perform maximum likelihood
estimation to fit each of the p(sj | c ; θ), and we will use a feed-forward neural
network to approximate F(c) with F(c,W) in which W represents the weights
of the neural network. In order to work in a supervised setting, for each
s(i) we computed it’s respective centroid and we formed a new dataset S ′ =
{(s(1), c(1)), . . . , (s(i), c(i))}, in which c(i) represents the centroid, in figure 3.2
we can see a scatter plot of all the computed centroids, as expected, given
that we used a random walk to generate the blobs, most of the space is filled.

The sum of the individual likelihoods

L(W) =
N∑
i

log p(s(i)|c(i) ; F(c(i),W)) (3.8)

=
N∑
i

M∑
j

log p(s
(i)
j ; θj) (3.9)

=
N∑
i

M∑
j

s
(i)
j log θj + (1− s

(i)
j) log(1− θj) (3.10)

will be used as the function to optimize. While implementing the above func-
tion one should take care of numerically stability so it’s recommended to use

15

3. MLE with Neural Networks

15 20 25 30 35 40 45

x

10

20

30

40

50

y

Centroid Space

Figure 3.2: Centroids of genereated by the random walk.

instead

L(W) =

N∑
i

M∑
j

s
(i)
j log(θj + ε) + (1− s

(i)
j) log(1− θj + ε) (3.11)

in which epsilon is arbitrarily small. As a matter of routine we use mini-batch
gradient ascend to find

W ∗ = arg maxL(W) , (3.12)

the reader should keep in mind that in the literature stochastic gradient de-
scent is normally used as synonym to mini-batch gradient descent, we make
this point since in future chapters we will use SGD as it’s properly defined,
using only one sample to update the weights, the details of the neural net-
work architecture used for this model are omitted since just a fully connected
model will do the job, in figure 3.3a we can see a plot of the loss function
per evaluated batch, the plot clearly shows that the non-convex optimization
process converges fast towards a local minimma.

Once we have found W ∗ we implicitly have fitted p(s | c ; θ) for each s ∈ S. As
mentioned before we can make use of p(s | c ; θ) as a metric or as an anomaly
detector in case we are in working in a neural decoding experiment. For the
purpose of illustration consider that for a fixed stimulus s0 and it’s centroid
c0 = [x, y] we compute the respective θ0 via F(c0,W

∗) which also provides us
p0, if now we keep fixed x and we vary y uniformly to obtain a small set of of
visual stimulus {si}ki=1 via sampling from their respective pi, we would expect
to have a curve

y = log (p0 (si | c0 ; θ0)) (3.13)

16

3.2. Maximum Likelihood Estimation

a

0 0.5 1

·105

−3,000

−2,000

−1,000

0

Samples Evaluated

L

b

0 2 4 6 8 10 12 14
−2000

−1500

−1000

−500

0

Figure 3.3: (a) Sum of the individual elbos per processed batch during the
training. (b) Plot of the log of p0 for each stimulus in {si}ki=1

with a peak in the vicinity of s0. Figure 3.3a shows the curve we got, in which
the stimulus with the yellow background is s0, as expected the samples that
fall far away of s0 get much less probability from the ones that fall more near
to s0.

We conclude this chapter by summarizing the important insights that will
allow us to further progress in our attempt to estimate p(x|s) :

• Neural Networks are able to capture highly-non linear relationships be-
tween two sources of data.

• We can easily use neural networks to model the paremetrization of a
probability distribution.

17

Chapter 4

Latent Representations

In the previous chapter we showed a simple example of how we can control
the generation of a visual stimulus, however a necessary step was to first hand
compute a set of features that we assumed control the generative process,
whereas this can be done in the case of simple visual stimulus, when more
complex images are involved, the choice of which features should be selected
might led to different interpretations when asked to different experimenters.
In order to try to address this issue, in this chapter we will introduce the vari-
ational autoencoder [7] and later on a modification of it named β-variational
autoencoder [5] which adds a structural bias in the latent factors that will suit
our needs.

4.1 Disentangled Representation

Even though the community still lacks a proper theoretical definition of what
disentanglement in the latent factors means, an intuitive description can be
made if we consider an observation as a set of independent ground truth
features, the variation of a disentangled latent factor of the observation will
only affect one feature and no others. Before diving on how we can obtain a
set of disentangled latent factors from one observation we first need to briefly
introduce graphical models.

4.1.1 Graphical Models

We can decompose the underlying generation of a visual stimulus into two
steps:

1. First a set of hidden latent variables is sampled from a probability dis-
tribution p(z ; θ). These latent variables might represent correlated or
disentangled features of the visual stimulus such as shape, color, position
and so on.

19

4. Latent Representations

N

s

z

Figure 4.1: Graphical model of the generation of a stimulus.

