Document downloaded from:
http://hdl.handle.net/10251/150652
This paper must be cited as:
Liu, X.; Benítez López, J.; Zhang, M. (2016). Involutiveness of linear combinations of a quadratic or tripotent matrix and an arbitrary matrix. Bulletin of the Iranian Mathematical Society. 42(3):595-610. http://hdl.handle.net/10251/150652

The final publication is available at
http://bims.iranjournals.ir/

Copyright
Springer

Additional Information

INVOLUTIVENESS OF LINEAR COMBINATIONS OF A QUADRATIC OR TRIPOTENT MATRIX AND AN ARBITRARY MATRIX

XIAOJI LIU, JULIO BENÍTEZ *, AND MIAO ZHANG

Abstract

In this article, we characterize the involutiveness of the linear combination of the form $a_{1} A_{1}+a_{2} A_{2}$ when a_{1}, a_{2} are nonzero complex numbers, A_{1} is a quadratic or tripotent matrix, and A_{2} is arbitrary, under certain properties imposed on A_{1} and A_{2}. Key words: Quadratic matrix, involutive matrix, linear combination. AMS classification: 15A24, 15A18.

1. Introduction and preliminary results

The symbols \mathbb{C} and \mathbb{C}^{*} will denote the set of complex numbers and nonzero complex numbers, respectively. Let $\mathbb{C}^{n \times m}$ denote the set of all complex $n \times m$ matrices. If $A \in \mathbb{C}^{n \times m}$, then A^{*} denotes the conjugate transpose of A. The identity matrix of order n will be denoted by I_{n}. For a given square complex matrix A, the set of eigenvalues of A will be denoted by $\sigma(A)$. The symbol \oplus will denote the direct sum of matrices.

The inheritance of the idempotency, involutiveness, or tripotency by linear combinations of idempotents, involutive, or tripotents has very useful applications in the theory of distributions of quadratic forms in normal variables (see e.g. [20, 21, 22]). The reader may find in [21] more applications of idempotent and tripotent matrices. The sets of idempotent and involutive matrices can be dealt by a uniform approach: a quadratic matrix.

Let us define the concept of quadratic matrix and review some properties. Following [1], we say that a matrix $A \in \mathbb{C}^{n \times n}$ is said to be quadratic if there exists a second degree polynomial $p: \mathbb{C} \rightarrow \mathbb{C}$ such that $p(A)=0$. Thus, quadratic matrices are a wide class of matrices containing idempotent ($A^{2}=A$), involutive $\left(A^{2}=I_{n}\right)$, and several other types of matrices. The reader is referred to [9] to consult deeper properties of quadratic matrices.

In [19, Theorem 2.1], it was established an useful expression for quadratic matrices. Concretely, for $A \in \mathbb{C}^{n \times n}$ and $\alpha, \beta \in \mathbb{C}$ with $\alpha \neq \beta$ one has that $\left(A-\alpha I_{n}\right)\left(A-\beta I_{n}\right)=0$ if and only if exists a nonsingular $S \in \mathbb{C}^{n \times n}$ such that $A=S\left(\alpha I_{p} \oplus \beta I_{q}\right) S^{-1}$, where $p, q \in\{0,1, \ldots, n\}$. A matrix $A \in \mathbb{C}^{n \times n}$ is said to be an $\{\alpha, \beta\}$-quadratic matrix if $\left(A-\alpha I_{n}\right)\left(A-\beta I_{n}\right)=0$. Observe that, in particular, an idempotent is a $\{0,1\}$-quadratic matrix and an involutive matrix is a $\{-1,1\}$-quadratic matrix.

[^0]The linear combination of the form

$$
\begin{equation*}
A=a_{1} A_{1}+a_{2} A_{2}, \quad A_{1}, A_{2} \in \mathbb{C}^{n \times n}, a_{1}, a_{2} \in \mathbb{C}^{*} \tag{1.1}
\end{equation*}
$$

was investigated by many researchers and many useful results was obtained (see e.g. $[2,3,4,6,7,13,15,17,19,20,22]$ and references therein).

The purpose of this paper is to investigate the necessary and sufficient conditions for $A=a_{1} A_{1}+a_{2} A_{2}$ to be involutive matrix, where A_{1} is a quadratic or tripotent matrix and A_{2} is arbitrary under some certain conditions.

2. Main results

We begin the study of the linear combination (1.1) when A_{1} is a quadratic matrix and A_{1}, A_{2} satisfy certain condition.

Theorem 2.1. Let $A_{1}, A_{2} \in \mathbb{C}^{n \times n} \backslash\{0\}$ and $\alpha, \beta \in \mathbb{C}$ with $0 \neq \alpha \neq \beta$. Moreover, let A be a linear combination of the form (1.1) with $a_{1}, a_{2} \in \mathbb{C}^{*}$. If A_{1} is a $\{\alpha, \beta\}$-quadratic and $A_{1} A_{2} A_{1}=A_{2} A_{1}$, then $A^{2}=I_{n}$ if and only if there is a nonsingular matrix $V \in \mathbb{C}^{n \times n}$ such that

$$
A_{1}=V\left(\begin{array}{cc}
\alpha I_{p} & 0 \tag{2.1}\\
0 & \beta I_{n-p}
\end{array}\right) V^{-1}
$$

and A_{2} satisfies one of the following cases.
(i) $\beta \neq 1$
(2.2) $\quad A_{2}=V\left(\begin{array}{cccc}\frac{1-a_{1} \alpha}{a_{2}} I_{q} & 0 & 0 & L \\ 0 & \frac{-1-a_{1} \alpha}{a_{2}} I_{p-q} & M & 0 \\ 0 & 0 & \frac{1-a_{1} \beta}{a_{2}} I_{r} & 0 \\ 0 & 0 & 0 & \frac{-1-a_{1} \beta}{a_{2}} I_{n-p-r}\end{array}\right) V^{-1}$,
being $L \in \mathbb{C}^{q \times(n-p-r)}$ and $M \in \mathbb{C}^{(p-q) \times r}$ arbitrary.
(ii) $\beta=1, \alpha a_{1}=1$.

$$
A_{2}=V\left(\begin{array}{ccc}
0 & 0 & 0 \tag{2.3}\\
0 & \frac{\alpha-1}{\alpha a_{2}} I_{r} & 0 \\
S & 0 & -\frac{\alpha+1}{\alpha a_{2}} I_{n-r-p}
\end{array}\right) V^{-1}
$$

being $S \in \mathbb{C}^{(n-r-p) \times p}$ arbitrary.
(iii) $\beta=1, \alpha a_{1}=-1$.

$$
A_{2}=V\left(\begin{array}{ccc}
0 & 0 & 0 \tag{2.4}\\
R & \frac{\alpha+1}{\alpha a_{2}} I_{r} & 0 \\
0 & 0 & \frac{1-\alpha}{\alpha a_{2}} I_{n-r-p}
\end{array}\right) V^{-1}
$$

being $R \in \mathbb{C}^{r \times p}$ arbitrary.
Proof. Since A_{1} is an $\{\alpha, \beta\}$-quadratic matrix, there exist $p \in\{0,1, \ldots, n\}$ and a nonsingular matrix $U \in \mathbb{C}^{n \times n}$ such that $A_{1}=U\left(\alpha I_{p} \oplus \beta I_{n-p}\right) U^{-1}$. Let
us write $A_{2}=U\left(\begin{array}{ll}X_{1} & X_{2} \\ X_{3} & X_{4}\end{array}\right) U^{-1}$, where $X_{1} \in \mathbb{C}^{p \times p}$. Since $A_{1} A_{2} A_{1}=A_{2} A_{1}$ and $\alpha \neq 0$, we conclude that

$$
\begin{equation*}
\alpha X_{1}=X_{1}, \quad \alpha \beta X_{2}=\beta X_{2}, \quad \beta X_{3}=X_{3}, \quad \beta^{2} X_{4}=\beta X_{4} \tag{2.5}
\end{equation*}
$$

It is evident that if A_{1} is represented as in (2.1) and A_{2} is represented as in (2.2), (2.3), or (2.4), and the scalars a_{1}, α, β satisfy the corresponding conditions, then $A^{2}=I_{n}$.

