
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/150611

Kulikova, B.; Jiménez-Trigos, ME.; Makarevich, AV.; Chrenek, P.; Vicente Antón, JS.;
Marco-Jiménez, F. (2016). State of actin cytoskeleton and development of slow-frozen and
vitrified rabbit pronuclear zygotes. Cryobiology. 72(1):14-20.
https://doi.org/10.1016/j.cryobiol.2015.11.009

https://doi.org/10.1016/j.cryobiol.2015.11.009

Elsevier



1 
 

STATE OF ACTIN CYTOSKELETON AND  1 

DEVELOPMENT OF SLOW-FROZEN AND VITRIFIED RABBIT PRONUCLEAR 2 

ZYGOTES 3 

 4 

Barbora Kulíková,1,2,*Estrella Jiménez-Trigos,3Alexander V. Makarevich,2Peter 5 

Chrenek,2,4José. S. Vicente,3Francisco Marco-Jiménez3 6 

 7 

1Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A. Hlinku 1, 8 

949 74 Nitra, Slovakia; 2Research Institute for Animal Production Nitra, National Agricultural and 9 

Food Centre, Hlohovecká 2, 951 41 Lužianky, Slovakia; 3Department of Animal Science, Universidad 10 

Politecnica de Valencia,Camino de Vera/n, 46022 Valencia, Spain; 4Faculty of biotechnology and 11 

food sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia 12 

 13 

*Corresponding author at: Constantine the Philosopher University, Tr. A. Hlinku 1, 949 74 14 

Nitra, Slovakia. Tel: +421 37 6546 289; Fax: +421 37 6546 285 15 

 E-mail address: b.kulikova@gmail.com 16 

 17 

Abstract 18 

This study was focused on the effect of cryopreservation on the state of actin cytoskeleton and 19 

development of rabbit pronuclear zygotes. Zygotes were collected from superovulated 20 

females and immediately used for 1) slow-freezing in a solution containing 1.5M 1,2-21 

propanediol and 0.2M sucrose, or 2) vitrification in a solution containing 42.0% (v/v) of 22 

ethylene glycol, 18.0% (w/v) of dextran and 0.3M sucrose as cryoprotectants. After thawing 23 

or warming, respectively, zygotes were evaluated for 1) actin distribution, 2) in vitro or 3) in 24 

vivo development to blastocyst. Comparing actin filaments distribution, a significantly higher 25 

number of vitrified zygotes with actin distributed in cell border was observed (55 ± 7.7 vs. 74 26 
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± 6.1 % for slow-frozen vs. vitrified, respectively). After 24 and 72h of in vitro development, 27 

significant differences in the cleavage and morula rate among the groups were observed (9 ± 28 

2.4 and 3 ± 1.3 vs. 44 ± 3.0 and 28 ± 2.7 % for slow-frozen vs. vitrified, respectively). None 29 

of the slow-frozen zygotes reached the blastocyst stage, in contrast to the vitrified 30 

counterparts (11 ± 1.9 %). Under in vivo culture conditions, a significant difference in 31 

blastocyst rate was observed between vitrified and fresh embryos (6 ± 1.5 vs. 35 ± 4.4 % 32 

respectively). Our results showed that alterations in actin cytoskeleton and deteriorated 33 

development are more evident in slow-frozen than vitrified pronuclear zygotes. Vitrification 34 

method seems to be a more effective option for rabbit zygotes cryopreservation, although 35 

pronuclear zygotes manipulation per se resulted in a notable decrease in embryo development.  36 

 37 
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 39 

Introduction 40 

Successful freezing of mammalian embryos, including rabbits, has been the subject of 41 

intensive research over many years [35]. It maintains the advantage of full genetic 42 

complement of sire and dam conservation, protecting species and population integrity as well 43 

as heterozygosity [43]. Moreover, it is widely used in assisted reproductive technologies 44 

(ARTs) in both laboratory and domestic animals [33]. Banks of genetic resources are a 45 

valuable tool in livestock improvement schemes, where population control is necessary to 46 

measure the current rate of genetic gain or to preserve the present selected lines [32]. It has 47 

been shown that long-term storage of embryos in cryobank entails the advantage of 48 

maintaining similar pregnancy rate, fertility and survival at birth for at least 15 years [45,32]. 49 

