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ABSTRACT

So�ware Product Line Engineering (SPLE) is a so�ware development
technique that aims to apply the principles of industrial manufac-
turing to obtaining so�ware applications: i. e., a So�ware Product
Line (SPL) is used to build a family of products with common fea-
tures and whose members, however, may have some distinguished
features. To identify these commonalities and variabilities a priori
maximizes the reuse, and reduces the costs and development time.
In this context, to describe these relationships among products with
enough expressiveness becomes the key to success.
In recent years Model Driven Engineering (MDE) has emerged as

a paradigm that allows dealing with so�ware artifacts with a high
level of abstraction. As a result, SPLs can bene�t greatly from the
standards and tools that have emerged within the community of
MDE.
However, a good integration between SPLE and MDE has not been

achieved yet. As a consequence, the mechanisms for variability
management are not expressive enough.�us, it is not possible to
deal with variability issues in an e�ective way in complex so�ware
development processes, where di�erent views of a system, model
transformations and code generation play an important role.
�is thesis presentsMULTI PLE, a framework and a tool which

aims to integrate accurate and e�cient variability management mec-
hanisms (which are inherent to SPLs development) together with
MDE techniques. MULTIPLE provides domain speci�c languages to
specify di�erent views of so�ware systems. Among these views
special emphasis has been placed on the variability view because
it is crucial for the speci�cation of a SPL. Precise mechanism of
speci�cation, instantiation, validation and veri�cation are provided
for this view.MULTIPLE also allows to implement complex so�ware
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development processes of using model transformations and code
generation.
�eMULTIPLE tool has been used in �ve case studies in areas as

diverse as the development of families of expert systems, the analysis
of a large SPL in an industrial environment, bioinformatics, so�ware
metrics and so�ware architectures.
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RESUMEN

La Ingeniería de Líneas de Productos So�ware —So�ware Product
Line Engineerings (SPLEs) en inglés— es una técnica de desarrollo
de so�ware que busca aplicar los principios de la fabricación indus-
trial para la obtención de aplicaciones informáticas: esto es, una
Línea de productos So�ware —So�ware Product Line (SPL)— se
emplea para producir una familia de productos con características
comunes, cuyos miembros, sin embargo, pueden tener característi-
cas diferenciales. Identi�car a priori estas características comunes
y diferenciales permite maximizar la reutilización, reduciendo el
tiempo y el coste del desarrollo. Describir estas relaciones con la su�-
ciente expresividad se vuelve un aspecto fundamental para conseguir
el éxito.
La Ingeniería Dirigida por Modelos —Model Driven Engineer-

ing (MDE) en inglés— se ha revelado en los últimos años como un
paradigma que permite tratar con artefactos so�ware con un alto
nivel de abstracción de forma efectiva. Gracias a ello, las SPLs puede
aprovecharse en gran medida de los estándares y herramientas que
han surgido dentro de la comunidad de MDE.
No obstante, aún no se ha conseguido una buena integración entre

SPLE y MDE, y como consecuencia, los mecanismos para la gestión
de la variabilidad no son su�cientemente expresivos. De esta manera,
no es posible integrar la variabilidad de forma e�ciente en procesos
complejos de desarrollo de so�ware donde las diferentes vistas de un
sistema, las transformaciones de modelos y la generación de código
juegan un papel fundamental.
Esta tesis presenta MULTI PLE, un marco de trabajo y una he-

rramienta que persiguen integrar de forma precisa y e�ciente los
mecanismos de gestión de variabilidad propios de las SPLs dentro de
los procesos deMDE.MULTIPLE proporciona lenguajes especí�cos de
dominio para especi�car diferentes vistas de los sistemas so�ware.
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Entre ellas se hace especial hincapié en la vista de variabilidad ya
que es determinante para la especi�cación de SPLs. Para esta vista se
proporcionan mecanimos precisos de especi�cación, instanciación,
validación y veri�cación.MULTIPLE permite, además, implementar
procesos complejos de desarrollo de so�ware empleando transfor-
maciones de modelos y generación de código.
La herramientaMULTIPLE ha sido utilizado en cinco casos de estu-

dio en ámbitos tan diferentes como el desarrollo de familias de siste-
mas expertos, el análisis de una SPL de gran tamaño en un ambiente
industrial, la bioinformática, las métricas so�ware o las arquitecturas
so�ware.

viii



RESUM

L’Enginyeria de Línies de Productes de Programari —So�ware Pro-
duct Line Engineerings (SPLEs) en anglès— és una tècnica de desen-
volupament de programari que busca aplicar els principis de la fa-
bricació industrial per a l’obtenció d’aplicacions informàtiques: és
a dir, una Línia de Productes de Programari —So�ware Product
Line (SPL)— s’empra per produir una família de productes amb ca-
racterístiques comuns, les quales, però, poden tenir característiques
diferencials. Identi�car a priori aquestes característiques comuns i
diferencials permet maximitzar la reutilització, reduint el temps i
el cost del desenvolupament. Descriure aquestes relacions amb la
su�cient expressivitat es torna un aspecte fonamental per aconseguir
l’èxit.
L’Enginyeria Dirigida per Models —Model Driven Engineering

(MDE) en anglès— s’ha revelat en els últims anys com un paradig-
ma que permet tractar amb artefactes de programari amb un alt
nivell d’abstracció de forma efectiva. Gràcies a això, les SPLs poden
apro�tar-se en gran mesura dels estàndards i les eines que han sorgit
dins de la comunitat de MDE.
No obstant això, encara no s’ha aconseguit una bona integració

entre SPLE i MDE, i com a conseqüència, els mecanismes per a la
gestió de la variabilitat no són prou expressius. Amb la qual cosa no
és possible integrar la variabilitat de manera e�cient en processos
complexos de desenvolupament de programari on les diferents vistes
d’un sistema, les transformacions de models i la generació de codi
juguen un paper fonamental.
Aquesta tesi presentaMULTI PLE, un marc de treball i una eina

que persegueixen integrar de forma precisa i e�cient els mecanismes
de gestió de variabilitat propis de les SPLs dins dels processos deMDE.
MULTIPLE proporciona llenguatges especí�cs de domini per especi�-
car diferents vistes dels sistemes. Entre elles es fa especial èmfasi en
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la vista de variabilitat, ja que és determinant per a la especi�cació de
SPLs. Per a aquesta vista es proporcionen els mecanismes necessaris
d’especi�cació, instanciació, validació i veri�cació. MULTIPLE per-
met, a més, implementar processos complexos de desenvolupament
de programari emprant transformacions de models i generació de
codi.
L’einaMULTIPLEha estat utilitzada en cinc casos d’estudi en àmbits

tan diversos com el desenvolupament de famílies de sistemes experts,
l’anàlisi d’una SPL de grans dimensions en un entorn industrial, la
bioinformàtica, les mètriques de programari o les arquitectures de
programari.
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«When you make the �nding yourself
—even if you’re the last person on Earth to see the light—

you never forget it»

—Carl Sagan
American Astronomer, Writer and Scientist, 1934-1996
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INTRODUCTION

«To feed applied science by starving basic science
is like economising on the foundations of
a building so that it may be built higher.

It is only a matter of time before the whole edi�ce crumbles.»

—George Hornidge Porter
British Chemist, Nobel Prize in Chemistry in 1967, 1920 – 2002

So�ware development has become an important industry. Infor-
mation systems have become increasingly more di�cult to develop
because of their complex structures, their distributed character, the
importance of functional and nonfunctional requirements and their
highly dynamic nature. �ese characteristics have led to that the
time spent on so�ware development and maintenance has increased
signi�cantly in recent years. �erefore, several proposals and re-
use techniques for so�ware development have arisen in order to
automate these processes and reduce the time to market.
Since the late ’60s the importance of reuse—as a mean to improve

the quality and maintainability of the so�ware—was pointed out to
reduce development e�orts (McIlroy 1968).�e reuse of so�ware
reduces the implementation time because the same piece of code
can be used in di�erent parts of the same application or di�erent
applications. Moreover, this mechanism most likely ensures that the

3
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code contains fewer bugs because it has already been used and tested
previously (Sommerville 2004).

1.1 motivation

Reuse mechanisms traditionally have been applied to low-level arti-
facts (code, modules, etc.). In order to improve these mechanisms in
so�ware development processes, the approximation of the So�ware
Product Lines (SPLs) has emerged.�is proposal looks forward to
implementing industrial development processes for so�ware devel-
opment (as if an assembly line is involved). It is inspired by the
processes to produce physical systems in other areas, e. g. automo-
tive industry, aeronautics, electronics, electrical appliances, etc.
A SPL is designed with the aim of developing a family of products,SPLs look forward

bringing industrial
development

processes to the
so�ware industry.

�e goal they aim is
to develop not only

single so�ware
products, but to

develop families of
products by
studying the

domain of interest
a priori.

and not only a single and isolated product.�is family will consist
of products that have a set of common features, and a number of
distinct characteristics. In this sense, the reuse mechanisms are
designed in an SPL a priori; i. e., a domain study of SPL is performed
to characterize the entire product family.
A key aspect in this context is the capture and expression of com-

monalities and variabilities among di�erent products. To re�ect the
variability of the products, feature models (Kang et al. 1990) are a
widespread and accepted notation.
�e goal pursued by this thesis is to study the di�erent proposals

that have appeared to represent and characterize the variability in re-
cent years; to study their relation with other code reuse and so�ware
development paradigms; analyse its advantages and disadvantages
and to propose, de�ne, implement and exploit new ideas improving
the existing approaches. An important paradigm on So�ware Engi-
neering is the Model Driven Engineering (MDE), which can provide
the foundations needed to implement automated SPL development
processes. �e merger of MDE and SPL opens a new paradigm of
so�ware development which involves a change in the artifacts and
processes that are used today: the Model Driven Product Line En-
gineering (MDPLE).�is thesis will focus on the variability view of
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MDPLE and how this new conception of SPLs a�ects to the design of
production plans.�is thesis makes original proposals, implements
them and demonstrates that in some aspects are better than current
practices. Finally, it pursues to put the proposal in practise, provid-
ing the necessary tools to validate the proposal in di�erent �elds of
application.

1.2 objectives

�e Model Driven So�ware Development (MDSD) community has Both the SPL
community and the
MDE community
can provide great
bene�ts to the
so�ware
development world.
�e former, can
provide the
methodologies to
capture variability
in a proper way,
and the latter can
provide the
standards and tools
to apply such
methodologies
successfully.

achieved signi�cant advances by providing tools for the speci�cation
and use of models in industrial environments—for example, the
Eclipse Modeling Framework (Eclipse 2011a).�e SPL community,
on their part, has been providing languages and methodologies to
deal with the variability in product families, but lacks of the needed
standards and tools. �e objective of this thesis is to �ll the gap
between both communities from the variability point of view. Specif-
ically, this thesis aims to:

1. Study the feasibility of integrating So�ware Product Line En-
gineering and Model Driven Engineering. To consider the
possibility of e�ectively represent the con�gurations of model
features at the instance level (as opposed to the con�guration
through specialization), to overcome the inability of the cur-
rent proposals to be integrated with model transformations.

2. De�ne a metamodel expressive enough to describe the vari-
ability in so�ware product families.

3. Implement such a metamodel in an extensible and widely
adopted metamodeling tool for industrial environments.

4. Provide mechanisms to de�ne instances of variability models
(i. e., con�gurations) in a simple and user friendly way.�ese
instances must respect the conformance relationships de�ned
by the used modeling standards.



6 introduction

5. Provide the necessary mechanisms to de�ne complex model
constraints and the tools needed to check them.

6. Avoid building an inbreeding system. All the previously spec-
i�ed artifacts should be reused and integrated into complex
MDE processes.

7. Provide the appropriate graphical editors for all those artifacts,
reducing the learning curve using Domain Speci�c Languages
(DSLs).

8. Leverage and reuse the existing industrial tools for automatic
code generation, minimizing the development e�ort and fol-
lowing the MDSD paradigm.

9. Provide an integrated framework to implement complex MDE
processes, such as Model Driven So�ware Product Lines
(MDSPLs), and exploit such a framework in di�erent case stud-
ies and domains which demonstrate the power of the solution.

10. Demonstrate through a case study that the so�ware artifacts
de�ned by the proposed methodologies and tools are truly
interoperable and can be integrated in complex so�ware de-
velopment processes.

11. Use an example So�ware Product Line Engineering (SPLE)
process to study the implications of the active use of more
expressive feature models, and the impact in its development.

12. Validate the scalability of the proposal to represent and deal
with large scale models by using a real case study from the
industrial area.

1.3 structure

�is document is structured as follows: part II summarizes the state
of the art inMDE and SPLs. Speci�cally, chapter 2 introduces themain
standards on top of which this thesis is built; chapter 3 describes the
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main tools that provide support for MDE; and chapter 4 introduces
what SPLs are and how variability issues are managed.
Part III studies in depth the variability view and how it can be

represented using current metamodeling standards. Chapter 5 intro-
duces the concept of multi-model, and the role the variability view
plays in a Multi-Model Driven So�ware Product Line (MMDSPL).
Chapter 6 goes into the main issues which have prevented the use
of feature models in complex MDE processes until today; and chap-
ter 7 describes a method to easily and e�ectively integrate feature
models to manage variability in complex MDE processes and more
speci�cally in MMDSPLs.
Next part, part IV, describes theMULTI PLE framework and the

main case studies where it has been used to develop and analyse
MMDSPLs. Chapter 8 describes in detail theMULTIPLE architecture
and user interface. Chapter 9 describes how a traditional SPL is trans-
formed into a MMDSPL and how the latter is implemented using the
MULTIPLE framework. Chapter 10 shows how theMULTIPLE frame-
work has been used to represent and analyse a large-scale industrial
feature model.
In part V some additional case studies are presented. In these cases,

we used theMULTIPLE tool as a framework to implement genericMDE
processes. Speci�cally, chapter 11 shows howMULTIPLE is used to
carry out a data transformation process in order to animate and
simulate biological processes by using coloured petri nets. Chapter
12 presents the So�ware Measurement Framework (SMF). SMF is a
generic framework which uses model transformations to measure
any type of so�ware entity. Speci�cally, SMF uses theMULTIPLE frame-
work to execute such model transformations. Chapter 13 presents
MORPHEUS, a tool which provides support for Architecture gener-
aTed from RequIrements applying a Uni�edMethodology (ATRIUM).
ATRIUM is a methodology which allows to de�ne so�ware architec-
tures and requirements concurrently with the goal of generating a
proto-architecture of the system’s to be. MORPHEUS uses internally
theMULTIPLE framework to perform both constraints checking and
model transformations.
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Finally part VI closes this thesis. In chapter related works are pre-
sented and in chapter 15 the conclusions of this thesis are discussed.
Chapter 16 presents the di�erent works that have been published
throughout the development of this thesis.
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SUMMARY

Model Driven Engineering and So�ware Product Line Engineering
are two code reuse techniques which aim to increase the quality
of so�ware products and to reduce the time-to-market. Both ap-
proaches have gained great relevance in the So�ware Engineering
community; and both have their own languages, standards and tools.
�is part of the document describes the foundations of these

proposals, which provide the background to this thesis. First, chap-
ter 2 introduces the basic concepts of MDE and its related standards.
Second, chapter 3 describes the tools available to implement MDE
processes. Finally, chapter 4 describes what SPLs are and whichmech-
anisms they provide to represent and describe the variability of the
systems to be.
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2
MODEL DRIVEN ENGINEERING: AUTOMATING
CODING IN SOFTWARE DEVELOPMENT

«Clearly the most unfortunate people are those
who must do the same thing over and over again,

every minute, or perhaps twenty to the minute.
Cey deserve the shortest hours and the highest pay.»

— John Kenneth Galbraith
Canadian-American economist, 1908–2006

Technology evolution in the So�ware Engineering �eld has made
the development of increasingly complex systems possible, specially
due to the introduction of techniques that have raised the level of
abstraction in the description of problems and their solutions: e. g.,
structured analysis in the 1970s and ’80s (Dahl et al. 1972; Marca
andMcGowan 1987), object–oriented analysis and design in the ’90s
(Rumbaugh et al. 1991), etc.
�e emergence of Computer Aided So�ware Engineering (CASE)

technology in the 1980s was a big step in this direction. CASE tools
aim to provide methods for creating so�ware supporting di�erent
analysis and design techniques.�ese tools allowed developers to
express their designs using graphical notations such as structured
diagrams or state machines. However CASE technology did not suc-
ceed in this decade as expected.�e reason must be sought in the

13
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limitations of the translation processes that transferred the graphical
representations of so�ware systems (using general-purpose graphi-
cal notations) to a speci�c programming platform or technology.
Advances in the development of programming languages over the

past two decades have succeeded in raising the abstraction level in
so�ware development, solving the translation problems of the �rst
CASE tools.�e advent of languages based on the Object-Oriented�e advent of the

Object-Oriented
paradigm has

raised the level of
abstraction of
programming
languages, and

eases the adoption
of MDE techniques.
Common standards
on MDE are based
on object technology,
reducing the gap
between models

and code.

paradigm, such as Java, C++ or C#, are more expressive compared
to traditional languages like Fortran or C. However, the evolution
and maintenance of so�ware systems has become a task that still
involves excessive e�ort.
MDE aims at organizing so�ware artifacts at di�erent abstraction

levels and support their de�nition by using so�ware development
methodologies, advocating for the use of models as the key artifacts
to be built and maintained.
A model consists of a set of elements that provide a precise and

abstract description of a system from a view point.�e term MDE
was proposed by Kent (2002) as a general framework to specify the
necessary tasks and models to carry out a so�ware development
project entirely.
Any system speci�cation can be expressed using models which

may express any aspect of a system. �e development process be-
comes thus a series of re�nements and transformations of models
where the abstraction level decreases on each step (i. e., models be-
come closer to the implementation platform). In the end, a trivial
transformation step is done to generate code because there exists a
one-to-one mapping between the most re�ned model and the code.
AMDE process must clearly de�ne the sequence of models to develop
at each level and must describe how to re�ne models in order to
decrease the level of abstraction.�e system is initially described by
means of a model that captures the requirements, regardless of the
speci�cs of the target platform or implementation technology.�is
is a model with a high level of abstraction which describes only the
problem to be addressed.
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With the emergence of these technologies, the application of the
MDE approaches to the CASE tools only needed to overcome the last
obstacle: the lack of standardised modeling languages and method-
ologies that support the development of so�ware systems throughout
the whole project life-cycle. Moreover, the existence of industrial
standards is needed to provide real interoperability among di�erent
tools.

2.1 model driven engineering open standards

To address the issues presented in the previous section, the Object �e OMG is a
consortium founded
in 1989 aimed at
setting modeling
and object-oriented
standards.�e
OMG released their
�rst standard,
CORBA (OMG
2004), in 1991. Since
then, several
speci�cations which
can be considered as
a de facto standards
in industry are
promoted by them,
(e. g. UML or MOF).

Management Group (OMG) (OMG 2011b) launched the Model
Driven Architecture (MDA) initiative (OMG 2003) as an approach
to specify interoperable systems by using formal (or semi-formal)
models. In MDA, models that are implementation independent—
Platform Independent Models (PIMs) as will be described in the
next subsection—are initially expressed in a language which is also
implementation independent, such as the Uni�ed Modeling Lan-
guage (UML). Later, the PIM is translated to another model—the
Platform Speci�c Model (PSM)—which is speci�c to the desired tar-
get platform or language (e. g. Java) by using a set of transformation
rules. Finally, starting from the PSM the system code is generated
in a object oriented language (Java, C#, . . . ). Moreover, the MDA
approach proposes to automate the use model transformations and
code generation techniques Czarnecki and Eisenecker 2000, thus,
the so�ware development process is focused in modeling tasks in-
stead of coding tasks.
MDA relies on a great amount of the OMG standards, some of them

are the following:

meta object facility is the common language (meta-meta-
model) used to describe metamodels in the MDA approach.
Subsequent metamodels (such as UML) are described by using
Meta Object Facility (MOF).
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unified modeling language provides a language to describe
di�erent systems. UML is a domain-independent language, al-
though its origins are in the object-oriented modeling.�is thesis aims to

use as more
standardised

speci�cations as
possible in order to

be generic and
interoperable.�is

way, the OMG
standards are a

fundamental basis
for the understand-

ing of this
document.

object constraint language is a declarative languagewith-
out side-e�ects to express queries and describe constraints
over MOF and UMLmodels.

query/view/transformation is a standard to describe mo-
del transformations and equivalence relationships among
MOF-based models. It uses OCL to express complex queries
over the candidate models (i. e., the models that take part in a
given transformation).

xml metadata interchange is an XML-based language that
provides the persistence mechanisms to store and interchange
models among MOF-compatible tools.

2.2 model driven architecture

As discussed before, theOMG has proposed aMDE framework knownMDA is a so�ware
design approach

whose purpose is to
produce executable
systems. MDA is

focused specially in
changing technology,

integration and
interoperability

problems.

as MDA which aims to establish itself as a de facto standard. MDA’s
main goal is to solve the problem of changing technology and inte-
gration.�e main idea behind it is to use models, so that the system
properties and features are re�ected in an abstract description.�us,
models are not a�ected by technological changes.
MDA includes a so�ware development process, therefore, its pur-

pose is to produce executable so�ware systems. Moreover, MDA
expects to solve some problems such as low productivity in so�ware
development and interoperability issues (Kleppe et al. 2003) .�e
former is solved performing the analysis and development of systems
by evolving high-level models from which there would be possible
to automatically generate code. Interoperability can be solved be-
cause code generation techniques allow to obtain code for di�erent
technologies, which adds another advantage: the reuse of models.
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Some basic concepts de�ned in theMDA standard are—quoted from
OMG (2003):

platform — “A platform is a set of subsystems and
technologies that provide a coherent set of func-
tionality through interfaces and speci�ed usage pat-
terns, which any application supported by that plat-
form can use without concern for the details of how
the functionality provided by the platform is imple-
mented.”

platform model — “A platform model provides a
set of technical concepts, representing the di�erent
kinds of parts that make up a platform and the ser-
vices provided by that platform. It also provides, Development of

systems in MDA
begins with the
construction of a
PIM. A PIM is
transformed to one
or more PSM and
�nally, the code is
generated from the
PSM.�e
fundamental
operation in MDA is
to transform PIMs
into PSMs.

for use in a platform speci�c model, concepts rep-
resenting the di�erent kinds of elements to be used
in specifying the use of the platform by an applica-
tion.”

platform independent model — “A platform
independent model is a view of a system from the
platform independent viewpoint. A PIM exhibits
a speci�ed degree of platform independence so as
to be suitable for use with a number of di�erent
platforms of similar type.”

platform specific model — “A platform speci�c
model is a view of a system from the platform spe-
ci�c viewpoint. A PSM combines the speci�cations
in the PIM with the details that specify how that
system uses a particular type of platform.”