Let us assume $A^{2}=I_{n}$. We split the proof in several cases.
Case I: $\beta \neq 1$. From the third equality of (2.5), we get $X_{3}=0$. So,

$$
A_{2}=U\left(\begin{array}{cc}
X_{1} & X_{2} \tag{2.6}\\
0 & X_{4}
\end{array}\right) U^{-1}
$$

Hence,

$$
A=a_{1} A_{1}+a_{2} A_{2}=U\left(\begin{array}{cc}
a_{1} \alpha I_{p}+a_{2} X_{1} & a_{2} X_{2} \\
0 & a_{1} \beta I_{n-p}+a_{2} X_{4}
\end{array}\right) U^{-1}
$$

and

$$
A^{2}=U\left(\begin{array}{cc}
\left(a_{1} \alpha I_{p}+a_{2} X_{1}\right)^{2} & a_{1} a_{2}(\alpha+\beta) X_{2}+a_{2}^{2} X_{1} X_{2}+a_{2}^{2} X_{2} X_{4} \\
0 & \left(a_{1} \beta I_{n-p}+a_{2} X_{4}\right)^{2}
\end{array}\right) U^{-1}
$$

From $A^{2}=I_{n}$, we conclude that

$$
\begin{align*}
\left(a_{1} \alpha I_{p}+a_{2} X_{1}\right)^{2} & =I_{p}, \tag{2.7}\\
\left(a_{1} \beta I_{n-p}+a_{2} X_{4}\right)^{2} & =I_{n-p} \tag{2.8}
\end{align*}
$$

and

$$
\begin{equation*}
a_{1} a_{2}(\alpha+\beta) X_{2}+a_{2}^{2} X_{1} X_{2}+a_{2}^{2} X_{2} X_{4}=0 \tag{2.9}
\end{equation*}
$$

By (2.7), there exist $q \in\{0, \ldots, p\}$ and a nonsingular matrix $V_{1} \in \mathbb{C}^{p \times p}$ such that

$$
a_{1} \alpha I_{p}+a_{2} X_{1}=V_{1}\left(\begin{array}{cc}
I_{q} & 0 \\
0 & -I_{p-q}
\end{array}\right) V_{1}^{-1}
$$

which implies

$$
X_{1}=V_{1}\left(\begin{array}{cc}
\frac{1-a_{1} \alpha}{a_{2}} I_{q} & 0 \tag{2.10}\\
0 & \frac{-1-a_{1} \alpha}{a_{2}} I_{p-q}
\end{array}\right) V_{1}^{-1} .
$$

From (2.8), there exist $r \in\{0, \ldots, n-p\}$ and a nonsingular matrix $V_{2} \in$ $\mathbb{C}^{(n-p) \times(n-p)}$ such that

$$
a_{1} \beta I_{n-p}+a_{2} X_{4}=V_{2}\left(\begin{array}{cc}
I_{r} & 0 \\
0 & -I_{n-p-r}
\end{array}\right) V_{2}^{-1}
$$

that is,

$$
X_{4}=V_{2}\left(\begin{array}{cc}
\frac{1-a_{1} \beta}{a_{2}} I_{r} & 0 \tag{2.11}\\
0 & \frac{-1-a_{1} \beta}{a_{2}} I_{n-p-r}
\end{array}\right) V_{2}^{-1} .
$$

Let X_{2} be written as $X_{2}=V_{1}\left(\begin{array}{c}K \\ M\end{array} \underset{N}{L}\right) V_{2}^{-1}$, where $K \in \mathbb{C}^{q \times r}$. By (2.9), (2.10), and (2.11), we get
$a_{1} a_{2}(\alpha+\beta) X_{2}+a_{2}^{2}\left(X_{1} X_{2}+X_{2} X_{4}\right)=V_{1}\left(\begin{array}{cc}2 a_{2} K & 0 \\ 0 & -2 a_{2} N\end{array}\right) V_{2}^{-1}=0$.
Thus, $K=0$ and $N=0$. Now, X_{2} reduces to

$$
X_{2}=V_{1}\left(\begin{array}{cc}
0 & L \tag{2.12}\\
M & 0
\end{array}\right) V_{2}^{-1} .
$$

Let us define $V=U\left(V_{1} \oplus V_{2}\right)$. We obtain

$$
\begin{aligned}
A_{1} & =U\left(\begin{array}{cc}
\alpha I_{p} & 0 \\
0 & \beta I_{r}
\end{array}\right) U^{-1} \\
& =U\left(V_{1} \oplus V_{2}\right)\left(\begin{array}{cc}
V_{1}^{-1} & 0 \\
0 & V_{2}^{-1}
\end{array}\right)\left(\begin{array}{cc}
\alpha I_{p} & 0 \\
0 & \beta I_{n-p}
\end{array}\right)\left(\begin{array}{cc}
V_{1} & 0 \\
0 & V_{2}
\end{array}\right)\left(V_{1}^{-1} \oplus V_{2}^{-1}\right) U^{-1} \\
& =V\left(\begin{array}{cc}
\alpha I_{p} & 0 \\
0 & \beta I_{n-p}
\end{array}\right) V^{-1} .
\end{aligned}
$$

By (2.6), (2.10), (2.11), and (2.12), we obtain

$$
\begin{aligned}
& A_{2}=U\left(\begin{array}{cc}
X_{1} & X_{2} \\
0 & X_{4}
\end{array}\right) U^{-1} \\
& =U\left(\begin{array}{cc}
V_{1}\left(\begin{array}{cc}
\frac{1-a_{1} \alpha}{a_{2}} I_{q} & 0 \\
0 & \frac{-1-a_{1} \alpha}{a_{2}} I_{p-q}
\end{array}\right) V_{1}^{-1} & V_{1}\left(\begin{array}{cc}
0 & L \\
M & 0
\end{array}\right) V_{2}^{-1} \\
& 0
\end{array} \quad V_{2}\left(\begin{array}{cc}
\frac{1-a_{1} \beta}{a_{2}} I_{r} & 0 \\
0 & \frac{-1-a_{1} \beta}{a_{2}} I_{n-p-r}
\end{array}\right) V_{2}^{-1}\right) U^{-1} \\
& =U\left(V_{1} \oplus V_{2}\right)\left(\begin{array}{cccc}
\frac{1-a_{1} \alpha}{a_{2}} I_{q} & 0 & 0 & L \\
0 & \frac{-1-a_{1} \alpha}{a_{2}} I_{p-q} & M & 0 \\
0 & 0 & \frac{1-a_{1} \beta}{a_{2}} I_{r} & 0 \\
0 & 0 & 0 & \frac{-1-a_{1} \beta}{a_{2}} I_{n-p-r}
\end{array}\right)\left(V_{1}^{-1} \oplus V_{2}^{-1}\right) U^{-1} .
\end{aligned}
$$

Thus, A_{2} can be written as in (2.2).
Case II: $\beta=1$. Since $\alpha \neq \beta$, we have $\alpha \neq 1$. Hence from (2.5), we get $X_{1}=0$ and $X_{2}=0$. Then

$$
A=a_{1} A_{1}+a_{2} A_{2}=U\left(\begin{array}{cc}
\alpha a_{1} I_{p} & 0 \\
a_{2} X_{3} & a_{1} I_{n-p}+a_{2} X_{4}
\end{array}\right) U^{-1}
$$

Since $A^{2}=I_{n}$, we conclude that

$$
\begin{equation*}
\left(\alpha a_{1}\right)^{2}=1, \quad\left(a_{1} I_{n-p}+a_{2} X_{4}\right)^{2}=I_{n-p}, \quad(1+\alpha) a_{1} a_{2} X_{3}+a_{2}^{2} X_{4} X_{3}=0 \tag{2.13}
\end{equation*}
$$

By the second equality of (2.13), there exist $r \in\{0, \ldots, n-p\}$ and a nonsingular matrix $T \in \mathbb{C}^{(n-p) \times(n-p)}$ such that $a_{1} I_{n-p}+a_{2} X_{4}=T\left(I_{r} \oplus\right.$ $\left.-I_{n-p-r}\right) T^{-1}$, a simple computation shows that

$$
X_{4}=T\left(\begin{array}{cc}
\frac{1-a_{1}}{a_{2}} I_{r} & 0 \tag{2.14}\\
0 & \frac{-1-a_{1}}{a_{2}} I_{n-r-p}
\end{array}\right) T^{-1} .
$$