At present, conventional slow-freezing and vitrification are the two major methods of 50 

embryo cryopreservation [57,50], although there are still concerns regarding whether one 51 
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technique is better than the other [1]. It has been suggested that vitrification might be the 52 

cryopreserving procedure of choice for rabbit embryos, as non-cellular investments (zona 53 

pellucida and mucin coat) are frequently damaged during conventional freezing/thawing and 54 

with the vitrification approach it may be possible to reduce the damage [29,51]. Moreover, 55 

there is evidence that vitrification provides better implantation and birth rates for rabbit 56 

embryos than slow-freezing [48]. 57 

As with other species, survival of cryopreserved rabbit embryos depends on the 58 

cryoprotective agent (CPA) and the embryonic stage of development [22,36]. In rabbits, 59 

morula stage embryos in particular are commonly cryopreserved with generation of live 60 

offspring (ranging between 25 % and 65 %) using either slow-freezing [59,60,41,47,48] or 61 

vitrification [29,61,37,41,39,48]. However, both rabbit oocytes and pronuclear zygotes are 62 

completely different scenarios and there are only a few publications reporting live offspring 63 

after rabbit oocyte (3.3 – 13.2%) [4,26,27] and pronuclear zygote (3.7 – 36 %) [22,23,36] 64 

cryopreservation. The difficulties throughout the studies on oocyte and zygote 65 

cryopreservation in rabbits might be due to singularities (low surface/volume ratio, not 66 

activated genome, sensitivity of microtubules and microfilaments to high CPA concentration) 67 

which make the early stages highly sensitive to the cryopreservation process [42,40,5,26,27]. 68 

Nevertheless, there are reasons which make the cryostorage of freshly fertilized rabbit ova 69 

interesting. Zygotes are important in transgenic animal production, as the pronuclear 70 

microinjection of exogenous DNA is the most conventional and reliable method for 71 

transgenesis [21]. Transgenic rabbits are suitable tools for protein production, such as human 72 

interleukin-2 [7], insulin-like growth factor-1 [63] or human clotting factor VIII [9]. However, 73 

the rabbit is a unique mammal in that its embryos have thick mucin coat deposited during 74 

oviductal passage. Therefore, rabbit embryos cultured from the 1-cell stage in vitro to the 75 
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morula or blastocyst stage have no mucin coat and after transfer the lack of mucin coat 76 

significantly increases pregnancy failure rates [28]. 77 

The aim of this study was to compare the effect of slow-freezing and vitrification 78 

procedure on the actin cytoskeleton status and in vitro or in vivo development competence of 79 

rabbit pronuclear zygotes. 80 

 81 

Materials and methods 82 

Unless stated otherwise, all chemicals in this study were purchased from Sigma–Aldrich 83 

Química S.A (Madrid, Spain). 84 

 85 

Animals 86 

Five-month-old rabbit does belonging to the New Zealand White breed from the ICTA 87 

(Instituto de Ciencia y Tecnología Animal) at the Universidad Politécnica de Valencia (UPV) 88 

were used as donors and recipients. All experimental procedures involving animals were 89 

approved by the Research Ethics Committee of the UPV and licensed by Spanish Royal 90 

Decree 53/2013 (BOE, 2013; BOE = Official Spanish State Gazette). 91 

 92 

Pronuclear stage zygote recovery 93 

Eighteen New Zealand White females were superovulated by administration of 5 doses 94 

(7 IU each 12 h) of porcine follicle-stimulating hormone (pFSH, FOLLTROPINTM, 95 

BionicheTeoranta,Galway,Ireland) and 0.7UI of recombinant human luteinizing hormone 96 

(rhLH, Luveris®, Serono, MW, London, UK). The does were artificially inseminated with 97 

pooled semen at a density of 40 × 106 spermatozoa/mL in Tris-citric-glucose extender [62] 98 

(0.5 mL per doe)and induced to ovulate by intramuscular injection of 1 µg of Buserelin 99 

acetate 12 h after the last superovulation dose. Presumptive pronuclear stage zygotes were 100 
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recovered from the oviducts 19 h after AI by flushing of each oviduct with Dulbeccoˈs 101 

phosphate-buffered saline (DPBS) supplemented with 0.2 % of bovine serum albumin (BSA), 102 

