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Abstract 

Planck’s law constitutes one of the cornerstones in physics. It explains the well-known 

spectrum of an ideal black body consisting of a smooth curve, whose peak wavelength and 

intensity depend on the temperature of the body. This scenario changes drastically, however, 

when the size of the emitting object is comparable to the wavelength of the emitted radiation. 

Here we show that a silicon micro-sphere (2-3 µm in diameter) heated to around 800 ºC 

yields a thermal emission spectrum consisting of pronounced peaks that are associated with 

Mie resonances. We experimentally demonstrate in the near infrared the existence of modes 

with an ultra-high quality factor, Q, of 400, which is substantially higher than values reported 

so far, and set a new benchmark in the field of thermal emission. Simulations predict that the 

thermal response of the micro-spheres is very fast, about 15 µs. Additionally, the possibility 

of achieving light emission above the Planck limit at some frequency ranges is envisaged. 
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Nanotechnology has been proven to be a determining tool for testing the limits of 

fundamental physical laws. When the size of a thermal radiation emitter or the distance 

between emitter and receiver decreases below λrad, which is the wavelength at which emission 

intensity is maximum for a given temperature (Wien displacement law),1 interesting effects 

appear. One prominent phenomenon is the emission above the Planck limit,2, 3 which has been 

measured in the near 4 and in the far field5 regimes. However, so far there have been few 

experiments in this regard, and they are usually based on structures where only one or two 

dimensions are smaller than λrad. One of the challenges here is the detection of the low 

radiation intensities produced by such small bodies.6, 7, 8 The experiments that we report in 

this article are framed in a scenario where the size of the emitter, a silicon micro-sphere, is 

comparable or smaller than λrad in the three dimensions of space, and result in emission 

spectra with substantial deviations from that of a black body. 

Besides fundamental physics, another important facet of our experiments concerns 

technological aspects regarding the engineering of light sources.9, 10 In recent years, tailoring 

of different aspects of the radiated light: wavelength, directionality, coherence and efficiency, 

was achieved by structuring materials as photonic crystals11-15 (PC), optical antennas,8, 16  

metamaterials17, 18 and cavities.19, 20  

In general, and particularly for some applications such as non-dispersive infrared sensing,21, 22 

it is interesting to engineer light sources with a peaked emission and a fast response. In this 

context, very relevant achievements based on 2D PC devices were recently reported.23 Single 

peak emissions with Q about 100 and dynamic control of the emitted light at 600 kHz were 

demonstrated in the mid infrared (MIR) by modulating the emissivity of the device rather 

than its temperature, which remained constant at a relatively low value. In this case, the 

requirement of establishing electrical contacts on the device may hinder the possibility of 
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achieving higher working temperatures, which would allow higher light intensities and 

emission more towards the NIR to be accomplished. Therefore, there is still much room for 

improvement and for innovative approaches in this field of technology.  

The resonant thermal light emission characteristics of wavelength-sized silicon spheres24  

that we report here stem from the fact that they constitute high refractive index contrast 

photonic micro-cavities. Silicon is in principle not suitable for emitting light in the NIR at 

room temperature (RT) because it is transparent in this region, and according to Kirchhoff’s 

law25 the emissivity of a material equals the absorptivity at a given frequency. However, this 

scenario changes completely as the temperature of the material increases, because it produces 

a change in its electronic properties, namely a redshift of the indirect band gap (located at 

1.125 µm at RT), and an increase in the density of free carriers (FC). The resultant effect of 

these phenomena is an increase of both the real part, n (thermo-optic effect, TOE), and the 

imaginary part, k, of the refractive index. While the TOE shifts the spectral position of the 

resonant modes, the change in k determines which of them are going to prevail in an 

absorption (or emission) process.26 Low k values require relatively low temperatures and they 

would allow light emission through high Q resonances. However, because of Stefan and 

