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Abstract

We have studied the γp −→ π+π−p reaction using a model which in-

cludesN,∆(1232), N∗(1440) andN∗(1520) intermediate baryonic states

and the ρ−meson as intermediate 2π resonance. The model reproduces

fairly well experimental cross sections below Eγ = 800 MeV and invari-

ant mass distributions even at higher energies. One of the interesting

findings of the study is that the γN −→ N∗(1520) −→ ∆π process is

very important and interferes strongly with the dominant ∆ Kroll Rud-

erman term to produce the experimental peak of the cross section. We

show that the study of the reaction can provide information on some

couplings, concretely the N∗(1520) −→ ∆π. We also find that pion

energy distributions for different photon energies, which have not been

measured so far, contain very valuable information on the dynamics of

the reaction. Finally the analogies and differences with respect to the

πN −→ 2πN reaction are also discussed.
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1 Introduction.

The γp −→ π+π−p reaction has been studied experimentally in the past [1,

2] and there is abundant information on cross sections and invariant mass

distributions for the ππ and πN systems. New improvements in experimental

techniques and facilities have reopened the study of this reaction at Mainz [3].

The theoretical developments have run parallel to the experimental fate of the

reaction, with just one early model [4] which has not been improved so far.

Meanwhile the related reaction πN −→ ππN has been the object of intense

experimental [5, 6, 7] and theoretical study [8, 9, 10, 11]. The model of ref.

[10] relies upon the coupling of pions to nucleons and resonances incorporating

one point, two point and three point diagrams and N , ∆(1232), N∗(1440) in

the intermediate states. This model, when complemented by terms containing

N∗ intermediate states relevant at higher energies reproduces remarkably well

all the cross sections for the different isospin channels in the energy range

covered by the present meson physics facilities of Los Alamos, TRIUMF and

PSI [12, 14].

The πN −→ ππN reaction at low energies has recently attracted attention

as a good testing ground of chiral symmetry and chiral perturbation theory

[14, 13]. However, the γN −→ ππN reaction is still relatively unexplored.

One characteristic feature of the πN −→ ππN reaction is that it requires a

fairly large number of Feynman diagrams to account for it theoretically. This

number is of the order of 40 in [10, 12]. Hence, the apparent success of the

model of [4] for the γN −→ ππN reaction which considers only 5 Feynman

diagrams has always been intriguing.

With this reaction becoming a target of new experimental study and in-
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teresting medium effects predicted for the (γ, π+π−) reaction in nuclei [15], in

analogy to those already found for the (π, 2π) reaction [16, 17], a thorough

theoretical study of the γN −→ ππN reaction is timely and opportune. We

undertake this task here and study the γp −→ π+π−p reaction in detail.

The model is based on the coupling of photons and pions to nucleons and

resonances using effective Lagrangians and thus leading to a set of Feynman

diagrams at the tree level. We do not implement unitarity in the final states

but make an estimate of possible uncertainties stemming from unitarity cor-

rections.

2 The model.

In a model which contains many terms, as the one presented here, it is impor-

tant to establish a principle of organization. For this purpose we follow the or-

ganization scheme of [8] and classify our diagrams in one point, two points and

three points diagrams, according to the number of vertices in the hadron com-

ponents. Our basic components are pions, nucleons and nucleonic resonances.

We consider for the hadronic components N , ∆(1232, Jπ = 3/2+, I = 3/2),

N∗(1440, Jπ = 1/2+, I = 1/2) and N∗(1520, Jπ = 3/2−, I = 1/2). The

N∗(1520) has a particularly large coupling to the photons and proves to be

an important ingredient, mostly because its interference with the dominant

component of the process, the γN −→ ∆π transition through the gauge Kroll

Ruderman term. Higher resonances have a weaker coupling to photons and

do not interfere with the dominant term, hence their contribution is small, at

least for photon energies below 800 MeV , Mainz energies, where our model

3
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is meant to work. Because of the important coupling of the ρ meson to the

two pion system and the γπ system we have also considered terms involving

the ρ meson with the same organizing scheme. These terms are only relevant

at high energies but show up clearly in the two pion invariant mass distribu-

tions at these energies. With these considerations the basic diagrams which

we consider have the structure as shown in fig. 1. In diagrams a) and b) the

one point NNππ coupling stands for the s-wave πN interaction. We consider

there only the isoscalar part of the amplitude. The isovector part is mediated

by ρ exchange [18] and hence it is explicitly taken into account in diagrams

f-i. Diagram c) contains the gauge term NNπγ or Kroll Ruderman term. We

use a pseudovector coupling for the NNπ vertex and this allows us to consider

exclusively positive energy intermediate state in the hadronic propagators [19].

In the two point and three point diagrams we include nucleon and the reso-

nances as intermediate states. However, while all possible diagrams with N

and ∆ intermediate states are considered, we omit some with N∗(1440) inter-

mediate states which are very small. For the N∗(1520) intermediate states we

keep only the term which interferes with the dominant term of the amplitude

(∆ Kroll Ruderman term). In addition, all different time orderings of the

diagrams are considered.