0.132 g/L of calcium chloride (CaCl2) and antibiotics (sodium penicillin G300.000 UI, 103 

procaine G,penicillin 700.000 UI and dihydrostreptomycin sulphate 1250 mg, Penivet1, 104 

Divasa Farmavic, Barcelona, Spain). 105 

 106 

Cryopreservation procedures 107 

The slow-freezing procedure was adapted from previously described methods [52]. 108 

After recovery, zygotes were incubated for 10 min in a solution containing 1.5 M 1,2-109 

propanediol (PROH) in a base medium (BM: DPBS + 20 % foetal bovine serum, FBS). 110 

Zygotes were then placed into the freezing solution composed of 1.5 M PROH and 0.2 M 111 

sucrose in BM for 5 min and then mounted between two air bubbles in 0.25 ml sterile French 112 

mini straws (IMV Technologies. L´Aigle, France) sealed by a sterile plug. The straws were 113 

then placed in a programmable freezer (Cryologic, CL-8800) for the freezing process. 114 

Temperature was lowered from 20°C to -7°C at a rate of -2°C/min. Manual seeding was 115 

performed at -7°C. Temperature was then lowered to -30°C at a rate of -0.3°C/min. Finally, 116 

the straws were plunged directly into liquid nitrogen (LN2) and stored until later use. For 117 

thawing, the straws were held at ambient temperature for 10-15 s and plunged into a water 118 

bath (20°C). Zygotes were transferred stepwise into decreasing sucrose solutions (0.5, 0.3 and 119 

0.1 M sucrose in BM) for 5 min before being equilibrated for 10 min in TCM-199 containing 120 

10 % FBS. Afterwards, the zygotes were cultured in TCM-199 medium supplemented with 10 121 

% of FBS at 38.5°C and 5% of CO2 in humidified atmosphere. 122 

The vitrification procedure was performed following the method of minimum essential 123 

volume (MEV), using Cryotop® as a device [31]. After recovery, zygotes were placed into 124 

equilibration solution containing 20% (v/v) of ethylene glycol (EG) in DPBS at 20-25°C for 3 125 
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min, and then transferred into the vitrification solution composed of 42.5 % EG (v/v), 18.0 % 126 

(w/v) dextran and 0.3M sucrose in DPBS. Three to five zygotes were placed in a cryotop in 2 127 

µl of vitrification solution and plunged directly into LN2 within one minute. After storage in 128 

LN2, the zygotes were warmed by immersing the cryotop into the warming solution composed 129 

of 0.5 M sucrose in DPBS. After 3 min, zygotes were washed three times in a solution 130 

composed of 0.25 M sucrose in DPBS.Finally, zygotes were washed in DPBS and 131 

equilibrated for 10 min in TCM-199 containing 10 % FBS. After warming, the zygotes were 132 

cultured as stated above. 133 

 134 

Actin cytoskeleton staining 135 

Evaluation of cytoskeletal actin filaments was performed in the three experimental 136 

groups: slow-frozen,vitrified and fresh zygotes. Zygotes were washed in DPBS and then fixed 137 

in 4% (w/v) paraformaldehyde in DPBS (pH 7.2-7.4) for 45 min at 38.5°C. After washing in 138 

DPBS, permeabilization was performed by 50 min incubation of zygotes in 0.5% Triton X-139 

100 in DPBS. Afterwards, the zygotes were washed three times in DPBS-PVP solution 140 

(DPBS with 4mg/ml polyvinylpyrrolidone; Sigma-Aldrich Chemie, Steinheim, Germany) and 141 

were then placed in the solution of phallodine-TRITC conjugate (Chemicon International; 142 

stock solution was diluted in DPBS at 1:500) for labelling of actin filaments, for 45 min. 143 

Thereafter the zygotes were transferred onto a microscopic slide and covered with 5µl of 144 

Vectashield anti-fade mounting medium, containing nuclear DAPI stain (Vector Laboratories, 145 

