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Abstract 

Although previous studies have established the feasibility of monitoring esophageal 

temperature during radiofrequency (RF) cardiac ablation using an esophageal temperature 

probe (ETP), some questions remain regarding its efficacy. The aims of this study were to 

study the effect of the location of the ETP on the temperature reached, and to test the 

characteristics of ETP as used in clinical practice. We constructed an agar phantom to 

model the thermal and electrical characteristics of the biological tissues (left atrium, 

esophagus, and connective tissue). The ETP was positioned at 6.5 mm from an ablation 

electrode and at distances of 0, 5, 10, 15, 20 mm from the catheter axis. A thermocouple 

was located on the probe to measure the actual temperature of the external esophageal layer 

during the ablations (55ºC, 60 s). The mean temperatures reached at the thermocouple were 

significantly higher than those measured by the ETP (48.3±1.9ºC versus 39.6±1.1ºC). The 

temperature values measured with the ETP were significantly lower when the probe was 

located further from the catheter axis (up to 2.5ºC lower when the distance from the probe-

catheter axis was 2 cm. The dynamic calibration of the ETP showed a mean value for the 

time constant of 8 s. In conclusion, the temperature measured by the ETP always 

underestimates the temperature reached in the thermocouple. This fact can be explained by 

the distance gap between thermocouple and probe and by the dynamic response of the ETP. 

The greater the distance between ETP and catheter axis the greater is the temperature 

difference. 
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1. Introduction 

The use of radiofrequency (RF) in cardiology has advanced considerably in recent years. It 

has long been used in ablation of arrhythmias as a proven source of energy of demonstrated 

effectiveness and is broadly used in the field of electrophysiology. However, the use of this 

type of energy is not exempt from complications. Some years ago the first cases of 

atrioesophageal fistulae were reported during ablation procedures performed on the left 

atrium during cardiac surgery (Doll et al 2003, Gillinov et al 2001), and more recently 

during catheter ablation (Pappone et al 2004, Scanavacca et al 2004). Since then, there 

have been many attempts at avoiding this occasional but critical problem. It is known that 

the distance between the esophagus and the left atrium can be only a few millimeters 

(Hranitzky et al 2004, Lemola et al 2004) and this anatomic relationship is subject to wide 

variations. Some authors have tried to identify high risk patients by studying the atrium-

esophagus distance by means of image techniques (Hranitzky et al 2004, Lemola et al 

2004, Sanchez-Quintana et al 2005). In some cases, fluoroscopy has been used during the 

ablation procedure to control the points where the distance is small (Cummings et al 2005, 

Perzanowski et al 2006). Other authors have preferred to work with lower power when 

ablating the more risky areas (Pappone et al 2004), although recent studies have suggested 

that power is not a predictor of the esophageal temperature, and in consequence, it is not 

useful for predicting esophageal lesions (Cummings et al 2005). 

A strategy of increasing interest consists of monitoring the esophageal temperature 

during ablation by means of a temperature probe placed in the esophagus lumen 

(Cummings et al 2005, Perzanowski et al 2006, Redfearn et al 2005). In spite of its 
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increasing acceptance, it has received a certain amount of criticism in recent reports 

(D'avila et al 2005, Meade et al 2005). It has been hypothesized that the type of probe, 

location in the correct plane, or close contact with the esophageal epithelium could be 

crucial for correct temperature monitoring and that these factors might not be considered in 

most cases. In fact, a previous computer modeling study showed that the incorrect location 

of the intraesophageal probe could significantly underestimate the maximum temperature 

presumably reached on the horizontal plane of the ablation catheter (Hornero and Berjano 

2006). These first computational results encouraged us to develop an experimental model 

which simulates the circumstances that take place in this process with a high degree of 

accuracy. The aims of this study were 1) to analyze how the distance between ablation 

catheter and the esophageal temperature probe (ETP) affected the apparent esophageal 

temperature reached, and 2) to assess the limitations of the ETP employed in current 

clinical practice. 