�e development of a system according to the MDA framework
begins with the construction of a PIM. Later, that PIM is transformed
to one or more PSM. Finally, the code is generated from the PSM.
�e fundamental operation inMDA is to transform PIMs into PSMs.

�e MDA guide (OMG 2003) states that PIMs and PSMsmodels are
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expressed as UMLsmodels and transformations must be automated
as much as possible.
Mellor et al. (2004) classify transformations into two types: ver-

tical and horizontal. A transformation is horizontal if the source
model and target model belong to the same level of abstraction. In
MDA this can be a PIM to PIM transformation or a PSM to PSM trans-
formation. A transformation is vertical when the source model and
target model are located at di�erent levels of abstraction. In MDA,
transformations from PIMs to PSMs or PSMs to code are vertical trans-
formations. From the generic point of view ofMDE, transformations
from PIM to PIM and from PSM to PSM are also interesting (according
to the classi�cation of models de�ned by MDA) as can be used to
re�ne models.
Initial versions of MDA served as the background for MDE, which

generalizes the concepts of MDA, and de�nes the transformations
in the context of metamodeling. In MDE, the most accepted way to
de�ne the models is through metamodeling techniques, and trans-
formations are de�ned using model transformation languages. In
contrast, in the original proposal of MDA, metamodeling was not a
necessary condition. It was only in later versions of MDA where the
ideas de�ned by MDE were incorporated, which led to the de�nition
of the MOF and QVT standards.

2.3 meta object facility

MOF is the basic vocabulary (called meta-metamodel) provided byMOF is the basic
vocabulary used in

MDA to de�ne
metamodels. A

metamodel can be
considered as the

abstract syntax of a
language, and in
fact, MOF can be
used to de�ne

new DSLs.

theMDA standard to describe metamodels, and therefore new vocab-
ularies (in fact we could say abstract languages, but we use the term
metamodel to avoid confusion). We can de�ne new metamodels
using exactly the same tools used to de�ne models.
However, one may wonder if there is a superior model vocabulary

used to de�ne meta-metamodels. �e answer is yes, this model
of meta-metamodels would be called meta-meta-metamodel. But,
as this artifact is also a model, could we continue to expand this
pyramid endlessly?
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Figure 2.1: MOF layers

In practice this makes no sense, and models and metamodels
are o�en organized into a four-layerM3-M0 structure with the
following distribution:

• �e levelM3, which closes the structure at the top, contains
the basic vocabulary to describe metamodels. It should be
noted that this level usually contains a unique vocabulary
(meta-metamodel) that characterizes the modeling approach
chosen.�is meta-metamodel must be de�ned using its own
constructs, thus, the structure is closed in this layer.
In MOF, the meta-metamodel is MOF itself.�e syntax of the
MOF language can be considered as a subset of the Uni�ed
Modeling Language 2.x (UML2) class diagram.

• Metamodels, the languages to describe newmodels, are found
in the lower layer, theM2 layer. MOF–compliant metamodels
are de�ned in terms of classes, attributes, associations, etc.,
which are the constructs provided by the meta-metamodel.



20 mde : automating coding in software development

• Models are placed at theM1 layer. As we have introduced
earlier in this thesis, a model is an abstract description of a
system.

• �e lower level, theM0 level, is were data are found, i. e., the
instances of the system under study.

�is four-layer structure (shown in Fig. 2.1) can get a wealth of
vocabulary to describe di�erent types of systems, or provide di�erent
views of the same system.
It is noteworthy to remark that this �xed hierarchy of levels can be

sometimes confusing. Perhaps, it is more interesting to look directly
to the relationship between a model and vocabulary, and realize that
this relationship occurs at all the levels described.�is relationship
is usually called ‘‘instance-of relationship’’. We say that a model x
is an instance of a vocabulary x+ 1, which is called metamodel.�e
model is on the lower level (the instance level), and the metamodel
in the upper level (meta level). We can apply this duality to the
metamodel x+ 1, and if we consider x+ 1 as the instance level, we
see that also x + 1, necessarily, is de�ned by a vocabulary x + 2.
�erefore we can put a model at both the meta level and say thatOCL is a language

closely related to
UML. Initially, it
was designed to

describe constraints
over the elements of

UML models in
order to specify

systems with a great
level of detail. With
new versions of
UML, OCL was

completed.
Nowadays it is
possible to add
almost any

expression to an
element of a

UML diagram.

it has instances, or at the instance level, and say that it is de�ned
using a metamodel. It is worth noting the special case of the meta-
metamodel (levelM3) that de�nes itself, so we could say that is an
instance of itself.
MDA places at the M2 layer several well-known metamodels

which are de�ned usingMOF, such asUML (OMG2010b),OCL (OMG
2010a) or QVT (OMG 2008a).

2.4 object constraint language

OCL is a notational language for the analysis and design of so�ware
systems. It is de�ned as a standard language to complement UML.
Speci�cally, OCL gives support to UML for specifying constraints and
queries on models, allowing to de�ne and document UMLmodels
more precisely.
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A UMLmodel, such as a class diagram or state diagram, does not
constitute a su�ciently precise and unambiguous speci�cation of a
system. OCL expressions complete this speci�cation, providing addi-
tional information for object-oriented models and other modeling
assets. Usually, this additional information can not be expressed by
means of a diagram.
Each OCL expression refers to a type (e. g. class, interface, . . . )

de�ned in a UML diagram.�us, an OCL expression is always linked
to a UML diagram and it does not make sense in isolation.

2.4.1 Language features

In UML 1.1, OCL was introduced as a language to express constraints UML is designed to
specify so�ware
systems. However,
many models are
not directly
executable in early
stages. Using OCL it
should be possible to
verify the
correctness of these
systems by checking
their OCL
expressions without
having to produce
an executable
version of
the models.

over the elements of amodel, de�ned as restrictions over the attribute
values and instances of an object-oriented model or system.
In UML 2.x additional constructs were included to de�ne queries,

reference values, status conditions, business rules, etc. In short, OCL
can be used to associate any expression on elements of a diagram.
OCL expressions can appear anywhere in a model to indicate a

value. A value can be a single value such as an integer, but may
also refer to an object, a collection of values, or a collection of object
references. AnOCL expressionmay represent, for example, a boolean
value used in the condition of a state diagram, or a message in an
interaction diagram. AnOCL expressionmay refer to a speci�c object
in an interaction or and object diagram.
OCL is based on set theory and predicate logic, and has formal

mathematical semantics (Richters and Gogolla 2000). Its notation,
however, does not use mathematical symbols.�us, OCL provides
the rigor and precision of a formal language and an ease of use close
to that of the natural language.
OCL expressions are used to model and specify systems. However,

many models are not directly executable, and many will contain
OCL expressions even if no executable versions of the system exist.
However, it should be possible to verify the correctness of these
expressions, without having to produce an executable version of the



22 mde : automating coding in software development

model. Since OCL is a typed language its expressions can be checked
during modeling before implementation.�us, model errors can be
eliminated early.
Another essential aspect is that OCL is a declarative language. In

procedural languages, like most programming languages, statements
are descriptions of the actions that need to be carried out. In a
declarative language, an expression describes what should be done,
but not how to do it. To ensure this, OCL expressions have no side
e�ects, i. e., an OCL expression can not change the system’s state.

2.5 query/view/transformation

Model transformations are a key issue in MDE.�ey guide the so�-QVT is the language
proposed by the
OMG to describe

and perform model
transformations.
Model transforma-
tions de�ned in the
remaining of this

thesis will be
described using
this standard.

ware development process and allow to derive implementation code
from PIMs and PSMs. With the aim of providing a suitable framework
for model transformations, the OMG has proposed the Query/View/-
Transformation (QVT) standard (OMG 2008a) to complete the MDA
proposal. QVT lays on other two OMG standards, namely MOF 2.0
and OCL 2.0, reusing previous technology and reducing the learning
curve of the implementation.
�e QVT speci�cation is de�ned by two orthogonal dimensions:

language and interoperability, each of which has a number of levels.
�e intersection of twodimensional levels de�nes aQVT conformance
point.
�e language dimension de�nes the di�erent transformation lan-

guages that the QVT speci�cation de�nes. Speci�cally there are three:
Core, Operational and Relations, being the main di�erence among
them their declarative or imperative nature.
In the interoperability dimension we �nd those features that al-

low a compliant tool interoperate with other tools. Speci�cally,
there are four interoperability levels, namely syntax executable, XML
Metadata Interchange (XMI) executable, syntax exportable and XMI
exportable, according to the standard speci�cation (OMG 2008a):
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syntaxexecutable — “An implementation shall
provide a facility to import or read, and then exe-
cute the concrete syntax description of a transfor-
mation in the language given by the language di-
mension. �e execution shall be according to the
semantics of the chosen language [. . . ].”

xmiexecutable — “An implementation shall pro-
vide a facility to import or read, and then execute
an XMI serialization of a transformation descrip-
tion that conforms to the MOF meta-model of the
language given by the language dimension. �e ex-
ecution shall be according to the semantics of the
chosen language [. . . ].”

syntaxexportable — “An implementation shall
provide a facility to export a model-to-model trans-
formation in the concrete syntax of the language
given by the language dimension.”

xmiexportable — “An implementation shall pro-
vide a facility to export a model-to-model trans-
formation into its XMI serialization that conforms
to the MOF meta-model of the language given by
the language dimension.”

2.5.1 Languages Of the di�erent
languages QVT
provides, the
Relations language
is preferred.�is
thesis uses this
declarative
language, as it
provides a graphical
notation that is very
intuitive and easy to
understand.

�e QVT speci�cation has a hybrid declarative/imperative nature,
with the former divided into a two-tier architecture that conforms
the basic framework for the execution semantics of the imperative
part.

2.5.1.1 Declarative languages

�e two declarative layers are structured as follows:
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It is possible to draw
an analogy between

the declarative
layers of QVT and
the Java™ architec-
ture, where the
Core language is
like the Java Byte
Code and the

semantics of Core
behave like the Java
virtual machine.
�e Relations

language plays the
role of the Java

language, and the
transformation
from a Relations
speci�cation to a

Core speci�cation is
comparable to the
speci�cation of a
compiler that
generates Java
Byte Code.

Operational
Mappings

Relations

Core

Black
Box

RelationsToCore
Transformation

Figure 2.2: Relationships among the QVTmetamodels

a relations metamodel (and a user-friendly language that
gives both graphical and textual support for it) which enables
the de�nition of pattern-matching expressions (object tem-
plates) over complex sets of objects. �e traceability links
among the models involved in a Relations transformation are
automatically created and maintained.

a core metamodel (and its associated textual language) which
is de�ned as a minimal superset of the Essential Meta-Object
Facility (EMOF) and OCL standards which provide basic trans-
formations capabilities. All the traceability classes must be
explicitly de�ned as EMOFmodels, and themaintenance of the
traceability links must be done manually as any other regular
object involved in a transformation.

2.5.1.2 �e Operational Mappings language

�is language is speci�ed as the standard way to provide imperative
implementations of QVT transformations. It provides some exten-
sions to OCL which provide it with a more procedural style, and a
syntax closer to imperative languages. It is possible to write complete
model transformations using the operational mappings language.
Such transformations are called operational transformations.
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2.5.1.3 Black Box Implementations

�eQVT standard allows the de�nition of black box implementations, If we extend the
Java analogy, the
ability to invoke
black-box and
operational
mappings
implementations,
can be considered
equivalent to using
the JNI .

in order to plug-in any MOFOperation with the same signature than
a Relation.�is is useful for several reasons:

• It allows to implement complex algorithms in any program-
ming language (provided that it has a MOF binding).

• It allows the use of domain speci�c libraries to calculate certain
model properties.

• It allows to hide the implementation of certain parts of amodel
transformation.

However, this integration can be dangerous since the black-box
implementations have free access to the object references of the
models, breaking some encapsulation mechanisms. Moreover, black-
box implementations do not have an implicit mapping among the
domains they transform, so that every black-box must explicitly
maintain the traceability links among the candidate objects of the
transformation (as a relation does automatically).

2.5.2 �e Relations language

Next, the main features of the Relations language are explained.�is
language will be extensively used throughout this document.

2.5.2.1 Transformations and Model Types

In the Relations language, a transformation among a set of candidate
models is speci�ed as a set of relations that must hold for the trans-
formation to be successful. A candidate model is any model that
conforms to a model type (metamodel). Candidate models have a
name, and the types of the items that they may contain are restricted
to the elements of the metamodel they conform to.
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transformation execution direction A transforma-
tion invoked for enforcement, i. e. with the goal of e�ectively modify
a candidate model, must be executed in a particular direction by se-
lecting one of the candidate models as the target (destination) model.
�e target model may be empty, or may contain elements that will
be related by the transformation.�e transformation proceeds as
follows: �rst, it checks if all the relationships and constraints de�ned
in the transformations are met, and, second, when a relationship
does not hold, the target candidate model is modi�ed (by creating,
modifying or deleting elements) in order to make the relationship
hold.

2.5.2.2 Relations and domains

Relations in a transformation de�ne constraints thatmust be satis�ed
by the elements of the candidate models. A relation de�ned for two
or more domains, and a pair of pre- and post-conditions (when and
where predicates as explained next), specify a relationship that must
be satis�ed by the elements of the candidate models.
A domain is a typed variable to be matched in a model of a given

metamodel. A domain de�nes a pattern that can be viewed as a
graph of object nodes, their properties and the association links
originating from an instance of the type of domain. Alternatively, a
patternmay be considered as a set of variables and a set of constraints
that model elements bound to those variables must satisfy to validate
that pattern.

when and where clauses A relation may be constrained byWhen and where
clauses can be

considered as the
pre- and

post-conditions that
apply to a given

relation respectively.

two sets of predicates: the when and where clauses.�e when clause
de�nes the conditions under which a relation needs to hold. �e
where clause de�nes the condition that must be satis�ed by all the
elements of the models participating in the relationship, and may
restrict any of the variables of the relation and its domains.
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When and where clauses may also contain any OCL expression
besides any relation invocation. Relation invocation allows us to
build complex relations based on simple relations.

top-level relations A transformation may contain two Top-level relations
are directly
executed by the
QVT–Relations
transformations
engine. If a non-top
level relation is not
speci�ed as a pre- or
post-condition of
another relation it
will not be executed.

types of relations: top-level and non-top-level. �e execution of a
transformation requires that all its top-level relations hold, while
non-top-level relationsmust hold onlywhen they are invoked directly
or transitively from the where clause of another relationship.
A top-level relation is syntactically distinguished from a non-top-

level relation by the top keyword.

check and enforce Whether or not the relationship may be
enforced (i. e., it performs a model transformation) is determined
by the destination domain, which can be marked as checkonly or
enforce. When a transformation is executed in the direction of a
checkonly domain, it simply checks if a valid correspondence of the
relevant model satis�es the relationship. When a transformation is
executed in the direction of a enforce domain, if the test fails, the
target model is modi�ed as necessary to satisfy the relationship.

2.5.2.3 Pattern-Matching

�e patterns which are contained in the domains of a relation are
known as object template expressions. A relationmay de�ne di�erent
object template expressions which will be used in the pattern match-
ing of the candidate models.
A template expression match results in a binding between the

model elements and the variables declared in the domain. A match
may be performed in a context where some variables have been
already bound to a model element (for example, in a when clause or
other object template expression). In this case, the match only binds
the free variables.
Arbitrarily deep nestings of template expressions are permitted,

and matching and variable binding proceeds recursively until there
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is a set of value tuples corresponding to the variables of the domain
and its template expression.

2.5.2.4 Keys and object creation using patterns

As mentioned previously, an object template expression also servesKeys are a
fundamental part of
the QVT–Relations
language.�e use
of keys ensures that
objects will not be
duplicated. An

object will not be
created if there
already exists

another object with
the same values in
its key attributes.

as a template for creating an object in a target model. When for
a given valid match of the source domain pattern, there does not
exist a valid match of the target domain pattern, then the object
template expressions of the target domain are used as templates to
create objects in the target model.
However,when creating objects we need to ensure that duplicate

objects are not created when the required objects already exist. In
such cases we just want to update the existing objects. But how do
we ensure this?�e MOF allows for a single property of a class to be
nominated as identifying. However, for most metamodels, this is
insu�cient to uniquely identify objects.�e relations metamodel
introduces the concept of Key, which de�nes a set of properties of a
class that uniquely identify an object instance of the class in a model.
A class may have multiple keys (as in relational databases).
Keys are used at the time of object creation; if an object template

expression has properties corresponding to a key of the associated
class, then the key is used to locate a matching object in the model;
a new object is created only when a matching object does not exist.

2.5.2.5 Executing a transformation in checkonlymode

A transformation can be executed in checkonlymode. In this mode,
the transformation simply checks if the relations are satis�ed in all
directions, and reports errors when the relations do not hold. No
enforcement is done in any direction, regardless how the domains
are marked (checkonly or enforce).



2.6 summary 29

2.6 summary

We have presented an overview of the most important MDE stan-
dards proposed by the OMG and they are included in order to make
this thesis a self-contained document.�e main goal of this chapter
was to give a concise introduction to MDA an the most important
standards and languages related to it, i. e., MOF to describe meta-
models, models and instances; OCL to de�ne rich model constraints;
and QVT to describe correspondences and model transformations
among MOFmodels.�ese are the basic standards on top of which
this thesis is built.





3
SUPPORTING TECHNOLOGIES FOR MDE

«La técnica es el esfuerzo para ahorrar esfuerzo
(Technology is the e�ort to save e�ort)»

— José Ortega y Gasset
Spanish philosopher and humanist, 1883–1955

�e Model Driven Development (MDD) trend (Selic 2003) is aligned
with the MDE principles. MDD considers models as the main assets
in the so�ware development process. Models collect the properties
that describe the information system at a high abstraction level,
which permits the development of the application in an automated
way following generative programming techniques. In this process,
models constitute so�ware artifacts that experience re�nements
from the problem space (where they capture the requirements of
the application) to the solution space (where they specify the design,
development and deployment of the �nal so�ware product).
In this context it is essential to have the proper tool support to

de�ne new models and metamodels, and to provide the necessary
implementations of the standards and languages proposed by the
industrial consortia, such as the OMG. Without the adequate tools
the new paradigm of MDD can not be implemented in any so�ware
development process. Traditionally, the tools that provided support

31
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for modeling tasks were either context-speci�c, i. e., metamodel-
speci�c (ontologies, relations databases, etc.) or technology-speci�c.
With the advent of MDA and MOF, new modeling tools are being de-
signed to be easily customizable, providing support to de�ne custom
models and metamodels.�e adoption ofMOF is also increasing the
importance of the DSLs trend.�us, such modeling tools are being
designed following a new paradigm where modularity and extend-
ability are key attributes to maximize. In this context, the release of
the Eclipse platform, and its wide ecosystem of satellite projects, rep-
resents a turning point in the tooling support for the MDE trend and
all its associated standards (MDA, MOF, QVT, OCL, etc.).�roughout
the following section we will present the Eclipse platform and the
most relevant projects and tools that provide support to the di�erent
standards that are employed in the implementation of this thesis.

3.1 the eclipse platform

Eclipse is an open source so�ware development environment, whoseEclipse is a tool that
provides a generic
runtime which
implements a
complete and

dynamic component
model.�is

component model
allows developing

any kind of so�ware
application in a

modular way. Tools
built in this thesis
are built on top of
Eclipse thanks to
this runtime.

purpose is to provide a platform for highly integrated tools. Eclipse
consists of a central project that includes a generic core framework
for integrating tools, and a Java development environment built using
the previous framework. Other projects extend the core framework
to support other types of tools and speci�c development environ-
ments. Eclipse projects are implemented in Java and run on di�erent
operating systems, includingWindows,Mac OS X and Linux.
�e Eclipse Foundation, founded in 2004, is a not-for-pro�t foun-

dation of several companies that have committed to provide support
to the Eclipse project in terms of time, expertise, technology or
knowledge.�is organization was created by Eclipse.org, a consor-
tium founded in 2001 when IBM released the Eclipse Platform into
Open Source.
�e Eclipse Platform is a framework to build Integrated Devel-

opment Environments (IDEs). It is usually described as an IDE for
everything and nothing in particular (Eclipse 2003), as it simply de-
�nes a basic IDE structure. Speci�c tools extend this basic framework,
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and are plugged-in to de�ne a particular IDE con�guration all to-
gether.
�e basic unit of functionality (e. g., a component), is called a

plug-in. �e Eclipse platform itself, and the tools that extend its
functionality are made of plug-ins. A single tool can be a single
plug-in, but more complex tools are typically divided into several
plug-ins.
From a packaging perspective, a plug-in includes everything

needed to run a component, such as Java code, images, localized
text, etc. It also includes some manifest �les (MANIFEST.MF and
plugin.xml typically), which declare the connections with other
plug-ins.�e manifest declares, among other things, the following
items:

requires — the dependencies from other Eclipse plug-ins.

exports —which internal classes will be visible for other Eclipse
plug-ins.

extension points — declaration of functionality points (de-
�ned at a high level of abstraction) which are public. Other
plug-ins may connect to these points.

extensions —which extension points are used.�ese extension
points may be declared by other plug-ins.

When Eclipse is launched, it scans and discovers all the installed
plug-ins and connects the extensions with the corresponding exten-
sion points. In the following sections we describe the main frame-
works of the Eclipse ecosystem which are related with modeling and
metamodeling tasks: the Eclipse Modeling Framework (EMF) and
the Graphical Modeling Framework (GMF).