2. We use the sampled latent variables to generate a visual stimulus by
sampling from p(s | z ; θ),

In figure 4.1 we can see a graphical representation of the described process,
the shadow nodes represent observed variables and the white nodes repre-
sent hidden variables, the edges represent a conditional structure on the joint
probability distribution which allows us to factorize it as

p(s, z ; θ) = p(s | z ; θ)p(z ; θ), (4.1)

the N at the bottom represents the number of repetitions or observed samples.
The example showed in the previous section 3.2 can be described as a graphical
model in which all the variables involved were observed.

Usually a group of observations assumed to be produced by the graphical
model is collected in a dataset D = {s(1), s(2), . . . , s(n)}, in this scenario the
latent factors z corresponding to each observation in D are unknown to us as
well as θ∗. In order to obtain θ∗ we can attempt to compute the likelihood of
the observations

L(θ) =
∏
i≤N

p(s(i) ; θ) (4.2)

and find the θ∗ by arg maxθ L(θ), however the marginal distribution

p(s ; θ) =

∫
p(s | z ; θ)p(z ; θ) dz (4.3)

depending of how the latent factors are defined might be intractable to com-
pute, this implies that the posterior distribution of the latent variables

p(z | s ; θ) =
p(s | z ; θ)p(z ; θ)

p(s ; θ)
(4.4)

20

4.1. Disentangled Representation

is also intractable since it involves the computation of the marginal p(s ; θ)
in the denominator, this fact supposes us a problem since we want to discover
what represents each latent factor and how a variation affects the observed
stimulus. In order to bypass this issue we will introduce in the next sub-
section a lower bound of the marginal distribution 4.3, that will allow us to
approximate the intractable posterior distribution 4.4.

4.1.2 Evidence Lower Bound

The lower bound of the marginal distribution p(s ; θ) can be derived in two
different ways, the key in both derivations is the introduction of a parametrized
variational posterior q(z | s ; φ) that we will approximate towards p(z | s ; θ)
so that in a local minimma φ∗ of an optimization criterion we will have that

q(z | s ; φ∗) ≈ p(z | s ; θ∗) , (4.5)

this variational posterior is usually selected from a family of probability distri-
butions that are more tractable to compute than the true posterior p(z | s ; θ).
A common choice is to define q(z | s ; φ) as a factorized probability distribution
over the latent factors

q(z | s ; φ) =
∏
j≤M

q(zj | s ; φi) (4.6)

but in some cases this factorized assumption is to strong, and normally the
true posterior does not live in the space of factorized probability distributions,
we will see along this section how we can relax this assumption.

Before starting with the first derivation of the lower bound we recall to the
reader the Jensen’s inequality which in the context of probability theory states
that for any concave function the following inequality holds

ϕ (E[X]) ≥ E [ϕ(X)] . (4.7)

Note that equation 4.3 can also be seen as

p(s ; θ) = Ez∼pθ(z)

[
p(s | z ; θ)

]
(4.8)

and we can change under which probability distribution the expectation is
taken by introducing q(z | s ; φ) as follows

Ez∼pθ(z)

[
p(s | z ; θ)

]
=

∫
p(s | z ; θ)p(z ; θ)dz (4.9)

=

∫
p(s | z ; θ)p(z ; θ)

q(z | s ; φ)

q(z | s ; φ)
dz (4.10)

=

∫
p(s, z ; θ)

q(z | s ; φ)

q(z | s ; φ)
dz (4.11)

= Ez∼q(z | s;φ)

[
p(s, z ; θ)

q(z | s ; φ)

]
(4.12)

21

4. Latent Representations

by taking logarithm on both of sides of 4.11 and applying Jensen’s inequality
we obtain what in the literature is called the evidence lower bound or elbo

log p(s ; θ) = log

(∫
p(s, z ; θ)

q(z | s ; φ)

q(z | s ; φ)
dz

)
≥
∫

log

(
p(s, z ; θ)

q(z | s ; φ)

)
q(z | s ; φ)dz

= Ez∼q(z | s;φ)

[
log p(s, z ; θ)− log q(z | s ; φ)

]
(4.13)

if we re-arrange the terms inside the expectation we can conclude that

log p(s ; θ) ≥ Ez∼q(z | s;φ)

[
log p(s | z ; θ)

]
+ Ez∼q(z | s;φ)

[
log

p(z ; θ)

q(z | s ; φ)

]
= L(s, φ, θ) (4.14)

in which L stands for the evidence lower bound. From the above inequality it
might not seem very clear when the equality in the upper bound for the elbo
is achieved, the second way of the deriving the elbo will make this point more
clear.

