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Abstract—In this article, we address the problem of repro-
ducibility of the blocked LU factorization on GPUs due to
cancellations and rounding errors when dealing with floating-
point arithmetic. Thanks to the hierarchical structure of linear
algebra libraries, the computations carried within this opera-
tion can be expressed in terms of the Level-3 BLAS routines
as well as the unblocked variant of the factorization, while
the latter is correspondingly built upon the Level-1/2 BLAS
kernels. In addition, we strengthen numerical stability of the
blocked LU factorization via partial row pivoting. Therefore,
we propose a double-layer bottom-up approach for ensuring
reproducibility of the blocked LU factorization and provide
experimental results for its underlying blocks.

Keywords-Reproducibility; LU factorization; BLAS; long ac-
cumulator; floating-point expansion; error-free transformation;
GPUs.

I. INTRODUCTION

The first Exascale computers, delivering 1018 operations
per second, are expected to arrive by 2023, offering scientists
the opportunity to perform simulations (related, e.g., to
space weather forecast, human brain, supernova, etc.) at
extreme scales. In order to efficiently utilize such systems,
the runtimes in charge of orchestrating those simulations
will employ various strategies to reduce the communication
overhead as well as to equally and efficiently distribute com-
putations and the associated data. However, those strategies
pursuing excellent performance scaling may also impair the
accuracy and reproducibility1 of the floating-point arithmetic
results [1], [2]. The bottom reason is that the order of opera-
tions impacts the accuracy of the final result, especially when
there is a change in the thread execution order (dynamic
scheduling), reduction trees, blocking, partitioning, instruc-
tions sets, etc. This narrows to the use of finite-precision
computer arithmetic [3], [4] and, therefore, to floating-point
operations that are commutative, but non-associative due to
rounding errors. For instance, ⊕ the addition in binary64
floating-point arithmetic, (−1⊕1)⊕2−53 6= −1⊕(1⊕2−53)
since (−1 ⊕ 1) ⊕ 2−53 = 2−53 and −1 ⊕ (1 ⊕ 2−53) = 0.

1By accuracy, we mean the relative error between the exact result and
the computed result. We define reproducibility as the ability to obtain a
bit-wise identical floating-point result from multiple runs of the code on
the same input data.

Thus, the usage of various optimization strategies and data
access/partitioning patterns during the computation may
potentially lead to differences in the final results.

The IEEE 754 standard [5], created in 1985 and then
revised in 2008 (IEEE 754-2008), has led to considerable
enhancements in the reliability of numerical computations
by rigorously specifying the properties of floating-point
arithmetic. This standard is now adopted by most processors,
thus leading to a much better portability of numerical appli-
cations. The IEEE 754-2008 standard also contains the re-
producibility clause that forwards the reproducibility issue to
language standards, which then enforce all implementations
of the language to produce the same result. Additionally,
the IEEE standard introduced some suggestions to achieve
reproducible results. Emerging attention to reproducibility
strives to draw a more careful attention to the problem by
the computer arithmetic community, leading to a potential
inclusion of some mechanisms, which are under consider-
ation, to assure numerical reproducibility of floating-point
operations into the new version of the IEEE 754 standard
due in 2018 [6].

Finding the solution of a linear system of equations often
occurs in the large variety of scientific applications. The
common practice engages the high-performance blocked LU
factorization in this process. Despite the existence of various
implementations of the blocked LU factorization, targeting
an ample variety of architectures ranging from conventional
CPUs to graphics processing units (GPUs), the accuracy and
reproducibility of the produced results cannot be guaranteed.
This is due to the non-associativity of floating-point opera-
tions, dynamic thread scheduling and concurrent execution
on CPUs, as well as the non-determinism of warp scheduling
on GPUs.

In this article, we aim to derive a reproducible algorithmic
variant of the blocked LU factorization and provide the
corresponding implementation on GPUs. Instead of devel-
oping this GPU implementation from scratch, we benefit
from the modular and hierarchical structure of linear algebra
libraries and, at first, construct and enhance reproducible
OpenCL implementations of the corresponding underlying
Basic Linear Algebra Subprograms (BLAS [7]) kernels.



