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EXTREME POINTS AND GEOMETRIC ASPECTS OF

COMPACT CONVEX SETS IN ASYMMETRIC NORMED

SPACES

NATALIA JONARD-PÉREZ AND ENRIQUE A. SÁNCHEZ-PÉREZ

Abstract. The Krein-Milman theorem states that every compact con-
vex subset in a locally compact convex space is the closure of the convex
hull of its extreme points. Inspired in this result, we investigate the
existence of extreme points in compact convex subsets of asymmetric
normed spaces. We focus our attention in the finite dimensional case,
giving a geometric description of all compact convex subsets of a finite
dimensional asymmetric normed space.

1. Introduction

An asymmetric normed space is a real vector space X equipped with a
so called asymmetric norm q. This means that q : X → [0,∞) is a function
satisfying

(1) q(tx) = tq(x) for every t ≥ 0 and x ∈ X ,
(2) q(x+ y) ≤ q(x) + q(y) and
(3) q(x) = 0 = q(−x) if and only if x = −x = 0.

Any asymmetric norm induces a non symmetric topology on X that is
generated by the asymmetric open balls Bq(x, ε) = {y ∈ X | q(y − x) < ε}.
This topology is a T0 topology in X for which the vector sum on X is
continuous. However, in general this topology is not even Hausdorff and the
scalar multiplication is not continuous. Thus (X, q) fails to be a topological
vector space.

Any asymmetric normed space (X, q) has an associated (symmetric) norm.
That is the norm qs : X → [0,∞) defined by the formula:

qs(x) = max{q(x), q(−x)}.

Compactness on these spaces has been widely studied and nowadays there
are some very interesting results that describe the general structure of com-
pact sets in asymmetric normed spaces (see [1], [4] and [5]). When the linear
space has finite (linear) dimension, it is known that the separation axiom T1

implies T2 —and thus normed— and therefore all the properties concerning
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2 N. JONARD-PÉREZ AND E. A. SÁNCHEZ PÉREZ

the topology of those spaces are perfectly known. The general case is then
when the topology has no other separation axiom than T0.

An asymmetric normed lattice is a classic example of a non-Hausdorff
asymmetric normed space,. Namely, if (X, ‖ · ‖,≤) is a Banach lattice,
there is a canonical way to define an asymmetric norm in X by means of
the formula

q(x) := ‖x ∨ 0‖, x ∈ X.

In this case the asymmetric norm q is called an asymmetric lattice norm
and the pair (X, q) is an asymmetric normed lattice. This special kind
of asymmetric normed spaces is important and interesting, mainly by the
applications in theoretical computer science, and particularly in complexity
theory (see, e.g. [6]).

An interesting problem related with compactness in asymmetric normed
spaces is the existence of a so called center. Namely, we say that K ′ is a
center for a compact subset K of an asymmetric normed space (X, q) if K ′

is qs-compact (compact in the topology generated by the norm qs) and

K ′ ⊂ K ⊂ K ′ + θ(0)

where θ(0) = {x ∈ X | q(x) = 0}. A q-compact set with a center is called
stronly q-compact (or simply, strongly compact). It is well known that not all
q-compact sets in an asymmetric normed space are strongly compact (see [1,
Example 12] and [4, Example 4.6]). However, in certain cases the existence
of a center characterizes the q-compactness ([1, Section 5]). Moreover, in
[4] it was proved that strong compactness and compactness coincide in the
class of qs-closed compact sets in a finite dimensional asymmetric normed
lattice. Furthermore, it was proved in in [7] that every q-compact convex
set in a 2-dimensional asymmetric normed lattice is strongly compact (even
if it is not qs-closed). This result shows that convexity plays an important
role while working with compact sets in asymmetric normed spaces.