Wien laws,1 the emitted power would be in principle too low to be detected and the 

wavelength at which the maximum of radiation occurs is far from the NIR. On the other 

hand, a high increase of temperature and thus of k above the Q matching condition26 is 

expected to kill any resonant mode, although it would yield high radiation intensities. We 

have found, within these two extreme regimes, a range of temperatures: from 700 ºC to 850 

ºC approximately where reasonable emission occurs in the NIR through moderate, yet very 

high for thermal radiation, Q resonances.  
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Previously reported measurements of light emission assisted by Mie resonances were 

performed in metal oxide particles suspended in an optical trap at temperatures near the 

melting point of the material.27 In our approach, however, a silicon micro-sphere is located on 

a SiO2 substrate (Figure 1a) and it is heated at moderate temperatures. This contributes to 

improve its handling and stability. Moreover, the reduced size of the emitting cavity makes it 

suitable for exploring its performance as a broadband micro-scale light or heat source,28 able 

to transfer energy to other objects closely placed. In fact, the use of resonant dielectric 

nanoparticles based on silicon has already been explored to develop an efficient temperature 

feedback optical heating platform.29 Our approach embodies an alternative strategy, amongst 

the different approaches undertaken so far, which concerns that eagerly pursued dream of 

obtaining light emission from silicon,30, 31 the king material for micro-electronics. In this 

sense, a more on-chip fabrication methodology32 could help to further develop this 

application in the future.  

The mechanism we have utilized here for heating a silicon micro-sphere is based on the 

capacity of the material for absorbing light above the band gap.  For that purpose, we focused 

the light at 405 nm of a laser (pumping laser from now on) on top of the micro-sphere (Figure 

1a). The geometry of our approach where a high heat conducting micro-sphere [the thermal 

conductivity, κ, equals to 130 W/(m K) for Si] is supported and surrounded by low heat 

conductors: SiO2 [κ = 1.38 W/(m K)] and air [κ = 0.024 W/(m K)], favors the efficiency of 

the heating process. In this regard, a power of 5 mW approximately from the pumping laser 

was needed for achieving the aforementioned temperatures. 
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Figure 1. Experimental set up and FEM simulation of the temperature distribution and time 

response of the heating process of a silicon micro-sphere from room temperature to 750 ºC. 

(a) Schematic of the set up utilized for the experiments, showing how a silicon micro-sphere 

supported on a SiO2 substrate in air is heated by a blue laser and the thermal emission 

spectrum is collected at a plane parallel to the substrate. (b) Heating (black curve) and 

cooling (red curve) time evolution of the average temperature of the micro-sphere upon 

starting and stopping respectively the irradiation with the blue laser. (c) Cross section view at 

different scales of the temperature distribution at steady state condition. 

 

According to Finite Element Method (FEM) simulations, and as expected because of its 

low mass, which is of the order of tens of picograms, the micro-spheres temperature response 

upon irradiation by the laser is very fast (Figure 1b). The heating process (black curve) takes 

about 10 µs, while the cooling time is slightly longer, 15 µs for a 3.5 µm diameter micro-

sphere (see Methods section). This implies the possibility of reaching radiation modulation 
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frequencies of 10 kHz, which are much faster than the conventional temperature modulations, 

in the range from 10 to 100 Hz, reached so far.22  

The simulations reveal that in spite of the low thermal conductivity of the materials 

surrounding the micro-sphere, the heat release via conduction is three orders of magnitude 

higher than that via radiation. Nevertheless, the energy loss by conduction could be reduced 

in vacuum conditions, although at the expense of an increase in the response time, especially 

the cooling time. In terms of thermal conductivity, the substrate constitutes the main heat sink 

and it produces a thermal asymmetry in the vertical direction, namely a temperature gradient 

of about 10 ºC from top to bottom (Figure 1c). The pumping laser also contributes to this 

asymmetry but to a much lesser extend because of the high thermal conductivity of silicon. 