Proceeding in this manner, the blocked algorithmic variant
of the LU factorization exhibits a double-layer structure:

• The first layer corresponds to the unblocked algorithmic
variant with partial pivoting for stability that can be
formulated in terms of the Level-1/2 BLAS kernels,
namely the vector scaling (SCAL) and the rank-1 update
of a matrix (GER). In addition, for pivoting we search
for a maximum element in the column (MAX) and, if
necessary, swap rows (SWAP).

• The second layer relies upon the Level-3 BLAS kernels
for the matrix-matrix multiplication (GEMM) and the
unit lower triangular system solve with multiple right-
hand sides (TRSM).

We avoid rounding errors in SCAL and GER by carefully
performing or reordering computations –preventing double
rounding when the vector is scaled by the inverse of a
diagonal element through computing this division during
the scaling (INVSCAL), so that these routines yield both
reproducible and correctly-rounded results. The remaining
two operations (MAX and SWAP), which are involved in
pivoting, are reproducible by nature. We extend our hier-
archical approach [8], which leverages a long accumulator
and error-free transformations (EFTs), to produce an exact
dot product (EXDOT) by employing the TwoProd EFT [9]
for the multiplication of two floating-point numbers. For
EXTRSM and EXGEMM, we propose blocked variants that
combine together high performance GPU kernels and EX-
DOT. EXTRSM relies upon small EXTRSM on diagonal blocks
and EXGEMM on off-diagonal blocks. EXTRSM delivers re-
producible, but not yet correctly rounded results. We outline
a strategy for enhancing EXTRSM’s accuracy up to achieving
correctly-rounded results. In addition, we draw a strategy
for improving performance of Level-3 BLAS routines, in
particular of EXGEMM.

The paper is organized as follows. Section II reviews
several aspects of computer arithmetic, in particular the
floating-point expansion and the long accumulator. Sec-
tion III presents the ExBLAS library with the required set of
routines for algorithmic variants of both the unblocked and
blocked LU factorizations. Those reproducible algorithmic
variants are presented in Sections IV and V, accordingly.
Finally, we evaluate our implementations in Section VI and
draw conclusions in Section VII.

II. FLOATING-POINT ARITHMETIC

Floating-point arithmetic consists in an approximating of
real numbers with a significand, an exponent, and a sign:

x = ±x0.x1 . . . xM−1︸ ︷︷ ︸
mantissa

×be, 0 ≤ xi ≤ b− 1, x0 6= 0,

where b is the basis (2 in our case), M is the precision, and e
stands for the exponent that is bounded (emin ≤ e ≤ emax).

In this paper, we consider the binary64 or double-
precision format of the IEEE-754-2008 standard. The

standard requires the basic arithmetic operations
(+,−,×, /,√ ) to be correctly rounded that is to say
that the operations are performed as if the result was first
computed with infinite precision and then rounded to the
current floating-point format. In the sequel of the paper, we
assume that the rounding-m ode is rounding-to-nearest. It
means that the basic operations return the closest floating-
point number to the exact result, breaking ties by rounding
to the floating-point number with the even significand.

To increase the accuracy of floating-point operations,
we will use two strategies in order to deal with rounding
errors. The first solution computes the rounding error which
occurred during basic floating-point operations (when pos-
sible) with error-free transformation and then uses floating-
point expansions (unevaluated sum of several floating-point
numbers with little overlapping), see Section II-A. The
second solution exploits the finite range of exponents of
floating-point numbers by storing every bit in a long vector
of bits (long accumulator), see Section II-B.

A. Floating-Point Expansion

Floating-point expansion (FPE) makes it possible to in-
crease the precision of the computations at a moderate cost
especially for floating-point additions. FPE are represented
by an unevaluated sum of p floating-point numbers whose
components are ordered in magnitude with minimal overlap
to cover a wide range of exponents. The algorithms for
computing with FPE rely on the use of EFT for the addition
(TwoSum, see Alg. 1 [10]) and, for the multiplication
(TwoProd, see Alg. 2 [9]). Alg. 1 computes the addition
r of two floating-point numbers a and b and the rounding
error e such that r and e do not overlap and a+ b = r+ e.
Similarly, TwoProd computes the product of two floating-
point numbers a and b as well as the rounding error.
For TwoProd, we use the fused-multiply-and-add (FMA)
instruction to track the error that computes a · b − r with
only one rounding at the end.

Algorithm 1: Error-free transformation for the sum of
two floating-point numbers.