In relation to convexity, a big effort has been made to translate the classic
results of functional analysis to the non asymmetric case (see [3]). One of
these results is the Krein-Milman Theorem. It states that every compact
convex subset of a locally convex space is the closure of the convex hull of
its extreme points. In particular, each compact convex subset of a locally
convex space has at least an extreme point. Concerning the asymmetric
case, it was proved in [3] that every T1 asymmetric normed space satisfies
the Krein-Milman Theorem.

However, in the general case this result is not longer true, not even in
finite dimensional asymmetric normed spaces. For example, let us consider
the asymmetric norm | · |a : R → [0,∞) in R given by |t|a = max{0, t}.
The set (−1, 1] is a compact convex set and its only extreme point is 1.
Thus (−1, 1] cannot be the convex hull of its extreme points. Even more,
the closure of {1} (in the asymmetric topology of Ra) coincides with the
interval [1,∞), which is far from being (−1, 1].

The main purpose of this work is to study the geometric structure of
compact convex sets in asymmetric normed spaces. In particular, we are
interested in the existence of extreme points in compact convex sets of these
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EXTREME POINTS OF COMPACT CONVEX SETS OF ASYMMETRIC SPACES 3

spaces. Although we focus our attention on the finite dimensional case, some
of our results are also valid in the infinite dimensional setting.

We prove in Theorem 4.2 that every q-compact convex set of a finite di-
mensional asymmetric normed space has at least one extreme point. Later,
in section 5, extreme points of convex compact sets are used to give a geo-
metric description of the compact convex subsets of a finite dimensional
asymmetric normed space. Somehow, this geometric description is related
with the notion of a strongly compact set, and it generalizes in some aspects
a previous work due by the autors in the 2-dimensional case (see [7]).

2. Preliminaries

In this section we recall some important definitions and results that will
be used throughout the paper.

Consider a convex set A contained in a linear space X . A point x ∈ A is
an extreme point of A if x = y = z whenever y, z ∈ A and x = λy+(1−λ)z
for some λ ∈ (0, 1). Similarly, an open half line R = {a+tb | a, b ∈ X, t > 0}
is called an extreme ray of A if y, z ∈ R whenever λy+(1−λ)z ∈ R, where
y, z ∈ A and λ ∈ (0, 1). If R = {a + tb | a, b ∈ X, t > 0} is an extreme
ray of A such that the extreme a lies in A, then a is an extreme point of A.
Further, if A is closed then the extreme of every extreme ray is contained
in A.

In certain cases, the set of extreme points and the set of extreme rays
of a convex set A determine the structure of A itself. Indeed, in 1957,
V. L. Klee gave a generalization of the Krein-Milman Theorem for locally
compact closed subsets of a locally convex linear space. This result will be
used in this work and we state it as follows.

Theorem 2.1 ([8]). Let C be a locally compact closed convex subset of a
locally convex (Hausdorff) linear space. Then

C = conv
(

Ext(C) ∪ Extr(C)
)

.

Additionally, if C is finite dimensional then actually

C = conv
(

Ext(C) ∪ Extr(C)
)

.

Recall that conv(A) denotes the convex hull of A, i.e., the smallest convex
set containing A.

Let (X, q) be an asymmetric normed space and qs : X → [0,∞) the
associated norm given by

qs(x) = max{q(x), q(−x)}.

For every x ∈ X and ε ≥ 0, we will use the following notation:

Bq(x, ε) = {y ∈ X | q(y − x) < ε}

Bq[x, ε] = {y ∈ X | q(y − x) ≤ ε}.

Similarly we define Bqs(x, ε) and Bqs[x, ε]. Observe that

(2.1) Bq(x, ε) = x+Bq(0, ε),

(2.2) Bq[x, ε] = x+Bq[0, ε].
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4 N. JONARD-PÉREZ AND E. A. SÁNCHEZ PÉREZ

The sets Bq(x, ε) are called open balls, while Bq[x, ε] are called closed balls.
These sets are always convex. Further, if ε > 0, the set Bq(0, ε) is absorbing,
i.e., for every x ∈ X there exists t > 0 such that tx ∈ Bq(0, ε) (see [3]).