3.1.1 Eclipse Modeling Framework

�e Eclipse Modeling Framework (EMF) provides modeling, meta-
modeling and code generation capabilities within the Eclipse plat-
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form. Additionally, it can be used as a standalone library to deal
with models and metamodels in Java applications.
EMF is just an environment to describe models and their instances,EMF is the modeling

and metamodeling
framework

provided by Eclipse.
Its modeling

language, called
Ecore, can be

considered as an
implementation

of MOF.

and is used to generate new so�ware artifacts from a model de-
scription (such as a Java implementation of the model). EMFmoves
on the direction of MDA, but it is not fully aligned with it since it
has been designed from a practical point of view, keeping in mind
implementation details of Java programs.
EMF allows to de�ne models in di�erent ways. Traditionally, mod-

els were built using annotated Java, XML Schema De�nition (XSD)
or UMLmodels from Rational Rose. Nowadays, it is quite common
to use EMF-based class diagrams or UML models from the Eclipse
UML2 project. �e capabilities of the framework remain the same
regardless of the way used to de�ne the EMFmodel. EMF uses Ecore
(Steinberg et al. 2009) as the canonical language to describe models,
and thus, any of the previous ways to de�ne an EMFmodel generates
an Ecoremodel in the end.

3.1.1.1 EMF models

An Ecoremodel is, essentially, a subset of the UML class diagram and
thus, can be considered as an implementation of the EMOF language
proposed by the OMG (OMG 2006).�is way, an Ecoremodel is a
model of the classes of a so�ware application (i. e., the structural
description). Because of this, several bene�ts of modeling can be
obtained in an standard Java development environment, given that
the correspondence between an Ecoremodel and its Java implemen-
tation is natural and straightforward.
An Ecoremodel describes, however, concepts at a higher level of

abstraction than mere classes and attributes. Looking at the gener-
ated Java code that implements an Ecoremodel we will note that, for
example, attributes are transformed into getter and setter methods
enforcing encapsulation. Unlike traditional implementation, these
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EAttribute

EClassifier

nsPrefix: EString
nsURI: EString

EPackage

containment: EBoolean

EReference
abstract: EBoolean
interface: EBoolean

EClassEDataType

derived: EBoolean
transient: EBoolean

EStructuralFeature

lowerBound: EInt
many: EBoolean
ordered: EBoolean
required: EBoolean
unique: EBoolean
upperBound: EInt

ETypedElement

name: EString

ENamedElement
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1

eAttributes *

ePackage
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eClassifiers

*

*

eSubpackages

eSuperPackage

0..1

eReferenceType

1

eReferences
*

*
eSuperTypes

Figure 3.1: Simpli�ed version of the Ecoremetamodel

methods have the ability to notify changes to di�erent observers1
(Gamma et al. 1995). In addition, references can be bidirectional,
and referential integrity is always maintained automatically.�ese
references can also exist among di�erent resources (documents), etc.

3.1.1.2 �e Ecore (meta)model

As noted before, the metamodel used to describe EMF-based models
is Ecore. Following an approach similar to MOF, Ecore is de�ned
using Ecore itself, which implies that Ecore is the meta-metamodel
of the Ecoremetamodel.

Ecore is a language designed to de�ne any kind of metamodel.
With this goal, it provides the necessary constructs to describe con-
cepts and the relationships among these concepts. Using Ecore we
can de�ne new vocabularies (or DSLs) which allow us to work with

1 �e observer pattern is a so�ware design pattern in which an object, called the

subject, maintains a list of its dependents, called observers, and noti�es them

automatically of any state changes.
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models in di�erent contexts. Fig. 3.1 shows a simpli�ed subset of the
Ecoremetamodel.
�e main element is EClass, which models the concept of class. Its

semantics is similar to that of UMLClasses. EClass is used to describe
new concepts in Ecore. An EClass comprises a set of attributes (EAt-
tributes) and a set of references (EReferences) to other EClasses, as
well as any number of superclasses (also as the UML standard does).
�e remaining elements of the Ecoremetamodel are the following:

eclassifier is the abstract datatypewhich groups all the elements
that describe concepts.

edatatype is used to represent the type of an attribute. An
EDataType can be a basic datatype (such as integer or float),
an EClass, or a java class (such as java.util.Date).

eattribute is the element used to de�ne the attributes of an
EClass. EAttribute has (among other properties) a name and
a type. As a specialization of ETypedElement, EAttribute in-
herits some properties such as cardinalities (lowerBound and
upperBound), if it is required or not, if it is a derived attribute,
etc.

ereference allows tomodel relationships amongEClasses. Specif-
ically, an EReference can be used to model associations and
compositions as the UML standard does. As well as EAttribute,
EReference is an specialization of ETypedElement and inherits
the same properties.

EReference also has the containment property, which is used to
model the disjoint aggregations (or compositions as described
in UML).

epackage is used to group a set of EClasses in a modular way
as UML packages do. Its main attributes are the name, the
pre�x (nsPre�x) and the Uniform Resource Identi�er (URI).
�e URI is a unique identi�er used to reference the EPackage
unambiguously.
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Similarities between EMF and UML are evident, given that MOF
is based in UML class diagrams. However, Ecore is preferred by the
Eclipse community over UML it is is smaller and simpler. But unlike
UML, it can not model the behaviour of a system in addition to its
structure. Another particularity that we �nd in the context of EMF,
is that an Ecoremodel is only composed by a single root EPackage.
�is way, an Ecoremodel is identi�ed by the URI of its unique root
EPackage.

3.1.1.3 XMI serialization

As described previously, a conceptual model can be described in XMI is the default
persistence format
used in EMF. It is
used to store both
models and
instances.

EMF in di�erent ways (Java code, XSD, Rational Rose, etc.), however,
the canonical representation of a conceptual model is Ecore and its
persistence format is XMI (OMG 2011c), the standard proposed by
the OMG for MOFmetadata exchange.
Both Eclipse and EMF provide automatic support for XMI persis-

tence for Ecoremodel. Moreover, when an Ecoremodel is used to
create the Java implementation of a given system, it automatically
creates the code used to retrieve and store the model instances in
secondary storage (i. e., the program data themselves).

3.1.1.4 Code generation

�e main advantage of EMF (which is common to other model-
ing frameworks and techniques) is the increase in the productivity
brought by the code generation mechanisms. From an Ecore mo-
del it is possible to obtain a Java implementation only with a few
clicks by using EMF built in wizards. Moreover, as EMF is generic, it
can be used to build new code projectors to di�erent technologies.
�is can be used to provide textual representation to any arbitrary
DSL, or can be used to generate full implementations in any Object-
Oriented language. An example of the latter case is the EMF4CPP
project (González et al. 2010).�is project is able to generate C++
code form an Ecoremodel, among other features. Nevertheless, this
project is not only a C++ code generator, it also reimplements some
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of the EMF functionality in C++ which enables the execution of the
generated C++ programs.

3.1.2 Graphical Modeling Framework

�e Graphical Modeling Framework (GMF) (Eclipse 2011e) emergesGMF is a framework
which bridges a

drawing framework
and a modeling
framework to

automatically build
graphical editors for

DSLs. Graphical
editors presented in
this thesis are built
following a MDD

approach by
using GMF.

to cover a need in the development of Graphical User Interfaces
(GUIs) and graphical editors in Eclipse. Traditionally, the develop-
ment of graphical editors in Eclipse has been done by using the
Graphical Editing Framework (GEF). GEF is a library that uses the
Model–View–Controller (MVC) architectural pattern (Burbeck 1987),
and is composed by several plug-ins. Speci�cally, the org.eclipse.
draw2d plug-in provides the basic functionality for rendering and
ordering graphical elements in a canvas.
As GEF uses the MVC pattern, developers had to de�ne their own

models, and had to build the corresponding mechanisms to store an
retrieve these models. Given that EMF provides a generic framework
for modeling, and it provides the persistence mechanisms for free, it
is the perfect tool to build these models in an easy way.�is way, to
easily build new graphical editors we only need to map these model
elements (provided by EMF) with the graphical elements (provided
by GEF and org.eclipse.draw2d). Following a MDD approach, this
mapping is be done by using models.�us, GMF is a bridge between
EMF and GEF to build DSLs editors.
Figure 3.2 shows the main components and models used during

GMF-based development. �e process begins with 3 models: the
domain model, the graphical de�nition and the tooling de�nition.�e
�rst one corresponds to the EMFmodel for which we wish to create
the new editor.�e second one describes which graphical primitives
will be drawn in the editor without de�ning any correspondence
with the domain model elements.�e third model de�nes the tools
that are shown on the palette of the editor (and other GUI elements
such as menus, toolbars, etc.). �ese tools are used to create new
elements and to draw links among them.



3.1 the eclipse platform 39

�e use of di�erent
models in GMF
favours modulariza-
tion and reuse.
Graphical de�ni-
tions are separated
from the domain
elements they
represent.

Develop
Graphical
De�nition

Develop
Domain
Model

Create
GMF

Project

Develop
Tooling

De�nition

Develop
Mapping

Model

Create
Generator

Model

Generate
Diagram
Plug-in

*.ecore

*.gmfgraph

*.gm�ool *.gmfgen

*.gmfmap

Figure 3.2: GMF work�ow overview

A graphical de�nition can be valid for di�erent domains. For
example, in theUML class diagramwe �nd di�erent elements that are
extremely similar in appearance and structure. In GMF a graphical
de�nition can be reused for di�erent domains. �is is achieved
by using a separate model called mapping model which links the
graphical elements and the tool de�nitions with the desired elements
of the domain model.
Once the mappings have been de�ned, GMF provides a generator

model that can be used to tune the last implementations details used
in the automatic code generation phase.�e production of an editor
plug-in based on the generator model will target a �nal model, the
diagram runtime or notation model. �e runtime will bridge the
notation and domain model when a user is working with a diagram,
providing their persistence and synchronization.
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3.1.3 Model Development Tools

�e Model Development Tools (MDT) project (Eclipse 2011b) is an�e Eclipse Model
Development Tools

project aims to
provide an
EMF-based

implementation for
several modeling
standards, most of
them promoted by

the OMG.

Eclipse project which aims to provide both a set of industry stan-
dard metamodels and the tools to work with them. Its creation is
relatively recent, and emerges as a reorganization of di�erent small
modeling projects inside the Eclipse ecosystem. Some of the sub-
projects that this project hosts are: BPMN2, implementing the next
Business Process Model and Notation (BPMN) v.2 (OMG 2011a) stan-
dard; IMM, which implements the forthcoming Information Man-
agement Metamodel (IMM) (OMG 2005a) speci�cation; MoDisco
(Bruneliere et al. 2010), used for so�ware modernization; MST, a
subproject to give full compatibility with Complete Meta-Object
Facility (CMOF) (OMG 2006) speci�cations; Papyrus (Eclipse 2011c);
and SVBR, which implements the Semantics of Business Vocabulary
and Business Rules (SBVR) speci�cation (OMG 2008b). Other meta-
models and tools that compose the MDT project which are used in
the implementation of this thesis, and are key components of this
work are:

ocl subproject provides an implementation of OCL for EMF-based
models and metamodels.�is set of utility libraries are used
and integrated in di�erent tools that have been produced in
the implementation of this thesis (see 8.5.1 and 8.5.2).

uml2 is the reference project, which implements the UML2meta-
model using Ecore as its meta-metamodel.

uml2 tools provide a set of GMF-based editors for drawing and
editing UML2models. It aims to provide automatic generation
of editors for all UML diagram types.

xsd is the library which implements the XSDmetamodel, and pro-
vides an Application Programming Interface (API) for manip-
ulating its instances as described by the World Wide Web
Consortium (W3C) XSD speci�cations (Gao et al. 2008), as
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well as an API for manipulating the Document Object Mo-
del (DOM)-accessible representation of XML.

3.2 moment : a framework for model management

MOMENT (Boronat et al. 2005b; Boronat 2007) is a tool that provides
support to di�erent OMG standards including capabilities to trans-
form models.�e tool uses both an industrial modeling front-end
and an algebraic back-end for the execution of the transformation
and query tasks. �e algebraic background runs in the high per-
formance rewriting system called Maude (Clavel et al. 2002).�e
industrial modeling environment used by MOMENT is Eclipse and
EMF.
In its �rst version, MOMENT used the QVT standard to provide a

transformations language, unlike other popular transformation tools,
such as IBMModel Transformation Framework (MTF) (Demathieu
et al. 2005) or ATLAS Transformation Language (ATL) (INRIA 2011),
which provide their own proprietary languages. �e tool o�ers
an implementation of the QVT Relations language as well as the
OCL language. For this language, MOMENT gives wide support for
unidirectional transformations. Moreover, the tools provides full
support to the query operators of the OCL language.

3.3 atlas transformation language

ATLAS Transformation Language (ATL) is a transformation lan-
guage and a toolkit initially by the AtlanMod team—initially ATLAS
Group—(AtlanMod 2011). ATL is a Model-to-model (M2M) trans-
formation language which was designed as an answer to the OMG
MOF/QVT Request for proposal (RFP) (OMG 2002)—cf. ATLAS
(2005); Jouault and Kurtev (2006).�e ATL proposal was rejected in
favor of the proposal made by Appukuttan et al. (2003). Neverthe-
less, ATL has gained relative popularity and has become an Eclipse
project (INRIA 2011) inside the MDT project (Eclipse 2011b). Nowa-
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days ATL is published under the terms of the open-source Eclipse
Public License (EPL).
Although ATL is aligned with the QVT standard, it does not pro-

vide the same architecture nor a pure declarative transformation
language; rather it provides a hybrid language (imperative/declara-
tive) to perform MOF-compliant model transformations.

3.4 ibm model transformation framework

IBM Model Transformation Framework (MTF) (Demathieu et al.
2005) was the proposal of IBM in order to help with the standard-
isation of QVT. MTF provided a prototype which used EMF as it
underlying modeling framework. A model transformation was de-
�ned inMTF by de�ning relationships among model elements using,
for example, the relate and equals keywords. Although this proposal
is quite similar to the QVT–Relations language, MTF did not succeed
and the tool remained as a prototype. NowadaysMTF has been aban-
doned in favor of other languages, e. g. QVT and ATL, and the MTF
site has been shut down.

3.5 medini qvt

mediniQVT is a tool entirely implemented in Java, and integrated as
a set of Eclipse plug-ins.�is tool supports model transformations
using theQVT standard. It has been developed by the company ikv++
technologies ag (ikv++ 2011), located in Germany.�e engine was
originally released as a free product in 2007—free as in free beer (FSF
2011)—and was in early 2008 when the source code was released
under the EPL open source license.
From the technical point of view, medini QVT uses EMF as its

modeling and metamodeling environment. For the de�nition of
model transformations implements a QVT Relations engine, giving
support for complex model-to-model transformations. Internally,



3.5 mediniqvt 43

medini QVT uses the Open Source Library for OCL (OSLO) toolkit
(OSLO 2011).
�e main features of the tool are:

• Allows QVT transformations using the textual concrete syntax mediniQVT is the
most complete and
user-friendly tool
which provides
support to
QVT–Relations.
Moreover, its core
transformations
engine is available
under an open
source license. For
this reason, parts of
this engine are
reused in the tools
developed in this
thesis.

of the QVT Relations language.

• Provides a textual editor with syntax highlight and code com-
pletion capabilities.

• Includes an advanced debugger to trace the execution ofmodel
transformations step by step throughout the application of the
di�erent relations.

• Implements the concept of key of the Relations language, al-
lowing the execution of incremental transformations.

• Supports transformations with more than two di�erent do-
mains (n-domain transformations).

• Is able to execute bidirectional transformations (if the trans-
formation is unambiguous in its de�nition).

All this functionality is implemented in di�erent Eclipse plug-ins.
It is remarkable that only the plug-in in charge of executing themodel
transformations is public and open source. All the remaining plug-
ins that implement additional functionality (text editor, debugger,
etc..) are closed source.
According to these licenses, the prototype which is presented in

this thesis and is in charge of executing model transformations only
makes use of the open source component which can be freely reused.
�is way, the core transformations engine ofmedini QVT has been
packaged in our tool to provide a set of user-friendly interfaces
that execute our model transformations as is described in detail in
section 8.4.
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3.6 summary

�is chapter has brie�y described the tools which are available in the
market to carry out complex MDE processes. In this case, the tools
which are interesting for the purposes of this thesis must be interop-
erable and must comply with the industrial standards for modeling,
metamodeling and model transformations. In this sense, EMF and
the tools that are built on top of it ful�ll our expectations and will
be used to implement and exploit the models and transformations
proposed in this work. Regarding to the transformations engine, we
have selectedmediniQVT as it provides support for QVT–Relations
which is a declarative and standardised language, and the source
code can be reused under the terms of the EPL.



4
SOFTWARE PRODUCT LINES:
DEALING WITH COMMONALITIES AND
VARIABILITIES IN SOFTWARE FAMILIES

«Thinking is the hardest work there is,
which is probably the reason why so few engage in it.»

—Henry Ford
Pioneer of the assembly-line production method, 1863–1947

�e changing nature of technology leads us to needmultiple versions
of the same or similar application in short time periods. Due to cost
and time constraints it is not possible for so�ware developers to
make a product from scratch for each new customer, so the reuse of
so�ware should be enforced. Because of that, So�ware Engineering
must provide the tools andmethods which allow us to develop a fam-
ily of products with di�erent capabilities and adaptable to changeable
situations, in place of developing only a single product. Under these
circumstances, the So�ware Product Line (SPL) concept arises with
the aim of controlling and minimizing the high costs of the so�ware
development process. According to Clements and Northrop (2001),

“a SPL is a set of so�ware-intensive systems sharing a
common, managed set of features that satisfy the speci�c
needs of a particular market segment or mission and that

45
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are developed from a common set of core assets in a pre-
scribed way.”

�is approach is based on the creation of a design that can be
shared among all the members of a family of programs within an
application domain.�is way, a design that has been done explicitly
for a product can get bene�t from the core assets (architecture, mod-
els, requirement speci�cations, components, code, test cases. . . ) that
can be reused in di�erent products, reducing costs and development
time.
In short, we can say that a product line is a group of productsSPLE aims to apply

the principles of
mass production
introduced by

Henry Ford in the
automotive industry
to obtain so�ware
applications. I. e.,
factories do not
produce single
products but

families of similar
products.

that have a common set of features and vary only in some speci�c
features. Features are an abstract concept to describe similarity and
variability, and can be used to distinguish the products of a SPL. Each
feature is an increase in product functionality. In section 4.2 we will
describe in detail what features and feature modeling are.
From a practical standpoint, SPLs are one of the most successful

approaches to so�ware reuse, as they focus on developing families of
systemswhich share a basic architecture.�is way, SPLs provide an in-
dustrial approach to so�ware development processes. Traditionally,
SPLs aim to develop a framework to represent a family of products,
which is adapted to develop individual products. A product family
is a collection of similar products that share many features.

4.1 software product line engineering

So�ware Product Line Engineering (SPLE), or so�ware product line
practice (Clements and Northrop 2001), is the systematic reuse of
core assets to assemble, instantiate or generate the multiple products
that constitute a SPL. �e SPLE approach to so�ware development
involves changing the existing development process by introducing
a distinction between the domain engineering and application en-
gineering stage. Such a division is fundamental in the application
of SPL techniques. We describe a domain as a specialized body of
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knowledge, an area of expertise or a collection of related functional-
ity.
In the domain engineering phase, all the information and knowl- SPLs are enacted in

two stages: domain
engineering and
application

engineering. In the
domain

engineering stage
the basic
components (core
assets) are
developed, and a
production plan is
designed. In the
application

engineering stage
the product is built
using the core
assets and the
previously de�ned
production plan.

edge about a particular domain is captured in order to create the
reusable so�ware assets. At this stage the family of products is ana-
lyzed to determine the commonalities (common requirements) and
variabilities (product-speci�c requirements) among the members of
the SPL, and next, a reference architecture of the SPL is designed.�e
reference architecture is the one that contains the components that
are common to all the members of the family.�is architecture also
describes which optional components are required only by some
members and how they can be con�gured.�e formal description
of this process (how to con�gure and assemble the di�erent assets)
is known as the production plan. Finally, all the so�ware assets that
will be used to produce so�ware products are built and stored in
the baseline. A baseline is a specialized database that stores so�ware
assets and facilitates their recovery and maintenance. Its aim is to
ensure the availability of core assets to support the development of
the SPL products.
�e application engineering phase is responsible for product de-

velopment through the reuse of so�ware assets using the designed
production plans.�e reference architecture is used as a reference
model for building the products of the SPL. �e baseline provides
the required assets for the development of each new product.
Fig. 4.1 shows the three essential activities that should be carried

out to develop a so�ware product line:

core asset development represents the ongoing activities to
develop reusable building blocks. �eir inputs are the core
assets used in the family of products and the production plan
that indicates how to use these assets to assemble a �nal prod-
uct.

product development are the engineering activities to build
products using reusable assets that were described in the pro-
duction plan.
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Product Line Development

Core Asset
development

Product
development

Management

Domain
engineering

Application
engineering

Figure 4.1: Essential Activities for So�ware Product Lines

management represents activities of technical and organizational
management.

�ese three activities are essential for the developments of a SPL
and all of them are interrelated. Each one can be carried out in any
order, leading to an iterative development. Table 4.1 summarizes the
goals of these three activities both in the domain engineering phase
and the application engineering phase as described by Clements and
Northrop (2001).

4.2 describing variabilities and commonalities in
software families

So�ware Product Lines aim to control and minimize the high costs
of developing a family of so�ware products. As described previously,
this approach is based on the creation of a design that can be reused
among all the members of a family of programs. But the key aspect
that characterizes SPLs against other reuse techniques is that so�ware
reuse is planned since the development process is designed.
�e �rst stage when developing a SPL is to perform an analysis

in order to identify the commonalities and variabilities in the do-
main. To make things easy, it is desirable to have the results of the
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domain engineering

domain

analysis

�e variability of the domain is studied and
analyzed.
Usually, this study is carried out to identify the
characteristics of the domain. A model with
such elements is built (a feature model, see
section 4.2).

core asset

development

�e core assets (reusable building blocks) are
designed and implementd.�is step not only
captures the functionality of the domain, but
also how the core assets can be extended
should be de�ned.

production

plan

�is stage describes how the individual prod-
ucts should be assembled using the core assets.

application engineering

product char-

acterization

�e features that characterize the desired prod-
uct should be selected.

product

synthesis

�e baseline is queried and the needed core
assets are retrieved to build the �nal product.

product

construction

�e selected core assets are processed follow-
ing the production plan to obtain the �nal
product. �e production plan can specify
that several tasks should be carried out (i. e.,
code generation, compilation, execution of
programs, etc.).