In order to proceed to the second derivation we first need to introduce to
the reader one non-symmetric dissimilarity measure between two probability
distributions which is well know in information theory. This dissimilarity
measure is called the Kullback-Leibler divergence and is defined for continuous
random variables as

DKL(P ‖ Q) =

∫ ∞
−∞

p(x) log

(
p(x)

q(x)

)
dx (4.15)

this dissimilarity measure is going go to be the optimization criterion we men-
tioned before to make q(z | s ; φ) ≈ p(z | s ; θ) as close a possible, therefore
our objective becomes now to find φ∗ such that

φ∗ = arg min
φ

DKL(q(z | s ; φ) ‖ p(z | s ; θ)) . (4.16)

22

4.1. Disentangled Representation

The divergence in 4.16 can also be expressed it the following way

DKL(q(z | s ; φ) ‖ p(z | s ; θ)) = (4.17)

=

∫
p(z | s ; φ) log

(
q(z | s ; φ)

p(z | s ; φ)

)
dz (4.18)

=

∫
q(z | s ; φ) (log q(z | s ; φ)− log p(z | s ; θ)) dz (4.19)

=

∫
q(z | s ; φ) log q(z | s ; φ)−

∫
q(z | s ; φ) log p(z | s ; θ) dz (4.20)

= Ez∼q(z | s;φ)

[
log q(z | s ; φ)

]
−
∫
q(z | s ; φ) log

(
p(z, s ; θ)

p(s ; θ)

)
dz (4.21)

= Ez∼q(z | s;φ)

[
log q(z | s ; φ)

]
−
∫
q(z | s ; φ) log p(s, z ; θ)dz

+ log p(s ; θ)

∫
q(z | s ; φ)dz (4.22)

= Ez∼q(z | s;φ)

[
log q(z | s ; φ)

]
− Ez∼q(z | s;φ)

[
log p(s, z ; θ)

]
+ log p(s ; θ)

(4.23)

note the dependence on the intractable p(s ; θ) on 4.23 which implies that we
cannot compute the DKL(q(z | s ; φ) ‖ p(z | s ; θ)) explicitly. By rearranging
terms in the equality we can observe that

log p(s ; θ) = DKL(q(z | s ; φ) ‖ p(z | s ; θ)) + Ez∼q(z | s;φ)

[
log p(s, z ; θ)

]
− Ez∼q(z | s;φ)

[
log q(z | s ; φ)

]
(4.24)

and since it is well know that DKL ≥ 0 we arrive again, to the same evidence
lower bound as we derived before in 4.14

log p(s ; θ) = DKL(q(z | s ; φ) ‖ p(z | s ; θ)) + Ez∼q(z | s;φ)

[
log p(s, z ; θ)

]
−

Ez∼q(z | s;φ)

[
log q(z | s ; φ)

]
≥ Ez∼q(z | s;φ)

[
log p(s, z ; θ)

]
− Ez∼q(z | s;φ)

[
log q(z | s ; φ)

]
= Ez∼q(z | s;φ)

[
log p(z | s ; θ)

]
+ Ez∼q(z | s;φ)

[
log

p(z ; θ)

q(z | s ; φ)

]
= L(s, φ, θ) (4.25)

however with this way of deriving the elbo we can see that equality in the upper
bound is achieved whenDKL(q(z | s ; φ) ‖ p(z | s ; θ)) = 0 which happens when
the variational posterior and the true posterior are equal. This fact give us
the theoretical guarantee that by maximizing the elbo we are making progress
on the attempt to make q(z | s ; φ) ≈ p(z | s ; θ).

The experimented statistician will note that the second term of equation 4.25
is in fact the negative Kullback Leibler divergence between the prior p(z ; θ)

23

4. Latent Representations

and the variational posterior q(z | s ; φ), therefore from now on we will define
the elbo as

L(s, φ, θ) = Ez∼q(z | s;φ)

[
log p(z | s ; θ)

]
−DKL(q(z | s ; φ) ‖ p(z ; θ)) (4.26)

4.1.3 Autoencoding Variational Bayes

Once we have derived the evidence lower bound we can return to our initial
objective and try to find θ∗ by lower bounding equation 4.2 as follows

arg max
θ

L(θ) = arg max
θ

logL(θ) = arg max
θ

∑
i≤N

log pθ(s
(i))

≥ arg max
φ,θ

∑
L(s(i), φ, θ) (4.27)

ideally we would like to maximize the sum of individual elbos by gradient
ascent, for that purpose we need to be able to compute the gradients of the
above equation with respect to φ as well as for θ

∇φ,θ
∑
L(s(i), φ, θ) =

∑
∇φ,θL(s(i), φ, θ) (4.28)

to declutter notation we will avoid the index i of each respective stimulus s(i).
If there is no closed form solution to the expectations one can resort to Monte
Carlo approximation to compute an approximation, since by the law of large
numbers we have that∫

f(x)p(x) dx = E[f(x)] ≈ 1

N

∑
i≤N

f(xi) (4.29)

where xi ∼ p(x), the requirement to use this method is that the terms inside
the integral must factorize as product of a function and a probability distri-
bution, with this in mind we can easily approximate the gradient with respect
to θ as we can see below

∇θL(s, φ, θ) = ∇θ
(
Ez∼q(z | s;φ)