The diagram g) involves a gauge term ρππγ coming from minimal coupling

in the ρππ vertex which contains a derivative coupling. Finally diagram j)

contains the anomalous coupling γ3π [20].

The Feynman diagrams considered appear in fig. 2. The corresponding

amplitudes can be evaluated from the interaction Lagrangians which we show

in appendix A. This is easily accomplished by following the Feynman rules

4
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Figure 1: Classification of the Feynman diagrams into one point, two point

and three point diagrams.
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which are shown in appendix B. From there the amplitudes corresponding to

the diagrams of fig. 2 are straightforwardly calculated. Detailed expressions

for the amplitudes can be seen in [21].

Most of the interaction Lagrangians in Appendix A are standard. Some of

them require an explanation on how they are obtained. The ∆Nπγ contact

term (A.12), or ∆ Kroll Ruderman term, is obtained by minimal coupling

from the ∆Nπ Lagrangian (A.3). The ∆N∗π coupling (A.7) has the same

structure as the ∆Nπ. The coupling constant is determined from the decay

width N∗ −→ ∆π [25]. For the N∗Nπ vertex we take a coupling similar to

the non relativistic limit of NNπ lagrangian (A.1), and the coupling constant

is calculate from the N∗ −→ Nπ decay [25]. The couplings N∗Nγ and N ′∗Nγ

(N ′∗ stands for the N∗(1520) from now on) are obtained in such a way as to

reproduce the empirical N∗ and N ′∗ decay helicity amplitudes in the Nγ chan-

nel [25]. The contact term NNπγ (A.11) is obtained from the pseudovector

NNπ coupling (A.1) by minimal coupling. For the ∆Nγ coupling (A.14) we

take the coupling constant in agreement with the value obtained by adjusting

the M1+(3/2) amplitude to experiment [19, 22].

The ∆∆π coupling (A.4) is not well known empirically. Here we take the

results from the quark model with SU(6) symmetry [8, 23], f∆/f = 4/5. For

the vertex ∆∆γ we write directly the vertex contribution to the Feynman rules

in (B.10) [31] in analogy to (B.9) for the NNγ. The magnetic moment of the

∆, µ∆, can be calculated in the quark model [26] with the result µ∆/µp = e∆/e.

However, we shall use for the ∆++ the experimental result based on the πp

bremsstrahlung (π+p −→ π+pγ) [27], µ∆++ = 1.62 ± 0.18 (in µp units). The

contact term NN∗πγ (A.13) is obtained from the NN∗π Lagrangian (A.5)

6
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Figure 2: Detail of the Feynman diagrams used to describe the reaction.
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by minimal coupling. The term NN∗ππ is taken from [10] and is meant to

account for N∗ −→ Nππ (s − state). The coupling constant C is corrected

with respect to [10] to correct for some rough approximation in the estimation

of the width in [10] plus the large changes in the N∗ width experienced from

the latest edition of the particle data tables [25] to the earliest one [28]. In all

cases for the width and ratios of decay we take the average values from the

results of [25].

For the ∆N ′∗π coupling we have taken the simplest Lagrangian (A.8),

compatible with the conservation laws (parity, isospin, rotation invariance,

etc.). The transition N ′∗ −→ ∆π is 3/2− −→ 3/2+ in spin and 1/2 −→ 3/2

in isospin and a pion of negative intrinsic parity is produced. The strength is

fixed from the data of [25]. The sign however is chosen as to have constructive

interference. With the chosen sign the agreement with the data is relatively

good while with the opposite sign the discrepancies are of about a factor of

two and the qualitative features of the experiment are not reproduced.

The ρ coupling constants to N or ∆ are scaled from the π couplings with

the constant
√
Cρ. With the value Cρ = 2 used here and in [10] one obtains

standard ρ coupling to N an ∆ used in [10]. However, for the N ′∗Nρ vertex

(A.20) we take the coupling constant from the decay width N ′∗ −→ Nρ [25].

Finally we have also used the γ −→ 3π term [20] (A.23) which is related to

the anomalous term responsible for π0 −→ γγ decay [29, 30] (A.24), with

F 3π = F π/ef 2
π (fπ = 93MeV ).

In order to obtain the couplings in appendix B non relativistic approxima-

tions have been done in some Lagrangians, but keeping terms up to p/2m and

neglecting terms of (p/2m)2 or higher order terms.
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Finally one remark about the couplings. Those involving moments in the

vertex ~S ·~q, etc. are meant to be calculated in the CM of the π, ρ baryon system

when they are on shell. In a few cases (when the photon enters the diagram

after the pions) the CM frame is ill defined and the vertex is left untouched

with the momenta being those appearing in the γp CM frame. These latter

terms provide a negligible contribution in our case and consideration of further

recoil corrections are unnecessary.

The information provided above, with the one of appendices A, B completes

the information about our model. In the following chapters we discuss the

relevance of the different terms and the results. The calculations have been

performed by evaluating the 67 matrix elements using the Pauli matrix algebra

numerically.