Table 4.1: Development and application of a SPL
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Original Feature Model 
(FODA)

(KC Kang et al., 1990)

FORM Feature 
Model

(KC Kang et al., 
1998)

FeatuRSEB
Feature Model
(ML Griss et al., 

1998)
Generative 

Programming (GP) 
Feature Model
(K Czarnecki et al., 

2000)

Hein et al. Model
(A Hein et al., 2000)

Van Gurp et al. 
Feature Model

(J van Gurp et al., 2001)
Riebisch et al. 
Feature Model
(M Riebisch et al., 

2002)

GP-Extended 
Feature Model

(K Czarnecki et al., 2002)

Cardinality-Based 
Feature Model

(K Czarnecki et al., 2004)

PLUSS Feature 
Model

(M Eriksson et al., 
2005)

Benavides et al. 
Feature Model
(D Benavides et al., 

2005)

Figure 4.2: Feature model genealogy (Kang 2009)

analysis in an organized way, allowing the reuse of this analysis in
the so�ware development process. In 1990, amethod for discovering
and representing commonalities among related so�ware systems was
proposed by Kang et al. (1990). It is this context that the notion of
feature arises.
Because of the current activity in the feature modeling and vari-

ability management community, several systematic reviews have
been published recently (Chen et al. 2009; Kang 2009). From these
reviews follows that the conferences which give more coverage to
variability management and feature modeling are the SPLC (Inter-
national So�ware Product Line Conference), which already has 14
editions; and ICSE (International Conference on So�ware Engineer-
ing) which has 33 editions. For its part, the most relevant and active
authors in this community are K. Czarnecki and D. Batory.
�e most important works appeared in the �eld of SPLs have been

studied, and throughout the following section we will summarize the
main contributions made in the last 20 years in the feature modeling
�eld. Starting with the proposal by Kang et al., next we will describe
the main variations made to this initial proposal.
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4.2.1 Introduction

Features can be described as user-visible aspects or characteristics
of the domain according to Kang et al. (1990) or as a distinguish-
ing characteristic of a so�ware item (e. g., performance, portability,
or functionality) as described by the IEEE 829-1998 standard (IEEE
1998).
�e Feature-Oriented Domain Analysis (FODA) proposal pre-

sented by Kang et al. (1990) can be considered the most important
contribution for feature analysis and management (Kang et al. 1998;
Czarnecki and Eisenecker 2000; Kang et al. 2002), and subsequent
contributions are strongly based and in�uenced by this work as later
systematic reviews re�ect (Chen et al. 2009). Fig. 4.2 presents the
genealogy of the di�erent contributions made in this �eld. In this
�gure Prof. Kang presents a summary about the evolution of feature In feature modeling,

systems are
described in terms
of features
(user-visible
aspects or

characteristics of

the domain).
Feature models
represent a tree-like
structure of features
which describe
commonalities and
variabilities among
systems.

models to celebrate the 20th anniversary of the advent of the feature
modeling proposal.
Feature models are diagrams which express the commonalities

and variabilities among the products of a SPL.�ese models organize
the so-called features in a hierarchical structure. �ey describe a
set of relationships among parent features and child features.�e
basic relationships between a feature and its children are: mandatory
relationships (which represent the shared design), optional relation-
ships, OR and di�erent types of groups. Cross-tree relationships are
also common to describe inclusion or exclusion constraints. Other
extensions and variants have been proposed in di�erent works. Next,
we will describe the most important proposals which are related
with our work.

4.2.2 Classic feature models (FODA proposal)

Classic featuremodels (FODA featuremodels) de�ne only three kinds
of relationships between a parent feature and its children:
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mandatory Mandatory features represent features which are re-
quired to be included in a given product.�ese features rep-
resent the common aspects to all the members of the family.
A line drawn between a child feature and a parent feature
indicates that a child feature requires its parent feature to be
present. In the original FODA notation mandatory features
are those which are described with no special notation. For
example, in Fig. 4.3a both features F andA are mandatory.

optional Optional features are those that may be included or
not in a given product of the family. In the original notation
optional features are denoted by using a circle. In Fig. 4.3b
feature F is mandatory (and must be included in any possible
product) and feature A is optional, and may be included or
not.

alternative �is relationship can be de�ned among a parentIn FODA feature
models the shared
design is represented
by the mandatory

features.�e
variability can be
described by using

both optional
features and

alternative groups.

feature and a set of children features. In this case, this rela-
tionship states that children features can be considered as a
specialization of the parent feature, and only one child can be
present in a given product of the family. Fig. 4.3c describes
a feature model where only two possible products are possi-
ble, the �rst one is made up by the features F andA, and the
second one is made up by the features F and B.

In addition to the previous relationships the so-called composition
rules cab be de�ned between any pair of features:

F

A

(a)

F

A

(b)

F

A B

(c)

Figure 4.3: Example of FODA relationships
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Listing 4.1: Textual representation for the FODA excludes and requires rela-
tionships

1 <feature1 > (’requires ’ | ’mutex -with ’) <feature2 > �
mutual dependency (requires) �is relationship states that

one feature requires the existence of another one (i. e., they
are interdependent).

mutual exclusion (mutex-with) implies that one feature
is mutually exclusive with another one (they cannot coexist).

�e original FODA proposal does not de�ne a graphical representa-
tion for composition rules, rather, it provides a textual representation
as shown in listing 4.1. Nevertheless, these relationships can be eas-
ily drawn in feature models by using an arc between the features
involved. Fig. 4.5 shows an example of a typical representation.�e
exact notation can vary depending on the author by using dashed
lines, di�erent arrow ends, etc. As it can also be observed, in modern
notations it is quite common to represent features as named boxes.
�e semantics of all these relationships can be expressed bymeans

of propositional formulas (Batory 2005); this way, it is possible to
reason about the satis�ability of the feature model and its con�gura-
tions.

F

A B

«implies»

(a)

F

A B

«excludes»

(b)

Figure 4.4: Example of the implies (4.4a) and excludes (4.4b) relationships
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4.2.3 FeatuRSEB and PLUSS feature models

Griss et al. (1998) introduced FeatuRSEB, a new proposal to inte-
grate feature models into processes of the Reuse-Driven So�ware
Engineering Business (RSEB) approach (Jacobson et al. 1997).�e
RSEB is a so�ware reuse technique where architecture and reusable
subsystems are initially described by use cases, which are then trans-
formed to object models. In the RSEB proposal, variability is captured
by structuring use case and object models using explicit variation
points and variants. However the RSEB does not provide explicit
models which describe the commonalities for all the products of the
family.�is way, FeatuRSEB adds an explicit domain engineering
phase and a explicit feature model to support domain engineering
and component reuse.

FeatuRSEB provides almost the same primitives to build featureFeatureRSEB

provides the same
modeling primitives
than FODA, plus a

new kind of
relationship to
describe XOR

groups.

models than the traditional FODA approach. �e FeatuRSEB can
describe mandatory features, optional features, alternatives (XOR
groups) and OR groups. �e last primitive is a new kind of group
which allows to select one or more children features in compari-
son with the alternative relationship of the original FODA notation,
which allows to select only one child.�e FeatuRSEB notation also
provides requires andmutex-with constraints.
�e graphical notation proposed by FeatuRSEB is quite similar to

the FODA notation. Mandatory and optional features are described
respectively as in Figs. 4.3a and 4.3b

F

A B

(a)

F

A B

(b)

Figure 4.5: XOR (4.5a) and OR (4.5b) groups in FeatuRSEB
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Groups of features are represented using rectilinear arcs, and OR
and XOR groups are identi�ed using black and white diamonds
respectively.�is way, Fig. 4.5a describes an alternative group equiv-
alent to Fig. 4.3c, where only one child feature can be selected (A or
B). In the case of Fig. 4.5b either featureA, feature B, or bothA and
B can be selected.
Eriksson et al. (2005) presented the Product Line Use case mod-

eling for Systems and So�ware engineering (PLUSS) toolkit, which is
based on FeatureRSEB proposal. However, this work uses feature
models from a di�erent point of view. Unlike FeatuRESB, where
feature models play a key role in the development process, in the
PLUSS toolkit they are only used as a tool for visualizing variants in
an abstract product family use case model.
�e semantics of the feature models that can be described in the

PLUSS toolkit are exactly the same than in the FeatuRSEB approach.
However, in the PLUSS toolkit the authors provide a di�erent graph-
ical notation, as shown in Fig. 4.6, due to limitations in their tool
support.�is way, features represented by a black and white circles
are mandatory and optional respectively. Alternative features (XOR)
are renamed as Single Adaptor features, and are represented by a gray
circle with an ‘‘S’’ inside it. Finaly, OR groups are calledMultiple
Adaptor features, and describe the relation at-least-one-out-of-many.

Domain

a

aa

S

aaa

S

aab

S

aac

ab

S

aba

S

abb

ac

b

ba

S

bb

M

bba

M

bbb

S

bc

M

bca

M

bcb

M

bcc

«req
uires

»

«excludes»

Figure 4.6: Example PLUSS feature model extracted from (Eriksson et al.

2005)
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Typical excludes and requires relationships can also be described as
shown in the �gure.

4.2.4 Cardinality-based feature models

Cardinality-based feature modeling (Czarnecki et al. 2005a) inte-Cardinality-based
feature models
provide a more

expressive notation
than traditional
FODA feature

models.�is thesis
uses this kind of

models to describe
system’s variability
as next chapters

show.

grates several extensions that have been contributed to the original

symbol short description

F
Mandatory feature (cardinality [1..1])

F
Optional feature (cardinality [0..1])

F

[n..m] Feature with cardinality [n..m].

Ifm > 1 then F is a clonable feature

Feature group with cardinality 〈1..1〉
(exclusive or group)

Feature group with cardinality 〈1..k〉,
where k is the number of group elements

(or group)

〈i..j〉
Feature group with cardinality 〈i..j〉,

where 0 6 i 6 j 6 k

F(T) Feature with attribute type T

Table 4.2: Cardinality-based feature modeling basic primitives
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FODA notation. Table 4.2 describes the main elements of the pro-
posed modeling language. A cardinality based feature model is a
hierarchy of features; the main di�erence with the original FODA pro-
posal is that each feature has associated a feature cardinality which is
expressed in aUML-like notation. Feature cardinality can be used as a
general way to describemandatory and optional features. Mandatory
features have a lower bound equal to 1, and an upper bound equal to
1. In contrast, optional features have a lower bound equal to 0 and
an upper bound equal to 1. Features can also have an upper bound
higher than 1, which speci�es howmany clones (instances) of the fea-
ture are allowed in a speci�c product con�guration. Cloning features
is useful in order to de�nemultiple copies of a part of the system that
can be di�erently con�gured. Moreover, features can be organized in
feature groups, which also have a group cardinality. Feature groups
are a generalization of the notion of the alternative features (XOR
groups) andOR groups proposed by previous approaches. Group car-
dinality restricts the minimun and the maximun number of group
members that can be selected. Cardinality-based feature models also
allow to specify an attribute type for a given feature.�us, a primi-
tive value (string, integer, etc.) for this feature can be de�ned during
con�guration, which is useful to de�ne parameterized features.
Fig. 4.7 shows an example cardinality-based feature model.�e

model describes a con�gurable text editor. Notice that the docu-
mentClass(String) and the ext(String) features are clonable. Both
features have also an attribute type (String, in both cases).�e fea-

editorCon�g

backup

autosave

minutes(Int)

backupOnChange backupExtension

�le.bak

�le.bak.ext

�le.ext.bak

documentClass(String)

associatedFileExtensions

ext(String)
[0..*]

commands

removeBlankLines

spellCheck

dosUnixConversion

syntaxHighlighting

syntaxDe�nitionFile(String)

[0..*]

〈0..3〉

Figure 4.7: Text editor con�guration example, extracted from (Czarnecki

et al. 2005a)
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ture commands has a group with cardinality 〈0..3〉 (which means
that it is an OR group).
Cardinality-based feature models also allow to describe con-

straints between features such as the implies and the excludes re-
lationships, which are the most common used ones (Czarnecki and
Kim 2005). In classic feature models, the semantics of these con-
straints can be expressed by using propositional formulas (Batory
2005). However, this interpretation for feature models is not very
adequate when dealing with cardinality-based feature models (Czar-
necki and Kim 2005) since we can have multiple copies of the same
feature.�erefore, it is necessary to clearly de�ne the semantics of
the constraint relationships in a context where features can have
multiple copies, and features can have an attribute type and a value.
In this case, we need more expressive approaches to (i) de�ne con-
straints between features; and (ii) perform formal reasoning over
the feature models and their constraints.

4.2.5 Feature model con�gurations

A con�guration of a feature model can be de�ned as a valid set ofA con�guration of a
feature model can
be considered as a

valid set of
instances of it.

instances of a feature model. A con�guration is made up from the
mandatory features of the model, and a subset of selected optional
features (for simple FODAmodels). In Fig. 4.8a an example feature
model is represented. �e model represents a system S, with two
features A and B. �e former is mandatory (i. e., feature A must

S

A B

(a)

s1

a1 b1

(b)

s2

a2

(c)

Figure 4.8: Example of a feature model (4.8a) and the two possible con�g-

urations that it represents (4.8b and 4.8c)
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be included in every possible product of the product line), and the
latter is optional (feature B can be included in a particular product
or not).�us, we have two possible con�gurations for this feature
model, which are represented in �gures 4.8b and 4.8c.

4.3 summary

SPL is a so�ware reuse technique where a common design is shared
among the di�erent members of a family of products. In a SPL it
is crucial to describe the variabilities and commonalities among
such products in an explicit and understandable way. To achieve
this, feature models have arisen as a suitable notation to describe
such commonalities and variabilities. Feature modeling has been
an important discussion topic in the SPL community, and a great
amount of proposals have arisen in the last 20 years. Table 4.3 shows
a summary of the most important graphical notations proposed for
feature modeling. Notice that one of the most expressive notations is
the cardinality-based feature modeling notation, which allows clon-
able features, feature groups with cardinalities and typed features
(which can be used to express parameterized features and feature
attributes).
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Part III

VARIABILITY VIEW ON MULTI-MODEL DRIVEN
SOFTWARE PRODUCT LINES





SUMMARY

In this part we present our feature-based approach to manage vari-
ability in Multi-Model Driven So�ware Product Lines. Chapter 5
introduces what MMDSPLs are, and how they are related with the
di�erent views of a system. Chapter 6 describes the main issues that
arise when feature models are used to describe the variability view in
complexMDE processes. In chapter 7 we de�ne our cardinality-based
metamodel. We use MOF to describe feature models and we fully
exploit them using the Eclipse Modeling Framework (EMF). Feature
models can be enriched with complex model constraints that can
be automatically checked by means of the pre-built OCL interpreters.
All these EMF features allow developers to start a So�ware Product
Line (SPL).

63





5
MULTI-MODEL DRIVEN PRODUCT LINE
ENGINEERING

«Controlling complexity is
the essence of computer programming»

— Brian Kernighan
Canadian computer scientist, developer of Unix and C, 1942–

So�ware Product Line Engineering (SPLE) enables the rapid develop-
ment of product families. As discussed in chapter 4, a basic require-
ment is the management of the variability among family members.
�erefore, an important factor in the design of a SPLs is feature mod-
eling.
On the other hand,MDA is the ideal framework for the representa-

tion of so�ware artifacts from the modeling point of view. Both SPLE
and MDA provide bene�ts in so�ware development. SPLE provides
the methodology for the variability management both in the domain
engineering and application engineering phases. For its part, MDA
provides mechanisms for abstraction, modeling standards, persis-
tence and data and metadata exchange.�e proposal for the joint
use of both approaches is what is known as MDPLE.
However, the power of the union betweenMDA and SPLE does not

(only) come from the use and reuse of feature models to guide the
process of gluing code snippets and other assets.�e real power of
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this approach is that feature models can be used and combined in
complexMDE development processes.�is way, all kinds of artifacts
and models have their place in the design and implementation of
the production plans in SPLs.
�us, the proposal for variability management of this thesis is

beyond the MDPLE.�is work is in line with what we will call Multi-
Model Driven Product Line Engineering (MMDPLE). �e multi-
modeling approach arises from the need of rigorously integrate
di�erent modeling languages in the so�ware development process.
�e use of multiple languages can cover di�erent domains and�e use of multiple

languages to
describe di�erent
system views eases
the understanding
of the systems’

structure and allow
the specialization of

developers.

system views. In turn, it enables the specialization of developers and
reduces the learning curve in the use of modeling and speci�cation
languages. Moreover, the separation of di�erent concerns (i. e., a
particular set of behaviors of a so�ware system) in a multidimen-
sional way alleviates the problems that can arise when designing
so�ware. One of themeans to carry out a separation in dimensions is
through the decomposition of a system in structures which represent
the system views. As explained by Courtois (1985), an understand-
ing of the concept and properties of nearly decomposable structures is
essential for an understanding of the behavior of systems with many
scales and for solving the problems raised by their analysis. �e use
of system views (which are described by using di�erent models in a
multi-model) pursues the goal of decomposing systems in order to
make them understandable.
�emain problem that comes up in the use ofmulti-models is how

to maintain consistency between the di�erent views (or submodels)
and how to establish the relationships among them. In this sense, the
declarative model transformations emerge as a key technology, as
they allow the de�nition of equivalence relationships (using patterns)
among the models that are part of a multi-model. Boronat et al.
(2008) discusses in detail the formal foundations of multimodel
languages as well as the role that model transformations play in this
proposal.
In MMDPLE, a SPL will represent a so�ware development process

driven by di�erent models, each one considering a di�erent system
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In a MMDSPL, and
following the MDE
principles, the core
assets used in the
development process
are models and mo-
del transformations.

Executable
system

«in» «out»

MULTIMODEL

MDA Process:
Code Generation,

Model Transformations,
Generative Programming, etc.

Feature Model
Con�guration

Functional
Model

Quality
model

. . .

Production
Plan

Figure 5.1: Multi-Modeling Driven So�ware Product Line Engineering

view. Fig. 5.1 shows a generic description of a multi-model driven
SPL.�ere, several models describe the assets that participate in the
so�ware development process. Such models can describe variability
aspects, functionality aspects, quality aspects, etc. Following the
MDE approach, the production plan may also be de�ned as part of
this multi-model. Speci�calle, the production plan is the asset which
describes how the di�erent models are combined to provide the
whole system view.�is way, the production plan will mainly consist
of declarative model transformations which will relate the di�erent
models of the multi-model.

5.1 system views and the multi-model

Several analogies have been drawn to describe what a system view is.
Kruchten (1995) describes system views as the plans which describe
a building from di�erent perspectives, such as the �oor plan or the
elevation of a building; and Bass et al. (1998) illustrate views using
the human body as an example. In this case, a view can be considered
as the perception of the body that di�erent medical specialist have
when treating with a patient. I. e., doctors may be interested in the
circulatory system (e. g., cardiologists) or the digestive system (e. g.,
gastroenterologists). Each specialist gets focused only in certain
properties of the system (the human body) which are important for
him/her.�is way, a view is an abstraction as de�ned by Shaw (1984):
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a simpli�ed description, or speci�cation, of a system that emphasizes
some of the system’s details or properties while suppressing others.
How to deal with system’s views has been a long standing issue

in So�ware Engineering, and several works have proposed di�erent
models to represent them. Among the most relevant proposals we
have Kruchten (1995), Hofmeister et al. (1999)—also know as the
Siemens proposal—, and the So�ware Engineering Institute (SEI)
proposal (Bass et al. 1998; Clements et al. 2003).
�e SEI proposal considers three kinds of views as the basic struc-

tures to describe a so�ware architecture, namely, themodular style,
the component–connector style and the allocation style.�emodular
style (modular view) makes a partition of the system’s functional-
ity, where each part is considered as a module. �e component–
connector style (component–connector view) aims to model runtime
aspects, such as concurrency and communication issues. Compo-
nents and connectors are the elements used to represent the so�ware
entities which play a role while executing the system. Finally, the
allocation style (allocation view) is used to relate the elements of the
previous views with the elements existing in the environment where
the system is executed.
In the context of theMDA and system’s views we �nd the proposal�e Limón

Cordero’s thesis
proposes the use of
the modular and
the component–
connector views
metamodels to
describe system

views.�is proposal
is used as the

starting point of
our work.

of Limón Cordero (2010).�is work, based on the SEI proposal,
presents a framework to (i) describe di�erent views of a system and;
(ii) to establish the correspondences among them by using model
management techniques. Limón Cordero proposes the use of two
basic views: the modular view and the component–connector view.
LimónCordero provides theMOF-compliantmetamodels to describe
the system’s views. Furthermore, the allocation view is provided by
a set of QVT–Relations rules to describe the correspondences among
the di�erent views of a system.
As can be observed, this last proposal is very close to the de�nition

of a multi-model. However, it does not consider the variability view,
which is a fundamental view when dealing with so�ware families in
the context of a MDSPL.�is thesis aims to cover this gap, and we
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propose to add the system’s variability view in order to be able to
develop MMDSPLs.

5.2 views , models and metamodels in multiple

�is thesis presentsMULTI PLE, a framework and a tool to describe
and implement MMDSPLs.�is way, di�erent metamodels and DSLs
must be provided to describe a system as a whole. �e proposed
framework aims to be extensible thanks to the capabilities provided
by state of the art modeling tools. However,MULTIPLE provides out �is thesis provides

out of the box

support for four
metamodels:
variability, modular
metamodel,
component–
connector and
PRISMA.

of the box support to de�ne three main system views: the variability
view, the modular view and the component–connector view. �ese
views are models speci�ed using di�erent metamodels and domain-
speci�c editors, which have been de�ned using MOF:

the variability metamodel allows to specify the variants in
a so�ware family.�at is, it allows to describe which parts of
the products are common to all the members and which parts
may vary from a single product to another.�is metamodel is
inspired by the most relevant proposals in the feature model-
ing literature over the last 20 years. Chapters 6 and 7 describe
in detail the variability metamodel, whose implementation is
described in chapter 8, section 8.3.1.

the modular metamodel is based on the proposal made by
Limón Cordero. It allows to describe a system in terms of
modules, functions and di�erent types of relationships that can
be established between modules. �is metamodel is spec-
i�ed in precise in Limón Cordero (2010, p. 144 sqq.).�e
implementation of this metamodel inMULTIPLE is presented
in section 8.3.3.

the component–connector metamodel is also based on
Limón Cordero (2010, p. 150 sqq.). It allows to describe a sys-
tem in terms of components, connectors, services, roles, ports
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and relations.�e implementation of this metamodel using
MOF is presented in section 8.3.4.

the prisma metamodel is a specialization of the component–
connector metamodel. It allows to describe systems in terms
of components and connectors, but adding support for as-
pects (Kiczales et al. 1997). We include an Ecore implemen-
tation of the PRISMA metamodel described by Pérez Benedí
(2006).�anks to the tools that are provided together with the
speci�cation of this metamodel it is possible to automatically
generate code from PRISMA architectural descriptions—i. e.,
PRISMA-NET-MIDDLEWARE and PRISMA-MODEL-COM-
PILER (Pérez et al. 2008). Since, this metamodel has been
precisely speci�ed in previous literature (Pérez Benedí 2006;
Pérez et al. 2008; Ali 2008; Costa-Soria 2011), only the im-
plementation details of this metamodel are presented in sec-
tion 8.3.5.