Function [r, s] = TwoSum(a, b)
r ← a+ b
z ← r − a
s← (a− (r − z)) + (b− z)

Algorithm 2: Error-free transformation for the product
of two floating-point numbers.

Function [r, e] = TwoProd(a, b)
r := a · b
e := FMA(a, b,−r)



Adding a floating-point number to an expansion of size
p is an iterative process. The floating-point number is first
added to the head of the expansion and the rounding error
is next recovered as a floating-point number using the
TwoSum EFT. The error is then recursively accumulated to
the remainder of the expansion. As long as the dynamic
range of the sum is lower than 253×p for binary64,
the FPE approach computes the accumulation of numbers
without loss of accuracy.

The main advantage of FPEs is that they can be stored in
registers (after being fetched) during the computations. Nev-
ertheless, their accuracy may be insufficient for large sums
or for floating-point numbers with significantly variations in
magnitude. Moreover, the complexity of FPEs grows linearly
with their size.

B. Long accumulator

Another way to increase the precision of the computation
is to use a long fixed-point accumulator (superaccumulator).
A fixed-point representation stores numbers using an integral
part and a fractional part of fixed size, or equivalently
as a scaled integer. A long accumulator can be seen as
a projection from the input floating-point format that can
represent every bit of information of this format and covers
all the numbers in the range from the minimum representable
floating-point value to the maximum value, independently
of the sign. As an example, Kulisch [11] proposed to
use a 4288-bit long accumulator for the exact dot product
of two vectors composed of binary64 numbers. Fig. 1
illustrates the error-free accumulation of floating-point input
numbers in the long accumulator. The superaccumulator is
a convenient way to compute the exact result of a large
amount of floating-point numbers of arbitrary magnitude.
The main drawbacks of the superaccumulator are its very
large memory overhead and indirect memory accesses.

Figure 1: Long accumulator.

III. EXBLAS– ACCURATE AND REPRODUCIBLE BLAS

This section provides a brief overview of the prototype
implementations of the Exact BLAS (ExBLAS) library
routines [12] that are used within the studied unblocked
and blocked LU factorizations. We begin with the parallel
reduction and dot product that are two fundamental BLAS
kernels. We then continue with the Level-1/2 BLAS rou-
tines, namely vector scaling and outer product, and show
that reproducibility can be ensured by carefully rearranging

arithmetic operations. We extend this approach to the Level-
3 BLAS routines – such as the matrix multiplication and the
triangular solve with multiple right-hand sides.

A. EXSUM: Exact Parallel Reduction

The parallel reduction is in the core of many BLAS
routines. So, at first, we derive a multi-level approach for this
operation, aiming to address various modern architectures
with their complex multi-level memory structures. From
one side, we want this approach to be fast to ensure
compatible performance of the reproducible version of the
parallel reduction. From the other side, we want to preserve
every bit of information before the final rounding to the
desired format, e.g. binary64, to assure reproducibility.
To accomplish our goal, we combine together, tune, and
extend to new architectures – like GPUs and Intel Xeon Phi
co-processors – the existing solutions [8], [12]: the floating-
point expansion and the long accumulator.

Algorithm 3: Floating-point expansion a of size p.

Function ExpansionAccumulate(x)
for i = 0→ p− 1 do

(ai, x) := TwoSum(ai, x)
end
if x 6= 0 then

Superaccumulate(x)
end

For accumulating floating-point numbers using FPE with
the TwoSum EFT we rely upon Alg. 1. Since FPE occupies
only few words of memory we assign them to each thread
and split computations among those threads; to note, no
sorting or reordering are required during the entire process.
Thus, each thread crunches numbers assigned to it and sends
back this accumulated result. Alg. 3 extends the classic FPE
of size 2 to a variable size p (p = 8 is the large size we test)
and introduces the superaccumulator when the accuracy of
the FPE is not sufficient to store every bit of the result. To re-
duce the memory usage, these superaccumulators are shared
among multiple threads; contention among these threads is
handled via atomic operations. This local accumulation stage
is then followed by the reduction of the superaccumulators
within the work group of threads and, therefore, among the
work groups. Finally, the global superaccumulator, which
stores the result, is correctly rounded to the target floating-
point format.