[
log p(s, z ; θ)

]
− Ez∼q(z | s;φ)

[
log q(z | s ; φ)

])
= Ez∼q(z | s;φ)

[
∇θ log p(s, z ; θ)

]
≈
∑
i≤N
∇θ log p(s(i), z(i) ; θ)

(4.30)

the problem comes with gradient with respect to the variational parameters
φ since

∇φL(s, φ, θ) = ∇φ Ez∼qφ(z | s)
[

log p(s, z ; θ)
]
−∇φ Ez∼qφ(z | s)

[
log qφ(z | s)

]
=

∫
log p(s, z ; θ)∇φq(z | s;φ)dz

−
∫
∇φ (log(q(z | s ; φ)q(z | s;φ)) dz (4.31)

24

4.1. Disentangled Representation

and therefore we cannot estimate the gradient with respect to φ using a Monte
Carlo approach. In order to solve this issue two families of estimators have
been proposed in the literature [15]. One family uses the fact that

∇f(x) = f(x)∇ log f(x) (4.32)

which allows us to obtain the following estimator

∇θ Ez∼pθ(z)[f(z)] = Ez∼p(θ)[f(z)∇θ log pθ(z)] ≈
∑
i≤N

f(zi)∇θ log pθ(zi) (4.33)

the other family is the one introduced by Kingma and Welling in their seminal
paper [7], they propose a trick known as the reparametrization trick, which
allows us to easily compute an estimator of the gradient of the expectation.
The reparametrization trick comes from the fact that given a random variable
z following a conditional distribution q(z |x), a random variable ε following
p(ε), and a deterministic mapping z = gφ(ε,x), in the limit we have

q(z |x)dz = p(ε)dε (4.34)

which allow us to state that [7]∫
f(z)q(z |x)d z =

∫
f(z)p(ε)dε

=

∫
f (gφ (ε,x)) p(ε) dε (4.35)

and therefore the gradient of 4.31 can now be computed as

∇φL(s, φ, θ) = ∇φ Ez∼q(z | s;φ)

[
log p(s, z; θ)

]
−∇φ Ez∼q(z | s;φ)

[
log q(z | s;φ)

]
= ∇φ

∫
log pθ(s, z)qφ(z | s) dz−∇φ

∫
log qφ(z | s)qφ(z | s) dz

= ∇φ
∫

log pθ(s, z)p(ε) dε−∇φ
∫

log qφ(z | s)p(ε) dε

=

∫
∇φ log pθ(s, z)p(ε) dε−

∫
∇φ log qφ(z | s)p(ε) dε

= Eε

[
∇φ log pθ(s, z)

]
− Eε

[
∇φ log qφ(z | s)

]
≈
∑
i≤N
∇φ log pθ(s, gφ (εi, s))−∇φ log q(gφ (εi, s) | s) (4.36)

this remarkable fact will be our workhorse for the rest of the thesis. Note that
in case there is an analytical solution for the Kullback-Leibler divergence in
the elbo the gradient can be estimated as

∇φL(s, φ, θ) ≈
∑
i≤N
∇φ log pθ(s |gφ (ε, s))−∇φDKL(q(z | s ; φ) ‖ p(z ; θ))

(4.37)

25

4. Latent Representations

which shows less variance than the previous estimator [7]. Now that we can
compute the gradients of the elbo we can maximize equation 4.27 by gradient
ascent and at the end of optimization process q(z | s;φ) will serve as a proxy
for the true posterior and therefore we can estimate the latent variables z for
a given stimulus s.

Nothing has been said about where feed-forward neural networks come into
play in this process, this can bee easily seen if we remember the example
showed in section 3.2 in which a feed-forward neural network modeled the
dependence on the parameters of a probability distribution, in this case

q (gφ (s, ε) | s) = Fz(s, ε;W) (4.38)

in which F represents a neural network, and the same for

pθ(s | z) = Fs(z;W) (4.39)

this way of modeling allow us to capture complicated non-linear relationships
between the latent factors and the stimulus and plays a major role in our
work. The readers with some experience in autoencoders will recognize the
autoencoding structure that the elbo reveals in which the latent factors can
be considered as the lower dimensionality representation of a sample, this
gives name to how this type of latent models are called in the deep learning
literature in which are usually named as variational autoencoders.

As a last comment in this subsection we would like to emphasize that along
all the derivations we did not make the assumption of working with a factor-
ized variational posterior probability distribution, which greatly increases the
modeling capacity.