The topology in (X, q) is the one generated by the sets Bq(x, ε) with
x ∈ X and ε > 0. This topology is usually denoted by τq. In certain
cases, we will need to use the topology generated by the norm qs, i.e., the
topology τqs determined by the sets Bqs(x, ε) with x ∈ X and ε > 0. For this
reason, in order to avoid any confusion, it is important to distinguish both
topologies at the moment of dealing with them. For instance, we will say
that a set A ⊂ X is q-compact (qs-compact) if it is compact in the topology
τq (τqs). Similarly, we define the notion of q-open, q-closed, q-continuous
(qs-open, qs-closed, qs-continuous), etc. Furthermore, given a set A ⊂ X ,
we will use the symbol A and A

s
to denote the closure of A with respect to

the topology τq and τqs , respectively. In general, the closed balls B[x, ε] are
not q-closed. However, as we will prove in Lemma 3.1 below, these sets are
always qs-closed.

Given an asymmetric normed space (X, q), the set θ(x) is defined as

θ(x) = {y ∈ X | q(y − x) = 0}.

The set θ(0) consisting of all points y with q(y) = 0 is a convex cone of
particular importance in the study of compactness in asymmetric normed
spaces (see [5]).

In this note we will use several times the following useful properties in-
volving the set θ(0).

Proposition 2.2. Let (X, q) be an asymmetric normed space.

(1) For any q-open subset U ⊂ X, U = U + θ(0).
(2) A set K ⊂ X is q-compact if and only if K + θ(0) is q-compact.

For the proof of this result, the reader can consult Lemma 4 and Propo-
sition 5 of [5].

3. Geometric structure of compact convex subsets

The purpose of this section consists on proving basic lemmas concerning
the topology and geometry of asymmetric normed spaces that will be used
in the following sections of this paper. Some of these results may be well-
known, but we include them here for the sake of completeness.

Lemma 3.1. Let (X, q) be an asymmetric normed space. The map q :
(X, qs) → R is continuous (qs-continuous). In particular, the q-open balls
Bq(z, ε) are qs-open and the sets Bq[z, ε] are qs-closed.

Proof. For any x, y ∈ X we have that

q(x) = q(x− y + y) ≤ q(x− y) + q(y) ≤ qs(x− y) + q(y)

and therefore q(x)− q(y) ≤ qs(x− y). Symmetrically,

q(y) = q(y−x+ x) ≤ q(y−x) + q(x) ≤ qs(y−x) + q(x) = qs(x− y)+ q(x).
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EXTREME POINTS OF COMPACT CONVEX SETS OF ASYMMETRIC SPACES 5

The previous inequality implies that q(y) − q(x) ≤ qs(x − y) and thus
|q(x)− q(y)| ≤ qs(x− y). This proves that q is qs-continuous.

Finally, for every ε > 0, the set Bq(0, ε) is the inverse image of the open set
(−∞, ε) and therefore it is open in (X, qs). Similarly, Bq[0, ε] is the inverse
image of the closed interval [0, ε] and so it is closed in (X, qs). To complete
the proof we simply observe that Bq(z, ε) (Bq[z, ε]) is the translation of a
qs-open (qs-closed) set and therefore it is qs-open (qs-closed). Now the proof
is complete. �

Lemma 3.2. LetK be a q-compact set. Then the qs-closure K
s
is q-compact

too.

Proof. Let U be a q-open cover for K
s
. Thus, for every x ∈ K

s
there

exist δx > 0 and Ux ∈ U such that Bq(x, 2δx) ⊂ Ux. Obviously the family
{Bq(x, δx)}x∈Ks is a q-open cover for K and therefore we can pick a finite
subcover {Bq(xi, δxi

)}ni=1
. Then, we have

K ⊂
n
⋃

i=1

Bq(xi, δxi
) ⊂

n
⋃

i=1

Bq[xi, δxi
].