3 Results and discussion.

3.1 Total cross section.

The cross section for the γp −→ π+π−p reaction is given by

σ =
m

λ1/2(s, 0,m2)

1

(2π)5

∫ d3p4

2ω4

∫ d3p5

2ω5

∫
d3p2

m

E2

δ4(k + p1 − p2 − p4 − p5)
∑
si

∑
sf

|T |2 (1)

=
m2

λ1/2(s, 0,m2)

1

4(2π)4

∫
dω5dω4d cos θ5dφ45

θ(1− cos2θ45)
∑
si

∑
sf

|T |2 (2)

11
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Where k = (ω,~k ), p1 = (E1, ~p1), p2 = (E2, ~p2), p4 = (ω4, ~p4), p5 = (ω5, ~p5)

are the momenta of the photon, incident proton, outgoing proton and π−, π+

outgoing pions respectively. In (2) φ45, θ45 are the azimutal and polar angles

of ~p4 with respect to ~p5 and θ5 is the angle of ~p5 with the z direction defined

by the incident photon momentum ~k. T is the invariant matrix element for

the reaction which is derived from a straight application of the Feynman rules

of Appendix B.

In fig.3 we show the results of our model separating the terms involving only

deltas or deltas and nucleons in the intermediate states (diagrams 12 to 32 in

fig. 2) (we refer to the diagrams in fig. 2 in what follows), N ′∗(1520) (diagrams

64, 65, 66), ρ−meson (diagrams 51 to 63), non resonant terms (diagrams 1 to

11) and the rest of the diagrams. The diagrams 64, 65 and 66, although they

provide a small contribution by themselves, are very relevant when added to

the rest of the terms because of the interference of the diagrams 64 and 65

with diagrams 12 and 13, which are the dominant terms in the reaction. For

the rest of the terms, their different structure in terms of the momenta of the

initial and final particles, together with the different combinations of momenta

of these final states allowed by phase space makes the interference very weak

and the cross sections practically sum incoherently.

In fig.3 we observe that the ∆ terms are clearly the dominant ones, starting

at very low energies, in spite of the fact that these terms vanish at threshold.

This reflects the weakness of the non resonant terms. These latter terms pro-

vide a small background which grows moderately as a function of the energy.

The ρ terms are negligible up to Eγ = 800 − 900 MeV , but they become

relevant at energies above Eγ = 1100 MeV and show up clearly in invariant

12
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Figure 3: Comparison between different groups of diagrams. Continuous line:

Contribution of intermediate ∆ states (diagrams 12 to 32 of fig. 2). Dotted

line: same from the ρ −meson terms (diagrams 15 to 63). Dot-dashed line:

contribution of intermediate N∗(1520) states (diagrams 64, 65 and 66). Short

dashed line: contribution of non resonant terms (diagrams 1 to 11). Long

dashed line: rest of diagrams.
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mass spectra as we shall see later. The terms of the fourth block which involve

N∗ intermediate states provide a very small contribution, attributable to the

weak couplings of the N∗ to photons, nucleons and deltas. The N ′∗ terms

which we consider peak around Eγ ' 750 MeV and by themselves are even

more important than the other non delta terms. Furthermore, when they are

added coherently to the delta terms their effect becomes much more relevant

as we shall see later on.

By comparison to the πN −→ ππN reaction [10], some different features

are worth mentioning. In the πN −→ ππN reaction the role of the nonres-

onant terms is more important than here and dominate the cross section at

energies close to threshold. On the other hand, the role of the ∆ terms in

the πN −→ ππN reaction is far less relevant than here. What makes the ∆

terms particularly important here is the presence of the gauge Kroll Ruder-

man terms (diagrams 12 and 13). The structure of these diagrams is such that

the pion from the ∆Nπγ vertex can take the right amount of energy to leave

the ∆ on shell and this coupling, ~S† · ~ε is independent of the pion momen-

tum. Because of the structure of this latter vertex these terms have only one

derivative coupling and are proportional to one pion momentum. By contrary

the ∆ terms in the πN −→ ππN reaction were proportional to two pion mo-

menta, which made them very small close to pion threshold. In the case of the

πN −→ ππN reaction the N∗ terms were relevant, while here they provide a

very small contribution. What made the N∗ contribution particularly relevant

in the πN −→ 2πN reaction were the terms analogous to diagrams 33 and 34

substituting the photon by the incoming pion. These terms gave an important

contribution close to threshold. Here the small N∗Nγ coupling, together with

14
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Figure 4: Analysis of the ∆ contribution. Continuous line: all terms containing

∆ intermediate states (diagrams 12 to 32). Dotted line: dominant terms

(diagrams 12, 13, 16, 17, 24, 25 and 32). Long dashed line: Kroll Ruderman

Term (diagrams 12, 13) short dashed line: Pion pole term (diagrams 16, 17)

Dashed-dotted line: Kroll Ruderman and pion pole terms together (diagrams

12, 13, 16, 17).

the relevance of the Kroll Ruderman term even at small energies, make these

N∗ terms relatively less important than in the πN −→ ππN reaction.