Burlingame, CA, USA). The coverslip was attached to the microslide using nail polish. All 146 

treatments were performed at ambient temperature.  147 

Stained zygotes were evaluated using a laser scanning microscope (LSM 700; ZEISS) 148 

equipped with an Axio Imager Z2 scanning unit. Phallodine-TRITC and DAPI fluorescence 149 

signals were excited using 546 and 405 nm laser, respectively.The images were acquired and 150 
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processed using ZEN software. The actin cytoskeleton was classified as belonging to the 151 

grades according to [38] on the basis of appearance of actin filaments in rabbit morula stage 152 

embryos. We adapted the methodology for pronuclear stage zygotes, and classified Grade I as 153 

best (sharply stained actin filaments with continuous cell border) and fair (slightly non-154 

continuous actin filaments stained in cell border) quality zygotes and Grade II as poor (large 155 

areas lacking actin staining in cell border or visible actin largely aggregated into 156 

intracytoplasmic clumps) quality zygotes(Figure 1). 157 

 158 

In vitro embryo development 159 

After thawing/warming, only zygotes with intact zona pellucidawere considered 160 

suitable for culture. Slow-frozen, vitrified and freshpronuclear stage zygotes were cultured in 161 

TCM-199 supplemented with 10 % of FBS at 38.5 °C and 5% of CO2 in humidified 162 

atmosphere. Cleavage rate of the zygotes and development to morula or blastocyst stage was 163 

examined after 24, 72 and 120 h of culture, respectively. 164 

 165 

In vivo embryo development 166 

Fifteen recipient females were induced to ovulate 20 h prior to embryo transfer. The 167 

intraoviductal transfer procedure was adapted from a previously described technique used in 168 

rabbit [6]. The equipment used was a Hopkins® Laparoscope, which is a 0°-mm straight 169 

viewing laparoscope, 30 cm in length, with a 5 mm working channel (Karl 170 

StorzEndoscopiaIbérica S.A. Madrid). Recipients were sedated by intramuscular injection of 171 

5 mg/kg ofxylazine (Rompun, Bayer AG, Leverkusen, Germany) and anaesthesia was 172 

induced by an intravenous injection of 6 mg/Kg ketamine hydrochloride (Imalgene, Merial 173 

SA, Lyon, France). To evaluate in vivo development, vitrified and fresh zygotes, both types 174 

classified as normal (homogeneous cytoplasm, no vacuoles or granulations and an intact zona 175 
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pellucida), were transferred into both oviducts of 15 recipient does (20 to 40 embryos per 176 

recipient, depending on the number of zygotes available in each session) by laparoscopy. To 177 

evaluate the late blastocyst developmental rate, recipient does were euthanized 120 h after 178 

transfer and 6-day-old embryos were recovered by perfusion of each uterine horn with 20 mL 179 

of the same solution as used for zygote recovery. The developmental rate was estimated as the 180 

number of late blastocysts recovered per uterine horn divided by the number of embryos 181 

transferred into the oviduct. 182 

 183 

Statistical analysis 184 

The general linear model was used to evaluate the state of cytoskeletal actin filaments 185 

and to comparein vitro and in vivo development using the type of embryo (slow-frozen, 186 

vitrified and fresh) as a fixed factor and session, females and the cryopreservation procedure 187 

by session interaction as random factors. The session, female and interaction were non-188 

significant, so were removed from the model. The error was designated as having a binomial 189 

distribution using the probity link function. Binomial data were assigned a value of 1if it had 190 

achieved the desired stage or 0 if it had not. A value of P ≤ 0.05 was considered significant. 191 

Data are shown as least squares means ± standard error of the mean of combined data from all 192 

the replicate experiments. All analyses were performed with SPSS 16.0software package 193 

(SPSS Inc., Chicago, IL, USA, 2002). 194 

 195 

Experimental design 196 

The experimental design followed in this study is shown in Figure 2. Briefly, to assess 197 

the actin cytoskeleton alteration, fluorescence staining was performed to compare actin 198 

filaments status of slow-frozen, vitrified or fresh pronuclear zygotes. To evaluate in vitro 199 

development competence of slow-frozen, vitrified or fresh pronuclear zygotes, the cleavage 200 
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rate, morula and blastocyst rates after 24, 72 and 120 h of in vitro culture, respectively were 201 

compared. To evaluate in vivo development ability of vitrified and fresh zygotes, late 202 