5.3 summary

�is chapter has introduced what a multi-model is, and how using
this conceptMulti-Model Driven So�ware Product Lines (MMDSPLs)
can be built. A MMDSPL is a SPL built using di�erent modeling lan-
guages and notations, and based on theMDE principles. In this sense,
the previous works done in the context of so�ware systems’ views
provide a fundamental background to characterize the most relevant
views that should be considered (Bass et al. 1998; Clements et al.
2003; Limón Cordero 2010). Speci�cally, this thesis is based on the
proposal of Limón Cordero (2010), which provides a comparison
among the di�erent proposals made in the last years to character-
ize the so�ware systems’ views; moreover, it makes a proposal to
describe and interrelate them by using the MDA. InMULTIPLE three
views are considered: the modular and the component–connector
views, which are based in previous literature; and the new variability
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view, which previous works do not manage in a explicit way and is
fundamental when dealing with SPLs.
All these views, together with the relationships among them,make

up the multi-model which de�nes a SPL as shown in Fig. 5.1. In
this thesis each view can be de�ned by using a particular DSL, and
each view can be related with each other by using declarative model
transformations. All these tasks are supported by the corresponding
tool support as next chapters will demonstrate.





6
CARDINALITY-BASED FEATURE MODEL
CONFIGURATION ISSUES

«The signi�cant problems we have cannot be solved
at the same level of thinking with which we created them.»

—Albert Einstein
German physicist and Nobel prize in Physics in 1921, 1879–1955

Feature modeling plays a key role in the de�nition of a SPL. As a
modeling approach, it can be exploited by means of metamodeling
standards such as MDA.
In this chapter we discuss the main issues that arise when trying

to use feature models in a MDE process, and how to easily over-
come them. Here, and in the remaining of this thesis, we present
our approach to allow developers of SPLs to de�ne, use and exploit
feature models in a modeling and MOF-compliant metamodeling
tool (such as EMF). Moreover, since the EMF framework provides
several tools which permit us to enrich these models (by means
of OCL expressions) and to deal easily with them (by using model
transformations),we will use this framework to start a SPL.
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6.1 introduction

Feature models are diagrams which express the commonalities
and variabilities among the members of a family of products.�e
cardinality-based feature modeling approach (see section 4.2.4) in-
tegrates several extensions that have been proposed to the original
FODA notation.
A con�guration of a feature model, can be de�ned as a valid set of

instances of a feature model (see section 4.2.5). Expressed in terms
of the Object-Oriented (OO) paradigm, the relationship between a
feature model and a con�guration is comparable to the relationship
between a class and an object. Fig. 4.8 (page 58) shows an example
feature model with its two possible con�gurations. Notice that the
feature selection process (according to the de�ned constraints) is
closely related with a copy mechanism, that is, a con�guration of
a feature model is a more restrictive copy of the original one that
represents exactly one variant.
�is de�nition is quite intuitive when dealing with ‘‘traditional’’

feature models (those that can be de�ned by using the original FODA
notation). In this case, every instantiation of the elements of the
feature model will follow the singleton pattern (Gamma et al. 1995),
that is, every feature can have at most one instance. Fig. 4.8 (see
page 58) show an example of this.

6.2 feature models , configurations and mof

�e MOF standard, as presented in section 2.3, de�nes a strict clas-�e MOF standard
provides a suitable

basis to de�ne
feature models and

con�gurations.

si�cation of so�ware artifacts in a four-layer architecture. Since it
provides support for modeling and metamodeling, we can use MOF
to de�ne feature models by de�ning their metamodel. Fig. 6.1 shows
the example featuremodel presented in Fig. 4.8 in the context ofMOF.
�e EMOF language is represented in a simpli�ed way inM3. InM2,
the feature metamodel is represented by using the MOF language
(also in a simpli�ed way).�e example feature model is shown in
levelM1 (le�-most feature model).
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�e EMOF language
is represented in a
simpli�ed way in
the levelM3. In the
levelM2 the
metamodel for
cardinality-based
feature models is
represented by using
the MOF language
(also in a simpli�ed
way). In the level
M1 feature models
are described. Some
con�gurations are
shown at levelM0.
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Figure 6.1: Con�guration of FODA feature models in MOF

A con�guration of a feature model is built by selecting a subset of
features of a model. Obviously, mandatory features must be always
selected, and optional features may be selected or not. In practice,
this implies that they can be removed from the feature model (Con-
�guration 2 in Fig. 4.8). �is con�guration mechanism (deletion
of optional features) is done at the model level as instances are not
usually identi�ed as such in the feature modeling community.�is
can be done (and is somewhat intuitive) as features can have only a
single instance and con�gurations at theM0 layer are equivalent to
their corresponding feature models at theM1 layer.
When cardinality-based feature models were proposed, the same

mechanism to build featuremodel con�gurations was adopted (Czar-
necki et al. 2005b; Czarnecki et al. 2005a). In this case, when features
have an upper bound greater than 1, they can be cloned.�us, we can
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Figure 6.2: Staged con�guration through specialization

have multiple copies of the same feature.�is con�guration steps are
also done at model level until only one variant of the feature model
is possible. Figure 6.2 shows an example of this.
Fig. 6.3 shows an example of the con�guration through specializa-

tionmechanism in the context of MOF: several feature models are
built until a feature model without variability (which identi�es the
con�guration) is de�ned.

Con�gura-
tion through

specialization uses
the re�nement of
feature models to
describe model

con�gurations.�e
con�guration is
described by a

feature model which
represents only
one variant.
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Figure 6.3: Con�guration through specialization in the context of MOF
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However, this approach to con�gure cardinality-based feature
models presents some problems when using feature models in a
MDE process.�ese problems come from the classical de�nition of
con�guration of a feature model (the set of features that are selected
from a feature model).�is de�nition mixes di�erent levels of ab-
straction as it tends to de�ne the con�guration as a copymechanism
instead of as an instantiationmechanism.�at is, the con�guration
is a re�nement of the feature model instead of an actual instance of
it.
�e misconception in the instantiation process becomes more

apparent when feature models also have attribute types. In this case,
the relationship between a feature model and a con�guration is more
clear: it is similar to the relationship between a class with attributes
and an object which de�nes its state in terms of the values for its
attributes. Taking this into account, the con�guration mechanisms
are more similar and understandable as an instance-of relationship
rather than as a copy-and-re�nement-of relationship.
Mixing di�erent levels of abstraction when dealing with so�ware

artifacts (such as the feature models) is also problematic when trying
to apply existing MDE technologies. For example, to execute model
transformations it is necessary to clearly de�ne the involved artifacts
and their relationships. A model transformation de�nes a set of
rules among a set of metamodels. A set of candidate models (which
conform to the metamodels) can be checked (or enforced) against
the de�ned rules. Model transformations can be applied not only at
metamodel/model level (M2 andM1 layers) but also to any x+ 1
and x levels (such as the model/instance layers). Fig. 6.4 describes

MetaModel 1

Model 1

MetaModel 2

Model 2

RulesM2

M1

Conforms to Conforms to

Automatic transformation
step

(x+1)

(x)

Figure 6.4: Example of a model transformation
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In order to use
feature models in
MDE processes we
need to clearly
separate feature
models and

con�gurations in
their respective

levels.
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Figure 6.5: De�nition and con�guration of feature models in the context

of MOF

an example transformation schematically with only two candidate
models (and metamodels).�e diagram describes the artifacts in-
volved in a model transformation. In this example, a set of Rules
de�nes how to transform from the metamodel MetaModel 1 to
the metamodelMetaModel 2. An initial model (Model 1, which
conforms toMetaModel 1) is automatically transformed to obtain
theModel 2, which conforms toMetaModel 2.
As a consequence of the above explanations, in order to integrate

feature models in model transformations we must place each so�-
ware artifact in its corresponding abstraction level. Fig. 6.5 shows
where feature models and con�gurations should be placed in a well-
de�nedMOF architecture.�is way, a feature model which describes
all the variants of the family of systems should be placed at theM1
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layer; and any valid con�guration described by the feature model
should be placed at theM0 layer.
Moreover, when features can be cloned and such features can

have an attribute type a new issue comes up: we can not represent
feature models as propositional formulas as in FODA. Propositional
formulas only allow two possible values: true or false, i. e., the
feature is selected or not. In cardinality-based feature models we
need to express how many clones of a feature exist, which are the
values of the attributes (which can be strings, integers, . . . ), etc. In
this case, we need to use more expressive languages that allows us
(i) to deal with sets of features (i. e. n copies of feature F); and (ii) to
deal with typed variables which values can be unbound in order to
easily represent attribute types.

6.3 describing feature model configurations as
instances

�e previous section has shown the importance to describe a con�gu-
ration as an instance of a featuremodel. MOF provides the conceptual
background to describe feature models and con�gurations. Now,
we must �nd the way to implement such approach in a modeling
environment. EMF, the industrial framework that can be considered
as an implementation of the MOF standard, can be used to achieve
this goal.

Ecore, the EMF metamodeling language, can be placed at layer
M3 of the four-layer MOF architecture. Using Ecore, developers can
de�ne their own models which will be placed at the metamodel
layer (M2). An example of such metamodels is the one to build
cardinality-based feature models. Finally, these Ecoremodels can be
used to automatically generate graphical editors which are capable
of building instance models, which will be placed atM1 layer. In
the case of feature modeling, these instance models are the feature
models. Fig. 6.6 shows this architecture.
A drawback of most of the modeling frameworks which are avail-

able today is thatM0 is empty. Speci�cally, EMF provides a modeling
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�e Ecore language
is placed at theM3
layer, the Ecore

models (such as the
metamodel for

cardinality-based
features models) are
placed at theM2
layer, and model
instances (feature
models) are placed
at theM1 layer. It
is noteworthy that

EMF can not
represent more than

3 layers.

M3

M2

M1

Feature
Metamodel

Feature
Model

Ecore

M0

Conforms to

Instance of

Ø

Figure 6.6: EMF and the four-layer architecture of MOF

language to de�ne newmodels and their instances, but it only covers
two layers of the MOF architecture: the metamodel (M2) and the
model (M1) layers. However, in the case of feature modeling we
need to work with three layers of the MOF architecture: metamodel
(cardinality-based feature metamodel), model (cardinality-based
feature models), and instances (con�gurations).
Fig. 6.7 shows how we overcome this drawback to provide com-

plete feature modeling support inMULTIPLE: we de�ne a model-to-
model transformation to convert a feature model (i. e. the model
represented by Feature model which can not be instantiated) to an
Ecoremodel—which we call theDomain Variability Model (DVM)—,
that represents the Feature model as a new class diagram. �us, it
is possible to represent a feature model at the metamodeling layer,
making the de�nition of its instances possible. �is allows us to
take advantage of EMF again, and automatically generate the editors
to de�ne feature model con�gurations in MULTIPLE, and validate
them against their corresponding feature models thanks to their new
representation, the DVM. Moreover, as the DVM is an Ecoremodel
(a simpli�ed UML class diagram) we automatically obtain support
to check complex constraints (by using OCL) over the feature mo-
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Figure 6.7: Dealing with feature model con�gurations in EMF

del con�gurations. Chapter 7 describes how this is implemented in
MULTIPLE in detail.

6.4 summary and conclusions

Feature models are used to de�ne the variability of a family of prod-
ucts. A speci�c variant of a feature model is described by a feature
model con�guration. Using modeling and metamodeling terminol-
ogy, a feature model con�guration is in turn an instance of a feature
model. However, traditionally the feature modeling community has
considered a feature model con�guration as a re�ned feature model
instead of as an instance (the so-called con�guration through special-
izationmechanism).�is chapter has summarized the main issues
that this idea implies.�ese problems become more apparent when
dealing with cardinality-based feature models.
Con�guration through specialization implies that a con�guration

is represented by a feature model which describes only one variant.
�is keeps us from using feature models in MDE processes, as we
need to place so�ware artifacts in the right levels of MOF. Represent-
ing con�gurations as actual instances of feature models allows us
to describe in a more natural way the relationship between them.
Furthermore, using the proper representation for feature models
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and their con�guration eases the validation tasks: the instance-of
relationship guarantees the coherence between the elements at the
M0 and theM1 layers.
Cardinality-based feature models also have some characteristics

that make them quite di�erent to classic feature models (FODA).
Speci�cally, traditionally feature models were analysed using propo-
sitional formulas. However, cardinality-based feature models can
have attribute types, which can not be described by this kind of logic.
�us, we need other kind of languages to analyse feature models and
describe model constraints.
To overcome all this issues in MULTIPLE we propose to use an

industrial modeling framework to build feature models and their
con�gurations. However, some technical issues arise. Nevertheless,
these issues can be easily solved by means of model transformations.
�is way, our proposal consists of transforming a feature model to a
Domain Variability Model (DVM). Such diagrams allow us to easily
de�ne con�gurations as real instances, we can integrate them in
complex MDE processes which use model transformations, and we
can use existing technologies and constraint languages to analyse
feature models and their con�gurations.



7
USING FEATURE MODELS IN MODEL-DRIVEN
ENGINEERING PROCESSES

«Fundamental progress has to do
with the reinterpretation of basic ideas»

—Alfred North Whitehead
English mathematician and philosopher, 1861–1947

�e basis of variability management inMULTIPLE is the cardinality-
based feature metamodel, which permits to de�ne feature models.
As a result of state of the art review presented in section 4.2, we
have decided to design a metamodel to de�ne (a variant of) the
cardinality-based feature models. �e proposed metamodel can
be considered a superset of the most relevant proposals for feature
modeling.�is chapter describes in detail our metamodel proposal,
and how this metamodel can be used to de�ne feature models and
feature model con�gurations.

7.1 process overview

As explained in the previous chapter, the use of feature models in
MDE processes using nowadaysmodeling tools is not straightforward.
�e main problem that arises is the inability of these tools to deal

83
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with so�ware artifacts in more than two layers at the same time (i. e.,
they only support the instance-of relationship).�is thesis proposes
to use model transformations to overcome this drawback.
�e use of model transformations has an impact in the process of

de�ning a featuremodel and a featuremodel con�guration, and such
impact should be considered. Fig. 7.1 describes such process using
So�ware & Systems Process EngineeringMeta-Model (SPEM) (OMG
2008c). First, the domain engineer de�nes a feature model (which
conforms to the feature metamodel described in section 7.2). Such
feature model is used—together with the Feature Model (FM) to DVM
QVT transformation—as an input of the Obtain Domain Variability
Model task. such task, which is automatically executed, generates a
DVM. Using the DVM the application engineer performs the Feature
Selection task. In such task is when the application engineer selects
the desired product of the SPL, and as a result, obtains a Feature
Model Con�guration.
Next sections detail each one of these tasks: section 7.2 describes

the feature metamodel, which in turn determines how a feature
model is de�ned; section 7.3 explains how a DVM is obtained from
a given feature model; and �nally section 7.4 describes how feature
model con�gurations are de�ned by using the DVM.

�e use of feature
models has an

impact in a so�ware
development

process.�e �gure
shows how a feature
model can be used
in a MDE process.

«out»«performs»

«performs»

De�ne Feature
Model

Obtain Domain
Variability Model

Feature
Model

Domain Vari-
ability Model

Feature
Selection

Domain
Engineer

«in» «out» «in»

FM to DVM
QVT transformation

«in»

Application
Engineer

Feature Model
Con�guration

«out»

Figure 7.1: Feature models and MDE: process overview
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7.2 cardinality-based feature metamodel

In our proposal we have decided to represent explicitly the relation-
ships between features.�us, our metamodel represents in an uni-
form way the hierarchical relationships and the restrictions between
features. Table 7.1 classi�es and summarizes the types of relationships
that the feature metamodel is able to represent.

7.2.1 Feature models structure

Relationships represented in table 7.1 classify relationships in two
orthogonal groups:

• Vertical vs. horizontal relationships. Vertical relationships de-
�ne the hierarchical structure of a feature model and horizon-

In contrast to other
proposals, we
propose to represent
the di�erent
relationships
between features in
an explicit way.
Relationships can be
binary or grouped;
and vertical or
horizontal.
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Vertical (hierarchical)
relationships Horizontal relationships

Mandatory

Optional

Generic

Biconditional

Implication

Exclusion

Use

OR

XOR

[j..k]

[j..1]

[j..k]0≤j≤1<k≤m

0≤j≤1

0≤j≤k≤m

[1..n]

[0..n] [0..n]

*where m is the number of childs

Table 7.1: Cardinality-based feature metamodel: proposed types of rela-

tionships between features
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tal relationships de�ne dependecies and restrictions between
features.

• Binary vs grouped relationships. Binary relationships de�ne
relationships between two single features. In turn, grouped
relationships are a set of relationships between a single feature
and a group of childs.

Given this classi�cation, the following relationships exist:

• Binary and vertical relationships. �is relationships de�ne
structural relationships between two single features. In our
approach, they represent a has_a relationship between a par-
ent and a child feature.�ey can be mandatory and optional
depending on the lower bound value.�e upper bound (n)
can be on both cases 1 or greater than 1, and indicates how
many instances of the child feature will be allowed.

• Grouped and vertical relationships. Grouped and vertical re-
lationships are a set of binary relationships where the child
features share a is_a connotation with respect to their parent
feature. A group can have an upper and a lower bound.�ese
bounds specify the minimun and the maximun number of fea-
tures that can be instantiated (regardless of the total number
of instances).

• Binary and horizontal relationships. �ese relationships are
speci�ed between two features and do not express any hier-
archical information. �ey are explained in the following
section (sect. 7.2.2).

7.2.2 Feature model constraints

As was pointed out in section 6.1, it is quite common in feature mod-
eling to have the possibility to de�ne model constraints in order to
describe more precisely which con�gurations should be considered
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as valid. Typically, these constraints are described by means of impli-
cation or exclusion relationships.�is kind of relationships are the
binary and horizontal relationships that our metamodel provides.
�e binary and horizontal relationships are speci�ed between two �e classical

constraints that can
be de�ned in feature
models (requires,
excludes) are
classi�ed as binary
and horizontal

relationships in our
proposal.

features and they can express constraints (coimplications, implica-
tions and exclusion) or dependencies (use).�e �rst group applies
to the whole set of instances of the involved features, however, the
second one allows us to de�ne dependencies at instance level, i. e.:

• Implication (A −→ B): If an instance of feature A exists, at
least an instance of feature Bmust exist too.

• Coimplication (A ←→ B): If an instance of feature A exists,
at least an instance of feature Bmust exist too and vice versa.

• Exclusion (A× × B): If an instance of featureA exists, can
not exist any instance of feature B and vice versa.

• Use (A −−→ B):�is relationship will be de�ned at con�g- �e classical
requires

relationship
corresponds to our
implication
relationship.�e
excludes

relationship
corresponds to our
exclusion
relationship.

uration level, and it will specify that an speci�c instance of
featureA will be related to one (or more) speci�c instances of
feature B as de�ned by its upper bound (n).

Besides these kind of relationships that describe coarse-grained
restrictions, our metamodel provides capabilities to describe �ne-
grained restrictions. To describe these �ne-grained restrictions we
propose a constraint language, called Feature Modeling Constraint
Language (FMCL). FMCL is a formal language without side-e�ects
(does not modify the model instances) whose syntax is based on the
widely known OCL and its semantics are de�ned by a set of patterns
that describe the equivalences between FMCL expressions and OCL
expressions.

7.2.3 Cardinality-based feature metamodel in MOF

Fig. 7.2 shows our feature metamodel. Such metamodel has been
de�ned taking into account that every element will have a di�erent
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graphical representation. �is way, it is possible to automatically
generate the graphical editor to draw feature models based on such
metamodel. In that �gure, a feature model is represented by means
of the FeatureModel class, and a feature model can be seen as a set
of Features and the set of Relationships among them. A feature
model must also have a root feature, which is denoted by means of
the rootFeature role.
Binary relationships in table 7.1 are represented in the features We have speci�ed

our metamodel for
feature modeling
using MOF. In our
proposal, a feature
model can be
considered as a set
of features and the
set of relationships
among them.

metamodel as descendants of the Relationship class. Class Struc-
turalRelationship represents the so called Vertical relationships and
GenericRelationship represents theHorizontal ones. StructuralRela-
tionships relate one parent RelatableElement (a Feature or a Group)
with one child Feature. A Group speci�es that a set of StructuralRe-
lationships should be considered as a group.
Complex model constraints expressed in FMCL are stored in a

Constraints Set instance, and can be applied to any subclass of the
abstract class ConstrainableElement (context role), i. e., Feature-
Model, Feature, Group or Uses.�e restrictions are expressed as a
textual expression (body attribute of the Constraint class).
It is noteworthy to point out two slight di�erences of our approach

with respect to the classical cardinality-based feature models. First,
we represent feature multiplicities at relationship level instead of at
feature level (by means of the BoundableElement class).�is allows
us to easily de�ne mandatory and optional relationships explicitly.
Second, features can not have an attribute type. In turn, this infor-
mation is expressed in terms of feature attributes. Feature attributes
express information which is complementary to a feature and can
be used to describe parametric features.