B. EXDOT: Exact Dot Product

The inner product or dot product of two vectors is another
crucial fundamental BLAS operation. After deriving the
exact parallel reduction, the remaining challenge to build
the exact dot product [13] lays in the exact multiplication of
two floating-point numbers. For that purpose, we utilize the



TwoProd EFT, see Alg. 2, that returns two values: the result
and the error. Therefore, the EXDOT algorithm is based on
the EXSUM algorithm and the TwoProd EFT: the accumu-
lation of both the result and the error to the FPEs followed
by the reductions of these FPEs and superaccumulators on
various levels as in EXSUM.

C. EXSCAL and EXINVSCAL: Exact Vector Scaling

Scaling a vector x by a scalar α is rather a trivial
operation as it does not induce any dependencies among
the vector elements and requires only one operation to be
performed per element (xi := α · xi). Hence, in order to
ensure correctly-rounded and reproducible results of this
operation, which we name EXSCAL, we require only the
IEEE 754-2008 compliance. But, in the studied variant of
the unblocked LU factorization, see Alg. 4, EXSCAL scales
a vector by the inverse of the diagonal element (α = 1/aii),
which does not assure the correct-rounding. That is due to
the double rounding: one by the division while computing
α and another by the actual vector scaling. To obtain the
exact result, we propose an inverse version of EXSCAL
(EXINVSCAL) – this operation directly performs the division
of all the elements of the vector by the diagonal element,
avoiding the redundant intermediate rounding. Therefore,
EXINVSCAL not only ensures the exact result, but also
reduces the amount of computations.

D. EXGER: Exact Rank-1 Update

We have already discussed the inner product (DOT) of
two vectors. We also consider the outer product (GER) of
two vectors x and y, which forms a matrix, and updates
a matrix A: A := A + α · x · yT ; this operation is often
called as the rank-1 update. The corresponding element-wise
operation to be performed is aij := aij+α ·xi ·yj . Since we
aim to derive the correctly-rounded and reproducible GER
that underlies the unblocked LU factorization, see Alg. 4,
here, we focus on a special case of GER when α := 1.0. In
this case, the element-wise outer product can be performed
by invoking the fused-multiply-and-add (FMA) instruction.
This instruction computes the intermediate result as in the
infinite precision and, then, correctly-rounds the final result
to the desired precision. Thus, by explicitly using the FMA
instruction, we avoid the intermediate rounding and deliver
the exact result of GER.

E. EXTRSM: Exact Triangular Solve

The triangular solve with multiple right-hand sides
(TRSM) solves one of the matrix equations

op(A) ·X = α ·B, or X · op(A) = α ·B,

where α is a scalar; X and B are m×n matrices; A is a unit,
or non-unit, upper or lower triangular matrix; and op(A) is
one of op(A) = A or op(A) = AT . Once the computation

EXTRSM

EXTRSM

EXTRSM

EXTRSM

EXGEMM

EXGEMM

EXGEMM

EXGEMM

EXGEMM EXGEMM

blsz

Figure 2: Partitioning of a lower triangular matrix A, where blsz
stands for the block size.

progresses, the matrix-solution X overwrites B, so only one
matrix is required.

Our interest to TRSM lays in its employment within the
studied blocked LU factorization, Alg. 5, where TRSM is
applied to a unit lower triangular matrix A on the left
from the matrix-solution X . Hence, our focus here is on
this particular variant of TRSM.

In order to construct an exact TRSM, which we name
as EXTRSM, we combine together a high-performance im-
plementation of TRSM and our multi-level reproducible ap-
proach. Regarding the former, this implementation involves
blocking with the block size blsz, where both A and B are
split into blocks of size blsz× blsz. Thus, the computations
are organized on those blocks. Each local triangular system,
involving a diagonal block, is solved with the local TRSM,
while the update, involving the entire panel underneath each
diagonal block, is computed with the local GEMM. This
strategy is depicted in Fig. 2. Since the local TRSM still com-
putes the solution in the sequential order, the performance
benefit originates in the local GEMM that is computed in
parallel with the cloud of work items. Due to the dependency
on the local TRSM, the TRSM algorithm proceeds with the
panel-step from left to right. Finally, we integrate our exact
multi-level algorithm, EXDOT to be precise, into these local
TRSM and GEMM to derive the local EXTRSM and EXGEMM
(see Section III-F), accordingly.