 

2. Methods 

Previous computer modeling studies (Berjano and Hornero 2005, Hornero and Berjano 

2006) have concluded that the distances between ablation electrode, esophagus, and 

temperature probe are critical factors in the study of temperature evolution during RF 

ablation. Moreover, it is very difficult to build an ex vivo model including fragments of 

esophagus, connective and cardiac tissue. For these reasons, we built a model based on an 

agar phantom. This methodology has been widely employed in experimental studies on RF 

ablation (Goldberg et al 2001, Lobo et al 2004, Solazzo et al 2005). It reduces variations in 
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the electrical and thermal characteristics of ex vivo tissue to a minimum and provides 

control of the distances between the different elements of the model (such as ablation 

electrode and temperature probes). 

 

2.1. Construction of the phantom 

Figure 1 shows a diagram of the phantom and experimental setup. The agar phantom was 

constructed utilizing a methacrylate tube container with 50 mm external diameter and 30 

mm in height. Before building the agar phantom, we placed a thermistor-based ETP 

perpendicular to the catheter axis (see Fig. 1A) and at 6.5 mm from the surface of the 

phantom. This distance value corresponds with the human anatomic distances previously 

reported (Ho et al 1999, Sanchez-Quintana et al 2005). The temperature probe employed 

was a 9 Fr esophageal/rectal probe 400 ER400-9 (Respiratory Support Products Inc., 

Tijuana Mexico) compatible with the YSI 400 series (YSI Temperature, Dayton, OH, 

USA). This type of probe is currently being employed to monitor the esophageal 

temperature during RF ablation (Perzanowski et al 2006, Redfearn et al 2005). The 

temperature probe was placed inside a simulated esophageal tube. A 22G½ needle 

perpendicular either to the catheter axis or to the esophageal probe was also positioned in 

order to insert the appropriate temperature probe later. A solution of 5% agar in deionized 

water was previously heated over 100ºC. The methacrylate container was then filled with 

melted agar and allowed to solidify in a refrigerated environment at 4ºC for at least 4 hours 

prior to use to ensure proper solidification and homogeneity. A T-type thermocouple 

microprobe IT-21 of 0.41 mm diameter (Physitemp Instruments, Crifton, NY, USA) was 
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also situated on the surface of the ETP at the center of the phantom. For this, after cooling 

the phantom, the spinal needle was withdrawn and the microprobe was positioned manually 

through the canal formed in the gel. 

 

2.2. Experimental setup 

Figure 1B shows a diagram of the experimental setup employed in this study. The phantom 

was submerged in a bath (polycarbonate container of 25×20×18 cm) containing 12 L of 

0.5% NaCl solution as blood-equivalent solution (Cao et al 2000), and maintained at 37ºC 

throughout the experiments with an immersion thermostat Microtherm 3000423 (JP 

Selecta, Abrera, Barcelona, Spain). Additionally, and in order to simulate blood flow inside 

the atrium, a roller pump Stockert-Shiley (Stöckert Shiley, Irvine, CA, USA) was used to 

irrigate both the ablation electrode and the surface of the agar model by re-circulating saline 

solution from the bath at a flow rate of 1 L/min. Saline was infused as a parallel laminar 

flow to the surface of the agar phantom through an 18 mm diameter tube, situated at 20 mm 

from the ablation catheter, which mimics blood flow inside the atrium (Cao et al 2000, Jain 

and Wolf 2000). 