7.2.3.1 Example feature model

Fig. 7.3 shows an example feature model using the proposed notation.
�e featuremodel describes a simple product line for cars. A carmust
have four wheels (of a given radius), one engine (of an speci�c power
in watts) and a transmission (which can bemanual or automatic). As
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Car

Wheel
radius : Integer

[4..4]

Engine
power : Integer

Transmission

Manual Automatic

TCS

Constraints

self.radius > 15

Wheel.allInstances()->forAll(w1, w2 | w1 <> w2 implies w1.radius = w2.radius)

Constraints

TCS.selectd() implies Engine.power > 70000

Figure 7.3: Example cardinality-based feature model

an optional equipment the car can have a Traction Control System
(TCS).�e feature model also describes four constraints: the arrow
between the feature TCS and Automatic states that if an automatic
transmission is selected, the TCSmust be selected too; the annotation
attached to the TCS feature states that the TCS can only be selected if
the power of the engine is higher than 70.000 watts; and �nally, the
annotation attached to the Wheel feature speci�es that the radius of
the instances of the wheel must be higher than 15 inches and that all
the wheels must be of the same size.

7.3 the domain variability model

�e DVM is a class diagram (an Ecore model) whose instances are�e DVM is the
main artifact which
allows using feature
models in complex
MDE processes.�e

equivalence
between a feature
model and a DVM
can be established
by a set of corre-

spondence patterns.

equivalent to the con�gurations of a feature model. It is intended to
ease the de�nition of feature models con�gurations in EMF as was
explained in section 6.3.�is model can be automatically generated
by means of a model-to-model transformation.�e following para-
graphs describe the transformation which converts a feature model,
to a DVM (expressed as an Ecoremodel that can be instantiated).
As feature models describe not only the structure of the features

but also the relationships and restrictions among them, it is neces-
sary to de�ne rules to generate both the structure of the DVM and
the restrictions that apply to it. First, the structure of the DVM is
de�ned by means of Ecore containment references and inheritance
relationships; and second, restrictions are de�ned by means of OCL
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expressions.�ese OCL expressions are included on the DVM itself
by means of EAnnotations.�ese EAnnotations are automatically
used in next steps by our prototype to check that con�gurations are
valid.

7.3.1 �e structure of the DVM

�e transformation regarding to the structure of the DVM is almost
a one-to-one mapping. For each Feature of the source model an
EClass (with the same name) is created. All the classes are created
inside the same EPackage, whose name and identi�er derives from
the feature model name. Moreover, for each feature Attribute, an
EAttribute in its corresponding EClass is created in the target model.
Any needed EDataType is also created.
Regarding to the relationships, for each StructuralRelationship �e mappings

between a feature
model and a DVM
are de�ned by a set
of QVT–Relations
declarative rules.

from a parent Feature, a containment EReference will be created
from the corresponding EClass and for each Group contained in a
Feature a containment EReference will be created from the corre-
sponding EClass.�is EReference will point to a new abstract class,
whose name will be composed by the Feature name and the su�x
‘‘Type’’. Additionally, an EClass will be generated for each Feature
belonging to a Group. Moreover, each one of these EClasses inherit
from the abstract EClass that has been previously created.
Following theMDA guidelines, the mappings described previously

informally have been clearly de�ned by using the Relations language
de�ned in the QVT standard (OMG 2008a). Next, the relations are
described using the graphical notation for QVT–Relations. Appendix
A contains the full textual speci�cation of the QVT transformation.

7.3.1.1 Feature2Class relation

�e Feature2Class relation (Fig. 7.4) describes the mapping between
Features and Classes.�is relation is top-level, i. e., it is enforced on
its own (it is not a pre- or post-condition for another relation).
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�e rule speci�es that, given a feature model (whose name ismod-
elName) and a feature (whose name is featureName), an EPackage
containing an EClassmust exist in the target domain.�e EPackage
name, nsPrefix and nsURImust match the feature model name.�e
EClass namemust match the feature name.

7.3.1.2 FeatureAttribute2ClassAttribute relation

�e FeatureAttribute2ClassAttribute relation (Fig. 7.5) is a top-level
rule which speci�es the mappings between feature attributes and
class attributes.�us, for each FeatureModel, an EPackage with the
same name (and identi�ers) must exist. For each featureAttribute an
EAttribute with the same name must also exist. Such attributes are
contained in their corresponding elements, i. e., feature attributes are
contained in a Feature and EAttributes are contained in an EClass.
�ese elements (Features and EClasses) must have the same name.
Finally, every feature Attributemust have a type. For each feature

attribute type, an EDataTypemust exist in the declared EPackage.
Such EDataTypemust correspond to a Java type contained in the
java.lang package.

feature : Feature 

«domain» 

classdiagram 

E 

pkg : EPackage 

«domain» 

name = modelName 
nsPrefix = modelName 
nsURI = ‘http://’ + modelName 

model : FeatureModel 

«domain» 

name = modelName 

class : EClass 

name = featureName 

name = featureName 

eClassifiers 

Feature2Class 

Figure 7.4: Feature2Class relation
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featureAttribute : Attribute 

name = featureAttName, 
type = featureAttType 

feature : Feature 

«domain» 

pkg : EPackage 

«domain» 

name = modelName 
nsPrefix = modelName 
nsURI = ‘http://’ + modelName 

model : FeatureModel 

«domain» 

name = modelName 

type : EDataType 

name = featureAttType, 
instanceTypeName = ‘java.lang.’ + featureAttType 

name = featureName 

eClassifiers 

featureAttribute : Attribute 

name = featureAttName, 
type = featureAttType 

attributes 
class : EClass 

name = featureName 

«domain» 

eattribute : EAttribute 

name = featureAttName 

eStructuralFeatures 

type : EDataType 
eType 

FeatureAttribute2ClassAttribute 

Figure 7.5: FeatureAttribute2ClassAttribute relation

7.3.1.3 StructuralRealtionship2Reference relation

�is top-level rule (see Fig. 7.6) transforms the binary relationships
between two Features to a containment EReference between two
EClasses. As the previous rules, it checks that a Feature Model exists,
and enforces that an EPackage with the same name also exists.
�e rule also checks that for eachStructuralRelationships between

two Features whose names are featureName and childFeatureName,
an EReferencewith the same name between two EClassesmust exist.
�e names of the EClassesmust be featureName and childFeature-
Name.�e lower and upper bound of the EReferencemust be the
ones speci�ed by the StructuralRelationship (lowerBound and up-
perBound). Finally, the containmet attribute of the EReferencemust
be true.
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relationship : StructuralRelationship 

lowerBound = lower 
upperBound = upper 

feature : Feature 

«domain» 

pkg : EPackage 

«domain» 

nsURI = ‘http://’ + modelName model : FeatureModel 

«domain» 

name = modelName 

name = featureName 

eClassifiers 

relationship : StructuralRelationship 

lowerBound = lower 
upperBound = upper 

childs 
class : EClass 

name = featureName 

«domain» 

reference : EReference 

name = childFeatName 
containment = true 
lowerBound = lower 
upperBound = upper 

eStructuralFeatures 

childClass : EClass 
eType 

child : Feature 

name = childFeatName 

to 

childClass : EClass 

name = childFeatName 

StructuralRelationship2Reference 

Figure 7.6: StructuralRealtionship2Reference relation

childRelationship : StructuralRelationship 

feature : Feature 

«domain» pkg : EPackage 

nsURI = ‘http://’ + modelName 

model : FeatureModel 

«domain» 

name = modelName 

name = featureName 

eClassifiers 

group : Group 

name = groupName 

group 

parentClass : EClass 

name = featureName 

reference : EReference 

name = featureName + ‘Features’ 
containment = true 
lowerBound = 0 
upperBound = -1 

eStructuralFeatures 

typeClass : EClass 

eType 

childFeature : Feature 

name = childFeatName 

to 

typeClass : EClass 

name = groupName 
abstract = true 

«domain» 

eClassifiers 

classdiagram 

E 

childClass : EClass 

name = childFeatName 

eClassifiers 

GroupChild2Classes(childFeature, typeClass, childClass); 
GroupChild2ChildrenAnnot(feature, parentClass); 
GroupChild2LowerAnnot(childRelationship, parentClass); 
GroupChild2UpperAnnot(childRelationship, parentClass); 

childs 

childRelationship : StructuralRelationship 

Group2Reference 

where 

Figure 7.7: Group2Reference relation
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7.3.1.4 Group2Reference relation

�e Group2Reference top-level relation is in charge of transforming
a Group of Features to a set of EClasses, EReferences and EAnno-
tations.�is rule has several post-conditions, GroupChild2Classes,
GroupChild2ChildrenAnnot, GroupChild2LowerAnnot and Group-
Child2UpperAnnot, which are explained next.
Fig. 7.7 shows the object template which is applied to transform

a Feature Group to the class diagram domain. First, as usual, it
checks that both a Feature Model and an EPackage are found in the
source and target domains with the same identi�ers. It also checks
that for each Feature which contains a Group, two EClassesmust be
present in the target domain.�e �rst EClassmust have the name
of the feature (featureName).�e second class must be an abstract
class whose namemust match the Group name (groupName). As
was explained in page 86, grouped and vertical relationships denote
an is_a relationship between a parent feature and its children.�is
way, this EClass is created to make explicit the is_a relationship
mentioned before, as every child feature will inherit from it. �e
inheritance relationship is enforced when the GroupChild2Classes
relation is applied.�e abstract EClass is referenced from the parent
EClass by means of a containment EReference.�e lower and upper
bound of the EReference are set to 0 and -1 respectively, which are
the generic values to describe a zero to many elements multiplicity.
�e actual values of the di�erent relationships are checked using OCL
constraints. Such constraints are created by the post-conditions of
the rule.
Finally, a Group in the source domain points to a set of child

Features. For each one of these child features, an EClass with the
same name (childFeatName) must exist in the target domain.

7.3.1.5 GroupChild2Classes relation

�e GroupChild2Classes (Fig. 7.8) is executed as a post-condition
of the Group2Reference and creates an inheritance relationships be-
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childFeature : Feature 

«domain» 

name = childFeatureName 

childClass : EClass 

name = childFeatureName 

classdiagram 

E 

typeClass : EClass 

«domain» 

typeClass : EClass 

«domain» 

eSuperTypes 

GroupChild2Classes 

Figure 7.8: GroupChild2Classes relation

tween two EClases: childEClass and typeClass. �e name of the
child EClassmatchs the name of an already created Feature.

7.3.1.6 GroupChild2ChildrenAnnot relation

One of the main di�erences of our proposal with respect to the tradi-
tional cardinality based featuremodels is how the group cardinalities
are speci�ed. I. e., we di�erentiate between the group cardinalities
and the child cardinalities. When a group cardinality is speci�ed,
it restricts how many features can be instantiated (regardless of the
number of instances of the feature), and the number of instances is
restricted by the child cardinality.
Fig. 7.9 shows and example feature model. In it, an exclusive or

group is de�ned (i. e., the group cardinality is [1..1]). �is means
that only one child feature can be instantiated (B or C, but not both).
However, features B and C are clonable, and, as such, several in-

A

B
[0..3]

C
[0..2]

Group cardinality

Child cardinalityChild cardinality

[1..1]

Figure 7.9: Cardinalities in feature groups
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feature : Feature 

«domain» 

feature 

C name = featureName 

parentClass : EClass 

classdiagram 

E 

oclAnnotLower : EAnnotation 

«domain» 

eAnnotations 

source = ‘http://www.eclipse.org/ocl/examples/OCL’ 

oclEntryLower : EStringToStringMapEntry 

key = ‘checkChildren’ + featureName 
value = oclExpresion 

details 

GroupChild2ChildrenAnnot 

parentClass.eAnnotations->select( 
       annot : EAnnotation | not annot.details->select( 
            entry : EStringToStringMapEntry | entry.key = 'checkChildren' + featureName)->isEmpty())->isEmpty(); 

when 

oclExpression =  
  toString(lower) + ‘ <= ( ‘ + buildGroupConstraint(feature) + ‘ ) and ( ‘ + buildGroupConstraint(feature) + ‘ ) <= ‘ + toString(upper) 

where 

grp: Group 

lowerBound = lower 
upperBound = upper 

group 

Figure 7.10: GroupChild2ChildrenAnnot relation

stances can be created (up to 3 instances of B and up to 2 instances
of C).
Fig. 7.10 shows the GroupChild2ChildrenAnnot relation. It checks

(and enforces) that for each Feature containing a Group a corre-
sponding EAnnotationmust exist in the parent EClass. To identify
the EAnnotation the featureName will be used.�e content of the
EAnnotation will be an OCL expression.�e when clause speci�es
the pre-condition of the relation, and states that the rule will be only
applied if the EClass does not contain an EAnnotationwith the same
key attribute.�e where clause builds theOCL expression which spec-
i�es that the number of EClasses with instances must be between
the lowerBound and upperBound values of the Group. To count the
number of EClases with instances the buildGroupConstraint(...)
query is used (see Listing 7.1).
Finally, the Listing 7.2 shows the toString(...) function, which

is able to convert an integer to string using OCL. �is function is
necessary because OCL is a strong typed language, and does not
provide any built-in function to perform typecasting.
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Listing 7.1: buildGroupConstraint(...) OCL query
1 query buildGroupConstraint(parentFeature : Feature) : String

{

2 parentFeature.group.childs ->iterate(

3 -- We iterate for each relationship contained in the

group

4 relationship : StructuralRelationship;

5 -- The text of the OCL expression is stored in the "

result" var

6 result : String = ’’

7 | -- Starting from here , the body of the loop

8 result.concat(

9 ’(if self.’ + parentFeature.name + ’Features ->select(

f : ’ + parentFeature.group.name + ’ | f.

oclIsKindOf(’ + relationship.to.name + ’))->

notEmpty () then 1 else 0 endif) + ’)

10 ).concat(’0’)

11 } �
Listing 7.2: toString(...) OCL query

1 query toString(number : Integer) : String {

2 -- We define the following expression to translate an

Integer to

3 -- String. In this way , we avoid to include any external

library/method

4 -- to perform the conversion.

5 if number >= 0 then

6 OrderedSet {1000000 , 10000, 1000, 100, 10, 1}->iterate(

7 -- We will support numbers <= 999.999

8 -- If greater numbers are needed , more powers of ten can

be added

9 denominator : Integer;

10 s : String = ’’|

11 let numberAsString : String = OrderedSet{’0’,’1’,’2’,’3

’,’4’,’5’,’6’,’7’,’8’,’9’}

12 ->at((( number div denominator) mod 10) + 1)

13 in

14 if s=’’ and numberAsString = ’0’ then

15 s

16 else

17 s.concat(numberAsString)

18 endif

19 )

20 else

21 ’-’.concat(toString(-number))

22 endif

23 } �
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feature 

C 

parentClass : EClass 

classdiagram 

E 

oclAnnotLower : EAnnotation 

«domain» 

eAnnotations 

source = ‘http://www.eclipse.org/ocl/examples/OCL’ 

oclEntryLower : EStringToStringMapEntry 

key = ‘lowerMultiplicity’ + featureName 
value = oclExpresion 

details 

GroupChild2LowerAnnot 

parentClass.eAnnotations->select( 
       annot : EAnnotation | not annot.details->select( 
            entry : EStringToStringMapEntry | entry.key = ‘lowerMultiplicity' + featureName)->isEmpty())->isEmpty(); 

when 

oclExpression =  
  ‘self.’ + parentFeatureName + ‘Features->select(f : ‘ + groupName + ‘ | f.oclIsKindOf(‘ + featureName + ‘))->notEmpty() implies’ + 
  ‘self.’ + parentFeatureName + ‘Features->select(f : ‘ + groupName + ‘ | f.oclIsKindOf(‘ + featureName + ‘))->size() >=‘ + toString(lower) 

where 

feature : Feature 

name = featureName 

to 

relationship : StructuralRelationship 

grp: Group 

lowerBound = lower 

parFeature : Feature 

«domain» 

name = parentFeatureName 

name = groupName 

from 

parentFeature 

Figure 7.11: GroupChild2LowerAnnot relation

7.3.1.7 GroupChild2LowerAnnot relation

As explained before, in our proposal we diferentiate between group
cardinalities and child cardinalities. As theGroupChild2ChildrenAn-
not did for group cardinalities, the GroupChild2LowerAnnot creates
an EAnnotation containing an OCL expression to check if the lower
bound of a child cardinality is valid.
�e relation states that for each Feature contained in a Group by

means of a StructuralRelationship, a corresponding EAnnotation
identi�ed by the feature namemust exist. As the when clause speci�es,
the rule is only applied if the corresponding EAnnotation has not
been created yet.�e where clause builds the OCL constraint. Such
constraint speci�es that the number of instances of the Featuremust
be higher than the lowerBound.

7.3.1.8 GroupChild2UpperAnnot relation

Fig. 7.12 shows the GroupChild2UpperAnnot relation.�is relation
is in charge of creating the EAnnotation to validate the number of
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feature 

C 

parentClass : EClass 

classdiagram 

E 

oclAnnotLower : EAnnotation 

«domain» 

eAnnotations 

source = ‘http://www.eclipse.org/ocl/examples/OCL’ 

oclEntryLower : EStringToStringMapEntry 

key = ‘upperMultiplicity’ + featureName 
value = oclExpresion 

details 

GroupChild2UpperAnnot 

upper > 0 and  
parentClass.eAnnotations->select( 
       annot : EAnnotation | not annot.details->select( 
            entry : EStringToStringMapEntry | entry.key = ‘upperMultiplicity' + featureName)->isEmpty())->isEmpty(); 

when 

oclExpression =  
  ‘self.’ + parentFeatureName + ‘Features->select(f : ‘ + groupName + ‘ | f.oclIsKindOf(‘ + featureName + ‘))->notEmpty() implies’ + 
  ‘self.’ + parentFeatureName + ‘Features->select(f : ‘ + groupName + ‘ | f.oclIsKindOf(‘ + featureName + ‘))->size() <=‘ + toString(upper) 

where 

feature : Feature 

name = featureName 

to 

relationship : StructuralRelationship 

grp: Group 

upperBound = upper 

parFeature : Feature 

«domain» 

name = parentFeatureName 

name = groupName 

from 

parentFeature 

Figure 7.12: GroupChild2UpperAnnot relation

instances of a child Feature in a feature Group. It is speci�ed in the
same way than the GroupChild2LowerAnnot relation.

7.3.2 Constraints over the DVM

�e restriction relationships and model constraints (FMCL expres-
sions) are mapped to references and OCL expressions in the DVM.
�e following paragraphs summarize how these constraints are rep-
resented in the DVM.
First, the restriction relationships (implies, excludes, etc.) can be

expressed as OCL expressions.�e semantics of these relationships
can be expressed as:

• A implies B relationship (A −→ B):
1 context PackageName inv:

2 A.allInstances ()->notEmpty () implies B.allInstances ()

3 ->notEmpty ()) �
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For example, the implies relationship that relates the features
Automatic and TCS in Fig. 7.3 can be expressed as:

1 context CarPackage inv:

2 Automatic.allInstances ()->notEmpty () implies

3 TCS.allInstances ()->notEmpty ()) �
• A if and only if B relationship (A←→ B):

1 context PackageName inv:

2 A.allInstances ()->notEmpty () implies B.allInstances ()

3 ->notEmpty ()) and

4 B.allInstances ()->notEmpty () implies A.allInstances ()

5 ->notEmpty ()) �
• A excludes B relationship (A× × B):

1 context PackageName inv:

2 A.allInstances ()->notEmpty () implies B.allInstances ()

3 ->isEmpty ()) and

4 B.allInstances ()->notEmpty () implies A.allInstances ()

5 ->isEmpty ()) �
Second, for eachUses relationship between two Features, an ERef-

erencewill be created in the target model.�is EReferencewill relate
two EClasses whose names will match the Features names.
Finally, the FMCL expressions are mapped to OCL expressions tak- �e FMCL language

can be considered as
OCL enriched with
syntactic sugar.�is
way, transforming a
FMCL expression to
an OCL expression
is an
straightforward
process.

ing into account the mappings explained in section 7.3.1. Fig. 7.3
shows an example of this. As can be seen on the constraint that
applies to theWheel feature, a FMCL expression can be expressed di-
rectly using the OCL syntax.�is way, an FMCL expression is directly
transformed to an OCL invariant.�e context of the invariant corre-
sponds to the name of the ConstrainableElement that is linked to the
constraint (dashed line in the �gure) and the text of the expression
remains the same:

1 context Wheel

2 inv: self.radius > 15

3 inv: Wheel.allInstances ()->forAll(w1, w2 |

4 w1 <> w2 implies w1.radius = w2.

radius) �
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However, although the FMCL expressions are almost the same
than an OCL invariant, some simple conventions have been adopted
to make the de�nition of model constraints closer to the feature
modeling context.�e semantics of these additions are de�ned by
means of transformation patterns (see section 7.3.2.6).
An example of the application of some of these patterns can be

seen in the constraint attached to the TCS feature (Fig. 7.3). �e
example constraint is transformed to the following OCL expression:

1 context TCS inv:

2 TCS.allInstances ()->notEmpty () implies Engine.allInstances ()

->forAll(power > 70000) �
Next, the QVT–Relations rules which perform the transformation

are explained in detail.

7.3.2.1 ExcludesRelationship2ModelConstraint relation

�e top-level ExcludesRelationship2ModelConstraint relation (Fig.
7.13) is in charge of creating the OCL expression to guarantee that
the existence of a feature excludes the existence of another feature.
�us, for each Excludes relationship contained in a FeatureModel,

fromFeature : Feature 

pkg : EPackage 

«domain» 

nsURI = ‘http://’ + modelName 

name = fromFeatName 

excludesRelationship : Excludes 

from 

toFeature: Feature 

name = toFeatName 

to 

ExcludesRelationship2ModelConstraint 

oclExpression = 
    '(' + fromFeatName + '.allInstances()->notEmpty() implies ' + toFeatName + '.allInstances()->isEmpty()) and ' + 
    '(' + toFeatName + '.allInstances()->notEmpty() implies ' + fromFeatName + '.allInstances()->isEmpty())'  

where 

model : FeatureModel 

«domain» 

name = modelName 

relationships 

oclAnnotExcludes : EAnnotation 

eAnnotations 

source = ‘http://www.eclipse.org/ocl/examples/OCL’ 

key = fromFeatName + ‘_exclusion_’ + toFeatName 
value = oclExpresion 

details 

detailExcludes : EStringToStringMapEntry 

feature 

C 

classdiagram 

E 

Figure 7.13: ExcludesRelationship2Modelconstraint relation
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fromFeature : Feature 

name = fromFeatName 

impliesRelationship : Implies 

from 

toFeature: Feature 

name = toFeatName 

to 

ImpliesRelationship2ModelConstraint 

model : FeatureModel 

«domain» 

name = modelName 

relationships 

pkg : EPackage 

«domain» 

nsURI = ‘http://’ + modelName 

fromClass : EClass 

name = fromFeatName 

oclAnnotFrom : EAnnotation 

source = ‘http://www.eclipse.org/ocl/examples/OCL’ 

key = fromFeatName + ‘_implies_’ + toFeatName 
value = toFeatName + ‘.allInstances()->notEmpty()’ 

details 

detailFrom : EStringToStringMapEntry 

eAnnotations 

eClassifiers 

feature 

C 

classdiagram 

E 

Figure 7.14: ImpliesRelationship2ModelConstraint relation

an EAnnotation is created in the corresponding EPackage. Such
EAnnotation will de�ne a key (an identi�er) and a value (an OCL
expression). Such attributes get their values from the Features re-
lated by the Excludes relationship (i. e., fromFeature and toFeature).
Finally, the OCL expression is built in the where clause. It states that
if the set of instances of the fromFeature feature is not empty, the set
of instances of the toFeature feature must be empty and vice versa.