By the first equality of (2.13), we get $a_{1}=1 / \alpha$ or $a_{1}=-1 / \alpha$. (we can use the first equality of (2.13) because if $p=0$, then (2.1) would yield $A_{1}=\beta I_{n}$, which is not possible in view that A_{1} is $\{\alpha, \beta\}$-quadratic matrix). Let us write X_{3} as $X_{3}=T\binom{R}{S}$, where $R \in \mathbb{C}^{r \times p}$. Then

$$
(1+\alpha) a_{1} a_{2} X_{3}+a_{2}^{2} X_{4} X_{3}=T\binom{\left(\alpha a_{1} a_{2}+a_{2}\right) R}{\left(\alpha a_{1} a_{2}-a_{2}\right) S} .
$$

Thus, from the last equality of (2.13) we have that

$$
\begin{equation*}
\left(\alpha a_{1} a_{2}+a_{2}\right) R=0 \quad \text { and } \quad\left(\alpha a_{1} a_{2}-a_{2}\right) S=0 \tag{2.15}
\end{equation*}
$$

Case II.a: $\alpha a_{1}=1$. Equalities (2.14) and (2.15) reduce to

$$
X_{4}=T\left(\begin{array}{cc}
\frac{\alpha-1}{\alpha a_{2}} I_{r} & 0 \tag{2.16}\\
0 & -\frac{\alpha+1}{\alpha a_{2}} I_{n-r-p}
\end{array}\right) T^{-1} \quad \text { and } \quad R=0
$$

We have

$$
A_{1}=U\left(\alpha I_{p} \oplus I_{n-p}\right) U^{-1}=U\left(I_{p} \oplus T\right)\left(\alpha I_{p} \oplus I_{n-p}\right)\left(I_{p} \oplus T^{-1}\right) U^{-1}
$$

and

$$
\left.\begin{array}{rl}
A_{2} & =U\left(\begin{array}{cc}
0 & 0 \\
X_{3} & X_{4}
\end{array}\right) U^{-1} \\
& =U\left(\begin{array}{c}
0 \\
T\binom{0}{S}
\end{array} T\left(\begin{array}{cc}
\frac{\alpha-1}{\alpha a_{2}} I_{r} & 0 \\
0 & -\frac{\alpha+1}{\alpha a_{2}} I_{n-r-p}
\end{array}\right) T^{-1}\right.
\end{array}\right) U^{-1} .
$$

It is enough to define $V=U\left(I_{p} \oplus T\right)$ to get the expression of this case.
Case II.b: $\alpha a_{1}=-1$. The proof of this case is quite similar to the previous one.

Example 2.2. Let us solve in this example the following problem. Let

$$
A_{1}=\left(\begin{array}{ccc}
2 & -1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad A_{2}=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & -1 \\
0 & -1 & -1
\end{array}\right)
$$

Find all numbers $a_{1}, a_{2} \in \mathbb{C}^{*}$ such that $a_{1} A_{1}+a_{2} A_{2}$ is involutive.
Observe that A_{1} is a $\{2,1\}$-quadratic matrix and $A_{1} A_{2} A_{1}=A_{2} A_{1}$. Furthermore, a simple computation shows that $\sigma\left(A_{2}\right)=\{0,-1\}$. Following the notation of the previous result, we can assume $\alpha=2$ and $\beta=1$. By the previous result, we must consider two alternatives: $a_{1}=1 / 2$ or $a_{1}=-1 / 2$. For the first alternative, by (2.3), we obtain $\sigma\left(A_{2}\right) \subset\left\{0,1 /\left(2 a_{2}\right),-3 /\left(2 a_{2}\right)\right\}$, and thus, $-1 \in\left\{1 /\left(2 a_{2}\right),-3 /\left(2 a_{2}\right)\right\}$, so we have two possibilities for a_{2}, namely $a_{2}=-1 / 2$ or $a_{2}=3 / 2$. For the second alternative, by (2.4), we obtain $\sigma\left(A_{2}\right) \subset\left\{0,3 /\left(2 a_{2}\right),-1 /\left(2 a_{2}\right)\right\}$, and thus, $-1 \in\left\{3 /\left(2 a_{2}\right),-1 /\left(2 a_{2}\right)\right\}$, so we have now two possibilities for a_{2}, namely $a_{2}=-3 / 2$ or $a_{2}=1 / 2$.

Observe that we have four possibilities:

$$
\left(a_{1}, a_{2}\right) \in\{(1 / 2,-1 / 2),(1 / 2,3 / 2),(-1 / 2,1 / 2),(-1 / 2,-3 / 2)\} .
$$

It is enough now to check if $a_{1} A_{1}+a_{2} A_{2}$ is involutive. None of the above four possibilites yield to the involutiveness of $a_{1} A_{1}+a_{2} A_{2}$. Thus, we do not find $a_{1}, a_{2} \in \mathbb{C}^{*}$ such that $a_{1} A_{1}+a_{2} A_{2}$ is involutive.
Example 2.3. Let A_{1} be as in the previous example. We shall find all matrices $A_{2} \in \mathbb{C}^{3 \times 3}$ and $a_{1} \in \mathbb{C}^{*}$ that $A_{1} A_{2} A_{1}=A_{2} A_{1}$ and $a_{1} A_{1}+A_{2}$ is involutive.

By following the notation of the previous result, we can assume $\alpha=2$, $\beta=1$. Obviously, we have $a_{2}=1$. Only cases (ii) and (iii) of the previous result can be satisfied, and thus, $a_{1}= \pm 1 / \alpha= \pm 1 / 2$. By a diagonalization of A_{1}, the expression (2.1) in this example is

$$
A_{1}=V\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) V^{-1}, \quad V=\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad p=1 .
$$

If case (ii) of the previous result holds, then $a_{1}=1 / 2$. Now, A_{2} must be of the form (2.3). Since $r \in\{0, \ldots, n-p\}=\{0,1,2\}$, then depending on the value of r, some blocks of A_{2} dissapear, yielding to the following possibilities for $V^{-1} A_{2} V$ (respectively for $r=0,1,2$):

$$
\left(\begin{array}{ccc}
0 & 0 & 0 \\
x & -3 / 2 & 0 \\
y & 0 & -3 / 2
\end{array}\right), \quad\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 / 2 & 0 \\
z & 0 & -3 / 2
\end{array}\right), \quad\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1 / 2
\end{array}\right),
$$

being $x, y, z \in \mathbb{C}$ arbitrary. The case (iii) can be dealt by a similar way. We omit the details.

Remark 2.4. Observe that under the hypothesis of Theorem 2.1, $\sigma\left(A_{2}\right)$ is localized with no effort, because (2.2), (2.3), and (2.4) prove that A_{2} is similar to certain triangular matrices.

Remark 2.5. We shall show how to manage the condition $A_{1} A_{2} A_{1}=A_{1} A_{2}$ with no effort. Let M be an $\{\alpha, \beta\}$-quadratic matrix. It is evident that M^{*} is a $\{\bar{\alpha}, \bar{\beta}\}$-quadratic matrix. Thus, if $A_{1}, A_{2} \in \mathbb{C}^{n \times n}$ are such that $a_{1} A_{1}+a_{2} A_{2}$ is involutive, A_{1} is $\{\alpha, \beta\}$-quadratic matrix, and $A_{1} A_{2} A_{1}=A_{1} A_{2}$, we can apply Theorem 2.1 to A_{1}^{*} and A_{2}^{*}.

As an example of the wide applicability of this result we shall prove two corollaries.

Corollary 2.6. Let $A_{1}, A_{2} \in \mathbb{C}^{n \times n}$ be two nonzero linearly independent idempotent matrices such that $A_{1} A_{2} A_{1}=A_{2} A_{1}$. Moreover, let A be a linear combination of the form (1.1) with $a_{1}, a_{2} \in \mathbb{C}^{*}$. Then $A^{2}=I_{n}$ if and only if one of the following conditions holds.
(i) $\left(a_{1}, a_{2}\right) \in\{(-1,2),(1,-2)\}$ and $A_{1}=I_{n}$.
(ii) $\left(a_{1}, a_{2}\right) \in\{(2,-1),(-2,1)\}$ and $A_{2}=I_{n}$.
(iii) $\left(a_{1}, a_{2}\right) \in\{(1,1),(-1,-1)\}$ and $A_{1} A_{2}=A_{2} A_{1}=0, A_{1}+A_{2}=I_{n}$.
(iv) $\left(a_{1}, a_{2}\right) \in\{(1,-1),(-1,1)\}$ and $A_{1}+A_{2}=A_{1} A_{2}+I_{n}, A_{2} A_{1}=0$.