On the other hand, the temperature through planes parallel to the substrate was found to be 

uniform. This is very relevant with respect to our measurements because we collected only 

light emitted tangentially to the sphere at that resonant plane which is parallel to the substrate 

(Figure 1a), although emission occurs in all directions of space. The collection configuration 

is similar to that utilized for scattering experiments33 and it helps disregarding non-resonant 

emission, those not so pure modes occurring at different zenith angles, whose resonant planes 

intersect the substrate,34 and that radiation originated at a temperature different from that of 

the equatorial plane. 

The measured steady state thermal emission spectra at near infrared frequencies are shown 

in Figure 2a,b (black curves in right panels), for two different micro-spheres. A fitting 

process (see Methods section and Supporting Information) was undertaken using the Planck 

equation35 for the emissive power, I, of radiation of a black body, modulated by the 

absorption efficiency, Qabs, that works as the emissivity parameter for a micro-sphere36 

[Equation (1)].  
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The sphere diameter (Φ), which is required for calculating Qabs from Mie theory37 was 

deduced previously from optical scattering measurements at room temperature.33 Therefore, 

the main fitting parameters are the temperature, T, at which the emission occurs, and a second 

ingredient, that will be explained below, consisting of the density of free carriers associated 

to the pumping laser (nFCL). Qabs depends on the refractive index dispersion, which in turn 

depends on the temperature. We obtained the relation between refractive index and 

temperature from the literature.38, 39 Theoretical spectra (red curves) yield a fairly good 

agreement with experiment for those fitted parameters summarized in Table 1. Each peak of 

the spectra corresponds to a Mie resonance. They have been indicated by letters for each 

micro-sphere and identified in Table 2. Other micro-spheres thermal emission at different 

temperatures are shown in the Supporting Information. 

Based on the FEM calculations that indicate the temperature is uniform in planes parallel to 

the substrate, and on our measurement conditions mentioned above (Fig. 1), we assumed a 

theoretical model where the temperature is considered uniform in all the sphere volume.36 In 

fact, the calculations reveal that the temperature variation within the volume occupied by a 

typical resonance is around 1ºC (see Supporting Information). The success of the fit process 

in a wide wavelength range reinforces this assumption. However, we should beware of the 

limitations of this model and of what the fitted temperature represents, i.e. the temperature of 

the micro-sphere at the equatorial plane parallel to the substrate. Although it is beyond the 

scope of this article, a more detailed theory based on fluctuational electrodynamics40 that 

takes into account the actual temperature profile would be convenient to better explain the 

experimental results.  
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Table 1. Main fitted parameters for the emission spectra of Figure 2a,b.  

Fig. Φ (nm) t (ºC) nFCL (cm-3) 
2a 3595 ± 5 756 ± 1 (3.6 ± 0.9)x1018 
2b 2308 ± 5 841 ± 1 (3.0 ± 0.2)x1018 

 

 

 

 

 

 

 

 

 

 

Figure 2. Thermal emission spectra of silicon micro-spheres (a) Measured spectrum in the 

NIR for a 3595 nm diameter (Φ) silicon micro-sphere (black curve in right panel). It agrees 

with that spectrum obtained from fitting the experimental data to Eq. (1) (red curve) with a 

fitted temperature of 756 ºC (see Table 1). The calculation indicates that the emission occurs 

in a much wider range of wavelengths towards the MIR (left panel) and it can reach 

intensities above the Planck limit (blue curve) at some frequency ranges. The spectra have 

been plotted against size parameter, defined as (π Φ/λ), and wavelength. (b) The same as (a) 

but for a 2308 nm diameter silicon micro-sphere with a fitted temperature of 841 ºC.  
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Table 2. Transverse Electric (TE) and Transverse Magnetic (TM) Mie modes associated to 

the spectral peaks of Figure 2 a,b. 