Given the relevance of the ∆ terms, we show in fig. 4 with more detail the

contribution of the different ∆ terms. We observe that the Kroll Ruderman

(diagrams 12,13) and pion pole (diagrams 16,17) terms dominate the reaction

at all energies in the figure, but above Eγ = 700 MeV the contribution of the

rest of the ∆ terms (essentially diagrams 24, 25, 32) becomes more relevant.
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Figure 5: Total cross section. Dashed line: the whole model omitting the

N∗(1520) terms of diagrams 64, 65 and 66. Continuous line: complete model.

These ∆ diagrams are those considered in ref. [4]. However, we can see that

these terms alone fail to reproduce the experimental data.

The ρ contribution is only relevant at high energies as we have already

seen. Practically all the contribution from these terms comes from diagrams

51, 52, 56, 57 and among these, the diagrams 51 and 52 provide the dominant

contribution.

In fig.5 we show the total cross section including and omitting the N∗(1520)

terms of diagrams 64, 65, 66. We can see that with the omission of the

N∗(1520) terms the qualitative features of the cross section are not very well

reproduced. Our cross section raises monotonically without any peak structure

which appears clearly in the experiment. It is worth realizing that in spite of

16
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having delta dominance in the process, the ∆ appears on the final πN states

and hence the ∆ peak does not show up in the cross section as a function of the

photon energy. On the other hand, the inclusion of the N∗(1520) terms leads

to an interference with the Kroll Ruderman terms which is responsible for the

appearance of the maximum and a much better agreement with experiment.

This interesting finding shows that although intuitive, it is not correct to

associate the peak of the cross section to the ∆ resonance. We showed that

the delta terms do not lead to such a peak and it comes as an interference

phenomenon.

In order to show how this interference appears we write below the ampli-

tudes for the diagrams 13 and 65:

−iT13 =
f ∗

µ
~S · ~q+

i
√
s∆ −m∆ + i

2
Γ∆(s∆)

e
f ∗

µ
~S† · ~ε (3)

−iT65 =
f ∗

µ
~S · ~q+

i
√
s∆ −m∆ + i

2
Γ∆(s∆)

f̃∆N ′∗π
1

√
sN ′∗ −mN ′∗ + i

2
ΓN ′∗(sN ′∗)[

−g̃γ ~S† · ~ε+ ig̃σ
(
~S† × ~σ

)
· ~ε
]

(4)

Now one can prove that

iSi
(
~S† × ~σ

)
· ~ε = Si ~S

† · ~ε (5)

and as consequence T65 has the same structure as T13 and the sum of the two

can be cast as eq. (3) substituting

e
f ∗

µ
−→ e

f ∗

µ
− (g̃γ − g̃σ)

f̃∆N ′∗π√
SN ′∗ −mN ′∗ + i

2
ΓN ′∗(SN ′∗)

(6)

However in the analogous diagrams 12 and 64 the substitution would be

the same as in eq. (6) but with a relative + sign between the two terms due

to the different isospin coefficients.
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It is interesting to note that the combination g̃γ − g̃σ is proportional to the

helicity amplitude A3/2 for N ′∗ −→ Nγ. Hence only the 3/2 helicity amplitude

contributes to the γN −→ N ′∗ −→ ∆π. On the other hand, in the case of the

N ′∗ −→ Nγ decay the A3/2 helicity amplitude largely dominates the process,

since A3/2/A1/2 ' −7 [25], which stresses once more the importance of this

term in the γN −→ ππN process. On the other hand we can see that for

values of Eγ < 760 MeV we are below the N ′∗ resonance pole. Hence, for

energies below Eγ = 760 MeV the interference of the real parts of (3) and

(4) is constructive while for energies above it this interference is destructive.

This, together with the contribution of the imaginary part from (4) leads to

the peak in fig. 5. The interference between the diagrams 12 and 64 will be of

opposite sign but their weight is much smaller than that of diagrams 13 and

65.

Our model reproduces fairly well the data up to about Eγ = 800 MeV

(Mainz range) and from there on the discrepancies are about 20% up to about

Eγ = 1100 MeV . The fall down of the cross section from Eγ = 900 MeV up

is not reproduced by our model which provides a steady increase of the cross

section. With
√
s = 1520 MeV at Eγ = 760 MeV we should note that many

more resonances than those considered by us would play a role from this energy

on. Hence there is no reason why our model should work at these energies

and we should expect larger discrepancies of our results with the data as the

energy increases, which is indeed the case. Even so, within our own model we

have neglected terms containing two N∗ and those involving the ∆N∗γ vertex.

Either because the N∗ couplings are small, or because one resonance appears

before the γ is absorbed, or both, these diagrams are expected to be small in

18
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the region below Eγ = 800 MeV . We have also neglected terms involving N∗

intermediate states and ρ coupling given the smallness of the equivalent terms

with ∆ intermediate states and the smaller couplings of the N∗.