 

2.3. Radiofrequency ablation 

The ablations were conducted using a Blazer II 7Fr/4 mm ablation catheter (Boston 

Scientific, Natiok, MA, USA). We used a methacrylate scaffold in order to accurately 

locate the axis of the catheter at the symmetry axis of the phantom, establishing a total 

distance of 6.5 mm between the point of RF application (i.e. the electrode tip) and the 
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temperature measurement point (i.e. the thermocouple microprobe and the upper external 

surface of the esophageal temperature probe). The scaffold allowed the ablation electrode 

to apply a constant pressure of 20 grams on the agar, ensuring good reproducibility 

throughout the experiments. An ablation generator EPT-1000XP (EP Technologies, Boston, 

MA, USA) was utilized to deliver unmodulated 500 kHz sinusoidal current between the 

ablation electrode and a large metallic plate (20×20 cm) located on the bottom of the saline 

bath. The ablations were conducted by programming a constant temperature of 55ºC at the 

electrode tip, simultaneously limiting the output power to 50 W. The duration of the 

ablations was 60 s in all the experiments.  

 

2.4. Temperature measurement 

The tip of the thermocouple microprobe was always fixed at the catheter axis, on the 

surface of the esophageal probe, and at a constant distance of 6.5 mm from the point of 

application of the RF catheter. Also, in order to model different relative positions between 

the ETP and the catheter axis, the ETP was situated at different values of distance from the 

catheter axis: 20, 15, 10, 5 and 0 mm  (see Fig. 2). At each position, the probe was pulled 

out (see the direction of open arrow in Fig. 2) and was situated at the desired distance (20, 

15, 10, 5 and 0 mm distances from the catheter axis). We carried out five ablations for each 

position. The signals provided from the thermocouple and from the ETP were sent to a data 

acquisition system PowerLab 8sp (ADInstruments, Colorado Springs, CO, USA), sampled 

to 40 kHz, and digitalized with 16-bits resolution for subsequent analysis, which was 

performed using on-screen digital calipers using the software Chart v4.0.2 (ADInstruments, 
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Colorado Springs, CC, USA). Finally, both systems designed to measure temperature were 

calibrated. 

 

2.5. Static and dynamic calibration of the esophageal temperature probe 

Like any other sensor, the performance characteristics of the ETP considered in this study 

can be broken down into the sub-areas of static and dynamic characteristics (Doebelin 

1983). In our study, and prior to the ablation experiments, we first conducted a static 

calibration of the esophageal probe using a pre-heated water tank and a digital multimeter 

Fluke 77 (Fluke Corporation, Everett, WA, USA) with temperature-measuring option based 

on a K-type thermocouple (0.3% accuracy). We then conducted a two-points adjust via 

software in order to minimize offset and gain errors. As a consequence, the total accuracy 

of our temperature-measuring system based on the ETP was ±0.5ºC. 

Once the static characteristics were assessed, we conducted a dynamic calibration. 

Temperature sensors are classified as first-order systems, since their dynamic response is 

controlled by a first-order differential equation which describes the rate of heat transfer 

between the sensor and the surrounding medium (Dally et al 1984). In order to conduct the 

dynamic calibration, we considered the response of the esophageal probe to step-function 

inputs. This was done by suddenly immersing the probe in a medium maintained at a 

constant temperature of ≈75ºC. The time response followed an exponential function such as 

that shown in Fig. 3 (dotted line), which is a typical step response of a first-order system. In 

this kind of system the parameter “time constant” is defined, and is a measure of how 

quickly the system responds. It mathematically represents the time it takes the system's step 
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response to reach about 63.2% of its final value. Additionally, we removed the plastic 

sheath from the esophageal probe (see Fig. 4) and conducted a dynamic calibration of the 

exposed thermistor (see dashed line in Fig. 3). The experiments were repeated ten times, 

and the “time constant” of each sensor type was expressed as mean ± standard deviation. 

 

2.6. Statistical analysis 

The temperature values from thermocouple and ETP reached at 60 s of ablation were 

compared using a U-Mann-Whitney’s test. Differences in variables were considered to be 

significant at a threshold of P < 0.05. Statistical analyses were performed with the software 

SPSS version 12.0 (SPSS, Chicago, IL, USA). 