blastocyst ratio 120 h after embryo transfer was evaluated. 203 

 204 

Results 205 

Actin filament status in the pronuclear zygotes 206 

Significant differences in numbers of grade I embryos among the slow-frozen, vitrified 207 

and fresh group were noted (Table 1). A higher number (P≤0.05) of grade I zygotes was 208 

found in vitrified compared to slow-frozen group (74±6.1% vs. 55±7.7%), but it was less than 209 

in the fresh control (97±3.4%). 210 

 211 

In vitro development 212 

A total of 514 rabbit pronuclear zygotes were cryopreserved either by slow-freezing or 213 

vitrification. After the thawing or warming procedure, only zygotes with intact zona pellucida 214 

were considered as suitable for culture (60.1 % of slow-frozen and 100.0 % of vitrified 215 

zygotes; Table 2). After 24and 72 h of in vitro development, significant differences in the 216 

cleavage and morula rates among the groups (9 ± 2.4 % and 3 ± 1.3 % vs. 44 ± 3.0 % and 28 217 

± 2.7 % vs.97.0 ± 8.0 % and 74.0 ± 2.3 %of slow-frozen, vitrified and fresh zygotes, 218 

respectively) were observed. None of the slow-frozen zygotes reached the blastocyst stage, in 219 

contrast to the vitrified and fresh zygotes (11±1.9% and 49 ± 2.6 %, P ≤ 0.05, respectively). 220 

 221 

In vivodevelopment 222 

A total of 123 fresh and 305 vitrified zygotes were transferred to 5 and 10 recipient 223 

does, respectively. Significant difference was observed between vitrified (6±1.5%) and fresh 224 

(35±4.4%) zygotes that reached late blastocyst stage 120 h after transfer to recipients. 225 

 226 
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DISCUSSION 227 

Pronuclear zygotes are important in production of transgenic animals and transgenic rabbits 228 

are suitable tools for recombinant protein production [7,63,9]. Therefore, due to the limited 229 

literature regarding pronuclear zygotes cryopreservation in rabbits, we aimed to analysethe 230 

effect of either slow-freezing or vitrification procedure on the actin cytoskeleton status and 231 

early developmental competence of rabbit pronuclear zygotes. To the best of our knowledge, 232 

no literature describing actin cytoskeleton state in cryopreserved rabbit pronuclear zygotes is 233 

available. Nevertheless, this assessment method has been used in oocytes, zygotes and 234 

embryos of various species [24,54,14,12] including rabbit oocytes [49] and morulas[38]. 235 

Classification of the slow-frozen and vitrified pronuclear zygotes into the actin grades 236 

indicated that both cryopreservation procedures induced a high rate of detectable damage to 237 

actin cytoskeleton. A similar homogenous distribution of actin filaments with continuous cell 238 

borders in intact fresh zygotes was markedly affected upon cryopreservation, as a higher 239 

degree of cytoskeletal disorganization and actin clustering was found in cryopreserved 240 

zygotes. However, according to the staining patterns determined, we observed that slow-241 

frozen zygotes suffered significantly from greater damage to actin cytoskeleton compared to 242 

their vitrified counterparts. It has already been proven that the cytoskeleton of mammalian 243 

embryos changes in response to cooling or cryopreservation [15] and the deleterious effect of 244 

slow-freezing and vitrification on distribution of actin filaments have already been described 245 

[14,2,38,12,13]. Actin filaments play an important role in fertilization and early embryonic 246 

development events, including compaction, cell differentiation, hatching and elongation in 247 

blastocyst [19]. Therefore, irreversible disruption of the cytoskeleton elements may 248 

compromise the survival of cryopreserved embryos [54,53,13]. In our study, the higher 249 

presence of pronuclear zygotes with damaged cytoskeleton in the slow-frozen group is 250 

consistent with the results of in vitro culture, as none of the slow-frozen zygotes reached the 251 
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blastocyst stage. This might be due to differences in susceptibility of rabbit pronuclear 252 

zygotes to various cryopreservation protocols.  253 

 Moreover, after thawing, a high degree of zona pellucida fractures was found in the 254 

slow-frozen zygotes (39.9 %), whilst no fracture of zona pellucida was detected after 255 