Since
⋃n

i=1
Bq[xi, δxi

] is closed, we also have that

K
s
⊂

n
⋃

i=1

Bq[xi, δxi
] ⊂

n
⋃

i=1

Bq(xi, 2δxi
) ⊂

n
⋃

i=1

Uxi

This proves that {Uxi
}ni=1

is a finite subcover for K
s
and therefore it is

q-compact, as desired.
�

Lemma 3.3. For every asymmetric normed space (X, q) and for every ε >
0, the q-open ball Bq(0, ε) contains no line.

Proof. First we will prove that Bq(0, ε) contains no line trough the origin.
Suppose that L = {tx0 | t ∈ R} is contained in Bq(0, ε) for some fixed point
x0 ∈ X \ {0}. If q(tx0) = r > 0 for some t, then 2ε

r
(tx0) ∈ L ⊂ Bq(0, ε). We

thus have

q

(

2ε

r
tx0

)

=
2ε

r
q(tx0) =

2ε

r
r > ε,

which is a contradiction. Therefore we can conclude that q(u) = 0 for every
u ∈ L. However this is a contradiction too since q(u) = 0 = q(−u) implies
that u = 0 for every u ∈ L.

Now we will prove thatBq(0, ε) does not contain any kind of line. Suppose
that Λ = {z+ty | t ∈ R} is contained in Bq(0, ε) for some fixed points z ∈ X
and y ∈ X \ {0}.

Consider the element −z. Since the set Bq(0, ε) is absorbing (see [3]),
there exists some r0 > 0 with the property that r0(−z) ∈ Bq(0, ε); thus,
there is r < 0 such that rz ∈ Bq(0, ε). Now, using the fact that Bq(0, ε) is
convex, we get that

s(rz) + (1− s)(z + ty) ∈ Bq(0, ε) for every s ∈ [0, 1], and t ∈ R.

https://www.researchgate.net/publication/45922030_Functional_analysis_in_asymmetric_normed_spaces?el=1_x_8&enrichId=rgreq-65ea0993cd958bfda07077fb3e1edd01-XXX&enrichSource=Y292ZXJQYWdlOzI2MTMyNTA4NztBUzoxOTM0NjQ2ODA2MjAwNDJAMTQyMzEzNjk4MjkwMg==
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In particular, taking s = 1

1−r
∈ (0, 1) we get that

r

1− r
z +

(

1−
1

1− r

)

(z + ty) =
(

1−
1

1− r

)

ty ∈ Bq(0, ε)

for every t ∈ R. Since 1− 1/(1− r) 6= 0, we conclude that ky ∈ Bq(0, ε) for
every k ∈ R, which contradicts the first part of this proof. Now the lemma
is proved.

�

Since for every ε > 0 we have Bq[0, ε] ⊂ Bq(0, 2ε), no closed ball Bq[0, ε]
contains a line either. Further, since any translation is an affine bijection,
we infer from equalities (2.1) and (2.2) the following corollary.

Corollary 3.4. No ball (open or closed) in an asymmetric normed space
contains a line.

Corollary 3.5. If K is a q-compact subset of an asymmetric normed space
(X, q), then K contains no line.

Proof. Let {Bq(0, m)}m∈N be the family of all open balls centered in the
origin and having radius m ∈ N. Clearly {Bq(0, m)}m∈N is an open cover for
K, and thus we can find M ∈ N such that K ⊂ Bq(0,M). By corollary 3.4,
there is no line completely contained in Bq(0,M) and therefore K contains
no line either. �

Lemma 3.6. For any asymmetric normed space (X, q), the following state-
ments hold.

(1) θ(0) is qs-closed.
(2) If the closed ray R = {tx | t ≥ 0} is contained in the ball Bq(0, ε) then

R ⊂ θ(0).
(3) If the ray R = {tx + y | t ≥ 0} is contained in the ball Bq(0, ε) then

R′ = {tx | t ≥ 0} ⊂ θ(0).
(4) If the ray R = {tx + y | t ≥ 0} is contained in the ball Bq(z, ε) then

R′ = {tx | t ≥ 0} ⊂ θ(0).
(5) If the ray R = {tx+ y | t ≥ 0} is contained in a q-compact set K ⊂ R,

then R′ = {tx | t ≥ 0} ⊂ θ(0).