Another limitation of our model where improvements could be done, is in

the lack of unitarity. Unitarity of the amplitude with three particles in the

final state is a rather difficult problem [32]. In what concerns unitarity in

the πN channel, our model is near unitary, given the dominance of the delta

terms and the fact that the ∆ width is implemented in the ∆ propagators. We

have made some estimates on the order of magnitude of the corrections that

implementing unitarity could bring. For this purpose we follow the procedure

of Olson [33] to unitarize this channel by multiplying the ∆ terms by a phase

and requesting that the resulting amplitude, after adding the background, has

the phase of the πN amplitude. The angle ϕ of the phase eiϕ is of the order of

10◦. We have checked that implementing this phase in the amplitude changes

the results at the level of 3 %. Even increasing the angle ϕ to 20◦ the changes

are of the same order of magnitude. Crude as this estimate is for such an

involved problem, however, it gives hints that the corrections might be small.

Nevertheless, a serious treatment of this problem would be welcome.

3.2 Invariant mass distribution

It is also instructive to look at distributions of invariant masses. The formulas

for dσ/dMI are easily obtained by multiplying eq. (1) by

∫
dM2

I δ(M
2
I − (pi + pj)

2) (7)

with pi, pj the momenta of the pair of particles which we consider.
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Figure 6: Differential cross section with respect to the invariant mass of the

(π+p) system for different values of Eγ from 450 MeV to 1250 MeV .20
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Figure 7: Same as fig. 6 for the (π−p) system.
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Figure 8: Same as fig. 6 for the (π+π−) system.
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In figs. 6-8 we show the differential cross section with respect to the in-

variant mass of the (π+p), (π−p), and (π+π−) system for different values of

the photon energy. The experimental data are given in terms of counts, hence

our normalization is arbitrary. We adjust our results to the peak of the distri-

bution. The agreement of our results with the data is quite remarkable with

some discrepancies at high photon energies indicating that we are missing some

background in the high energy part of the invariant mass spectrum.

In the cross sections with respect to MI(π
+p), fig. 6, we can see a peak

corresponding to the ∆++ creation. For photon energies below 800 MeV the

delta peak provides the largest contribution to this spectrum while for high γ

energies one can appreciate a large background contribution.

In the cross section with respect to MI(π
−p), fig. 7, we observe mostly

background, but at high photon energies one starts seeing a shoulder, both in

the theory and experiment, corresponding to the ∆o creation. This reflects the

fact that the corresponding amplitudes exciting a ∆o instead of a ∆++ are mul-

tiplied by a relative factor 1/3, coming from the Clebsch Gordan coefficients

of the T λ operators.

In fig. 8, the invariant mass distribution MI(π
+π−) is shown. One observes

roughly a phase space distribution but at high energies of the photon the ρ

meson contribution is clearly visible. Our model reproduces the distributions

quite well, even at high photon energies where the total cross section differs

from the experimental numbers.

In fig.9 we show the differential cross section with respect to the π− energy

for different photon energies. We can observe that the cross section has a peak

which gets displaced at higher energies as the energy of the photon increases. It

23

https://doi.org/10.1016/0375-9474(94)90715-3


Nuclear Physics A, 571, 4, 667-693. DOI:10.1016/0375-9474(94)90715-3

(a  
20 

100 

15 

1 10..-..: 
( " )  1 

50 

'+-1 5 

Q! E,.=450 MeV E,.=550 MeV 

,.,__.., o o 
140 160 180 200 220 140 160 180 200 220 240 260 280 

150 

100 
100 

50 50 

E,.=650 MeV E,.=750 MeV 

o o 
150 200 250 300 150 200 250 300 350 

(b) 

100 100 

..-.. 50 ( " ) 50 

"114 E,.=850 MeV E,.=950 MeV 

o o 
150 200 250 300 350 400 200 300 400 

.._, 150 

150 

"O 100 

100 

50 
50 

E,.=1050 MeV E,.=1250 MeV

o o 
200 300 400 500 200 300 400 500 600 

Figure 9: Differential cross section with respect to the π− energy for different

energies of the photon between 450 MeV to 1250 MeV .24
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is easy to see that this energy corresponds to the π− from the Kroll Ruderman

term, diagram 13 of fig.2, such that the ∆++ is left on shell. This peculiar shift

of the peak is one of the most visible signals of the dominant Kroll Ruderman

term and there is no experimental information on it yet.

In fig.10 we show he differential cross section with respect to the π+ energy.

Here instead there is a peak around the energy ω ' 250 MeV independent of

the photon energy which would correspond to the ∆++ decay into pπ+ of the

dominant Kroll Ruderman term. However, as we go to higher energies of the

photon, for Eγ > 950 MeV we observe a second peak in the same position as in

fig.9, which could be interpreted as the contribution from the Kroll Ruderman

term of diagram 12 of fig. 2 when a ∆o is formed and a π+ emitted from the

∆Nπγ vertex. As commented above, the strength of this diagram is 1/3 of

the diagram 13. The peak corresponding to the one seen in fig. 9 would be

present here but with much smaller strength. Hence, if this peak falls in the

region of the ∆ decay peak of fig. 10 it will not show up, but if it occurs at the

tail of the ∆ decay distribution, as it happens at photon energies above 950

MeV , that peak has more chances to be visible as it is the case.

The detailed study of invariant mass and energy distributions clearly shows

many of the dynamical features of the mechanisms responsible for the reaction.