vitrification. Although vitrification procedure might also negatively affect embryo viability, 256 

its influence was not apparent in the morphology of warmed zygotes, as all the recovered 257 

zygotes appeared normal. It is known that zona pellucida and mucin coat are essential for 258 

rabbit embryo development and implantation [28] and damage to zona pellucida is common 259 

phenomenon when embryos are cryopreserved in normal straws [44,30,58,20]. On the other 260 

hand, cryopreservation by ultra-rapid vitrification utilizing the MEV method and accelerated 261 

cooling/warming rates might avoid such damage [8]. Likewise, high recovery rates of the 262 

zona pellucida-intact pronuclear zygotes might also be attributed to the composition of 263 

vitrification media. We used dextran as a macromolecule additive and it was already 264 

demonstrated that the addition of dextran into vitrification media elevates the viscosity of the 265 

solution, reducing its tendency to crack, hence the zona pellucida and mucin coat might be 266 

better preserved against cryoinjury [51]. 267 

Despite this, and based on the bibliography, rabbit pronuclear zygotes are particularly 268 

difficult to cryopreserve.  In the present study, under in vitro conditions, cleavage efficiency 269 

was 9 % and 44% for slow-frozen and vitrified pronuclear zygotes respectively, and the 270 

efficiency of development to the blastocyst stage was 11% only for vitrified pronuclear 271 

zygotes, which was comparable to previous reports [3,17,18,36]. Based on the size of a 272 

pronuclear zygote, as well as a surface/volume ratio which is similar to that of an oocyte, we 273 

decided to use the slow-freezing methodology that has recently been applied successfully in 274 

rabbit oocytes cryopreservation with the result of liveborn rabbits [25,26]. There are only two 275 

works dealing with slow-freezing of rabbit pronuclear zygotes with very different results (10 276 
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% vs 52 % blastocyst after in vitro culture) [3,22]. Only Hochi et al. [22,23] report a higher 277 

development rate to blastocyst stage for both cryopreservation procedures (52 % and 51 % for 278 

slow-frozen and vitrified pronuclear zygotes, respectively). Although the information 279 

available is very limited, rates of offspring for slow-frozen and microinjected pronuclear 280 

zygotes are 4.5% [22] and rates for vitrified pronuclear zygotes are between 3.7% and 36% 281 

[23,36]. Nevertheless, direct comparison among these studies must be applied carefully owing 282 

to their inherent experimental differences (donor genotypes, cryopreservation procedures and 283 

CPA used, number of recipients used, among others). It has already been shown that different 284 

genotypes might be taken into account when working with different lines [60,39].  285 

In addition, both cell size and lipid content of zygotes are factors thought to influence 286 

their sensitivity to CPAs and to cryopreservation [42,40]. Even though rabbit zygotes contain 287 

small amount of lipid droplets, the diameter of rabbit zygotes is large (130-150 µm) and is 288 

close to zygotes of large domestic species like cattle and sheep [22]. As embryo development 289 

proceeds, the surface/volume ratio increases, which alters permeability properties of the 290 

embryo. This ratio has a direct influence on transport of water and CPAs through the 291 

membranes [36], so the dehydration process is more complicated for the single cell of the 292 

oocytes and pronuclear zygotes than for later stage embryos [16,10]. Likewise, the chilling 293 

sensitivity of an embryo is dependent on the embryonic stage of development [55,56] and has 294 

mainly been attributed to the destruction of plasma membrane following exposure to low 295 

temperature without freezing [5]. Interestingly, in cryopreserved oocytes it has been reported 296 

that the rabbit species is highly sensitive to low temperatures and high levels of 297 

cryoprotectants, and cryopreservation causes damage to the organization of the microtubules 298 

and meiotic spindle, inducing exocytosis, disorder of cortical granules and chromosome 299 

aberration [26]. Consequently, live birth was achieved only four times, once in the 80s and 300 

three times recently [2,25,26,27]. Therefore, we could hypothesize that pronuclear zygote has 301 
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a similar sensitivity to low temperatures as rabbit oocytes. It was concluded that rabbit 302 

embryos at or beyond the 8-cell stage acquired higher cryotolerance [36]. The findings of 303 