 

3. Results 

3.1. Effect of the location of esophageal probe on the temperature reached 

Figure 5 shows the temperature values reached at 60 s of ablation both in the thermocouple 

microprobe and in the esophageal probe. The temperature values measured with the 

thermocouple microprobe showed more dispersion and higher values (48.3±1.9ºC, ranging 

from 44.8 to 51.4ºC) than those measured by the esophageal probe (39.6±1.1ºC, ranging 

from 38.3 to 41.5ºC) (P < 0.05). In fact, the differences between sensors ranged from 5.4 to 

12.9ºC. On the other hand, the values measured by the esophageal probe were lower when 

the probe was located farther from the catheter axis (P < 0.05). The temperature reached 

was, in fact, more than 2.5ºC lower when the distance between catheter axis and esophageal 

probe was 2 cm instead of 0 cm. The delivered power ranged from 12 to 24 W. 
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3.2. Lag time of the esophageal temperature probe 

The dynamic calibration of the ETP showed a time constant (τP) of 8.0±0.6 s. Technically, 

this means that when the temperature at the probe abruptly varied, it took a mean value of 8 

seconds to change from the initial temperature of ≈36ºC to ≈60.7ºC (i.e. 63.2% of the 

difference between the initial temperature and the final temperature of ≈75ºC). From a 

clinical point of view, this fact indicates that the esophageal probe shows a significant delay 

in measuring. Likewise, we obtained a similar time evolution when we conducted the 

dynamic calibration of the uncovered esophageal probe (dashed line in Fig. 3). However, in 

this case the time constant was notably lower (τTM=1.5±0.3 s). In other words, the plastic 

sheath of the probe undoubtedly interferes with the temperature register and implies a 

slower response. 

 

3.3. Effect of the dynamic response of the probe on temperature monitoring 

In order to assess the possible causes of the underestimation of temperature of the 

esophageal probe, we analyzed the five ablations conducted when the esophageal probe 

was located exactly at the catheter axis. During these ablations, the temperature in the 

thermocouple located on the esophageal probe remained unaltered during the first 7.5±2.0 s 

(n=5) (t1 in Fig. 6). It then increased and followed an approximately lineal evolution until 

reaching a temperature of 50.8±0.8ºC (n=5) at 60 s (Fig. 6). This lineal-like behavior leads 

us to suppose that the esophageal probe is being excited with a linear-function input, and as 
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a consequence, since this probe is a first-order system with a τP ≈ 8 s (as previously 

calculated), it is possible to estimate the steady-state measurement error (em,ss) due 

exclusively to its lag time. The dashed line in Fig. 6 shows the estimated time response 

(delayed τP times) which involves a final temperature of 48.7ºC, i.e. an em,ss of 2.1ºC. 

However, this final temperature value is higher than those found in our set of experiments 

with the sensory zone of the probe located at the catheter axis (41.1±0.3 ºC, n=5), which 

suggests that factors other than lag time could influence the total underestimation. These 

could include the distance between thermocouple and thermistor (previously commented 

on), and the fact that the esophageal probe is not being totally excited by a thermal linear 

function but only in its upper zone (i.e. on the side near to the ablation electrode). 

 

4. Discussion 

Ablation of the left atrium has now become an effective treatment for atrial fibrillation. It is 

still a developing technique, widely accepted, but not exempt from complications. The first 

reports of atrioesophageal fistulae come from the direct endocardial application of 

radiofrequency in a surgical field (Doll et al 2003, Gillinov et al 2001). Later, the first cases 

of fistulae secondary to percutaneous ablation were published (Pappone et al 2004, 

Scanavacca et al 2004). After years of clinical experience, it has been accepted that the 

incidence of this complication could be around 1% of ablation procedures in the left atrium 

(Cappato et al 2005). Some assumptions have been made about the main predictors of 

esophageal thermal lesion, such as type of catheter, presence of echocardiographic probe, 

area of the left auricle to be ablated and its anatomic relation with the esophagus 
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(Piorkowski et al 2006, Tsao et al 2005). At the same time, clinical tests have been carried 

out to look for ways  to avoid lesions. These have included image studies to anatomically 

detect high risk patients (Lemola et al 2004), modifications to the electrical parameters 

programmed in the RF generator (Doll et al 2003), and the esophageal temperature 

monitoring (Cummings et al 2005), a strategy that is becoming widely accepted. 