Although EXTRSM assures reproducibility of computed
solution as a sequence of reproducible and correctly-rounded
computations for all its elements, the overall computed
solution is often not correctly-rounded compared to the exact
solution. That is due to the cascaded of rounding errors from
rounding each computed element to the target floating-point
format and then using this value to calculate the proceeding
elements. In order to enhance the accuracy of EXTRSM, we
propose to apply a few iterations of refinement based on the
ExBLAS routines.



F. EXGEMM: Exact Matrix Multiplication

The matrix-matrix multiplication (GEMM) is one of the
building blocks for the triangular solver with multiple right-
hand sides (used internally within this routine) as well as
for the blocked LU factorization, Alg. 5.

For the sake of this article, we consider a general case
of GEMM: C := α · A · B + β · C, where α and β
are scalars that equal one and zero, accordingly; C is a
square matrix; and both A and B are column- and row-
panel matrices, accordingly. To derive the exact and effi-
cient GEMM (EXGEMM) [14], we construct our approach
by combining the blocked implementation of GEMM for
the performance purpose and EXDOT to assure both the
accuracy and reproducibility. Thanks to the usage of EXDOT,
EXGEMM delivers correctly-rounded results for each element
of the matrix C.

Since computing each element of the matrix C requires
involvement of a superaccumulator, even in the case of our
hierarchical approach, that leads to a large memory footprint,
in [14] we propose to use only certain amount of superaccu-
mulators that correspond to the currently computed blocks
of the matrix C. Then, these superaccumulators can be
reused for computing the remaining blocks of C. Here, we
propose a lightweight approach for ensuring reproducibility
of GEMM, aiming to improve the EXGEMM performance.
This approach employs only floating-point expansions with
the early-exit technique and, then, rounds each expansion
to the desired format. The latter is the difficult part in this
approach. We consider to utilize the Add3 [15] algorithm,
however we aim to derive our own algorithm for this
rounding. This lightweight approach will reduce the memory
pressure and assure reproducibility, but may not always lead
to the correctly rounded results.

IV. REPRODUCIBLE UNBLOCKED LU FACTORIZATION

The LU factorization decomposes an m × n matrix A
into the product of an m× r unit triagular factor L and an
r× n upper triangular factor U , where r = min(m,n). For
the numerical stability, a sequence of row permutations is
applied during the factorization, yielding the decomposition
PA = LU , where P is an m×m permutation matrix. Alg. 4
displays the (unblocked) right-looking (RL) algorithm for
the LU factorization with partial pivoting using the FLAME
notation [16], [17]. There, size(A) returns the number of
columns of matrix A; for further details on the notation,
see [16]. Before the computation commences, A is virtually
partitioned into four blocks: ATL, ATR, ABL, and ABR,
where ATL is initially void (0 × 0). The matrix A is then
traversed from its top-left to the bottom-right corners. At
each iteration of the loop, A is repartitioned 2× 2→ 3× 3,
see Fig. 3, identifying a scalar α11 on the diagonal of A,
as well as the vectors a01, aT10, a

T
12, and the matrix blocks

A00, A02, A20, and A22. The operations in the loop body
update a21 and A22 using, respectively, calls to Level-1 and

Level-2 BLAS kernels SCAL and GER. Upon completion,
the strictly lower triangle of A is overwritten with the
corresponding entries of the the unit lower triangular factor
L while the upper triangular part of A contain those of
U . Furthermore, a vector p of pivots is constructed that
implicitly stores the permutation matrix P applied during
the factorization.

All the operations appearing in Alg. 4 are cast in terms of
BLAS routines. Therefore, we can develop an entire repro-
ducible unblocked RL algorithmic variant for the LU fac-
torization by simply relying on the corresponding ExBLAS
routines, namely EXINVSCAL and EXGER.

Regarding the application of the partial pivoting strategy
in Alg. 4, we note that this technique is composed of two
stages:

1) MAX – find the maximum element in absolute value in
the part of a matrix column, starting from the diagonal
element. This operation is always reproducible.

2) SWAP – exchange values of two rows. This operation
is also reproducible by nature.