4.1.4 β Variational Autoencoder

In the previous section we introduced the variational autoencoder which allows
us to compute qφ(z | s) and it was shown that the function to optimize 4.26
contains the negative Kullback-Leibler divergence between the posterior and
the prior

DKL(qφ(z | s) ‖ pθ(z)) (4.40)

this term forces the qφ(z | s) to be as close as possible to pθ(z) and therefore
the choice of the prior imposes some bias towards a family of probability
distributions. It is common in the literature to see pθ(z) as

pθ = N (0, I) (4.41)

this choice of prior forces the posterior latent variables to be independent,
however this does not happen in practice because when the unsupervised op-
timization process has finished the DKL term is usually not zero, and if that is

26

4.1. Disentangled Representation

the case we should be concerned since it implies that qφ(z | s) is not using any
possible information contained in s and it just outputs random latent factors.

In [5] the authors proposed a method to make the latent factors independent
and still use the information contained in s, they assume that the set of
latent factors is divided into two disjoint groups, one group v of conditional
independent factors such that the true posterior of v factorizes as

p(v| s) =
∏
j≤M

p(vj | s) (4.42)

and other group m of dependent factors, with this assumption the observations
are generated according to p(s |v,m). They argue that in order to encourage
disentanglement in the variational posterior, the following function should be
optimized

L(θ, φ, β) = Ez∼q(z | s;φ)

[
log p(z | s ; θ)

]
− βDKL(q(z | s ; φ) ‖ p(z ; θ)) (4.43)

in which β ≥ 0. Depending on the value of β we vary the pressure applied to
variational posterior to match the unit gaussian and therefore we are at the
same time encouraging the disentanglement. This β variational formulation
comes from a Lagrangian and the interested reader can see the derivation in
[5].

In our work we make use of the presented formulation to obtain the indepen-
dent latent factors of the stimulus, the reader should notice that the selection
of the number of the latent factors as well as the selection of the β is not trivial
and should be taken with care, different sizes and values of β can be tested
and one can select proper values based on the tradeoff between the quality
of the samples or the disentanglement and the size of the latent factors. In
figure 4.2 and 4.3 we can see the results after the training has finished, the
architecture of the neural network is summarized in.

In future chapters we will make use of the obtained latent factors of the
stimulus to control the generation of neural activity.

27

4. Latent Representations

a

0 10 20 30 40 50 60 70 80 90 100

−2,000

−1,000

0

Epoch

L

Train
Test

b

0 10 20 30 40 50 60 70 80 90 100

4

5

6

Epoch

D
K

L

Figure 4.2: (a) The training and test values of the elbo per epoch obtained
during the optimization process. (b) Kullback-Leibler term with a coefficient
β = 5, the start of the training clearly reflects how the algorithm balances
the tradeoff between a higher value of DKL and a better quality of the recon-
structions.

28

4.1. Disentangled Representation

a

x

y

zInput Stimulus Mode of p(s | z)

x

y

b

15 20 25 30 35 40 45

x

10

20

30

40

50

y

Centroid Space

c

−2 −1 0 1 2

x

−2

−1

0

1

2

3

y

Embedded Space (B-VAE)

d

z
E

[s
|z

]

e

z
E

[s
|z

]

f

x

y

z1

−1

0

1

g

x

y

z2

−1

0

1

Figure 4.3: (a) Latent factors z and the reconstructions obtained by ploting
the mode of pθ∗(s|z) for two random input stimulus.(b)(c) Comparison of
the centroid space obtained by the β-vae and the hand computed centroid
space.(d)(e) Samples from pθ∗(s|z = [x, y]) keeping x fixed and varying y
according to the inverse cdf of p(z) and viceversa.(f)(g) Value of the respective
variable zi for a grid of blob positions uniformly sampled from the stimulus
space.

29

Chapter 5

Probabilistic Neural Encoding

In this chapter we make use of the theory presented in the previous chapters,
to propose a graphical model that attempts to capture the relationship be-
tween the stimulus presented to mice and the corresponding generated neural
activity.

5.1 Proposed Graphical Model

We recall to the reader our initial objective which was to obtain pθ(x | s) in
which x represents the neural activity and s represents the stimulus, so that
given a stimulus we can sample neural activity. To make the inference more
tractable we will assume that there is a set of latent variables z that depends
on the input stimulus s, the neural activity is then generated according to
pθ(x | z), this process can be summarized in the following generative model

s ∼
N∏

Bern(λi) (5.1)

z | s ∼ N (µz,Σz) (5.2)

x | z ∼ N (µx,Σx) (5.3)

The joint probability distribution of the generative model can be factorized
as follows

pθ(x, z, s) = pθ(x | z) pθ(z | s) pθ(s) (5.4)

under this factorization we are going to make an important assumption about
the dependence of the latent factors z in s, we will assume that

pθ(x, z, s) = pθ(x | z) pθ(z | s) pθ(s) (5.5)

= pθ(x | z) pθ(z | zs) qφ(zs| s) (5.6)

in which qφ(zs| s) is the variational posterior obtained in the previous chapter
with the β-variational autoencoder, this allows us to generate neural activity

31

5. Probabilistic Neural Encoding

N

ct zt xt

Figure 5.1: Proposed graphical model of the relationship between the neural
activity and the centroid of the stimulus in which xt represents the neural
activity, z represents the latent factors of the neural activity and ct represents
the centroid coordinates.

with just a set of latent factors of the stimulus and if those latent factors
are disentangled we have even more control on the generative process, as an
example we can take one latent variable and vary it while keeping the others
fixed to see how the generated neural activity responds and therefore study
the influence of the varied latent factor, this would not be possible if the latent
factors are entangled because the change of one factor affects the others.