Proof. It is straightforward that any characteristic (i)-(iv) leads to $A^{2}=I_{n}$.
Assume that $A^{2}=I_{n}$. Since A_{1} is a nonzero idempotent, we have two possibilities: $A_{1}=I_{n}$ or A_{1} is a $\{1,0\}$-quadratic matrix. For the first of the above possibilites, by writting $A_{2}=W\left(I_{x} \oplus 0\right) W^{-1}$, being $x=\operatorname{rank}\left(A_{2}\right)$ with $0 \neq x \neq n$ we easily obtain the characteristic (i) of the Theorem.

Now, we assume that A_{1} is a $\{1,0\}$-quadratic matrix. From Theorem 2.1, there exist a nonsingular matrix $V \in \mathbb{C}^{n \times n}, p \in\{1, \ldots, n-1\}, q \in$ $\{0,1, \ldots, p\}$, and $r \in\{0,1, \ldots, n-p\}$ such that $A_{1}=V\left(I_{p} \oplus 0\right) V^{-1}$ and

$$
A_{2}=V\left(\begin{array}{cccc}
\frac{1-a_{1}}{a_{2}} I_{q} & 0 & 0 & L \tag{2.17}\\
0 & -\frac{1+a_{1}}{a_{2}} I_{p-q} & M & 0 \\
0 & 0 & \frac{1}{a_{2}} I_{r} & 0 \\
0 & 0 & 0 & -\frac{1}{a_{2}} I_{n-r-p}
\end{array}\right) V^{-1}
$$

We shall denote $\lambda=\frac{1-a_{1}}{a_{2}}, \mu=-\frac{1+a_{1}}{a_{2}}, \rho=1 / a_{2}$ and $\sigma=-1 / a_{2}$.
Since $A_{2}^{2}=A_{2}$, we get

$$
\begin{aligned}
\left(\begin{array}{cc}
\lambda I_{q} & 0 \\
0 & \mu I_{p-q}
\end{array}\right)^{2} & =\left(\begin{array}{cc}
\lambda I_{q} & 0 \\
0 & \mu I_{p-q}
\end{array}\right) \\
\left(\begin{array}{cc}
\rho I_{r} & 0 \\
0 & \sigma I_{n-r-p}
\end{array}\right)^{2} & =\left(\begin{array}{cc}
\rho I_{r} & 0 \\
0 & \sigma I_{n-r-p}
\end{array}\right) .
\end{aligned}
$$

We shall split the proof to the following cases according to the values of q.
(I) If $q=0$, then $\mu \in\{0,1\}$. Hence $a_{1}=-1$ or $a_{1}+a_{2}=-1$.
(II) If $q=p$, then $\lambda \in\{0,1\}$. Hence $a_{1}=1$ or $a_{1}+a_{2}=1$.
(III) If $0<q<p$, then $\left(a_{1}, a_{2}\right)=(-1,2)$ or $\left(a_{1}, a_{2}\right)=(1,-2)$.

Again we split the proof to the following cases according the value of r.
(A) If $r=0$, then $\sigma^{2}=\sigma$. Since $\sigma \neq 0$, then we obtain $a_{2}=-1$.
(B) If $r=n-p$, then $\rho^{2}=\rho$. Thus, $a_{2}=1$.
(C) If $0<r<n-p$ we arrive at a contradiction.

We now combine cases (I), (II), (III) with (A), (B). The combinations (III-A) and (III-B) are clearly unfeasible.
(I-A): We have $q=r=0$ and $a_{1}=a_{2}=-1$. From (2.17), we have $A_{2}=V\left(0 \oplus I_{n-p}\right) V^{-1}$. This situation leads to the part of the characteristic (iii) of the theorem.
(II-A): We have $q=p, r=0$, and $\left(a_{1}, a_{2}\right) \in\{(1,-1),(2,-1)\}$. From (2.17), we have

$$
A_{2}=V\left(\begin{array}{cc}
\lambda I_{p} & L \\
0 & \sigma I_{n-p}
\end{array}\right) V^{-1}
$$

Since $A_{2}^{2}=A_{2}$, we get $(\lambda+\sigma-1) L=0$. If $\left(a_{1}, a_{2}\right)=(1,-1)$, then $A_{2}=V\left(\begin{array}{cc}0 & L \\ 0 & I_{n-p}\end{array}\right) V^{-1}$ and this situation leads to the part of
the characteristic (iv). If $\left(a_{1}, a_{2}\right)=(2,-1)$, then $\lambda=\sigma=1$, and therefore, $(\lambda+\sigma-1) L=0$ leads to $L=0$. So, we have $A_{2}=I_{n}$. This is the part of the characteristic (ii).
(I-B): We have $q=0, r=n-p$, and $\left(a_{1}, a_{2}\right) \in\{(-1,1),(-2,1)\}$. From (2.17), we have $A_{2}=V\left(\begin{array}{cc}\mu I_{p} & M \\ 0 & \rho I_{n-p}\end{array}\right) V^{-1}$. Since $A_{2}^{2}=A_{2}$, we get $(\mu+\rho-1) M=0$. If $\left(a_{1}, a_{2}\right)=(-1,1)$, then $A_{2}=V\left(\begin{array}{cc}0 & M \\ 0 & I_{n-p}\end{array}\right) V^{-1}$ and this situation leads to the part of the characteristic (iv). If $\left(a_{1}, a_{2}\right)=(-2,1)$, then $(\mu+\rho-1) M=0$ leads to $M=0$ and $A_{2}=I_{n}$, and this is the part of the characteristic (ii).
(II-B): We have $q=p, r=n-p$, and $a_{1}=a_{2}=1$. From (2.17), we get $A_{2}=V\left(0 \oplus I_{n-p}\right) V^{-1}$. This situation leads to a part of the characteristic (iii).
The proof is finished.
Corollary 2.7. Let $A_{1}, A_{2} \in \mathbb{C}^{n \times n} \backslash\{0\}$ be two linearly independent matrices such that $A_{1}^{2}=I_{n}, A_{2}^{2}=A_{2}, A_{1} A_{2} A_{1}=A_{2} A_{1}$ and let A be a linear combination of the form (1.1) with $a_{1}, a_{2} \in \mathbb{C}^{*}$. Then $A^{2}=I_{n}$ if and only if $\left(a_{1}, a_{2}\right) \in\{(-1,2),(1,-2)\}$ and $A_{1} A_{2}=A_{2} A_{1}=A_{2}$.

Proof. It is evident that if $A_{1} A_{2}=A_{2} A_{1}=A_{2}$, then $\left(A_{1}-2 A_{2}\right)^{2}=\left(-A_{1}+\right.$ $\left.2 A_{2}\right)^{2}=I_{n}$.

Now, assume that $A^{2}=I_{n}$. Since $A_{1}^{2}=I_{n}$, we have three possibilities for $A_{1}: A_{1}=I_{n}$ or $A_{1}=-I_{n}$, or A_{1} is a $\{-1,1\}$-quadratic matrix. If $A_{1}=I_{n}$, then by writing $A_{2}=R\left(I_{x} \oplus 0\right) R^{-1}$, where $x=\operatorname{rank}\left(A_{2}\right) \in\{1, \ldots, n-1\}$, we get $\left(a_{1}, a_{2}\right) \in\{(1,-2),(-1,2)\}$, which is the part (i) of Corollary 2.1. If $A_{1}=-I_{n}$, then by $A_{1} A_{2} A_{1}=A_{2} A_{1}$, we obtain $A_{2}=0$ which is not possible. If A_{1} is a $\{-1,1\}$-quadratic matrix, then by Theorem 2.1, there exist a nonsingular matrix V and $p \in\{1, \ldots, n-1\}$ such that $A_{1}=V\left(-I_{p} \oplus\right.$ $\left.I_{n-p}\right) V^{-1}$ and A_{2} is written as in (2.3) or (2.4). Case (ii) of Theorem 2.1 and $A_{2}^{2}=A_{2}$ lead to $\left(a_{1}, a_{2}\right)=(-1,2)$ and $A_{2}=V\left(0 \oplus I_{r} \oplus 0\right) V^{-1}$, whereas case (iii) and $A_{2}^{2}=A_{2}$ lead to $\left(a_{1}, a_{2}\right)=(1,-2)$ and $A_{2}=V(0 \oplus 0 \oplus$ $\left.I_{n-r-p}\right) V^{-1}$.