In conclusion, all computational steps of the proposed un-
blocked RL algorithm for the LU factorization with partial
pivoting employ reproducible kernels, such as EXINVSCAL
and EXGER, in conjunction with the reproducible strategy for
partial pivoting. Thus, by removing all the sources of indeter-
minism in Alg. 4, and exploiting multi-threaded parallelism
within its building blocks, we ensure the reproducibility and
improve parallel efficiency for this algorithmic variant for
the LU factorization.

V. REPRODUCIBLE BLOCKED LU FACTORIZATION

Despite being numerically stable (in practice) and re-
producible, the unblocked algorithmic variant for the LU
factorization discussed in Section IV will not deliver high
performance on current processor architectures. For this
scenario, it is more efficient to rely on a blocked formulation
of the algorithm, as that illustrated in Alg. 5.

At each iteration of Alg. 5, matrix A is repartitioned 2×
2→ 3×3, identifying the nb×nb block A11 on the diagonal
of A and other matrix blocks of various shapes: row-panels,
column-panels and square blocks. The operations in the loop
body that perform the updates within Alg. 5 are split into
four steps:

1) The LU factorization with partial row pivoting of the
diagonal and subdiagonal matrices, computed via the
unblocked RL algorithm in Alg. 4.

2) The permutation of multiple rows of the matrix A.
3) TRSM to solve a unit lower triangular system with

multiple right-hand sides.
4) GEMM to compute a general matrix-matrix multiplica-

tion.
Hence, Alg. 5 is also composed of simpler linear algebra

operations – such as the unblocked LU factorization and



Algorithm 4: The unblocked RL algorithmic variant
with partial pivoting for the LU factorization.

Partition

A→
(
ATL ATR

ABL ABR

)
, p→

(
pT
pB

)
where ATL is 0× 0, pT has 0 elements

While size(ATL) < size(A) do
Repartition(
ATL ATR

ABL ABR

)
→

A00 a01 A02

aT10 α11 a
T
12

A20 a21 A22

,
(
pT
pB

)
→

p0π1
p2


where α11 and π1 are scalars

π1 := PivIndex

(
α11

a21

)
(MAX)(

aT10 α11 aT12
A20 a21 A22

)
:= P (π1)

(
aT10 α11 aT12
A20 a21 A22

)
(SWAP)

a21 := a21/α11 (SCAL/INVSCAL)
A22 := A22 − a21aT12 (GER)

Continue with(
ATL ATR

ABL ABR

)
←

A00 a01 A02

aT10 α11 a
T
12

A20 a21 A22

,
(
pT
pB

)
←

p0π1
p2


endwhile

A00 a01 A02

aT10 α11 aT12

A20 a21 A22

i

1

m
−
i
−
1

i 1 n− i− 1

Figure 3: Partitioning of the matrix A.

several BLAS kernels. Consequently, we can construct a
reproducible blocked algorithmic variant of the LU factor-
ization on top of the unblocked algorithmic variant and
the appropriate ExBLAS routines, namely EXTRSM and
EXGEMM. To conclude, this algorithmic variant ensures
reproducibility of the results and can be expected to deliver
higher performance than its unblocked counterpart.

Algorithm 5: The blocked RL algorithmic variant with
partial pivoting for the LU factorization.

Partition

A→
(
ATL ATR

ABL ABR

)
, p→

(
pT
pB

)
where ATL is 0× 0, pT has 0 elements

While size(ATL) < size(A) do
Determine block size nb
Repartition(
ATL ATR

ABL ABR

)
→

A00 A01 A02

A10 A11 A12

A20 A21 A22

,
(
pT
pB

)
→

p0p1
p2


where A11 is nb × nb and p1 has nb elements[(

A11

A21

)
, p1

]
:= LUPunb

(
A11

A21

)
(Alg. 4)(

A10 A12

A20 A22

)
:= P (p1)

(
A10 A12

A20 A22

)
A12 := trilu(A11)

−1A12 (TRSM)
A22 := A22 −A21A12 (GEMM)

Continue with(
ATL ATR

ABL ABR

)
←

A00 A01 A02

A10 A11 A12

A20 A21 A22

,
(
pT
pB

)
←

p0p1
p2


endwhile

VI. EXPERIMENTAL RESULTS

We verify the accuracy and evaluate the performance of
the unblocked RL LU factorization with partial row pivoting
and the underlying BLAS routines of the blocked variant
on two different NVIDIA architectures; see Tab. I for the
architectures details.