In the following and to make the notation more easy we will refer to qφ(zs| s)
as qφ(c | s) in which with c we refer to the centroid of the stimulus s i.e c := vs.
In figure 3.1 we can see a graphical model of the observed variables {x, c} and
the hidden latent factors z of the neural activity.

In order to make inference on the hidden latent factors z of the neural activity
we can make use of the observed variables {x, c} and therefore compute the
following posterior

pθ(z |x, c) =
pθ(z,x, c)

pθ(x, c)
(5.7)

=
pθ(x | z) pθ(z | c) qφ(c | s)∫

pθ(x, z, c) dz

(5.8)

=
pθ(x | z) pθ(z | c)∫
pθ(x | z) pθ(z | c) dz

(5.9)

to further simplify the posterior distribution we will make use of the following
simple observation

p(x | z, c) =
pθ(x | z) pθ(z | c) qφ(c | s)

pθ(z | c) qφ(c | s)

∫
pθ(x | z) dx

(5.10)

= pθ(x | z) (5.11)

32

5.1. Proposed Graphical Model

which allows us to simplify the denominator in 5.9 by applying bayes rule as
follows ∫

pθ(x | z) pθ(z | c) dz =

∫
pθ(x | z, c) pθ(z | c) dz (5.12)

=

∫
pθ(x, z, c)

pθ(z, c)

pθ(z, c)

pθ(c)
dz (5.13)

= pθ(c)−1

∫
pθ(x, z, c) dz (5.14)

=
pθ(x, c)

pθ(c)
(5.15)

= pθ(x | c) (5.16)

and therefore by plugging 5.16 in 5.7 we see that the posterior distribution
can be written as

pθ(z |x, c) =
pθ(x | z) pθ(z | c)

pθ(x | c)
(5.17)

We use of the AEVB algorithm to approximate the intractable posterior
pθ(z |x, c) as well as to find the parameters θ of the proposed generative
model. For that purpose we need to derive the evidence lower bound between
a variational posterior and the true posterior. As a variational posterior we
propose

qφ(z |x, c) = N (µ(x, c), σ2(x, c)I) (5.18)

since under the principle of maximum entropy the normal distribution is the
one that maximizes the entropy for a finite mean and variance. We proceed
now to compute the evidence lower bound by computing the DKL divergence
between the both posteriors

DKL(qφ(z |x, c)) ‖ pθ(z |x, c)) =

∫
qφ(z |x, c) log

qφ(z |x, c)

pθ(z |x, c)
dz

=

∫
qφ(z |x, c) log qφ(z |x, c) dz−

∫
qφ(z |x, c) log pθ(z |x, c) dz

=

∫
qφ(z |x, c) log qφ(z |x, c) dz−

∫
qφ(z |x, c) log pθ(x | z) pθ(z | c) dz

+

∫
qφ(z |x, c) log pθ(x | c) dz

= E[log qφ(z |x, c)− log pθ(x | z) pθ(z | c)] + log pθ(x | c) (5.19)

in which the expectation is taken over qφ(z |x, c), the evidence lower bound
for the proposed generative model is therefore

log pθ(x | c) ≥ L(φ, θ,x, c)

= Ez∼qφ(z |x,c) [log pθ(x | z) pθ(z | c)− log qφ(z |x, c)]

= Ez∼qφ(z |x,c) [log pθ(x | z)]−DKL(qφ(z |x, c) ‖ pθ(z | c)) (5.20)

33

5. Probabilistic Neural Encoding

the Kullback-Leibler divergence term in the above equation has an analytical
solution which allows us to write equation 5.20 as

L(φ, θ,x, c) ≈ log pθ(x |gφ (ε))

−
∑
j≤| z |

(log σpφ,j − log σqφ,j) +
σ2
qφ,j

+ (µqφ,j − µpθ , j)2

2σ2
pθ
, j

− 1

2
(5.21)

in which we used a monte carlo estimate of the expectation by sampling one
ε from p(ε) = N (0, I) and applying the reparametrization trick.

5.2 Results

As routine feed-forward neural networks were used to parametrize the different
probability distributions present in the generative model, however instead of
using conventional layers that attempt to approximate the assumed unknown
hierarchy of transformations

Yl = F(Xl−1) (5.22)

we used a hierarchy of residual layers first introduced in [4], the authors of
this paper assume that there exists a function H that computes the residual
difference between Yl and Xl−1 such that

Yl −Xl−1 = H(Xl−1) =⇒ F(Xl−1) = H(Xl−1) +Xl−1 (5.23)

and is this function H that during the training will be approximated at each
layer of the network

F(Xl−1) ≈ H(Xl−1;W) +Xl−1 (5.24)

empirical advantages of using residual layers for very deep learning architec-
tures have been shown over the last years in the literature [10]

Figure 5.2 shows a table with the details of the designed architecture as well
as the evolution of the elbo during the optimization process. In figure 5.3 we
can see the results after the training has finished.