4 Conclusions:

We have constructed a model for the γp −→ π+π−p reaction including nucle-

ons, ∆(1232), N∗(1440) and N∗(1520) as intermediate baryonic states as well

as ρ−meson intermediate states for the π+π− system. Our model accounting
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Figure 10: Same as fig. 9 for the π+.
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for 67 Feynman diagrams is rather complete, but still misses terms which be-

come relevant from Eγ = 800 MeV on. As in a previous model accounting for

only a few of these diagrams we observe the dominance of the Kroll Ruderman

and pion pole terms but get an appreciable contribution from other terms. In

particular we found the contribution of the N∗(1520) resonance very impor-

tant, and essential to produce the peak which is present in the experimental

cross section around Eγ = 680 MeV . With respect to the πN −→ 2πN reac-

tion the present one presents novelties. First it is dominated by ∆ terms even

at low energies close to threshold and non resonant terms have little strength in

the reaction. This is in contrast to the (π, 2π) reaction where the background

non resonant terms were very important at low energies and the ∆ terms is

general rather small. Another feature which differences both reactions is the

role of the N∗ intermediate states which was important at low energies in the

πN −→ ππN reaction and is negligible in γp −→ π+π−p.

We have also studied differential cross sections with respect to the energy

of the π+ and π− and have observed features which are very much tied to

dynamical aspects of the reaction mechanisms assumed. Such experimental

information is not available and the reopening of the investigation of this

reaction at Mainz with the large acceptance detector DAPHNE or with the

photon spectrometer TAPS makes advisable this kind of measurement as useful

tools to pin down the dynamics of the process.

Most of the information used has a phenomenological origin and is tied to

decay widths of resonances into partial channels. In unknown cases we have

used the quark model as a way to obtain coupling constants, in other cases we

use it to provide the sign and get the strength from some partial decay rate.
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One piece of information we introduced using the experimental data. This was

the N∗(1520)∆π vertex. The simplest vertex structure compatible with all the

symmetries is assumed but the sign of the term is fixed by the requirement of

better fitting the data. There was no doubt in the choice since the two signs

gave rise to two different cross sections, one of them clearly incompatible, even

qualitatively, with experiment. In this sense what we are saying is that this

reaction has the information to provide some interesting couplings, with sign

included, which can not be obtained from the study of other reactions so far

analysed. It would also be interesting to perform some quark model calculation

for this decay which is technically more elaborate than the evaluation of N and

∆ matrix elements where ratios of couplings can be easily obtained without

detailed calculations since the radial matrix elements are the same in both

cases.

On the other hand studies already done and other preliminary results indi-

cate that the present reaction in nuclei has interesting renormalization effects.

The model developed here is sufficiently realistic and accurate below Eγ = 800

MeV to be used for the study of the (γ, 2π) reaction in nuclei, which should

become a natural continuation of the elementary (γ, 2π) reaction.
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knowledge financial support from the Institució Valenciana d’Estudis i Inves-
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Appendix A

LAGRANGIANS.

LNNπ =
−f
µ

Ψγµγ5∂µ~φ~τ Ψ (A.1)

LNNππ = −4π
λ1

µ
Ψ~φ~φΨ (A.2)

L∆Nπ =
−f ∗

µ
Ψ†∆Si(∂iφ

λ)T λΨN + h.c. (A.3)

L∆∆π =
−f∆

µ
Ψ†∆S∆i(∂iφ

λ)T λ∆Ψ∆ + h.c. (A.4)

LNN∗π =
−f̃
µ

Ψ†N∗σi
(
∂i~φ

)
~τ ΨN + h.c. (A.5)

LNN∗ππ = −CΨN∗
~φ~φΨN + h.c. (A.6)

L∆N∗π =
−g∆N∗π

µ
Ψ†∆Si(∂iφ

λ)T λΨN∗ + h.c. (A.7)

L∆N ′∗π = if̃∆N ′∗πΨN ′∗φ
λT λΨ∆ + h.c. (A.8)
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LNNγ = −eΨN(γµAµ −
χ

N

2m
σµν∂νAµ)ΨN (A.9)

Lππγ = ie(φ+∂
µφ− − φ−∂

µφ+)Aµ (A.10)

LNNπγ = −iqf
µ

Ψγµγ5Aµ~φ~τ Ψ (A.11)

L∆Nπγ = −iqf
∗

µ
Ψ†∆SiAiφ

λT λΨN + h.c. (A.12)

LNN∗πγ = −iq f̃
µ
qΨ†N∗σiAi

~φ~τ ΨN + h.c. (A.13)

L∆Nγ =
−f∆Nγ

µ
Ψ†∆εijkS

†
i (∂jAk)T3ΨN + h.c. (A.14)

LN∗Nγ =
f̃Nγ
µ

ΨNσ
µν∂νAµΨN∗ + h.c. (A.15)

LN ′∗Nγ = ΨN

{
g̃γ ~S ~A − ig̃σ

(
~σ × ~S

)
~A
}

ΨN ′∗ + h.c. (A.16)

LNNρ = −Ψ

{
GV
NNρ γ

µ~φ(ρ)
µ −

GT
NNρ

2m
σµν∂ν~φ

(ρ)
µ

}
~τΨ (A.17)
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Lρππ = −fρ ~φ(ρ)
µ