Table I: Hardware platforms employed in the experimental evalu-
ation.

NVIDIA Quadro K420 192 CUDA cores 0.780 GHz
NVIDIA Tesla K80 4,992 CUDA cores 0.560-0.875 GHz

with a dual-GPU design

In order to develop implementations for the studied repro-
ducible algorithmic variants, we start by providing our vec-
torized, parallelized, and optimized non-deterministic dou-
ble precision implementations of the general matrix-matrix
multiplication, the triangular solve with multiple right-hand
sides, and the unblocked LU factorization in Alg. 4; we refer
to these implementations on figures as “GEMM”, “TRSM”,
and “UNBLU”, accordingly. We then integrate our repro-
ducible solutions into these implementations. We tune our
implementations by promoting loop unrolling and changing
workgroup size, as well as by efficiently utilizing the GPU



resources – such as SIMD instructions, FMAs, private and
local memory, and atomic instructions.

We verify the accuracy of both non-deterministic and
reproducible implementations by comparing their results
against the ones produced by the multiple precision sequen-
tial library MPFR.

In the comparison, we employ these non-deterministic
double precision implementations that are natural candidates
to assess the performance, accuracy and reproducibility of
the results. Regardless of some performance penalties, we
emphasize the importance of obtaining reproducible and,
when possible, correctly-rounded results.

A. EXGEMM

For these tests, we consider two cases, depending on the
matrices shapes:

1) A general case where all the matrices are square.
2) The blocked LU factorization case, addressing the

shapes of the matrices as inquired in the studied
algorithmic variant, Alg. 5.

Figs. 4a and 4b display the performance results for these two
cases. In the captions of both plots, “Superacc” corresponds
to the exact matrix-matrix multiplication algorithm that
is solely based on superaccumulators, while “EXGEMM ”
stands for our exact implementation of GEMM. The latter
efficiently combines floating-point expansions and super-
accumulators in contrast with the former, which could be
classified as a reliable but brute-force approach to ensure
reproducibility. Thus, EXGEMM reduces considerably the
performance overhead of superaccumulators – from 20–22×
to 7–8× only for the considered two cases compared to
the non-deterministic double-precision GEMM – through the
efficient usage of private memory for the expansions.

We also validate the accuracy of the computed results by
GEMM and EXGEMM. Fig. 4c shows the relative forward
error ‖C∗ − C‖/‖C∗‖ against the condition number of the
problem, A · B in our case; C∗ corresponds to the exact
matrix-matrix multiplication and C is computed using either
GEMM or EXGEMM. We compute the condition number
of the problem as ‖exact(|A| · |B|)‖/‖exact(A · B)‖. To
generate the ill-conditioned matrix-matrix multiplication, we
rely on the ill-conditioned dot product: The entries of n− 1
rows of the matrix A and n − 1 columns of the matrix B
are generated following a random uniform distribution, and
the remaining row in A and column in B represent vectors
x and y, the result of the ill-conditioned dot product. For
visual representation, those errors that exceed 1 are replaced
by 1 since there is no single accurate digit left. As the
relative forward error strongly depends on the condition
number of the problem, the error of GEMM equals 1 for all
condition numbers higher than 1016. EXGEMM still ensures
both correct-rounding and reproducibility of the results
independently of the condition number because EXGEMM
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Figure 4: Performance and accuracy results of GEMM.

preserves every bit of the result until its final rounding to
the target floating-point format, binary64 in this case.



B. EXTRSM

Fig. 5a shows the execution time of the double-precision
and reproducible TRSM versus the matrix size. This test
mirrors the scenario of using TRSM within the blocked LU
factorization, Alg. 5, where the matrix A11 is of the fixed
size blsz × blsz while the number of rows in the matrix
A12 varies. The performance overhead of our reproducible
approach within TRSM is higher – EXTRSM is roughly
14× slower compared with the non-deterministic double-
precision TRSM– than for GEMM due to the dependencies
while computing the local EXTRSM as well as the limited
possibility of using the local EXGEMM. However, we still
benefit from the local EXGEMM as the internal block size is
smaller than blsz = 256.