7.3.2.2 ImpliesRelationship2ModelConstraint relation

Fig. 7.14 shows the top-level relation ImpliesRelationship2Model-
Constraint.�is relation creates an EAnnotation to check that, when
a feature has been selected, another feature has been selected too.
In terms of the DVM this is achieved by checking that, when an
EClass has at least one instance, the second EClass has at least one
instance too.
In page 100, the OCL invariant de�nes the EPackage as the context

of the constraint. However, this expression can be simpli�ed if the
context is set to the fromClass (the fromClass is the EClass which
corresponds to the fromFeature).�is way, the relation de�nes that
for each Implies relationship, contained in a FeatureModel, and be-
tween two features (fromFeature and toFeature), an EAnnotation
contained in the fromClassmust exist. Such EAnnotation will con-
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fromFeature : Feature 

name = fromFeatName 

biconditionalRelationship : Biconditional 

from 

toFeature: Feature 

name = toFeatName 

to 

BiconditionalRelationship2ModelConstraint 

model : FeatureModel 

«domain» 

name = modelName 

relationships 

fromClass : EClass 

name = fromFeatName 

pkg : EPackage 

«domain» nsURI = ‘http://’ + modelName 

eClassifiers 

oclAnnotFrom : EAnnotation 

source = ‘http://www.eclipse.org/ocl/examples/OCL’ 

key = fromFeatName + ‘_biconditional_’ + toFeatName 
value = toFeatName + ‘.allInstances()->notEmpty()’ 

details 

detailFrom : EStringToStringMapEntry 

eAnnotations 

toClass : EClass 

name = toFeatName 

oclAnnotTo : EAnnotation 

source = ‘http://www.eclipse.org/ocl/examples/OCL’ 

key = toFeatName + ‘_biconditional_’ + fromFeatName 
value = fromFeatName + ‘.allInstances()->notEmpty()’ 

details 

detailTo : EStringToStringMapEntry 

eAnnotations 

eClassifiers 

feature 

C 

classdiagram 

E 

Figure 7.15: BiconditionalRelationship2ModelConstraint relation

tain a key and a value.�e value will contain an OCL expression to
check that the population of the EClass corresponding to toFeature
must be not empty.

7.3.2.3 BiconditionalRelationship2ModelConstraint relation

�e top-level relation BiconditionalRelationship2ModelConstraint is
shown in Fig. 7.15. When a Biconditional relationship is de�ned
between two Features, this relation is in charge of creating the EAn-
notation to check that both (or none) of them have been instantiated.
�e rule is written in a similar way to the ImpliesRelationship-

2ModelConstraint, as it expresses the same restriction but in both
directions.

7.3.2.4 UsesRelationship2Reference relation

As opposed to the previous relationships which de�ne restrictions
at type level (regardless of the actual instance/s), the proposed Uses
relationship de�nes relationships at instance level. I. e., once theUses
relationship is de�ned between two features (e. g., featuresA and B),
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fromFeature : Feature 

pkg : EPackage 

«domain» 

nsURI = ‘http://’ + modelName 

model : FeatureModel 

«domain» 

name = modelName 

name = fromFeatName 

eClassifiers 

usesRelationship : Uses 

name = usesName 
lowerBound = lower 
upperBound = upper 

from 

fromClass : EClass 

name = fromFeatName 

reference : EReference 

name = usesName 
containment = false 
lowerBound = lower 
upperBound = upper 

eStructuralFeatures 

toClass : EClass 
eType 

toFeature: Feature 

name = toFeatName 

to 

toClass : EClass 

name = toFeatName 

UsesRelationship2Reference 

pkg : EPackage 

«domain» 

nsURI = ‘http://’ + modelName 

eClassifiers 

if (not usesRelationship.opposite.oclIsUndefined()) then 
    UsesRelationship2EOppositeReference(usesRelationship.opposite, reference) 
else true endif; 

where 

relationships 

Figure 7.16: UsesRelationship2Reference relation

it can be used at con�guration time to relate a speci�c instance of
featureA with a speci�c instance of feature B.
�e top-level relation UsesRelationship2Reference transforms the

Uses relationship to an EReference, as EReferences are able to repre-
sent links among the instances of EClasses. Both the Uses relation-
ships and the EReference are directed. In the source domain, a Uses
relationships links a fromFeature with a toFeature. Such link has a
name, a lower bound and an upper bound.
For this information, the relation creates an EReference (which

is an eStructuralFeature of the fromClass) pointing to the toClass.
Both the fromClass and the toClass are identi�ed by their corre-
sponding names.
�e Uses relationship is directed and unidirectional. If the link

needs to be navigable in both ways, the Uses relationship must be
also de�ned in the opposite direction.�is way, if it is de�ned in both
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opposite : Uses 

name = oppositeName 

reference : EReference 

UsesRelationship2EOppositeReference 

«domain» 
feature 

C 

classdiagram 

E 

oppositeReference : EReference 

name = oppositeName 

eOpposite 

«domain» 

Figure 7.17: UsesRelationship2EOppositeEreference relation

ways, both relationships must be linked by means of the opposite
role.
�e where clause is used to invoke the UsesRelationship2EOppo-

siteEReference relation. �is relation is in charge of creating the
inverse EReference when the Uses relationship is bidirectional (it is
de�ned in both directions).

7.3.2.5 UsesRelationship2EOppositeEreference relation

�e UsesRelationship2EOppositeEreference relation (see Fig. 7.17) is
executed as a post-condition of the UsesRelationship2Reference rule.
It receives a Uses relationship (which is the opposite one to the Uses
relationship created previously in UsesRelationship2Reference), and
whose name is oppositeName. �is way, the rule creates a new
opposite EReference using the oppositeName value.

7.3.2.6 FMCLConstraint2OCLConstraint relation

FMCL expressions are transformed toOCL expressions in theDVM. In
the end, FMCL expressions are OCL expressions plus some syntactic
sugar. FMCL constraints are applied over a ConstrainableElement. In
the class diagram domain this is equivalent to describe an OCL in
a speci�c context. Moreover, FMCL expressions are transformed to
OCL using the simple patterns shown in Table 7.2. Such patterns are:
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fmcl expression equivalent ocl
pattern definition

ConstrainableElement ConstrainableElement.
allInstances()

ConstrainableElement.
property op expression

ConstrainableElement.
allInstances()->forAll(property
op expression)

ConstrainableElement.
selected()

ConstrainableElement.
allInstances()->notEmpty()

FeatureName.childs() FeatureNameType.allInstances()

Table 7.2: Summary of transformation patterns from FMCL to OCL

1. Using the name of a ConstrainableElement directly in a FMCL
expression is a shortcut for using the allInstances() opera-
tion over that ConstrainableElement.

2. Taking into account the previous pattern, if operations are FMCL expressions
can be
automatically
translated to OCL
expressions by a set
of patterns.�is
patterns can be
applied using
standard tools such
as as regular
expressions or
simple string replace
functions.

applied to properties of ConstrainableElements, they are per-
formed/checked for all the corresponding instances.

3. �e selected() operation can be used to query if a model
element has been selected in a con�guration (i. e., there exist
instances of it).

4. �e operation childs() can be used to collect all the child
instances of grouped features. For example, Transmission.-
childs() returns all the instances of theManual and Auto-
matic features. �e equivalent OCL expression is Transmis-
sionType.allInstances().

Taking this patterns into account, Fig. 7.18 describes the relation
to transform a FMCL expression to an OCL expression. In this case,
only constraints applied to Features are transformed.
For each set of constraints in the source model which are applied

to a Feature, an EAnnotation attached to an EClass in the corre-
sponding EPackagewill be created. Both the Feature and the EClass
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constraint : Constraint 

name = constraintName 
body = constraintBody 

mdlConstraints : ConstraintsSet 

FMCLConstraint2OCLConstraint 

feature 

C 

classdiagram 

E 

feature : Feature 

name = featureName 

context 

constraint : Constraint 

name = constraintName 
body = constraintBody 

model : FeatureModel 

«domain» 

name = modelName 

modelConstraints 

pkg : EPackage 

«domain» 

nsURI = ‘http://’ + modelName 

fromClass : EClass 

name = featureName 

oclAnnotFrom : EAnnotation 

source = ‘http://www.eclipse.org/ocl/examples/OCL’ 

key = constraintName 
value = translateFMCLtoOCL(constraintBody) 

details 

detailFrom : EStringToStringMapEntry 

eAnnotations 

eClassifiers 
constraints 

Figure 7.18: FMCLConstraint2OCLConstraint relation

must have the same name (featureName). A ConstraintSet contains
a set of expressions (constraints) with a given name and body. Such
expressions are transformed to the details of the created EAnnota-

Listing 7.3: translateFMCLtoOCL(...) OCL query
1 query translateFMCLtoOCL(expression : String) : String {

2 ConstrainableElement.allInstances ()->iterate(

3 elt : ConstrainableElement;

4 s : String = expression |

5 -- The order when applying the substitutions is important

6 -- We must go from the most specific case to the most

general one

7 if (elt.oclIsTypeOf(features :: Feature)) then

8 s.replace(’(’ + elt.name + ’\b)\. childs \(\)’, ’$1Type.

allInstances ()’)

9 else

10 s

11 endif

12 .replace(’(’ + elt.name + ’\b)\.(\w+\s+\S+\s+.+)’, ’$1.

allInstances ()->forAll($2)’)

13 .replace(’(’ + elt.name + ’\b)\. selected \(\)’, ’$1.

allInstances ()->notEmpty ()’)

14 .replace(’(’ + elt.name + ’\b)(?:\. allInstances \(\))?’, ’

$1.allInstances ()’)

15 )

16 } �
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tion. Finally, the body of the constraint is transformed to an OCL
expression using the translateFMCLtoOCL helper function (Listing
7.3). Such function applies the transformation patterns de�ned in
Table 7.2.

7.4 feature model configurations

�e main goal to transform a feature model to a class diagram is
to de�ne feature model con�gurations. Previous section describes
how to convert a feature model to a DVM, which is in turn a class di-
agram. Fig. 7.19 shows the resulting model when the transformation
is applied to the example feature model shown in Fig. 7.3.
In Fig. 7.19 annotations containing theOCL constraints are omitted

for clarity purposes.�e generated OCL expressions are shown in
Listing 7.4.
Given this speci�cation now it is possible to de�ne new model Using DVMs a

feature model
con�guration can
be expressed as a
classical object
diagram.

con�gurations. Furthermore, it is possible to use any standard mod-
eling tool to de�ne model con�gurations and to check if they are
valid or not. Fig. 7.20 shows a valid con�guration for the example
feature model. It represents a Car with four wheels. Each one of the
wheels sizes 16 inches.�e car is also equipped with an engine of
75,000 watts of power, automatic transmission and TCS.

Car

Engine
power : Integer

TransmissionWheel
radius : Integer

TCS

TransmissionTypeAutomatic Manual

Wheel
[4..4]

Engine
[1..1]

Transmission
[1..1]

TCS
[0..1]

TransmissionFeatures
[0..*]

«datatype» Integer
«javaclass» java.lang.Integer

Figure 7.19: Generated class diagram for the example cardinality-based

feature model
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Listing 7.4: Generated OCL expression for the example feature model

1 package FeatureCar

2

3 context Wheel

4

5 inv radius_length: self.radius > 15

6

7 inv same_radius: Wheel.allInstances ()

8 ->forAll(w1, w2 | w1 <> w2 implies w1.radius = w2.

radius)

9

10

11 context TCS

12

13 inv power: TCS.allInstances ()->notEmpty () implies

14 Engine.allInstances ()->forAll(power > 70000)

15

16

17 context Automatic

18

19 inv Automatic_implies_TCS: TCS.allInstances ()->notEmpty ()

20

21

22 context Transmission

23

24 inv checkChildrenTransmission:

25 1 <= ( (if self.TransmissionFeatures ->select(f :

TransmissionType |

26 f.oclIsKindOf(Manual))->notEmpty () then 1 else

0 endif) +

27 (if self.TransmissionFeatures ->select(f :

TransmissionType |

28 f.oclIsKindOf(Automatic))->notEmpty () then 1

else 0 endif) + 0 )

29 and ( (if self.TransmissionFeatures ->select(f :

TransmissionType |

30 f.oclIsKindOf(Manual))->notEmpty () then 1 else

0 endif) +

31 (if self.TransmissionFeatures ->select(f :

TransmissionType |

32 f.oclIsKindOf(Automatic))->notEmpty () then 1

else 0 endif) + 0 ) <= 1

33

34 inv lowerMultiplicityManual:

35 self.TransmissionFeatures ->select(f :

TransmissionType |

36 f.oclIsKindOf(Manual))->notEmpty () implies

37 self.TransmissionFeatures ->select(f :

TransmissionType |
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38 f.oclIsKindOf(Manual))->size() >=1

39

40 inv upperMultiplicityManual:

41 self.TransmissionFeatures ->select(f :

TransmissionType |

42 f.oclIsKindOf(Manual))->notEmpty () implies

43 self.TransmissionFeatures ->select(f :

TransmissionType |

44 f.oclIsKindOf(Manual))->size() <=1

45

46 inv lowerMultiplicityAutomatic:

47 self.TransmissionFeatures ->select(f :

TransmissionType |

48 f.oclIsKindOf(Automatic))->notEmpty () implies

49 self.TransmissionFeatures ->select(f :

TransmissionType |

50 f.oclIsKindOf(Automatic))->size() >=1

51

52 inv upperMultiplicityAutomatic:

53 self.TransmissionFeatures ->select(f :

TransmissionType |

54 f.oclIsKindOf(Automatic))->notEmpty () implies

55 self.TransmissionFeatures ->select(f :

TransmissionType |

56 f.oclIsKindOf(Automatic))->size() <=1

57

58 endpackage �

c : Car
Engine = e
Transmission = tr
TCS = tc
Wheel = w1, w2, w3, w4

w2 : Wheel
radius = ‘‘16’’

w1 : Wheel
radius = ‘‘16’’

w3 : Wheel

radius = ‘‘16’’

w4 : Wheel

radius = ‘‘16’’

e : Engine

power = ‘‘75000’’

tc : TCS

tr : Transmission
TransmissionFeatures = a

a : Automatic

Figure 7.20: A valid con�guration of the example DVM
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7.5 summary and conclusions

In this chapter we have presented how to de�ne and use feature mod-
els in a MDE process.�is proposal addresses two issues: �rst, the
incapability of nowadays metamodeling tools to deal simultaneously
with artifacts located in all the MOF layers; and second, the complex-
ity to de�ne model constraints in feature models where features can
be cloned and can have attributes.�ese problems have been solved
by transforming feature models to DVMs that can be instantiated and
reused in future steps of the MDE process.
Our proposal has been designed following the MDE principles

and a metamodel for cardinality-based feature modeling has been
de�ned. Feature models are automatically transformed in DVMs that
are used to de�ne con�gurations of feature models. Our approach
has proposes a simple infrastructure to build con�gurations. Con-
�gurations are actually instances of a feature model (expressed by
means of the DVM), so we can take advantage of the standard mod-
eling tools. As feature models are described by DVMs that can be
instantiated, both models and con�gurations can be used in other
MDE tasks. Having a clear separation between feature models and
con�guration eases the validation tasks as they can be performed by
means of built-in languages. Finally, as the transformation between
feature models and DVMs is performed automatically by means of a
declarative language we can trace errors back from DVMs to feature
models.
It is noteworthy to remark the importance of using feature models

and con�gurations at di�erent layers. In chapter 8.4 an example
where this architecture is used to integrate feature models in a MDE
process is shown.�is work describes how a model transformation
with multiple inputs (feature models and functional models) is used
to generate a so�ware architecture automatically.
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SUMMARY

�is part describes the implementation of theMULTI PLE frame-
work from a practical point of view, presenting both the tool archi-
tecture and the applications to di�erent case studies. First, in chapter
8 theMULTIPLE framework is presented.�is framework is built on
top of the Eclipse platform and allows to describe di�erent views of
a so�ware systems. Additionally, it provides the necessary tools to
exploit the system’s variability view. Second, in chapter 9 we present
the Baseline Oriented Modeling (BOM)–Lazy approach. In this case
study we put in practice our approach to describe and integrate fea-
ture models in a MMDSPL which in turn is a complex MDE process.
�e BOM–Lazy approach in an enhancement of the SPL proposed
by Cabello Espinosa (2008) to the development of expert systems.
Finally, chapter 10 aims to present theMULTIPLE framework from an
industrial point of view.�is chapter evaluates the scalability of the
approach, usingMULTIPLE to represent and analyse a large scale fea-
ture model provided by a worldwide aircra� engine manufacturing
company.
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8
THE MULTIPLE FRAMEWORK

«There are no big problems,
there are just a lot of little problems»

—Henry Ford
Pioneer of the assembly-line production method, 1863–1947

MULTI PLE is a generic framework which eases the development of
so�ware systems by using a Model-Driven approach. �is frame-
work is built on top of the Eclipse platform, and uses the Eclipse
Modeling Framework (EMF) as it underlying metamodeling subsys-
tem. However,MULTIPLE is not only a tooling to de�ne models and
metamodels, but it also provides a set of additional tools and built-in
metamodels.
As MULTIPLE uses EMF, it can be considered a MOF-compliant

tool.�us, it can be used to implement and integrate the variability
management proposal described in previous sections. �is way,
MULTIPLE is not only the suitable framework to carry out classic
MDD processes, but also to design, implement and analyse multi-
model driven SPLs.�is goal is achieved by providing the following
functionality:
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• An extendable modeling and metamodeling subsystem. Such
subsystem is populated by default with di�erent metamodels
and DSLs. For example,MULTIPLE provides:

– Ametamodel to describe systems’ variability by using
rich feature models.

– Ametamodel to describe functional views of so�ware
systems by de�ning its functional modules and the rela-
tionships among them.

– Ametamodel to describe architectural descriptions of
so�ware systems, using concepts such as components,
connectors, roles, ports, services, etc.

– A metamodel to describe PRISMA architectural mod-
els. �e advantage of this metamodel is the ability to
automatically obtain executable systems.

• A transformations subsystem.�is subsystem is able to exe-
cute QVT–Relations model transformations.

• A validation subsystem. �is subsystem is able to perform
both conformance-checking and model-checking operations.

• A standardized way to interchange data and metadata among
tools.

�roughout the following chapter we will describe the architec-
ture of the tool, and the di�erent components that make up the the
MULTIPLE framework will be presented.

8.1 subsystems and components overview

MULTIPLE is
an extendable

framework which
can be easily

enriched with new
features and
components.

As explained, theMULTIPLE framework is built on top of the Eclipse
platform. �is allows developers to easily extend the framework
as it is implemented following the Open Services Gateway initia-
tive (OSGi) standard (OSGi 2008). Fig. 8.1 shows a general view of
the architecture of theMULTIPLE framework.�e �gure shows the
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dependencies among the di�erent bundles in a simpli�ed way. Each
bundle (or plugin) is represented by a component. White compo-
nents represent Eclipse plugins, and black components represent
external tools which do not follow the OSGi architecture. Next, the
main elements that can be identi�ed in the �gure are explained:

eclipse platform �is element includes a subset of the most
representative plugins provided by the Eclipse platform which
are used by theMULTIPLE plugins.�ey provide the basic func-
tionality to execute the runtime and orchestrate the execution
of the di�erent components.

variability metamodel support �is set of plugins im-
plement the metamodel and the editors to de�ne cardinality-
based feature models according to the proposal made in chap-
ter 7.

modular metamodel support �is element provides the
metamodel and the DSL to describe the functional view of a
system by using modules, functions and dependency relation-
ships

component–connector metamodel support �ese
components describe the metamodel and implement the
graphical editor to de�ne architectural models using a com-
ponent–connector metaphor.

prisma metamodel support �ese plugins implement the
PRISMA metamodel.�is allows theMULTIPLE framework to
interoperate with the PRISMA-CASE and the PRISMA-MO-
DEL-COMPILER tools.

transformations subsystem �is subsystem provides sup-
port to execute model transformations. It behaves as an inter-
face between the user and the transformations engine. It is
made up by the following sub-subsystems:
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Tranformations Subsystem

Eclipse Platform

QVT Command Line Interface

MULTIPLE QVT Relations Support

MediniQVT transformations Engine

Launcher Model

Traceability Metamodel

MULTIPLE EMF Utils

es.upv.dsic.issi.emof.converter

es.upv.dsic.issi.moment.registeremf

es.upv.dsic.issi.moment.ui.registeredmodels

es.upv.dsic.issi.qvt.cli

es.upv.dsic.issi.qvt.engine

es.upv.dsic.issi.qvt.engine.tests

es.upv.dsic.issi.qvt.launcher

es.upv.dsic.issi.qvt.launcher.model

es.upv.dsic.issi.qvt.launcher.model.cli

es.upv.dsic.issi.qvt.launcher.model.edit

es.upv.dsic.issi.qvt.launcher.ui

de.ikv.medini.qvt

uk.ac.kent.kmf

org.junit

org.oslo.ocl20

org.eclipse.core

org.eclipse.emf

org.eclipse.ui

org.eclipse.gmf

org.eclipse.gef

org.eclipse.ocl

org.eclipse.debug.core

org.eclipse.debug.ui

es.upv.dsic.issi.traceability.metamodel

es.upv.dsic.issi.traceability.metamodel.edit

es.upv.dsic.issi.traceability.metamodel.editor

All eclipse plugins depend on org.eclipse.core.*
All plugins which contribute to the UI depend on org.eclipse.ui.* .
Such dependencies have been removed for clarity purpouses.
Grayed components are not eclipse plugins, but external libraries.
Black components are external standalone tools.

org.eclipse.draw2d
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Validation Subsystem

Component-Connector Metamodel support

Variability Metamodel Support

Modular Metamodel Support

OCL Support CLI

OCL Support

PRISMA Metamodel Support

Variability Model Checking

FAMA Metamodel Support

es.upv.dsic.issi.multiple.features

es.upv.dsic.issi.multiple.features.diagram

es.upv.dsic.issi.multiple.features.edit

es.upv.dsic.issi.multiple.features.editor

es.upv.dsic.issi.multiple.gmf.helpers

es.upv.dsic.issi.mview

es.upv.dsic.issi.mview.diagram

es.upv.dsic.issi.mview.edit

es.upv.dsic.issi.mview.editor

es.upv.dsic.issi.ocl.validator.popup

es.upv.dsic.issi.ocl.cli

es.upv.dsic.issi.ccview

es.upv.dsic.issi.ccview.diagram

es.upv.dsic.issi.ccview.edit

es.upv.dsic.issi.ccview.editor

FAMA

es.upv.dsic.issi.prisma.editor

es.upv.dsic.issi.prisma.edit

es.upv.dsic.issi.prisma

es.upv.dsic.issi.multiple.fama.totext

es.upv.dsic.issi.multiple.fama.bridges

es.us.isa.FaMaSDK

es.upv.dsic.issi.multiple.fama.editor
es.upv.dsic.issi.multiple.fama.edit

es.upv.dsic.issi.multiple.fama

Figure 8.1: Architecture of the MULTIPLE framework
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• mediniqvt transformations engine—�is sub-sub-
system contains the implementation of the logic to exe-
cute MOF-compliant model transformations. It is based
on the open sourcemedini QVT engine.