Peak Fig. 2a Fig. 2b 
a TE9,5 TM6,3 
b TM11,4 TE7,3 
c TE12,4 TE5,4 
d TM9,5 TM7,3 
e TE10,5 TE8,3 
f TM12,4 TE6,4 
g TE8,6 TM8,3 
h TM10,5 TE9,3 
i TE11,5 TM6,4 
j TE9,6 TE7,4 
k TM11,5 TE5,5 
l TE12,5 TM7,4 
m TM9,6 TE8,4 
n TE10,6  
o TM12,5  
p TM10,6  
q TE11,6  
r TE9,7  
s TM11,6  
t TE12,6  
u TE10,7  
v TM12,6  

 

Although the measurements are constrained to the NIR range because of the limitations of 

our optical setup, it should be stressed that Mie resonant emission also occurs at longer 

wavelengths according to the theory, in the MIR within our working range of temperatures 

(red curves in left panels). The intensity of the resonances can reach higher values there 

because the maximum for the pure black body emission spectra (blue curves) is located 

around 3 µm [see Equation (1)]. Moreover, emission intensities above the Planck limit2, 3 are 

envisaged at some spectral positions, towards long wavelengths, where Qabs reaches values 

greater than 1. This means that a silicon micro-sphere would emit more light at those 

wavelengths than a black body having an area equal to that obtained from the geometrical 

projection of the micro-sphere.26, 37 
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The approach we are reporting here allows tuning different aspects of the emission spectra. 

The distance between adjacent modes, which is known as free spectral range (FSR), can be 

adjusted by choosing the size of the micro-sphere. The smaller the micro-sphere, the larger 

the FSR is. This can be verified by comparing the spectrum of Figure 2a, with that of Figure 

2b, which correspond to average FSR’s of about 70 and 100 nm respectively around 1.5 µm. 

On the other hand, the size of the micro-sphere influences the Q of emission peaks as well, 

with higher Q’s attainable in general as the sphere diameter increases. In the case of the 

micro-sphere of figure 2a, the typical Mie resonances favoured at 756 ºC show Q’s of several 

hundred around 1.5 µm. Their electric field intensity profile at the resonant plane consists of 

several maximums through the sphere perimeter and in the radial direction. Figure 3 indicates 

that the k values are of the order of 10-3 around that wavelength (green curve). The k increase 

of one order of magnitude at shorter wavelengths smears out all the resonant peaks at that 

spectral region. The figure also shows the total absorption coefficient (black curve) from 

which the k values were calculated, and the position of the band gap, Eg, at 1.452 µm for 756 

ºC. The total absorption coefficient has two main contributions: band gap (blue curve) and 

FC 39 (red curve). We have neglected the lattice absorption because it occurs at wavelengths 

longer than 6 µm approximately, and it is much lower than the FC term at the temperatures of 

our experiments.41 The temperature is, in principle, the most determinant factor for FC 

generation. However, the pumping laser at 405 nm is expected to produce additional FC at 

the same time. The fit process yielded, in fact, a density of FC produced by the pumping laser 

[(3.6 ± 0.9) x 1018 cm-3], higher than that associated with the temperature (1.9 x 1018 cm-3). 

Nevertheless, a contribution from impurities ionization, whose quantification is beyond our 

capabilities, should not be disregarded. For comparison, the absorption produced only by 

temperature generated FC is shown as a dashed red curve in the figure.  
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Figure 3. Optical absorption parameters for silicon at high temperature. The green curve 

corresponds to the imaginary part of the refractive index at 756 ºC, the temperature of the 

measurement of figure 2a. It was obtained from the total absorption coefficient (black curve), 

which has two main contributions: band gap (blue curve) and free carriers (red curve) that are 

originated by the temperature and by the pumping laser. For comparison, the dashed red 

curve shows the absorption produced by the free carriers associated only to temperature. The 

position of the band gap, Eg, at 756 ºC is indicated. 