A square matrix A is called group invertible if there exists a matrix X such that $A X A=A, X A X=X$, and $A X=X A$. It can be proved that this matrix X is unique (if it exists) and it is customarily written as $A^{\#}$ (see [5, Section 4.4]). It is easy to see that any diagonalizable matrix is group invertible. This generalized inverse is necessary to define the sharp ordering: Let $A, B \in \mathbb{C}^{n \times n}$ be two group invertible matrices. We write $A \stackrel{\#}{\leq} B$ when $A A^{\#}=B A^{\#}$ and $A^{\#} A=A^{\#} B$ (see [18, Chapter 4]). If A is nonsingular and $A \stackrel{\#}{\leq} B$, then obviously $A=B$. Thus, if we assume in addition that A is an $\{\alpha, \beta\}$-quadratic matrix and we want to deal with non-trivial linear combinations $a A+b B$, where $a, b \in \mathbb{C}^{*}$, we can assume that α or β are zero.

Theorem 2.8. Let $A_{1} \in \mathbb{C}^{n \times n}$ be an $\{\alpha, 0\}$-quadratic matrix, $A_{2} \in \mathbb{C}^{n \times n}$, $\alpha \in \mathbb{C}^{*}$, and A be a linear combination of the form (1.1) with $a_{1}, a_{2} \in \mathbb{C}^{*}$. Assume that A_{1} and A_{2} are linearly independent matrices and $A_{1} \stackrel{\#}{\leq} A_{2}$. Then

$$
A^{2}=I_{n} \quad \Leftrightarrow \quad a_{2}^{2}\left(A_{2}-A_{1}\right)^{2}=I_{n}-\alpha^{-1} A_{1}, \quad 1=\left[\alpha\left(a_{1}+a_{2}\right)\right]^{2}
$$

Proof. Since A_{1} is an $\{\alpha, 0\}$-quadratic matrix, then there exists a nonsingular matrix U such that $A_{1}=U\left(\alpha I_{p} \oplus 0\right) U^{-1}$, where $p \in\{1, \ldots, n-1\}$. Let us write $A_{2}=U(\underset{Z}{X} \underset{T}{Y}) U^{-1}$, where $X \in \mathbb{C}^{p \times p}$. By employing the two conditions of the sharp ordering, we get that $A_{2}=U\left(\alpha I_{p} \oplus T\right) U^{-1}$.
\Rightarrow : Since $A^{2}=I_{n}$, we get that $1=\left[\alpha\left(a_{1}+a_{2}\right)\right]^{2}$ and $\left(a_{2} T\right)^{2}=I_{n-p}$. Therefore,

$$
a_{2}^{2}\left(A_{2}-A_{1}\right)^{2}=a_{2}^{2} U\left(0 \oplus T^{2}\right) U^{-1}=U\left(0 \oplus I_{n-p}\right) U^{-1}=I_{n}-\alpha^{-1} A_{1} .
$$

\Leftarrow : The condition $a_{2}^{2}\left(A_{2}-A_{1}\right)^{2}=I_{n}-\alpha^{-1} A_{1}$ leads to $a_{2}^{2} T^{2}=I_{n-p}$. Hence $a_{1} A_{1}+a_{2} A_{2}=U\left(\left(a_{1}+a_{2}\right) \alpha I_{p} \oplus a_{2} T\right) U^{-1}$ clearly is involutive.

Remark 2.9. Let $A_{1}, A_{2} \in \mathbb{C}^{n \times n}$ satisfy the hypotheses of the former theorem. If we want check the existence of $a_{1}, a_{2} \in \mathbb{C}^{*}$ such that $a_{1} A_{1}+a_{2} A_{2}$ is involutive (and in this case, find such a_{1}, a_{2}), then the above result gives us a procedure. First, find the spectrum of A_{1}, or equivalenty, find $\alpha \in \sigma\left(A_{1}\right) \backslash\{0\}$. Second, check if $\left(A_{2}-A_{1}\right)^{2}$ is a scalar multiple of $I_{n}-\alpha^{-1} A_{1}$. If not, the problem has not solution. If yes, from $a_{2}^{2}\left(A_{2}-A_{1}\right)^{2}=I_{n}-\alpha^{-1} A_{1}$, we can find the feasible values of a_{2} and from $1=\left[\alpha\left(a_{1}+a_{2}\right)\right]^{2}$, we can find the feasible values of a_{1}.

Let us deal now with another condition that was appeared in [16], namely $A_{2} A_{1}^{\#} A_{1}=A_{1}$. We will assume that A_{1} is singular (if otherwise, then $A_{2} A_{1}^{\#} A_{1}=A_{1}$ reduces to $A_{1}=A_{2}$). Observe that $A_{2} A_{1}^{\#} A_{1}=A_{1} \Leftrightarrow$ $A_{2} A_{1}^{\#}=A_{1} A_{1}^{\#}$. Hence $A_{2} A_{1}^{\#} A_{1}=A_{1}$ implies $A_{1} \stackrel{\#}{\leq} A_{2}$.

Let us observe that if A_{1}, A_{2} satisfy $A_{2} A_{1}^{\#}=A_{1} A_{1}^{\#}$ and $A_{1} A_{2}=A_{2} A_{1}$, then by writing $A_{1}=U(K \oplus 0) U^{-1}$, where U and K are nonsingular (this is possible because A_{1} is group invertible), we have that A_{2} can be writen as $A_{2}=U(K \oplus T) U^{-1}$ for some matrix T. Hence $A_{1}^{\#} A_{1}=A_{1}^{\#} A_{2}$; which leads to $A_{1} \stackrel{\#}{\leq} A_{2}$. Therefore, in next theorem we will assume the condition $A_{1} A_{2} \neq A_{2} A_{1}$, since otherwise, we can apply Theorem 2.8.

Theorem 2.10. Let $A_{1} \in \mathbb{C}^{n \times n}$ be $\{\alpha, 0\}$-quadratic, $A_{2} \in \mathbb{C}^{n \times n}, \alpha \in \mathbb{C}^{*}$, and A be a linear combination of the form (1.1) with $a_{1}, a_{2} \in \mathbb{C}^{*}$. Assume that A_{1} and A_{2} are linearly independent matrices, $A_{1} A_{2} \neq A_{2} A_{1}$, and $A_{2} A_{1}^{\#} A_{1}=A_{1}$. Then $A^{2}=I_{n}$ if and only if there exist a nonsingular matrix $V \in \mathbb{C}^{n \times n}, p \in\{1, \ldots, n-1\}$, and $q \in\{0, \ldots, n-p\}$ such that $A_{1}=V\left(\alpha I_{p} \oplus 0\right) V^{-1}$ and it is satisfied one of the following cases:
(i) $\alpha\left(a_{1}+a_{2}\right)=1$.
(i.1) $A_{2}=V\left(\begin{array}{cc}\alpha I_{p} & Y \\ 0 & -\frac{1}{a_{2}} I_{n-p}\end{array}\right) V^{-1}$ being $Y \neq 0$ an arbitrary matrix in $\mathbb{C}^{p \times(n-p)}$ 。
(i.2) $A_{2}=V\left(\begin{array}{ccc}\alpha I_{p} & 0 & Y \\ 0 & \frac{1}{a_{2}} I_{q} & 0 \\ 0 & 0 & -\frac{1}{a_{2}} I_{n-p-q}\end{array}\right) V^{-1}$ being $Y \neq 0$ an arbitrary matrix in $\mathbb{C}^{p \times q}$.
(ii) $\alpha\left(a_{1}+a_{2}\right)=-1$.
(ii.1) $A_{2}=V\left(\begin{array}{cc}\alpha I_{p} & Y \\ 0 & \frac{1}{a_{2}} I_{n-p}\end{array}\right) V^{-1}$ being $Y \neq 0$ an arbitrary matrix in $\mathbb{C}^{p \times(n-p)}$
(ii.2) $A_{2}=V\left(\begin{array}{ccc}\alpha I_{p} & Y & 0 \\ 0 & \frac{1}{a_{2}} I_{q} & 0 \\ 0 & 0 & -\frac{1}{a_{2}} I_{n-p-q}\end{array}\right) V^{-1}$ being $Y \neq 0$ an arbitrary matrix in $\mathbb{C}^{p \times(n-p-q)}$.