Regarding the accuracy of both double-precision and re-
producible TRSM implementations, we carry out tests using
ill-conditioned unit triangular matrices. To generate those
matrices, we modify the algorithm described in [18] for
the unit triangular matrices. The results of our tests are
reported in Fig. 5b. We benefit from the MPFR library to
compute exactly the relative forward error and the condition
number of the problem; for the later we employ the Skeel
formula [19], [3]: cond(A, x) = ‖|A−1||A||x|‖/‖x‖. As
the forward error reveals, both implementations are affected
by the increase in the condition number, delivering no
correct digit after a certain value; these errors were set to 1.
This effect occurs later for the reproducible TRSM, as each
element of the solution is computed in the reproducible and
correctly-rounded way with only one rounding to double at
the end.

C. EXUNBLU
For the unblocked RL LU factorization, see Alg. 4, we

do not employ our hierarchical approach for reproducibility,
but rather carefully leverage the IEEE 754-2008 standard.
Hence, Fig. 6 shows only two lines of results: UNBLU and
EXUNBLU for the non-deterministic double-precision and
exact double-precision implementations, respectively.

Figs. 6a and 6b report the execution time obtained by the
unblocked RL algorithmic variant for the LU factorization
with partial row pivoting as a function of the matrix size
(m = n) on K420 and K80. UNBLU is roughly by 3–4 %
faster than EXUNBLU on K80. In contrast, on K420 we can
clearly see that the reproducible implementation outperforms
the non-deterministic one by at least 10%. The reason is that
we compute α as an inverse of the diagonal element and then
use this value in local SCAL (UNBLU), while in EXINVSCAL
(EXUNBLU) we perform division directly. Therefore, as the
error

To verify the accuracy of the RL unblocked LU factor-
ization implementations, we conduct a set of tests on ill-
conditioned matrices (cond(A) ∈ [102, 1041]); the results of
these tests are depicted in Fig. 6c. In order to create these
matrices, we extend the generator for triangular systems [18]
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Figure 5: Performance and results of TRSM.

to a general case, when the entire matrix is in use. In order
to compute the error as ‖PA−LU‖, we rely on the MPFR
library, especially for the product of two matrices. We filter
errors and round those that exceed 1 to 1. This experiment
demonstrates that both UNBLU and EXUNBLU deliver
roughly the same accuracy, however the later is reproducible.

Taking into account the performance equivalence of both
implementations (as the difference is within the time mea-
surement fluctuation range of 3 %, especially for small
problems) and the performance gain of EXUNBLU on K420,
EXUNBLU is a competitive alternative to UNBLU as as it
ensures numerical reproducibility of the results.

VII. CONCLUSIONS AND FUTURE WORK

Dense linear algebra libraries virtually assemble a modu-
lar and hierarchical structure, where higher level operations
–such matrix factorizations– can be entirely constructed on
top of the lower level fundamental kernels – such as the
BLAS routines. In this work, we exploited this property
in order to derive its reproducible algorithmic variant of
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Figure 6: Performance and accuracy results of the unblocked RL
LU factorization, Alg. 4.

the blocked LU factorization. As a concrete case study, we
considered the right-looking variant of the blocked LU fac-
torization that is built on top of the Level-3 BLAS routines
TRSM and GEMM as well as the right-looking unblocked

LU factorization, which in turn relies upon the Level-1/2
BLAS kernels SCAL and GER. As the first step towards
ensuring reproducibility of the blocked LU factorization,
we proposed strategies to guarantee reproducibility of all
these building blocks. We ensured both reproducible and
correctly-rounded results for SCAL and GER by omitting the
intermediate rounding, for example, through the explicit use
of the FMA instruction. Moreover, we enhanced EXGEMM
and proposed an initial version of the reproducible TRSM
with blocking; and we introduced iterative refinement to
enhance accuracy. All these underlying buildings blocks
were implemented on NVIDIA GPUs reporting preliminary
experimental results on two state-of-the-art accelerators. Our
codes provide numerical stability and reproducibility. at the
cost of some performance overheads that we plan to address
in the future.

As part of future work, we plan to improve the per-
formance of the compute-intensive BLAS kernels via a
light-weight strategy, which we briefly outlined here, and
complete the entire blocked LU factorization. In conjunction
with the experimental evidences of the numerical repro-
ducibility, we aim to provide theoretical proofs for EXTRSM
and both unblocked and blocked LU factorizations along
with their error analysis.
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