Finally, another interesting aspect of the system to underline is the possibility of easily 

tuning the spectral position of the resonant peaks by taking advantage of the TOE effect. This 

is demonstrated in figure 4a for mode e (TE10,5) of figure 2a. Its electric field intensity profile 

at the resonance plane is depicted in figure 4b. The rise of temperature from 756 ºC (red dots) 

to 792  ºC (black dots), that we realized by slightly increasing the power of the pumping 

laser, produced a red shift of about 5 nm. A Lorentzian fit of the peaks (continuous lines) 

yielded a Q of 400 ± 40 in both cases. According to the theory, however, they could be 

improved to nearly 1000 by preventing the additional FC of the pumping laser from being 

present (see Supporting Information). This could be achieved by using other heating 

methods.  
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Figure 4. Demonstration of a resonance tuning by temperature and its high Q. (a) Measured 

resonance TE10,5 of micro-sphere of figure 2a at 756 ºC (red dots) and at 792 ºC (black dots). 

The continuous curves correspond to Lorentzian fits that yield a Q of 400 ± 40 in both cases. 

(b) Electric field intensity distribution of the mode at the resonance plane. 

 

In conclusion, we have shown a wavelength-sized platform based on silicon for obtaining 

resonant light at relevant spectral regions such as those of the telecommunication windows, 

and for studying fundamental aspects of physics related to thermal radiation. It presents a 

very promising scenario for silicon micro-spheres in the near future. 
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Methods 

Synthesis and processing of the material. Silicon micro-spheres were synthesized by means 

of a Chemical Vapour Deposition process and they were submitted to a slow crystallization 

treatment33 at 800 ºC. The as-grown samples consist of silicon substrates containing many 

micro-spheres separated from each other. Some of them were transferred by micro-

manipulation means to SiO2 substrates for measuring their thermal emission spectra.  

Measurement of the thermal light emission. An iHR 320 Horiba spectrometer with a liquid 

nitrogen refrigerated InGaAs linear array detector was used for measuring the spectra of the 

thermal light emitted by silicon micro-spheres. The entrance slit of the spectrometer was set 

to 0.1 mm and the signals were integrated over 15 s. The as-measured emission spectra were 

baseline corrected in order to remove the influence of the sensitivity of the optical system 

produced by mirrors, diffraction gratings, etc, and of any spurious signal that could obscure 

the resonant peaks. Additionally, before and after each thermal emission measurement, 

scattering spectra33 at room temperature were recorded in order to check the condition of the 

micro-sphere. No changes were observed in this regard as long as the temperature did not 

surpass 800 ºC. Above this temperature, however, non-reversible changes consisting of small 

blue shifts of several nm in the resonances position occurred. We think that this can be 

produced by further changes in the crystal domains, and thus in the sphere diameter, 

provoked when exceeding the crystallization temperature at which the micro-spheres had 

been submitted. Moreover, oxidation processes could produce noticeable structural changes 

as the temperature increases at such high values.42 

FEM Simulations. Comsol Multiphysics was used for Finite Element Method (FEM) 

simulations. We took into account conduction and radiation as the heat transfer mechanisms. 

The characteristic heating response time in Figure 1b is that time where the temperature of 

the micro-sphere equals to (Tmax – TRT) x (1 - e-1), where Tmax is the maximum temperature at 
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steady state condition, and TRT is room temperature. The cooling time corresponds to that 

time for which the temperature decreases to Tmax x e-1 from its maximum value. Both 

equations correspond to the charge and discharge times respectively of the capacitive element 

in an equivalent RC electrical circuit. The maximum modulation frequency is determined by 

the cooling process, which takes a bit longer than the heating process. 

Fits. The measured spectra of figure 2 a,b were fitted to equation (1) plus a quadratic baseline 

and a normalization factor by Weighted Orthogonal Distance Regression (see Supporting 

Information for a more detailed description). The peaks of figure 4 were fitted to a Lorentzian 

function plus a quadratic baseline by the method of Least Squares. In all the cases the errors 

obtained for the fitted parameters come from the covariance matrix resulting from the fitting 

process. 

 

Supporting Information 

(S1) Fitting process of the black body emission spectrum of a silicon micro-sphere; (S2) 

Back body emission spectra of the micro-sphere of Figure 2a at three different temperatures; 

(S3) Emission spectra of other Si microspheres; (S4) Thermal profile and photonic resonance 

overlap 
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