Proof. (1) This follows immediately from Lemma 3.1.
(2) Suppose that R ∩

(

Bq(0, ε) \ θ(0)
)

6= ∅. So, there exists t0 > 0 such
that 0 < q(t0x) < ε. In this case, for every M > ε/q(t0x) we get that
(Mt0)x ∈ R ⊂ Bq(0, ε) but

q(Mt0x) = Mq(t0x) > ε.

From this contradiction we conclude that R ⊂ θ(0).
(3) First observe that y = 0x + y ∈ Bq(0, ε). Now, since Bq(0, ε) is

absorbing, it is possible to find δ < 0 with the property that δy ∈ Bq(0, ε).
Since Bq(0, ε) is convex, we have that

s(δy) + (1− s)(tx+ y) ∈ Bq(0, ε) for every s ∈ [0, 1], and t ≥ 0.
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In particular, if we take s = 1

1−δ
∈ (0, 1) we get that

δ

1− δ
y +

(

1−
1

1− δ

)

(tx+ y) =
(

1−
1

1− δ

)

tx ∈ Bq(0, ε)

for every t ≥ 0. Since 1− 1/(1− δ) > 0, we conclude that kx ∈ Bq(0, ε) for
every k ≥ 0. Now (2) implies that R′ ⊂ Bq(0, ε), as desired.

(4) Let t = q(z). If y ∈ Bq(z, ε), then

q(y) = q(y − z + z) ≤ q(y − z) + q(z) < ε+ t.

Thus, R ⊂ Bq(z, ε) ⊂ Bq(0, ε+ t). Now the result follows directly from (3).
(5) The family {Bq(0, n)}n∈N is an open cover for the compact set K and

therefore we can find n0 ∈ N such that R ⊂ K ⊂ Bq(0, n0). Now the result
follows directly from (3).

�

For every q-compact set K, the associated q-compact set K + θ(0) will
play an important role. A useful property of this set is the following.

Lemma 3.7. Let K be a q-compact set in an asymmetric normed space
(X, q). Then the set K + θ(0) is qs-closed.

Proof. It is enough to prove that K + θ(0)
s
⊂ K + θ(0). In order to do

this, let us consider a point x ∈ K + θ(0)
s
and suppose that x is not in

K + θ(0). This implies that for every a ∈ K, the point x − a is not in
θ(0) or equivalently, q(x − a) > 0 for every a ∈ K. This means that
U = {Bq(a, δa)}a∈K where δa = q(x − a)/2 is an open cover for K and
according to Proposition 2.2, it also covers K + θ(0). Since K is compact
we can extract a finite subcover {Bq(ai, δai)}

n
i=1

. Thus we have

K + θ(0) ⊂
n
⋃

i=1

Bq(ai, δai) + θ(0) =

n
⋃

i=1

Bq(ai, δai) ⊂
n
⋃

i=1

Bq[ai, δa1 ].

Since the union
⋃n

i=1
Bq[ai, δa1 ] is q

s-closed, we also have that

x ∈ K + θ(0)
s
⊂

n
⋃

i=1

Bq[ai, δa1 ],

which is a contradiction since q(x− ai) = 2δai > δai for every i = 1, . . . , n.

Therefore we can conclude that K + θ(0)
s
⊂ K + θ(0), as desired. �

4. Extreme points in compact convex subsets

Theorem 4.1. Let (X, q) be an asymmetric normed space. Suppose that
K ⊂ X is a q-compact convex subset of X. Then the set of extreme points
of K + θ(0) is contained in K.