(
~φ× ∂µ~φ

)
(A.18)

LN∆ρ = −
√
Cρ

f ∗

µ
Ψ†∆εijkSi

(
∂jφ

(ρ)
k

λ
)
T λΨ + h.c. (A.19)

LN ′∗Nρ0 = −g̃ρΨNSiφ
(ρ)
i ΨN ′∗ + h.c. (A.20)

Lρπγ =
gρπγ
µ
εαβγδ ∂αAβ~φ ∂γ~φ

(ρ)
δ (A.21)

Lρ0π+π−γ = efρφ
(ρ)
µ (φ+A

µφ− + φ−A
µφ+) (A.22)

Lπππγ =
F 3π

6
εµναβεabcAµ ∂νφ

a ∂αφ
b ∂βφ

c (A.23)

Lπγγ =
F π

4
εµναβφ0FµνFαβ (A.24)

Fµν = ∂µAν − ∂νAµ

In these expressions, Ψ, ~φ, Ψ∆, ΨN∗ , ΨN ′∗ , ~φ
(ρ)
µ and Aµ stand for the

nucleon, pion, ∆(1232), N∗(1440), N∗(1550), ρ(770) and photon fields, re-

spectively; m and µ are the nucleon and pion masses. The coupling constants

are listed below.
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Coupling constants:

f2

4π
= 0.08 λ1 = 0.0075

f∗2

4π
= 0.36 f∆ = 0.802

f̃ = 0.472 C = −2.66µ−1

g∆N∗π = 1.784 f̃∆N ′∗π = 0.677

e = 0.30282 χ
N

=


1.79 for proton

−1.91 for neutron

f∆Nγ = 0.116 f̃Nγ =


0.0147 for proton

−0.0084 for neutron

g̃γ = 0.108 g̃σ = −0.049

GV
NNρ = 2.9 GT

NNρ = 18.15

fρ = 6.14 Cρ = 2

g̃ρ = 0.591 gρπγ = 0.03774

F 3π = 0.0259µ−3 F π = 0.0035µ−1
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Appendix B

Feynman rules corresponding to the diagrams in fig. 11.

−iδHNNπ =
−f
µ

(
~σ · ~q − q0~σ · (~p+ ~p ′)

2m

)
τλ (B.1)

−iδHNNππ =
−i8πλ1

µ
(B.2)

−iδH∆Nπ =
−f ∗

µ
~S · ~q T λ (B.3)

−iδH∆∆π =
−f∆

µ
~S∆ · ~q T λ∆ (B.4)

−iδHNN∗π =
−f̃
µ
~σ · ~q τλ (B.5)

−iδHNN∗ππ = −i 2C (B.6)

−iδH∆N∗π =
−g∆N∗π

µ
~S · ~q T λ (B.7)

−iδH∆N ′∗π = −f̃∆N ′∗πT
λ (B.8)
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Figure 11: Diagrams for the Feynman rules.
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−iδHNNγ = i
e

m

{
1

2
(~p+ ~p ′)δN + i

µN
2

(~σ × ~k )
}
· ~ε (B.9)

−iδH∆∆γ = i

{
(~p+ ~p ′)

2m∆

e∆ + i
eµ∆

3m
(~S∆ × ~k )

}
· ~ε (B.10)

−iδHππγ = i qπ 2 ~q · ~ε (B.11)

−iδHNNπγ =
√

2 qπ
f

µ
~σ · ~ε (B.12)

−iδH∆Nπγ = qπ
f ∗

µ
~S · ~ε T λ (B.13)

−iδHNN∗πγ =
√

2
f̃

µ
qπ ~σ · ~ε (B.14)

−iδH∆Nγ = −
√

2

3

f∆Nγ

µ
(~S × ~k ) · ~ε (B.15)

−iδHN∗Nγ =
−f̃Nγ
µ

(~σ × ~k ) · ~ε (B.16)

−iδHN ′∗Nγ = ig̃γ ~S · ~ε + g̃σ
(
~σ × ~S

)
· ~ε (B.17)
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−iδHNNρππ = −〈N
∣∣∣τ 0
∣∣∣N〉fρDρ(pρ)

2
√
Cρf

µ
(~q− × ~q+) · ~σ +

iGV
[

1

2m
(~p+ ~p ′) · (~q+ − ~q−)− (q0

+ − q0
−)
]

+ (B.18)

GT

4m2
p0
ρ [−i ~pρ · (~q+ − ~q−) + ((~q+ − ~q−)× (~p+ ~p ′)) · ~σ]

}

−iδH∆Nρππ = −2

√
2

3

√
Cρf

∗fρ

µ
Dρ(pρ) (~q− × ~q+) · ~S (B.19)

−iδHN ′∗Nρππ = −igρfρDρ(pρ)~S · (~q+ − ~q−) (B.20)

−iδHNNρπγ = r
√

2
gρπγ
µ
Dρ(pρ)

{
i

(
GV +

p0
ρ

2 − ~pρ 2

4m2
GT

)
εαiγ0 +

1

2m
(GV +GT )εαiγj(~σ × ~pρ)j

}
kαεiqγ (B.21)