Our study presents an experimental model to evaluate the effect of the position of the 

ETP during endocardial percutaneous RF ablation of the left atrium. Firstly, our results 

showed values of esophageal temperatures similar to those reported by previous clinical 

studies (Cummings et al 2005, Kuwahara et al 2005, Redfearn et al 2005) so that our model 

represents a close approximation to the clinical situation. Cummings et al (2005) reported, 

with similar ablation parameters (8-mm tetra-pole percutaneous catheter, and 55ºC preset 

temperature), a range of esophageal temperature between 38.5 and 44ºC in areas considered 

in proximity to the catheter ablation with a 4.2±2.1 mm distance between endocardium and 

esophageal lumen. We obtained a maximum temperature of ≈41ºC with a 6.5 mm distance 

(when the probe was located at the catheter axis). 

Secondly, in our experiments we observed a difference of ≈2.5ºC between the 

temperatures measured with the esophageal probe at the catheter axis (most favorable 

location) and at 20 mm distance from the catheter axis. This result clearly implies that a 

lateral displacement of the esophageal probe can lead to underestimating the temperature, 

which had previously been suggested by Perzanowsky et al (2006). This result also 

confirms the validity of the previous results obtained from a computer modeling study 

(Hornero and Berjano 2006). However, these computer results (using a distance between 
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electrode and esophageal lumen of 5 mm) showed a higher difference (up to 7ºC) (Hornero 

and Berjano 2006). The reasons for this disagreement might be the difference in electrode-

esophagus distance (larger in this study), but we believe that it is principally due to the 

characteristics of the esophageal probe itself, which has considerable volume (i.e. high 

thermal inertia), which could significantly affect the measurement. 

We also observed that the maximum temperatures reached at the esophageal probe and 

at the thermocouple when they were aligned at the same point with respect to the catheter 

axis differed by a mean value of 9.7ºC, despite being in close contact. This temperature gap 

could be explained by the structure of the esophageal probe. As can be observed in Fig. 4, it 

has a plastic cover that contains the temperature sensor (i.e. the thermistor). Both the plastic 

cover (with a significant thickness), and the air surrounding the thermistor, cause 

considerable separation of thermocouple and thermistor, so that they are located at different 

distances from the catheter, and hence record different temperature values. From a clinical 

point of view, this finding suggests that the temperature measured inside the esophagus 

lumen could be much lower than the real temperature reached in the external esophagus 

wall. In conclusion, the structure of the esophageal probe itself implies a significant static 

error. Moreover, since we employed an small probe (9 Fr pediatric), this static error might 

even be higher with adult probes (10-12 Fr) due to higher gap between the esophagus 

lumen and thermistor. 

However, the same structure also involves a dynamic error. To be more precise, the 

elevated value of time constant obtained from the dynamic calibration of the esophageal 

probe suggests that the underestimation in measuring the temperature using this probe 
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might be partially due to its time constant. In addition, it is known that the value of the 

steady-state measurement error (em,ss) is not only directly proportional to τP, but also 

increases directly with the rate of change of the measured temperature (Doebelin 1983). 

Since it is known that the temperature at points close to the ablation electrode increases 

faster than those at a greater distance (Cao et al 2000, Wittkampf et al 1996), the measuring 

error might be higher in these cases. Thus, the problem associated with the lag time of the 

esophageal probe is more hazardous when the probe is closer to the ablation electrode. This 

problem has also been previously reported by other authors (Teplitsky et al 2005). The 

value of the time constant could be improved (i.e. reduced) by designing a temperature 

sensor with a small mass, e.g. the very small thermocouple employed in this study has a 

constant time of ≈40 ms (see solid line in Fig. 3). In conclusion, new technologies for safe 

and accurate monitoring of the esophageal temperature should be designed to minimize the 

time response, and would probably include several small temperature sensors. 