Proof. Suppose that x0 ∈ K + θ(0) is an extreme point of K + θ(0) and
assume that x0 is not in K. We claim that for every z ∈ K, there exists
εz > 0 such that x0 /∈ Bq(z, εz). Indeed, let z ∈ K. If x0 lies in z + θ(0)
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we can find y ∈ θ(0) \ {0} such that x0 = z + y. Obviously 2y ∈ θ(0) and
therefore z+2y ∈ K+θ(0). Now we can write x0 as the convex combination

x0 =
1

2
(z + 2y) +

1

2
z

where both (z + 2y) and z are distinct elements of K + θ(0). This last
expression of x0 is a contradiction since x0 is an extreme point of K + θ(0).
Thus, x0 cannot be in z + θ(0) for any z ∈ K and therefore

εz := q(x0 − z)/2 > 0.

From this last inequality we conclude that x0 /∈ Bq(z, εz) for every z ∈ K.
This proves the claim.

Now, the family {Bq(z, εz)}z∈K is a cover for K and

K ⊂
⋃

z∈K

Bq(z, εz) ⊂ X \ {x0}.

Moreover, by Proposition 2.2(1), we have that

K + θ(0) ⊂

(

⋃

z∈K

Bq(z, εz)

)

+ θ(0) =
⋃

z∈K

Bq(z, εz) ⊂ X \ {x0},

which contradicts the fact that x0 ∈ K + θ(0). Now the proof is complete.
�

Let K be a q-compact convex set in an asymmetric normed space (X, q).
By Lemma 3.2, the set K + θ(0) is qs-closed. Further, since K + θ(0) is
q-compact (Proposition 2.2(2)), it follows from Corollary 3.5, that K+ θ(0)
contains no line. If, additionally, the set K + θ(0) is locally compact in the
topology determined by qs (for example, if K + θ(0) is finite dimensional),
it follows from Theorem 2.1 that K + θ(0) is the closed convex hull of
its extreme points and extreme rays. In particular, K + θ(0) has at least
one extreme point. This fact, in combination with Theorem 4.1 gives the
following result.

Theorem 4.2. Let K be a q-compact convex subset of an asymmetric
normed space (X, q) with the property that K + θ(0) is qs-locally compact.
Then K has at least one extreme point. In particular, if K + θ(0) has finite
dimension, then K has at least one extreme point.

Corollary 4.3. Every compact convex subset K of a finite dimensional
asymmetric normed space (X, q) has at least one extreme point.

In contrast with the normed case, let us observe that Theorem 4.2 is
the best we can say about extreme points in q-compact convex sets. For
instance, in any asymmetric normed space (X, q), the set θ(x) = x+ θ(0) is
a q-compact convex set for whom its only extreme point is x itself.

The main application that we have in mind is the case of the finite dimen-
sional asymmetric spaces. However, as we can see in the following example,
there are other cases in which Theorem 4.2 is useful too.
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Example 4.4. Consider a lattice norm ‖·‖n in the finite dimensional space
R

n and take the asymmetric norm qn(·) := ‖· ∨0‖n. Let (X, ‖·‖) be a Banach
space. We define the new space (Rn ×X, q), where q(·) = qn(·)+ ‖ · ‖. Take
a compact convex closed set Z in X and a qn-compact convex set A in R

n.
Then the set B defined as the product A×Z is a q-compact set satisfying that
B + θ(0) is locally compact —although it may not have finite dimension—.
This implies that it has an extreme point, as an application of Theorem 4.2.
Clearly, B is not qs-compact if A is not qsn compact.

Remark 4.5. In the case of asymmetric norms on Riesz spaces that are
defined by means of lattice norms as ‖·∨0‖, it must be noted that in general,
q-compact sets do not have a supremum belonging to the set. Proposition 4.2
in [4] shows that sets of asymmetric lattices having a supremum belonging to
the set are compact, but this is not a general way for finding extreme points
of q-compact convex sets in asymmetric lattices. The natural extreme point
(the supremum) does not belong to the set in general, so Theorem 4.2 is
necessary to assure the existence of extreme points. Let us show an easy
example. Take the set

A := conv({en/n | n ∈ N})
s
⊂ ℓ1.