Proof. The 'if' part is evident. We will prove the reciprocal: There exist a nonsingular matrix $U \in \mathbb{C}^{n \times n}$ and $p \in\{1, \ldots, n-1\}$ such that

$$
A_{1}=U\left(\alpha I_{p} \oplus 0\right) U^{-1}, \quad A_{2}=U\left(\begin{array}{cc}
X & Y \tag{2.18}\\
Z & T
\end{array}\right) U^{-1}, \quad X \in \mathbb{C}^{p \times p}
$$

By employing $A_{2} A_{1}^{\#} A_{1}=A_{1}$, we get $X=\alpha I_{p}$ and $Z=0$. Let us observe that since $0 \neq p \neq n$, then all blocks in (2.18) for A_{1} and A_{2} appear. Since $A_{1} A_{2} \neq A_{2} A_{1}$, then $Y \neq 0$. By using $A^{2}=I_{n}$, we get

$$
\begin{equation*}
\alpha\left(a_{1}+a_{2}\right) \in\{-1,1\}, \quad \alpha\left(a_{1}+a_{2}\right) Y+a_{2} Y T=0, \quad a_{2}^{2} T^{2}=I_{n-p} \tag{2.19}
\end{equation*}
$$

The last equality of (2.19) implies the existence of a nonsingular matrix $U_{1} \in \mathbb{C}^{(n-p) \times(n-p)}$ such that $a_{2} T=U_{1}\left(I_{q} \oplus-I_{n-p-q}\right) U_{1}^{-1}$ for some $q \in$ $\{0, \ldots, n-p\}$. Let us write $Y=\left(Y_{1} Y_{2}\right) U_{1}^{-1}$ for $Y_{1} \in \mathbb{C}^{p \times q}$. From the second equality of (2.19), we get

$$
\begin{equation*}
\left[\alpha\left(a_{1}+a_{2}\right)+1\right] Y_{1}=0 \quad \text { and } \quad\left[\alpha\left(a_{1}+a_{2}\right)-1\right] Y_{2}=0 \tag{2.20}
\end{equation*}
$$

We have the following possibilities:
(a) If $q=0$, in view of the decompositions of T and Y, we get $T=$ $-\frac{1}{a_{2}} I_{n-p}$ and $Y=Y_{2} U_{1}^{-1}$. Since $Y \neq 0$, then $Y_{2} \neq 0$, hence (2.20) leads to $\alpha\left(a_{1}+a_{2}\right)=1$. Setting $V=U$ allows us to prove the case (i.1).
(b) If $q=n-p$, in view of the decompositions of T and Y, we get $T=\frac{1}{a_{2}} I_{n-p}$ and $Y=Y_{1} U_{1}^{-1}$. Since $Y \neq 0$, then $Y_{1} \neq 0$, hence (2.20) leads to $\alpha\left(a_{1}+a_{2}\right)=-1$. Setting $V=U$ allows us to prove the case (ii.1).
(c) If $0 \neq q \neq n-p$, since $Y \neq 0$, then $Y_{1} \neq 0$ or $Y_{2} \neq 0$.
(c.i) If $Y_{1} \neq 0$, then (2.20) implies $\alpha\left(a_{1}+a_{2}\right)=-1$ and $Y_{2}=0$. Also we have

$$
\begin{aligned}
A_{2} & =U\left(\begin{array}{cc}
\alpha I_{p} & \left(\begin{array}{ll}
Y_{1} & 0
\end{array}\right) U_{1}^{-1} \\
0 & a_{2}^{-1} U_{1}\left(I_{q} \oplus-I_{n-p-q}\right) U_{1}^{-1}
\end{array}\right) U^{-1} \\
& =U\left(\begin{array}{cc}
I_{p} & 0 \\
0 & U_{1}
\end{array}\right)\left(\begin{array}{cc}
\alpha I_{p} & \left(\begin{array}{ll}
Y_{1} & 0
\end{array}\right) \\
0 & a_{2}^{-1}\left(I_{q} \oplus-I_{n-p-q}\right)
\end{array}\right)\left(\begin{array}{cc}
I_{p} & 0 \\
0 & U_{1}^{-1}
\end{array}\right) U^{-1}
\end{aligned}
$$

Setting $V=U\left(I_{p} \oplus U_{1}\right)$ and renaming $Y=Y_{1}$ permit obtain the case (ii.2).
(c.ii) If $Y_{2} \neq 0$, then again (2.20) yields $\alpha\left(a_{1}+a_{2}\right)=1$ and $Y_{1}=0$. As before, we have

$$
\begin{aligned}
A_{2} & =U\left(\begin{array}{cc}
\alpha I_{p} & \left(\begin{array}{ll}
0 & Y_{2}
\end{array}\right) U_{1}^{-1} \\
0 & a_{2}^{-1} U_{1}\left(I_{q} \oplus-I_{n-p-q}\right) U_{1}^{-1}
\end{array}\right) U^{-1} \\
& =U\left(\begin{array}{cc}
I_{p} & 0 \\
0 & U_{1}
\end{array}\right)\left(\begin{array}{cc}
\alpha I_{p} & \left(\begin{array}{ll}
0 & Y_{2}
\end{array}\right) \\
0 & a_{2}^{-1}\left(I_{q} \oplus-I_{n-p-q}\right)
\end{array}\right)\left(\begin{array}{cc}
I_{p} & 0 \\
0 & U_{1}^{-1}
\end{array}\right) U^{-1}
\end{aligned}
$$

Setting $V=U\left(I_{p} \oplus U_{1}\right)$ and renaming $Y=Y_{2}$ permit obtain the case (i.2).

The proof is finished.
Remark 2.11. Observe that under the hypothesis of the above theorem, finding the spectrum of A_{2} is simple since A_{2} is a triangular matrix.

Example 2.12. Let

$$
A_{1}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), \quad A_{2}=\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right)
$$

We will find all $a_{1}, a_{2} \in \mathbb{C}^{*}$ such that $a_{1} A_{1}+a_{2} A_{2}$ is involutive.
First of all, we check that A_{1} and A_{2} satisfy the hypotheses of Theorem 2.10. It is simple to see that $A_{1}^{2}=2 A_{1}$; and therefore A_{1} is a $\{2,0\}$-quadratic matrix and $A_{1}^{\#}=\frac{1}{4} A_{1}$. Now, checking $A_{2} A_{1}^{\#} A_{1}=A_{1}$ and $A_{1} A_{2} \neq A_{2} A_{1}$ is straightforward.
A_{1} is a $\{2,0\}$-quadratic matrix. Hence $a_{1}+a_{2} \in\{-1 / 2,1 / 2\}$. The matrix A_{2} is a triangular matrix; so, it is clear that $\sigma\left(A_{2}\right)=\{1,2\}$. Then characteristics (i.2) and (ii.2) of Theorem 2.10 are impossible. Characteristic (i.1) leads to $-1 / a_{2}=1$ and $a_{1}+a_{2}=1 / 2$; which yields $\left(a_{1}, a_{2}\right)=(3 / 2,-1)$. Characteristic (ii.1) implies $\left(a_{1}, a_{2}\right)=(-3 / 2,1)$. Both of these lead to $A^{2}=I_{2}$. Observe that this reasoning is idependent on the size of the involved matrices (we have choosen 2×2 matrices for the sake of the readability).

Example 2.13. Let A_{1} be as in the previous example. We will find all matrices $A_{2} \in \mathbb{C}^{2 \times 2}$ and $a_{1} \in \mathbb{C}^{*}$ such that $A_{2} A_{1}^{\#} A_{1}=A_{1}$ and $a_{1} A_{1}+A_{2}$ is involutive.

We have

$$
A_{1}=V \operatorname{diag}(2,0) V^{-1}, \quad V=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)
$$

If $A_{2} A_{1}=A_{1} A_{2}$, then by the proof of Theorem 2.8, we obtain $A_{2}=$ $V \operatorname{diag}(2, t) V^{-1}$ with $t \in\{-1,1\}$. Also, Theorem 2.8 implies $1=\left[2\left(a_{1}+1\right)\right]^{2}$, that is to say $a_{1} \in\{-1 / 2,-3 / 2\}$.