−iδH∆Nρπγ = r

√
Cρf

∗gρπγ

µ2
Dρ(pρ) εαiγj

(
~S × ~pρ

)j
kα εi qγ T λ (B.22)

−iδHρ0π+π−γ = −2eifρ~ε
(ρ) · ~ε (B.23)

−iδHπππγ = −iF 3π εµiαβ k
µ εi qα+ q

β
− (B.24)
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In these expressions ~τ is the isospin 1/2 operator. ~S, ~T are the transition

spin and isospin operators from 1/2 to 3/2 with the normalization

〈3
2
,M

∣∣∣S†ν ∣∣∣ 1

2
,m〉 = C

(
1

2
, 1,

3

2
;m, ν,M

)
(B.25)

with ν in spherical base and same for T.

~S∆, ~T∆ appearing in (B.4) and (B.10) are the ordinary spin and isospin

matrices for a spin-isospin 3/2, 3/2 object. Some useful relationships employed

in the derivation of the amplitudes are

∑
M

Si |M〉〈M |S†j =
2

3
δij −

i

3
εijkσk (B.26)

∑
MM ′

Si |M〉〈M |S∆j |M ′〉〈M ′|S†k =
5

6
iεijk −

1

6
δijσk +

2

3
δikσj −

1

6
δjkσi

(B.27)

which are found in [10,23].

The value of qπ is the charge (±e) of the outgoing pion, ~q its momentum

and q0 its energy. ~p y ~p ′ are the momenta of the incident and outgoing nucleons

respectively and ~k the photon momentum.

~ε is the polarization vector of the photon. We work in the Coulomb gauge

(ε0 = 0, ~ε · ~k = 0); ~ε (ρ) is the polarization vector of the ρ-meson.

In eq. (B.9) δN is 1 for the proton and zero for the neutron, and µN is the

nucleon magnetic moment.

In eqs. (B.21) and (B.22) r is the pion charge (±1) in electron charge units.
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For the pion fields we use the Bjorken and Drell convention [24]

φ+ = 1√
2

(φ1 − iφ2) destroys π+, creates π−

φ− = 1√
2

(φ1 + iφ2) destroys π−, creates π+

φ0 = φ3 destroys π0, creates π0

(B.28)

Hence the |π+〉 state corresponds to − |1 1〉 in isospin base. The normal-

ization of the antisymmetric tensor εαβγδ is also taken from [24] with ε0123 = 1.

In eq. (B.18) |N〉 is the nucleon isospin state.

In eq. (B.18) and followings, pρ stands for the momentum of the interme-

diate ρ meson and q+, q− for the momenta of the π+ and π−.

For the complex conjugate vertices of the figures we obtain contributions

to −iδH†. Hence the terms such that −iδH is real change sign in −iδH† and

those which are purely imaginary do not change signs. As an example, the

Kroll-Ruderman term −iδH∆Nπγ (including the phase −1 for the π+) are all

positive when one creates a ∆ and all negatives when one destroys a ∆ (apart

form the spin factor ~S † · ~ε or ~S · ~ε ).

For the baryon propagator we take the positive energy part, hence:

GN(p) =
1

p0 − E(~p ) + iε

m

E(~p )
; E(~p ) =

√
m2 + ~p 2 (B.29)

G∆(p) =
1√

s−m∆ + i
2
Γ∆(s)

m∆

E∆(~p )
(B.30)

s = p02 − ~p 2 ; E∆(~p ) =
√
m2

∆ + ~p 2

Γ∆ =
2

3

1

4π

(
f ∗

µ

)2
m√
s
|~pcm|2 θ

(√
s−m− µ

)
(B.31)
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For the N∗(1440) and N∗(1520) we take the same formula (B.30) changing

the width. For the N∗(1440) we take

ΓN∗(s) = ΓN∗(s = mN∗)
q3
cm(s)

q3
cm(mN∗)

(B.32)

while for the N∗(1520) we take

ΓN ′∗(s) = ΓN ′∗(s = mN ′∗)
q5
cm(s)

q5
cm(mN ′∗)

(B.33)

assuming in both cases that the energy dependence is given by the decay of the

resonance in Nπ and that they are respectively P wave and D wave resonances.

The π and ρ propagators are given by

Dπ(q) =
1

q2 − µ2 + iε
(B.34)

Dρ(q) =
1

q2 −m2
ρ + iω(~q )Γρ(s)

(B.35)

with

s = p02 − ~p 2 ; ω(~q ) =
√
m2
ρ + ~p 2

Γρ(s) =
2

3

f 2
ρ

4π

1

s
|~pcm|3 (B.36)

For the off shell pions and ρ-mesons we use form factor in the vertices of

the monopole type

F (q) =
Λ2 −m2

Λ2 − q2
; Λ ' 1.3 GeV (B.37)

In all formulae we have assumed that σi ≡ σi, S
i ≡ Si, T

i ≡ Ti are eu-

clidean vectors. However ∂i, Ai, ~φ
(ρ)
i , pi, etc., we have respected their covariant

meaning.
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