The lattice supremum that can be found in ℓ∞ is
∑

∞

n=1
en/n. It does not

belong to ℓ1, so the set A does not have a supremum. However, each element
en/n is an extreme point of A + θ(0), that is, a compact convex set in
(ℓ1, ‖ · ∨0‖ℓ1). Clearly, it is not qs-compact.

5. Geometric structure of finite dimensional compact convex

subsets

For any q-compact convex subset K in an asymmetric normed space X ,
let us denote by E(K) the extreme points of K+θ(0), and S(K) the convex
hull of E(K). By Theorem 4.1, if K + θ(0) is qs-locally compact, the set
E(K) is non-empty and therefore S(K) is non empty either. In the following
theorem, we will show that set S(K) plays the role of a center. However,
the set S(K) may fail to be qs-compact.

Theorem 5.1. Let (X, q) be an asymmetric normed space and K a q-
compact convex subset of X such that K + θ(0) has finite dimension (for
example, if X is finite dimensional). Then

S(K) ⊂ K ⊂ S(K) + θ(0) = K + θ(0).

Proof. First observe that E(K) = Ext(K + θ(0)) ⊂ K (Theorem 4.1) and
due to the convexity of the set K, it follows that S(K) ⊂ K. This proves
the left contention.

Now, to prove the right contention it is enough to show that K + θ(0)
is contained in S(K) + θ(0) (observe that this also proves that K + θ(0) =
S(K) + θ(0)). To see this, first observe that since K + θ(0) is q-compact,
it contains no line (Corollary 3.5) and hence, due to Theorem 2.1 it is the
convex hull of its extreme points and extreme halflines. Namely, every point
x ∈ K+θ(0) can be written as a convex combination of extreme points and

https://www.researchgate.net/publication/267653812_Completeness_precompactness_and_compactness_in_finite-dimensional_asymmetrically_normed_lattices?el=1_x_8&enrichId=rgreq-65ea0993cd958bfda07077fb3e1edd01-XXX&enrichSource=Y292ZXJQYWdlOzI2MTMyNTA4NztBUzoxOTM0NjQ2ODA2MjAwNDJAMTQyMzEzNjk4MjkwMg==
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points lying in the extreme half lines of K+ θ(0). To be more precise, there
exist points x1, . . . , xn ∈ E(K), y1, . . . , ym ∈ Extr(K + θ(0)) and scalars
λ1, . . . , λn and γ1, . . . , γm such that:

x =
n

∑

i=1

λixi +
m
∑

j=1

γjyj,
n

∑

i=1

λi +
m
∑

j=1

γj = 1,

being λi and γj real positive numbers. Now, using Lemma 3.6 and the fact
that K+ θ(0) is qs-closed, we have that every extreme ray of K+ θ(0) must
be of the form

R = {tz + u | z ∈ θ(0), t ≥ 0}

with u an extreme point of K + θ(0). Thus, for each j = 1, . . . , m, there
exist zj ∈ θ(0), tj ≥ 0 and uj ∈ E(K) such that

yj = tjzj + uj.

Now, we can express the point x as

x =

n
∑

i=1

λixi +

m
∑

j=1

γjyj =

n
∑

i=1

λixi +

m
∑

j=1

γj(uj + tjzj)

=
n

∑

i=1

λixi +
m
∑

j=1

γjuj +
m
∑

j=1

γjtjzj .