34

5.2. Results

a

Neural Network Architecture

qφ(z|x, c) pθ(x|z)
x c z

Conv3-20 · FC-200

Residual block 20 · FC-500

Residual projection 30 · FC-5000

Residual block 30 · Transpose residual projection 50

Residual projection 40 · Transpose residual projection 40

Residual block 40 · Transpose residual block 40

Residual projection 50 · Transpose residual projection 30

Residual projection 50 · Transpose residual block 30

FC-500 · Transpose residual projection 20

FC-200 c Transpose residual block 20

FC-202 ConvTranspose-1

FC-60 ·
FC-60 ·

µ̂, σ̂ x̂

b

0 2 4 6 8 10 12 14 16 18 20

−150

−100

−50

Epoch

L

Train
Test

Figure 5.2: (a) Details of the architecture used to perform variational infer-
ence. (b) Sum of individual elbos per epoch during the optimization process
of the proposed generative model.

35

5. Probabilistic Neural Encoding

a

b c

d e

Figure 5.3: Samples of conditional generated neural activity: (a)
Diagram of the architecture used to perform the variational inference. (b)(c)
Samples generated by computing Ex∼pθ∗ (·)[x | z] in which z is produced by
keeping one centroid coordinate fixed in c and varying the other independently
and then computing the mean of pθ∗(z | c). (d)(e) Stimulus samples and
their corresponding neural activity produced in the same way as explained
previously but for linearly spaced values of the CDF of qφ(c | s).

36

5.3. Validation

Now that we have seen how we can generate neural activity given an input
stimulus, in the next chapter we will the address to the problem of validating
the quality and the feasibility of the generated samples.

5.3 Validation

In the previous section we showed how we can obtain a conditional probability
distribution of neural activity given a stimulus. In this section we will address
the problem of validating our proposed generative model.

5.3.1 Decoding

From now on we will refer to a conditional generated sample as xc in which c
represents the centroid that was used compute the latent factors z ∼ pθ(z | c)
used to generate xc through pθ(x | z).

To address the problem of validating the generated samples we propose a
method that depends on the following assumption. There exists a function F
that captures the relationship

ct = F(xt) (5.25)

in which as in previous sections xt represents the neural activity recorded at
time step t and ct represents the centroid of the stimulus that we assume has
elicitated the neural activity. Under this assumption we would expect that if
we provide a conditional generated sample xc to F , it should return us c up to
a small deviation, however F is unknown to us, and we will try to approximate
it by means of feed-forward neural networks, for that purpose we have created
a dataset D with one to one time correspondence such that for each time step
t of the recorded neural activity we have the centroid of the stimulus that was
projected to the mice, D therefore contains T tuples (xt, ct) i.e

D = {(x1,x1), (x2,x2), . . . , (xT ,xT)} (5.26)

5.3.2 Method

Our proposed method to validate the generated samples can be summarized
in four steps

1. We create a new dataset D′ ⊂ D and we define

Dtest = D \ D′ (5.27)

as the test dataset.

37

5. Probabilistic Neural Encoding

2. A regression model F̂ is then trained with D to estimate the centroid c
given a true sample of the recorded neural activity x. The objective in
this step is to make

F(x) ≈ F(x;W) (5.28)

as close as possible.

3. We train the generative model with D′ until convergence. Once the
trained has finished we will have estimated pθ(x | c) as well as pθ(z | c).
Note that in this step the generative model has never seen the tuples
in Dtest, nevertheless since the estimated probability distributions are
continuous distributions we are still able to generate samples conditioned
on any coordinate c within the centroid space and within Dtest.

4. As a last step we use the centroids in Dtest to generate samples of neural
activity xc and we feed those samples to the already trained regression
model, we then compare the regressed values with the ones used to
generate samples.

In figure 5.4 we can see the results of the proposed validation method.

38

5.3. Validation

a

−4 −3 −2 −1 0 1 2 3 4
0.93

0.94

0.94

∆t

1
−

M
A
E

(t
)

6
4

Mean Absolute Deviatation

b

−2 0 2

x

−2

−1

0

1

2

3

y

Embedded Space (β-VAE)

−2 0 2

x

−2

−1

0

1

2

3

y

Prunned Embedded Space (β-VAE)

c

Figure 5.4: (a) Mean absolute deviation of trained the regression model
per time deviation such that the regressed values are computed according to
ct+∆t = F̂(xt;W). (b) Left: The original embedded space used to train F̂ ,
the points within the red box correspond to Dtest. Right: The pruned dataset
D′ used to train the generative model, in red the points that fall within the red
box these points will be used to test the quality of the generated samples.. (c)
Top row: In red the points that belong to Dtest. Middle row: The conditional
generated samples xc, the centroids c in which they are conditioned are the
ones in the top row. Bottom row: In black the expected regressed stimulus,
and in gray the actual regressed stimulus produced by F̂(xc;W).