Leandri et al. [34] demonstrated that the prominent increase in survival and blastocyst rates 304 

might be also associated with embryonic genome activation, which in the rabbit occurs 305 

around the 8- to 16-cell stage and which might cause intrinsic changes in the membrane 306 

properties of embryos as the genes associated with membrane structure might have turned on 307 

[36]. 308 

In the present study, due to the low development rates of slow-frozen pronuclear 309 

zygotes under in vitro culture, only vitrified pronuclear zygotes were evaluated under in vivo 310 

conditions. Consistently with in vitro embryo development, vitrified-warmed and transferred 311 

pronuclear zygotes cultured until late blastocyst (preimplantation embryo) exhibit similar 312 

rates. Interestingly, we found that the efficiency of fresh pronuclear zygotes after transfer was 313 

affected (35%), indicating that the pronuclear zygote handling or the oviduct manipulation 314 

during transfer technique is critical to successful development. Although the information 315 

available is very limited, the rates of offspring for fresh transfer pronuclear zygotes are 316 

between 28% and 53% [23,36]. Embryo transfer technique is regarded as safe and is not 317 

considered a manipulation with adverse outcomes in normal gene expression. However, some 318 

studies have found that embryo transfer itself results in the misexpression of several imprinted 319 

genes [46], although this hypothesis needs to be tested.  320 

Based on our results, we conclude that damage to the zona pellucid and alterations in 321 

actin cytoskeleton are more evident in slow-frozen than in vitrified rabbit pronuclear zygotes. 322 

The slow-frozen zygotes also showed significantly lower developmental competence after in 323 

vitro culture. Vitrification method seems to be a more effective option for rabbit pronuclear 324 

zygotes cryopreservation, although pronuclear zygotes manipulation per se resulted in a 325 
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notable decrease in embryo development rate. Nevertheless, further studies should be 326 

undertaken to improve pronuclear zygote cryopreservation in rabbit. 327 
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Table 1 Distribution of actin cytoskeleton in slow-frozen, vitrifiedand fresh rabbit zygotes. 509 

Type N Grade I (%) Grade II (%) 

Slow-frozen 42 55 ±7.7c 45 ± 7.7c 

Vitrified 53 74 ± 6.1b  26 ± 6.1b 

Fresh 29 97 ± 3.4a  3 ± 3.4a 

N = number of zygotes examined. Grade I = best (sharply stained actin filaments with continuous cell border) 510 

and fair (slightly non-continuous actin filaments stained in cell border) quality zygotes. Grade II = poor (large 511 

areas lacking actin staining in cell border or visible actin largely aggregated into intracytoplasmic clumps) 512 

quality zygotes. Data are shown as least square means ± standard error of the mean. Different superscripts per 513 

column are statistically different (P≤0.05). 514 

  515 
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Table 2. In vitro developmental rates of slow-frozen, vitrified and fresh rabbit pronuclear 516 

zygotes. 517 

Type N n Cleavage (%) Morula (%) Blastocyst (%) 

Slow-frozen 248 149 9 ± 2.4c 3 ± 1.3c - 

Vitrified 266 266 44 ± 3.0b 28 ± 2.7b 11 ± 1.9b 

Fresh 373 373 97 ± 8.0a 74 ± 2.3a 49 ± 2.6a 

N = number of pronuclear zygotes cryopreserved. n=number of pronuclear zygotes cultured. Data are shown as 518 

least square means ± standard error of the mean. Different superscripts per column are statistically different 519 

(P≤0.05). 520 

  521 
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Fig. 1 Grades of actin cytoskeleton observed under a confocal laser scanning microscope 522 

using 40x objective. Grade I = best (A,D; sharply stained actin filaments with continuous cell 523 

border) and fair (B,E; slightly non-continuous actin filaments stained in cell border) quality 524 

zygotes; Grade II = poor (C,F; large areas lacking actin staining in cell border or visible actin 525 

largely aggregated into intracytoplasmic clumps) quality zygotes, 3D reconstruction (upper 526 

panel) and 2D optical section (lower panel) of the zygotes stained with phallodine-TRITC for 527 

actin (red), and with DAPI for pronuclei (blue). Scale bar represents 30µm. 528 

 529 

Fig. 2 Experimental design. 530 

 531 