 

4.1. Limitations of the study 

In our experimental set-up, we only considered the shift of the esophageal probe along an 

axis. On the other hand, it is known that in spite of positioning the probe at the level of the 

ablation catheter the esophagus lumen permits lateral displacements of the esophageal 

probe in any direction on a transversal plane (Perzanowski et al 2006). However, our 

previous modeling study showed similar temperature values when the measuring points 

were shifted the same distance from the catheter axis but in different directions (Hornero 
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and Berjano 2006), which suggests that the experimental results obtained might also be 

valid under other shift conditions. 

Finally, our set-up was based on a uniform agar model. To date, this technique has been 

widely employed in experimental studies on RF ablation for the treatment of tumor in 

homogeneous tissue (e.g. liver and kidney). We believe that our model correctly mimics 

heat transfer through multiple distinct tissue types and tissue interface layers (e.g. atrial 

myocardium, pericardium connective tissue, esophageal muscle) since that all these tissues 

offer similar values both of thermal and electrical characteristics. 

 

5. Conclusions 

Our experimental findings suggest that:  

1) The temperature measured with the esophageal probe always underestimates the 

temperature reached in the thermocouple, which could be equivalent to the temperature 

of the esophagus. This fact can be partially explained by the short distance between 

thermocouple and esophageal probe and by the slow dynamic response of the clinical 

probe. 

2) Likewise, the increase in the distance between the sensory zone of the esophageal probe 

and the catheter axis underestimate the temperature reached in the thermocouple. 

3) The rapid increase of the temperature reached in the thermocouple suggests that the 

signal obtained from an ETP should be sampled using a high frequency as opposed to 

those currently employed (1 sample each 5 s). 
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Figure 1  A: Diagram of the agar phantom model. B: Experimental setup of the agar 

phantom model: (1) agar phantom container, (2) esophageal temperature 

probe, (3) ablation catheter, (4) radiofrequency generator, (5) hydraulic 

circuit to simulate blood flow, (6) pump, (7) thermocouple microprobe, (8) 

saline bath at 37ºC, (9) immersion thermostat, (10) metallic plate, and (11) 

plastic frame. 
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Figure 2  Relative position of the radiofrequency ablation catheter, the thermistor-

based esophageal temperature probe and the thermocouple in the agar 

phantom model. The esophageal probe was slid in the direction of the open 

arrow to situate the middle point of the thermistor at the appropriate distance 

for the experiment (i.e. 20, 15, 10, 5 and 0 mm) with reference to the catheter 

axis. 
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Figure 3 Step responses of esophageal temperature probe, uncovered esophageal 

temperature probe (i.e. with exposed thermistor) and thermocouple. The time 

constant of esophageal temperature probe (τP) and the exposed thermistor 

(τTM) was respectively of 8.0±0.6 s and 1.5±0.3 s. The thermocouple showed 

a time constant of ≈40 ms, and thus was employed as control signal to check 

the step waveform of the temperature. 
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Figure 4 Photo showing the inner part of the thermistor-based esophageal temperature 

probe (9 Fr, YSI 400 series). A section of the plastic sheath has been 

removed in order to show the exposed thermistor (arrow). 
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Figure 5 Values of temperature reached at 60 s of ablation in the thermocouple (open 

circle) and in the esophageal temperature probe (closed circle) for different 

locations in relation to the catheter axis. The thermocouple microprobe was 

always located on the catheter axis. 
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Figure 6 Time evolution of the temperature measured in the thermocouple (solid line) 

and in the esophageal temperature probe located at the catheter axis (dotted 

line). The final temperatures reached were 50.8±0.8ºC and 41.1±0.3ºC 

respectively. The time evolution of thermocouple was approximately a linear 

response beginning at t1 = 7.5±2.0 s. Taking only the time constant of the 

esophageal probe (τP) into account, the temperature reached in the probe 

would be 48.7ºC (dashed line). 
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