If $A_{2} A_{1} \neq A_{1} A_{2}$, then by Theorem 2.10 there exists $y \in \mathbb{C}^{*}$ such that $2\left(a_{1}+1\right)=1, A_{2}=V\left(\begin{array}{cc}2 & y \\ 0 & -1\end{array}\right) V^{-1}$ or $2\left(a_{1}+1\right)=-1, A_{2}=V\left(\begin{array}{ll}2 & y \\ 0 & 1\end{array}\right) V^{-1}$. I.e.,
or

$$
a_{1}=-\frac{1}{2}, \quad A_{2}=\frac{1}{2}\left(\begin{array}{ll}
1-y & 3+y \\
3-y & 1+y
\end{array}\right)
$$

$$
a_{1}=-\frac{3}{2}, A_{2}=\frac{1}{2}\left(\begin{array}{ll}
3-y & 1+y \\
1-y & 3+y
\end{array}\right)
$$

Next results concern with linear combinations of the form (1.1), when A_{1} is tripotent (i.e. $A_{1}^{3}=A_{1}$). If A_{1} is tripotent, then Theorem 2.1 of [6] implies the existence of a nonsingular $U \in \mathbb{C}^{n \times n}$ such that

$$
\begin{equation*}
A_{1}=U\left(I_{s} \oplus-I_{t} \oplus 0\right) U^{-1} \tag{2.21}
\end{equation*}
$$

where $s, t \in\{0,1, \ldots, n\}$ and $s+t=\operatorname{rank}\left(A_{1}\right)$. It is evident that if $t=0$, then A_{1} is idempotent. Also, it would be clear that if $s=0$, then $-A_{1}$ is idempotent. In next result we impose the hypothesis $A_{1}^{2} \neq \pm A_{1}$ since $A_{1}^{2} \neq \pm A_{1}$ were covered in Theorem 2.1.
Theorem 2.14. Let $A_{1}, A_{2} \in \mathbb{C}^{n \times n}$ be two linearly independent matrices such that $A_{1}^{3}=A_{1}, A_{1}^{2} \neq \pm A_{1}, A_{1} A_{2} A_{1}=A_{2} A_{1}$ and let A be a linear combination of the form (1.1) with $a_{1}, a_{2} \in \mathbb{C}^{*}$. Then $A^{2}=I_{n}$ if and only if there exists a nonsingular matrix $V \in \mathbb{C}^{n \times n}$ such that

$$
\begin{equation*}
A_{1}=V\left(I_{k} \oplus I_{l} \oplus-I_{m} \oplus-I_{j} \oplus 0 \oplus 0\right) V^{-1} \tag{2.22}
\end{equation*}
$$

and one of the following conditions holds.
(i) $a_{1}=1$ and
$A_{2}=V\left(\begin{array}{cccccc}0 & 0 & Y_{1} & Y_{2} & \frac{-a_{2}}{2}\left(Y_{1} Z_{1}+Y_{2} Z_{2}\right) & W_{2} \\ 0 & -\frac{2}{a_{2}} I_{l} & 0 & 0 & W_{3} & 0 \\ 0 & 0 & 0 & 0 & Z_{1} & 0 \\ 0 & 0 & 0 & 0 & Z_{2} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{a_{2}} I_{e} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{a_{2}} I_{f}\end{array}\right) V^{-1}$,
where $Y_{1} \in \mathbb{C}^{k \times m}, Y_{2} \in \mathbb{C}^{k \times j}, Z_{1} \in \mathbb{C}^{m \times e}, Z_{3} \in \mathbb{C}^{j \times e}, W_{2} \in \mathbb{C}^{k \times f}$, $W_{3} \in \mathbb{C}^{l \times e}$ and k, l, m, j, e, f are nonnegative integers;
(ii) $a_{1}=-1$ and

$$
A_{2}=V\left(\begin{array}{cccccc}
\frac{2}{a_{2}} I_{k} & 0 & 0 & 0 & 0 & W_{2} \tag{2.24}\\
0 & 0 & Y_{1} & Y_{2} & W_{3} & \frac{a_{2}}{2}\left(Y_{1} Z_{1}+Y_{2} Z_{2}\right) \\
0 & 0 & 0 & 0 & 0 & Z_{1} \\
0 & 0 & 0 & 0 & 0 & Z_{2} \\
0 & 0 & 0 & 0 & \frac{1}{a_{2}} I_{e} & 0 \\
0 & 0 & 0 & 0 & 0 & -\frac{1}{a_{2}} I_{f}
\end{array}\right) V^{-1}
$$

where $Y_{1} \in \mathbb{C}^{l \times m}, Y_{2} \in \mathbb{C}^{l \times j}, Z_{1} \in \mathbb{C}^{m \times f}, Z_{2} \in \mathbb{C}^{j \times f}, W_{2} \in \mathbb{C}^{k \times f}$, $W_{3} \in \mathbb{C}^{l \times e}$ and k, l, m, j, e, f are nonnegative integers.

Proof. Since $A_{1}^{3}=A_{1}$, and $A_{1}^{2} \neq \pm A_{1}$, there exist a nonsingular matrix $U \in \mathbb{C}^{n \times n}$ and $s, t \in\{1, \ldots, n-1\}$ such that A_{1} is written as in (2.21). Let us write A_{2} as $A_{2}=U\left(\begin{array}{lll}X_{11} & X_{12} & X_{13} \\ X_{21} & X_{22} & X_{23} \\ X_{31} & X_{32} & X_{33}\end{array}\right) U^{-1}$, where $X_{11} \in \mathbb{C}^{s \times s}$ and $X_{22} \in \mathbb{C}^{t \times t}$. Since $A_{1} A_{2} A_{1}=A_{2} A_{1}$, we get $X_{21}=0, X_{22}=0, X_{31}=0$, $X_{32}=0$ which imply $A_{2}=U\left(\begin{array}{ccc}X_{11} & X_{12} & X_{13} \\ 0 & 0 & X_{23} \\ 0 & 0 & X_{33}\end{array}\right) U^{-1}$. Hence,

$$
A=a_{1} A_{1}+a_{2} A_{2}=U\left(\begin{array}{ccc}
a_{1} I_{s}+a_{2} X_{11} & a_{2} X_{12} & a_{2} X_{13} \\
0 & -a_{1} I_{t} & a_{2} X_{23} \\
0 & 0 & a_{2} X_{33}
\end{array}\right) U^{-1}
$$

Since $A^{2}=I_{n}$, we conclude that

$$
\begin{gather*}
\left(a_{1} I_{s}+a_{2} X_{11}\right)^{2}=I_{s} \tag{2.25}\\
a_{1}^{2} I_{t}=I_{t} \tag{2.26}\\
\left(a_{2} X_{33}\right)^{2}=I_{n-s-t} \tag{2.27}\\
X_{11} X_{12}=0 \tag{2.28}\\
-a_{1} X_{23}+a_{2} X_{23} X_{33}=0 \tag{2.29}\\
a_{1} X_{13}+a_{2} X_{11} X_{13}+a_{2} X_{12} X_{23}+a_{2} X_{13} X_{33}=0 \tag{2.30}
\end{gather*}
$$

Since $t>0$, by (2.26), we have $a_{1}=1$ or $a_{1}=-1$.
If $a_{1}=1$, by (2.25), there exists a nonsingular matrix $V_{1} \in \mathbb{C}^{s \times s}$ such that $I_{s}+a_{2} X_{11}=V_{1}\left(I_{k} \oplus-I_{l}\right) V_{1}^{-1}$, hence,

$$
X_{11}=V_{1}\left(\begin{array}{cc}
0 & 0 \tag{2.31}\\
0 & -\frac{2}{a_{2}} I_{l}
\end{array}\right) V_{1}^{-1}
$$

By (2.27), there exists a nonsingular $V_{3} \in \mathbb{C}^{(n-s-t) \times(n-s-t)}$ such that $a_{2} X_{33}=$ $V_{3}\left(I_{e} \oplus-I_{f}\right) V_{3}^{-1}$, hence,

$$
X_{33}=V_{3}\left(\begin{array}{cc}
\frac{1}{a_{2}} I_{e} & 0 \tag{2.32}\\
0 & -\frac{1}{a_{2}} I_{f}
\end{array}\right) V_{3}^{-1}
$$