Finally, observe that
∑n

i=1
λixi +

∑m

j=1
γjuj is a convex combination of ex-

treme points of K + θ(0) and thus it lies in S(K). While

m
∑

j=1

γjtjzj =
m
∑

j=1

γjtjzj + (1−
m
∑

j=1

γj)0

is a convex combination of elements of θ(0) and due to the convexity of this
last subset we can conclude that

∑m

j=1
γjtjzj belongs to θ(0). Therefore

x ∈ S(K) + θ(0), and now the theorem is proved. �

Corollary 5.2. Let K be a q-compact convex subset in an asymmetric
normed space (X, q) such that K + θ(0) has finite dimension. If K ′ ⊂ X is
any subset satisfying

S(K) ⊂ K ′ ⊂ S(K) + θ(0)

then K ′ is q-compact.

Proof. Consider U a q-open cover of K ′. Since S(K) ⊂ K ′, U is a q-open
cover of S(K) too. Then, by Proposition 2.2(1) and Theorem 5.1, we get

K ⊂ S(K) + θ(0) ⊂
⋃

U∈U

U + θ(0) =
⋃

U∈U

U.

From this chain of contentions, we conclude that U is a q-open cover for the
q-compact set K and thus we can extract a finite subcover U1, . . . , Up. Now,
since S(K) is contained in K, the family U1, . . . , Up is a finite cover for S(K)



EXTREME POINTS OF COMPACT CONVEX SETS OF ASYMMETRIC SPACES 11

too. Additionally, since
⋃p

i=1
Ui is q-open, we infer from Proposition 2.2(1)

that

K ′ ⊂ S(K) + θ(0) ⊂

p
⋃

i=1

Ui + θ(0) =

p
⋃

i=1

Ui,

which implies that K ′ is a q-compact set, as desired. �

In [7], it was proved that every q-compact convex set in a 2-dimensional
asymmetric normed lattice is strongly q-compact. For proving that, the
authors constructed a qs-compact set K (denoted by R(K) in [7]) that
coincides with the set S(K) previously defined. However, if the dimension of
the space is equal or greater than 3, compact convex sets may not be strongly
q-compact. An example of this situation is showed in the following example,
where we exhibit a q-compact set K in a three dimensional asymmetric
lattice, such that S(K) is not qs-compact and K is not strongly q-compact.

Example 5.3. Let (R3, q) where q : R3 → [0,∞) is the asymmetric lattice
norm defined by the rule:

q(x) = max{max{xi, 0} | i = 1, 2, 3} x = (x1, x2, x3) ∈ R
3.

Let K = conv(A ∪ {(0, 0, 0), (0, 1, 1)}) where A is the set defined as

A = {(x1, 0, x3) | x
2

1
+ x2

3
= 1, x1 ∈ (0, 1], x3 ≥ 0}.

For any q-open cover U of K, there exist an element U ∈ U such that
(0, 1, 1) ∈ U . This implies that

(0, 1, 1) + θ(0) ⊂ U + θ(0) = U

and therefore the cover U is a q-open (and qs-open) cover for K
s
which is

qs-compact. Thus, we can extract a finite subcover V ⊂ U for K
s
. This

cover V is a finite subcover for K too, and then we can conclude that K is
q-compact.

In this case, S(K) = K which is not qs-compact. To finish this example,
let us note that K is not strongly q-compact. For this, simply observe that
any set K0 satisfying K0 ⊂ K ⊂ K0 + θ(0), must contain the set A. If K0

is additionally qs-compact, then it is qs-closed too and then

A
s
⊂ K0

s
= K0 ⊂ K

which is impossible.

Final Remark. Since we use Klee’s theorem, the hypothesis of K+θ(0)
being locally compact in Theorem 4.2 is essential. Further, there are many
examples of closed bounded convex subsets in Banach spaces without ex-
treme points (for example, the unitary closed ball of c0). However, we don’t
know if there is an example of an infinite dimensional q-compact convex set
without extreme points. So, we finish our paper with the following question.

Question 1. Does every q-compact convex set in an asymmetric normed
space contain an extreme point?
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asymmetric norms in the theory of computational complexity. Math. Comp. Model.
36 (2002), 1-11.
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[Enrique A. Sánchez Pérez] Instituto Universitario de Matemática Pura y
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