39

Chapter 6

Conclusion

As criticism, the author of this thesis is concerned about the regression model,
and strongly believes that even that model it’s able to generalize up to a small
expected error we need a method to estimate how uncertain is the model about
one regressed value. Gaussian processes were tried as a proof of concept
assuming that

p(c |x) = p(c1|x)p(c2|x) (6.1)

but this assumption it’s not biologically plausible. For further work in the re-
gression model a suitable multivariate probability distribution with a non di-
agonal covariance matrix can be hypothesized and estimated, but this presents
the challenge of how to estimate the covariance matrix while fulfilling the con-
strains of symmetry and positive semidefiniteness. Differentiable factorization
methods such as Cholesky decomposition can be used to parametrize the co-
variance matrix and make the estimation easier.

For future work in the direction of the generative model, more complex graph-
ical models that take into account time dependence can be designed and
tested.

41

Bibliography

[1] S. A. Cadena, G. H. Denfield, E. Y. Walker, L. A. Gatys, A. S. Tolias,
M. Bethge, and A. S. Ecker. Deep convolutional models improve predic-
tions of macaque v1 responses to natural images. PLOS Computational
Biology, 15(4):1–27, 04 2019.

[2] G. Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals, and Systems (MCSS), 2, 1989.

[3] A. S. Ecker, F. H. Sinz, E. Froudarakis, P. G. Fahey, S. A. Cadena, E. Y.
Walker, E. Cobos, J. Reimer, A. S. Tolias, and M. Bethge. A rotation-
equivariant convolutional neural network model of primary visual cortex.
arXiv preprint arXiv:1809.10504, 2018.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015.

[5] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick,
S. Mohamed, and A. Lerchner. beta-vae: Learning basic visual concepts
with a constrained variational framework. In 5th International Confer-
ence on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings, 2017.

[6] D. H. Hubel and T. N. Wiesel. Receptive fields of single neurons in the
cat’s striate cortex. Journal of Physiology, 148:574–591, 1959.

[7] D. P. Kingma and M. Welling. Auto-encoding variational bayes, 2013.

[8] D. Klindt, A. S. Ecker, T. Euler, and M. Bethge. Neural system identifi-
cation for large populations separating “what” and “where”. In Advances
in Neural Information Processing Systems, pages 3506–3516, 2017.

43

Bibliography

[9] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop.
In Neural Networks: Tricks of the Trade, This Book is an Outgrowth of
a 1996 NIPS Workshop, pages 9–50, London, UK, UK, 1998. Springer-
Verlag.

[10] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the
loss landscape of neural nets. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 31, pages 6389–6399. Curran Asso-
ciates, Inc., 2018.

[11] C. Pandarinath, D. J. O’Shea, J. Collins, R. Jozefowicz, S. D. Stavisky,
J. C. Kao, E. M. Trautmann, M. T. Kaufman, S. I. Ryu, L. R. Hochberg,
J. M. Henderson, K. V. Shenoy, L. F. Abbott, and D. Sussillo. Inferring
single-trial neural population dynamics using sequential auto-encoders.
Nature Methods, 15(10):805–815, 2018.

[12] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning represen-
tations by back-propagating errors. Nature, 323(6088):533–536, 1986.

[13] V. Vapnik. Principles of risk minimization for learning theory. In J. E.
Moody, S. J. Hanson, and R. P. Lippmann, editors, Advances in Neural
Information Processing Systems 4, pages 831–838. Morgan-Kaufmann,
1992.

[14] V. N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

[15] C. J. Walder, R. Nock, C. S. Ong, and M. Sugiyama. New tricks for
estimating gradients of expectations. CoRR, abs/1901.11311, 2019.

44

ETH
Eidgenossische Technische Hochschute Zurich

Swiss Federal Institute of Technology Zurich

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor's thesis,
Master's thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

\ ^LtbTlC [}W^^^^ •MOO&L

Q^A.A^Li^.^^^^^^^^^^^^^^

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

^S1^_S1?11Q _ _Lo^l_fcA/illAA.M-.b°

With my signature I confirm that

I have committed none of the forms of plagiarism described in the 'Citation etiquette' information
sheet.

- I have documented all methods, data and processes truthfully.

- I have not manipulated any data.

- I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s) c'^---"'" (/^ //

ZuL...Lb^.iri_Au^...M _^^^ul

For papers written by groups the names of all authors are
required. Their signatures collectively guarantee the entire
content of the written paper.