Let us write X_{12} and X_{23} as follows

$$
X_{12}=V_{1}\binom{P}{Q} \quad \text { and } \quad X_{23}=\left(\begin{array}{ll}
R & S \tag{2.33}
\end{array}\right) V_{3}^{-1}
$$

where $P \in \mathbb{C}^{k \times t}$ and $R \in \mathbb{C}^{t \times e}$. By (2.28), (2.31), and the first equality of (2.33), we get $Q=0$. By (2.29), (2.32), and the second equality of (2.33), we get $S=0$. Hence X_{12} and X_{23} can be rewritten as

$$
X_{12}=V_{1}\left(\begin{array}{cc}
Y_{1} & Y_{2} \tag{2.34}\\
0 & 0
\end{array}\right) V_{2}^{-1} \quad \text { and } \quad X_{23}=V_{2}\left(\begin{array}{cc}
Z_{1} & 0 \\
Z_{2} & 0
\end{array}\right) V_{3}^{-1}
$$

where $Y_{1} \in \mathbb{C}^{k \times m}, Y_{2} \in \mathbb{C}^{k \times j}, Z_{1} \in \mathbb{C}^{m \times e}, Z_{2} \in \mathbb{C}^{j \times e}$. Let us write $X_{13}=V_{1}\left(\begin{array}{ll}W_{1} & W_{2} \\ W_{3} & W_{4}\end{array}\right) V_{3}^{-1}$, where $W_{1} \in \mathbb{C}^{k \times e}$. By (2.30), we have $W_{1}=$ $\frac{-a_{2}}{2}\left(Y_{1} Z_{1}+Y_{2} Z_{2}\right)$ and $W_{4}=0$, so

$$
X_{13}=V_{1}\left(\begin{array}{cc}
\frac{-a_{2}}{2}\left(Y_{1} Z_{1}+Y_{2} Z_{2}\right) & W_{2} \tag{2.35}\\
W_{3} & 0
\end{array}\right) V_{3}^{-1}
$$

From (2.31), (2.32), (2.34), and (2.35), it follows that A_{1} can be writen as in (2.22) and A_{2} as in (2.23) where $V=U\left(V_{1} \oplus I_{t} \oplus V_{3}\right)$.

If $a_{1}=-1$, using the same method, it is easy to verify that A_{1} can be written as in (2.22) and A_{2} as in (2.24).

Next result deal with another condition.
Theorem 2.15. Let $A_{1}, A_{2} \in \mathbb{C}^{n \times n}$ be linearly independent matrices. Moreover, let A be a linear combination of the form (1.1) with $a_{1}, a_{2} \in \mathbb{C}^{*}$. If $A_{1}^{3}=A_{1}$ and $A_{1} \stackrel{\#}{\leq} A_{2}$, then $A^{2}=I_{n}$ if and only if there exist a nonsingular matrix $V \in \mathbb{C}^{n \times n}, p, q \in\{0, \ldots, n\}$, and $r \in\{0, \ldots, n-p-q\}$ such that $a_{1}+a_{2} \in\{-1,1\}$,

$$
A_{1}=V\left(I_{p} \oplus-I_{q} \oplus 0 \oplus 0\right) V^{-1}
$$

and

$$
A_{2}=V\left(I_{p} \oplus-I_{q} \oplus \frac{1}{a_{2}} I_{r} \oplus-\frac{1}{a_{2}} I_{n-r-p-q}\right) V^{-1}
$$

Proof. The 'if' part is evident. We shall prove the 'only' part: Since $A_{1} \stackrel{\text { \# }}{\leq}$ A_{2}, then $A_{1} A_{1}^{\#}=A_{2} A_{1}^{\#}$ and $A_{1}^{\#} A_{1}=A_{1}^{\#} A_{2}$, which by pre and postmultiplying by A_{1}^{2}, we get $A_{1} A_{2}=A_{2} A_{1}=A_{1}^{2}$. Since $A_{1}^{3}=A_{1}$, there exists a unitary matrix U such that $A_{1}=U(P \oplus 0) U^{-1}$, where $P=I_{p} \oplus-I_{q}$ and $p, q \in\{0, \ldots, n\}$. Observe that $p+q \neq 0$, since otherwise $A_{1}=0$. By using $A_{1} A_{2}=A_{2} A_{1}=A_{1}^{2}$, we deduce the existence of $T \in \mathbb{C}^{(n-p-q) \times(n-p-q)}$ such that $A_{2}=U(P \oplus T) U^{-1}$. Since $A^{2}=I_{n}$, we get that $1=\left(a_{1}+a_{2}\right)^{2}$ and $\left(a_{2} T\right)^{2}=I_{n-p-q}$. The proof finishes as in the proof of Theorem 2.8.

Acknowledgments

The authors gratefully thank two anonymous referees for their constructive comments and suggestions. These comments considerably improved the contents and presentation of this paper. The first and third author were supported by the National Natural Science Foundation of China (11061005) and
the Ministry of Education Science and Technology Key Project (210164). The second author was supported by PAID-06-12.

References

[1] M. Aleksiejczyk and A. Smoktunowicz, On properties of quadratic matrices, Math. Pannon. 11 (2000), no. 2, 239-248.
[2] J. K. Baksalary, O. M. Baksalary and G. P. H. Styan, Idempotency of linear combinations of an idempotent and a tripotent matrix, Linear Algebra Appl. 354 (2002), 21-34.
[3] J.K. Baksalary, O.M. Baksalary and H. Özdemir, A note on linear combinations of commuting tripotent matrices, Linear Algebra Appl. 388 (2004), 45-51.
[4] J.K. Baksalary and O.M. Baksalary, When is a linear combination of two idempotent matrices the group involutory matrix?, Linear Multilinear Algebra 54 (2006), 429435.
[5] A. Ben-Israel and T.N.E Greville, Generalized Inverses: Theory and Applications, Wiley-Interscience, 2nd edition, New York, 1974.
[6] J. Benítez and N. Thome, $\{k\}$-group periodic matrices, SIAM J. Matrix Anal. Appl. 28 (2005), 9-25.
[7] J. Benítez, X. Liu and T. Zhu, Nonsingularity and group invertibility of linear combinations of two k-potent matrices, Linear Multilinear Algebra 58 (2010), 1023-1035.
[8] D.S. Cvetković-Ilić and C. Y. Deng, The Drazin invertibility of the difference and the sum of two idempotent operators, J. Comput. Appl. Math. 233 (2010), 1717-1722.
[9] C. Y. Deng, On properties of generalized quadratic operators, Linear Algebra Appl. 432 (2010), 847-856.
[10] C. Y. Deng, Characterizations and representations of the group inverse involving idempotents, Linear Algebra Appl. 434 (2011), 1067-1079.
[11] C. Y. Deng, On the Drazin inverses involving power commutativity, J. Math. Anal. Appl. 378 (2011), 314-323.
[12] C. Y. Deng, D.S. Cvetković-Ilić, Y. Wei, On invertibility of combinations of k-potent operators, Linear Algebra Appl. 437 (2012), 376-387.
[13] C. Y. Deng, Characterizations of the commutators and the anticommutator involving idempotents, Appl. Math. Comput. 221 (2013), 351-359.
[14] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge (U.K.), 1985.
[15] X. Liu and J. Benítez, The spectrum of matrices depending on two idempotents, Appl. Math. Letters 24 (2011), 1640-1646.
[16] X. Liu, L. Wu and J. Benítez, On the group inverse of linear combinations of two group invertible matrices, Electron. J. Linear Algebra 22 (2011), 490-503.
[17] X. Liu, L. Wu and Y. Yu, The group inverse of the combinations of two idempotent matrices, Linear Multilinear Algebra 59 (2011), 101-115.
[18] S.K. Mitra, P. Bhimasankaram and S.B Malik, Matrix Partial Orders, Shorted Operators And Applications, World Scientific, Singapore, 2010.
[19] H. Özdemir and T. Petik, On the spectra of some matrices derived from two quadratic matrices, Bull. Iranian Math. Soc. 39 (2013), 225-238.
[20] H. Özdemir, M. Sarduvan, A.Y. Özban and N. Güler, On idempotency and tripotency of linear combinations of two commuting tripotent matrices, Appl. Math. Comput. 207 (2009), 197-201.
[21] C.R. Rao and S.K. Mitra, Generalized Inverse of Matrices and Its Applications, Wiley, New York, 1971.
[22] M. Sarduvan and H. Özdemir, On linear combinations of two tripotent, idempotent, and involutive matrices, Appl. Math. Comput. 200 (2008), 401-406.
(Xiaoji Liu) College of Science, Guangxi University for Nationalities, Nanning 530006, P.R. China.

E-mail address: xiaojiliu72@126
(Julio Benítez) Departamento de Matemática Aplicada, Instituto de Matemática Multidisciplinar, Universidad Politécnica de Valencia, Valencia 46022, Spain

E-mail address: jbenitez@mat.upv.es
(Miao Zhang) College of Science, Guangxi University for Nationalities, Nanning 530006, P.R. China.

E-mail address: zhangmiao198658@163.com

[^0]: * Corresponding author.