• multiple qvt–relations support—�is sub-subsys-
tem provides the infrastructure to execute model trans-
formations inside the Eclipse platform. On the one hand,
it provides the user interface to con�gure and execute
model transformations. On the other hand, it provides
the metamodel and the tools to the with traceability is-
sues in a generic way.

• qvt command line interface—�is sub-subsystem
is built as a standalone java application to execute model
transformations. It includes the plugins of the Transfor-
mation subsystemwhich do not contribute to the Eclipse
User Interface (UI), and builds around them a textual
interface to execute model transformations from a com-
and-line shell.

validation subsystem �is subsystem provides support forMULTIPLE not only
provides tools which
are integrated into

the Eclipse
platform, but also

standalone
applications such as
the QVT command
Line Interface and
theOCL Command

Line Interface.

validation tasks. Speci�cally, the OCL Support and OCL Sup-
port CLI elements provide support to check conformance re-
lationships between EMFmodels (with OCL constraints) and
EMF instances.�ey implement the user interface and commu-
nication mechanisms between user de�ned models and the
internal EMF OCL engine.�e former provides a graphical UI
integrated in the Eclipse workbench, and the latter provides a
command-line interface provided by a standalone application
which packages the EMF OCL subsystem.

�e Variability Model Checking component provides model
checking capabilities. In this case, the model-checking capa-
bilities are provided for models conformant to theMULTIPLE
Variability Metamodel and the FaMametamodel (see section
8.3.2).�e Variability Model Checking component makes use
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of the FaMa framework, an external tool which provides di�er-
ent solvers to validate feature models using formal methods.

multiple emf utils �is element encompasses some utility
plugins, such as plugins to query and modify the metamodel
registry (to dynamically load new metamodels), or a plugin
to export models and metamodels using the standard XMI
serialization format de�ned by MOF.

Next, the following sections explain each one of these subsystems
and their components in deep detail.

8.2 the eclipse platform

As it has been pointed out previously in this thesis, Eclipse is an Eclipse has become
the de facto
standard tool to
implement
model-based
solutions in the
so�ware
engineering
community thanks
to its extensibility
and its ecosystem of
plugins and tools.

IDE which is built using a generic an extensible plugin system.�e
runtime of Eclipse is called Equinox, and it is an implementation of
the OSGi standard (McA�er et al. 2009). All of the components that
take part in theMULTIPLE framework are implemented as Eclipse
plugins. �e only exceptions to this are the tools which provide
support to execute tasks using a command-line interface, which are
regular Java applications. However, these standalone applications
do already contain Eclipse plugins internally, and make use of their
functionality (such as the EMF runtime).
Although the Fig. 8.1 has been simpli�ed and only shows a small

subset of the dependencies among plugins, it shows the most rele-
vant ones. In the �gure can be observed that all the plugins of the
MULTIPLE framework depend on one or many core Eclipse plugins.
For example, all Eclipse plugins depend on one ormore plugins of the
org.eclipse.core packages1, as it provides the basic functionality
to access the �lesystem, job manager, etc.
Fig. 8.1 represents several basic components which are relevant to

describe theMULTIPLE framework.�ese are:

1 Not all these dependencies have been drawn for clarity purposes.
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org.eclipse.core—�is component groups di�erent plugins which
provide basic functionality such as the org.eclipse.core.
runtime, which provides the basic runtime to execute Eclipse
plugins; the org.eclipse.core.resources, that allows plu-
gins to access the �les in the active workspace or the org.
eclipse.core.jobs, which provide support to execute dif-
ferent tasks that can be monitored, among others.

org.eclipse.draw2d —�is component provides the primitives to
draw basic �gures on screen. It requires the org.eclipse.swt
library, which is the widget toolkit which interacts with the
system’s graphical API.

org.eclipse.ui —�is component groups di�erent plugins which
implement the basic elements used to build the Eclipse UI.
Any plugin which contributes to the Eclipse UImust include
it among its dependencies.

org.eclipse.gef —�is component implements the GEF framework.
�is is the basic framework used to create graphical editors
for di�erent diagrams.

org.eclipse.debug.core—�is component provides support for run-
ning programs, breakpoint management, expression manage-
ment, and debug events. It provides the basic extension points
used by the QVT launcher component.

org.eclipse.debug.ui —�is component (or plugin) provides the
extension points to contribute the user interface elements to
run external programs, builders, etc. It is used to implement
the UI of theMULTIPLE QVT–Relations launcher.

org.eclipse.emf —�is component groups all the plugins which
implement the EMF framework. It is required by any plugin
which deals with EMFmodels or metamodels. It provides the
basic functionality to register models and metamodels, de�ne
instances, check basic conformance relationships, generate
code, etc.
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org.eclipse.gmf —�is component implements theGMF framework.
�is framework combines the functionality of both the EMF
and GEF frameworks. It allows developers to automatically
generate the graphical editors which implement DSLs based
on EMFmodels.

8.3 built-in metamodels

MULTIPLE provides by default some built-in metamodels to describe MULTIPLE
implements several
built-in metamodel
to ease the
description of
di�erent system
views.�ese
metamodels include
those proposed by
Limón Cordero
(2010).

di�erent views of systems. We have used MOF for the speci�cation
of these metamodels, as they can be easily implemented using Ecore.
�ese metamodels are: the variability metamodel, the FaMa meta-
model, themodular metamodel, the component-connector metamo-
del and the PRISMA metamodel.�e plugins which implement these
metamodels are explained next in a schematic way, as most of its
code has been automatically generated by EMF.

8.3.1 Variability metamodel support

�e built-in variability metamodel allows us to de�ne feature models
to manage the variability of systems.�e components that take part
in this subsystem implement the cardinality-based feature metamo-
del which was presented in section 7.2.
As it was shown in Fig. 7.2 (see page 88), the proposed metamodel

allows us to de�ne a variant of cardinality-based feature models.
Such models can be enriched with feature attributes, cross-tree re-
strictions and complex model constraints using the FMCL language.

8.3.1.1 Internal structure

MULTIPLE provides di�erent interfaces to manage variability in a
proper way. �us, di�erent plugins which provide di�erent func-
tionality have been implemented.�is way, feature models can be
de�ned in three ways: (i) programatically in Java, using the gener-
ated API; (ii) using a simple tree editor; and (iii) using a graphical
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editor which provides a DSL. Next the plugins which implement
these interfaces are summarized.

es .upv.dsic .issi .multiple .features �is plugin imple-
ments the proposed metamodel to de�ne cardinality-based feature
models as an Ecoremodel. It is shown in Fig. 8.2 in the standard EMF
tree editor.�e core implementation of this plugin is automatically
generated using the EMF code projector.�e following plugins are
required to run the es.upv.dsic.issi.multiple.features plugin:

org.eclipse.core.runtime—�e Eclipse basic runtime.

org.eclipse.emf.ecore—�e Ecoremetamodel.

�is plugin contains three packages as it is usual in the plugins
generated by EMF:

features — �is package contains the Java interfaces which are
implemented by the classes contained in the next package
(feature.impl).�is way it is possible to simulate multiple
inheritance in Java. EMF generates one Java interface for each
one of the classes de�ned in the Ecoremodel.

features.impl—�is package contains the classes that implement
the proposedmetamodel.�is package also contains one class
for each model class.

features.util—�is package contains some utility classes.

�e code generation patterns implemented by EMF are explained
in (Steinberg et al. 2009) in depth.

es .upv.dsic .issi .multiple .features .edit �is plugin pro-
vides an intermediate layer between the user interface and the in-
stances of the features metamodel. It implements the icon and label
providers to customize how the model elements are shown to the
user in the di�erent model editors. For example, Table 8.1 shows
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Figure 8.2: Features metamodel represented in an Ecore tree editor
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the icons that are used to represent each one of the elements of the
proposed features metamodel. It must be taken into account that dif-
ferent icons can represent the same element depending on the values
of its attributes. For example, the mandatory relationship icon and
the optional relationship icon are both used to represent structural
relationships.�e lower and upper bounds of the relationship will
determine which one of the two icons should be used. If this can
not be determined, the generic structural relationship icon will be
used.�e es.upv.dsic.issi.multiple.features.edit plugin has
the following dependencies:

org.eclipse.core.runtime—�e Eclipse basic runtime.

org.eclipse.emf.edit—�e edit provider basic runtime.

es.upv.dsic.issi.multiple.features—�e features metamodel.

�e contents of this plugin are also automatically generated.�is
plugin only contains one package:

features.provider — �is package contains the provider classes
which determine how the model elements will be shown.�e
package contains one class for each class of the features me-
tamodel. Some of the properties that can be customized are
the label used to represent a model element, the icon of the
element, the elements that should be considered as children
of a given model element, the properties that can be modi�ed
in the properties view for a given element, etc.

es .upv.dsic .issi .multiple .features .editor �is plugin
implements a simple tree editor to de�ne new feature model.�e
editor is the default editor for �les with the *.features extension.
Moreover, the plugin provides a basic wizard to create new �les of
this type.�e following plugin are required:

org.eclipse.core.runtime—�e Eclipse basic runtime.
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Table 8.1: Icons of the features metamodel elements

icon model element icon model element

Feature model Feature

Feature attribute Structural relationship

Mandatory relationship Optional relationship

Group OR group

XOR group Implies relationship

Biconditional relationship Excludes relationship

Uses relationship Constraints set

Constraint

org.eclipse.core.resources—�e API to access workspace resources.

org.eclipse.emf.ecore.xmi—�e plugin which provides support to
the XMI persistence format.

org.eclipse.emf.edit.ui—�e part of the edit framework which con-
tributes to the Eclipse UI.

org.eclipse.ui.ide—�e UI of the Eclipse IDE, adds support for error
markers, input for �le editros, etc.

es.upv.dsic.issi.multiple.features.edit —�e di�erent providers to
represent features models in a proper way.

As it occurs with the previous plugins, the contents of this plugin
are created by EMF.�is plugin only contains one package:

features.presentation—�is package contains the classes which im-
plement the tree editor (FeaturesEditor), the new �le wizard
(FeaturesModelWizard) and the contribution to the Eclipse
toolbar (FeaturesActionBarContributor).
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es .upv.dsic .issi .multiple .features .diagram �is plug-
in implements the graphical editor to de�ne our variant of cardi-
nality-based feature models.�e contents of this plugin have been
created automatically by the GMF runtime.�e source code of this
plugin is determined by the di�erent models that play a role in the
GMF work�ow (shown in Fig. 3.2, page 39). Fig. 8.3 how this work-
�ow is con�gured for the features metamodel example. Speci�cally,
this �gure shows the GMF Dashboard view, which is the view used
in Eclipse to guide the generation process until the source code is
obtained.�e most relevant models which determine the implemen-
tation of this plugin are the gmfgraphmodel, the gm�oolmodel and
the gmfmapmodel.
Fig. 8.4 shows the gm�oolmodel.�is model describes the palette

of the graphical editor, i. e., which elements can be drawn, how are
these elements grouped, and which are the icons which identify each
one of these elements.
Fig. 8.5 shows what the gmfgraphmodel looks like. It de�nes the

graphic primitives that should be used to draw the model elements.
Such primitives are described in terms of basic �gures (boxes, poly-
gons, text, arrows, etc.). �is model also speci�es which of this
graphic primitives will represent nodes, labels, links or containers.
Finally, Fig. 8.6 shows the most complex model: the gmfmap

model.�is model de�nes how the di�erent elements of the previous

Figure 8.3: Work�ow followed to obtain the features model editor
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models interrelate.�is way, the gmfmapmodel links each one of the
elements of the feature metamodel with its corresponding graphical
representation and tool. Complex constraints can be added to tune
the graphical editor and ovoid invalid con�gurations.

es .upv.dsic .issi .multiple .gmf.helpers �is plugin im-
plements some utility classes.�e behaviour and appearance of GMF
editors can not be fully customized in some cases using the source
models. However, GMF allows to include custom classes which ex-
tend or modify the standard implementation.�is plugin depends
on the following plugins:

org.eclipse.draw2d—�e basic drawing library.

org.eclipse.gmf.runtime.gef.ui—�e GMF–GEF runtime library.

Figure 8.4: Gm�oolmodel used to generate the GMF-based feature model
editor
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Figure 8.5: Gmfgraphmodel used to generate the GMF-based featuremodel
editor
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Figure 8.6: Gmfmapmodel used to generate the GMF-based feature model
editor

All the utility classes are included in a single package, features_
diagram.diagram.edit.parts.helpers.�is packages includes the
following classes:

FoldedRectangle—�is class implements a custom �gure, used to
represent notes in the features model editor.
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CircleDecoration—�is class implements a circle decoration.�is
decoration is applied to arcs in the diagram to represent op-
tional and mandatory features.

CustomSlidableAnchor, MiddleSlidableAnchor and FixedConnec-
tionAnchor—�ese classes implement implement the logic
that determines the anchoring points for arcs between di�er-
ent elements of the diagram.

8.3.1.2 User Interface

�e feature modeling subsystem contributes di�erent elements to
the Eclipse user interface. Next, these elements are brie�y presented.

new model wizard �e feature modeling component pro-
vides a wizard to easily create new feature models. Such wizard can
be started from the standard dialog to create new elements in the
workspace (File→New→Other. . . ; ctrl + n), as shown in Fig. 8.7a.
Next, a name must be issued for the new �le that will be created in
the selected folder of a project in the workspace (Fig. 8.7b). �e
new �le must have the *.features extension. Finally, as EMF artifacts
have a tree structure, a root element must be selected. In the case of

(a) Step 1 (b) Step 2 (c) Step 3

Figure 8.7: New feature model wizard
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Figure 8.8: Standard tree editor for feature models

feature models the root element must be an instance of the Feature
Model class, as show in Fig. 8.7c.

basic tree editor Once a new *.features �le is created, it is
automatically opened with the default tree editor. Fig. 8.8 shows
this editor. It can be used to con�gure the feature model, adding
new features, attributes, relationships or constraints. Fig. 8.8 shows
a sample model, whose name is Example model. �is model has
only a feature, Root feature.�e �gure also shows how a new feature
is created using the context menu, and using the ‘‘New Child →
Feature’’ menu.

creating feature model diagram As can be seen, the
tree editor is not a very user-friendly interface to deal with feature
models.�at is why a GMF-based graphical editor was developed.
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Figure 8.9: Initialize features diagram �le

However, GMF-based editors need two �les to store the needed in-
formation. First, they need the model �le (i. e., the *.features �le)
and the diagram �le. �e diagram �le stores the the information
about the visualization of the model elements. For feature models,
the diagram �le has the *.features_diagram extension. To create a
new diagram two choices are available: (i) we can initialize a new
diagram for an existing feature model or (ii) we can create both the

(a) Step 1 (b) Step 2 (c) Step 3

Figure 8.10: New feature diagram wizard
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Figure 8.11: Example model and diagram �les to represent a feature model

graphically

feature model and the diagram from scratch. Fig. 8.9 shows how a
new diagram can be created for an existing �le.
To create both �les from scratch a wizard is available. It can be

launched from the New dialog (File → New → Other. . . ; ctrl +
n). Fig. 8.10 shows the di�erent screens of the wizard. First, (step 1,
Fig. 8.10a) the New Feature Diagram wizard must be select. Second,
a name for the diagram �le must be issued (step 2, Fig. 8.10b).�e
user can then go to step 3 (Fig. 8.10c) to provide the name of the
model �le and �nish the wizard, or can �nish the wizard at step two.
In this case, the �le name for the model will be automatically set.
Finally, Fig. 8.11 shows the two�les that are needed by the graphical

editor for feature models.

cardinality-based feature modeling editor As
explained before, following the MDSD approach, graphical editors
can be automatically generated from an EMF metamodel. As pre-
sented in the previous section, the es.upv.dsic.issi.multiple.-
features.diagram and es.upv.dsic.issi.multiple.gmf.helpers
plugins implement the graphical editor for cardinality-based feature
models using the traditional representation.�is editor allows us to
easily de�ne new feature models.
Fig. 8.12 shows what this editor looks like.�e palette is located

on the right side of the �gure, and shows the tools that can be used
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Figure 8.12: Example feature model

to de�ne the feature models. In the canvas, the example feature
model presented in Fig. 7.3 (page 90) is shown. As it was previously
explained, the model describes a simple product line for cars. A
car must have four wheels, one engine and a transmission. As an
optional equipment the car can have a TCS.�e �gure also shows
how constraints are represented: the arrow between the feature TCS
and Automatic states that if an automatic transmission is selected,
the TCSmust be selected too; and the annotations attached to the
TCS and Wheel features describe FMCL constraints.

8.3.2 FaMa metamodel support
�e FaMa

metamodel allows
MULTIPLE to easily
interchange models
with the FaMa tool.

�is metamodel
provides the basic
infrastructure for
the model checking

capabilities
included in

MULTIPLE.

FaMa is a tool to analyse feature models. It provides di�erent op-
erations that can be applied to basic or extended feature models
to guarantee if models are valid or not. �ese operations are im-
plemented using di�erent formalisms.�is way, FaMa can assure
that the results obtained from the application of such operations are
logically correct. FaMamodels can be basic FODA feature models or
extended feature models. Extended feature models provide a limited
support for attributes andmodel constraints, however the operations
that are available for such kind of models are limited.
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FaMa feature models can be represented as XML �les and plain
text �les. To describe the structure of FaMa XML models a XSD
description is provided within the FaMa tooling. �is XSD (avail-
able in appendix E) can be used to generate an Ecore metamodel
which allows to work with FaMa XMLmodels natively in EMF. Next,
the plugins that have been obtained to deal with FaMamodels are
explained.

8.3.2.1 Internal structure

�e plugins that implement the FaMa metamodel are built using
EMF, as the previously presentedmetamodel. However, the ‘‘*.ecore’’
�le which represents the FaMametamodel has been automatically
obtained from a XSD �le.�is �le describes the structure that FaMa
models must respect. Fig. 8.13 shows the initial XSD �le (8.13a), and
the automatically obtained Ecore �le (8.13b). Using this Ecore �le,
we are able to generate automaticalle the Java code to serialize and
deserialize native FaMa XML �les using EMF.
Although the FaMa metamodel support plugins have been ob-

tained from an XSD �le, in the end, the structure of the following
plugins is similar to the structure of regular EMF plugins. Next, the
plugins and summarized.

es .upv.dsic .issi .multiple .fama �is plugin implements
the metamodel to describe FaMamodels.�e core implementation
of this plugin is automatically generated by EMF, and requires the
following plugins: org.eclipse.core.runtime, org.eclipse.emf.
ecore and org.eclipse.emf.xmi.
�is plugin contains three packages:

FeatureModelSchema—�e interfaces package.

FeatureModelSchema.impl—�e implementation package.

FeatureModelSchema.util—�e utility package.
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(a) FaMa XSD �le (b) FaMa Ecoremodel

Figure 8.13: FaMametamodel support initial �les

es .upv.dsic .issi .multiple .fama .edit �is plugin
provides the icon and label providers to customize how the model
elements are shown to the user in the di�erent model editors.�e
es.upv.dsic.issi.multiple.fama.edit plugin has the following
dependencies:

org.eclipse.core.runtime—�e Eclipse basic runtime.

org.eclipse.emf.edit—�e edit provider basic runtime.

es.upv.dsic.issi.multiple.fama—�e FaMametamodel.

�e contents of this plugin are packaged in a single package
(FeatureModelSchema.provider), which is automatically generated.
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es .upv.dsic .issi .multiple .fama .editor �is plugin
implements the simple tree editor and the needed wizards to build
new FaMamodels.�e editor is the default editor for �les with the
*.fama extension.�e plugin has the following requirements:

org.eclipse.core.runtime—�e Eclipse basic runtime.

org.eclipse.core.resources—�e API to access workspace resources.

org.eclipse.emf.ecore.xmi—�e plugin to support XMI.

org.eclipse.emf.edit.ui—�e part of the edit framework which con-
tributes to the Eclipse UI.

org.eclipse.ui.ide—�e UI of the Eclipse IDE.

es.upv.dsic.issi.multiple.fama.edit—�e di�erent providers to rep-
resent FaMamodels.

�e contents of this plugin are created by EMF, and it only contains
the FeatureModelSchema.presentation package.

8.3.2.2 Equivalence between MULTIPLE feature models and FaMa
feature models

Cardinality-based feature models inMULTIPLE and FaMa models
are almost equivalent, and it is quite straightforward to describe a
set of equivalence relationships between the two.�is way, a QVT–
Relations transformation has been de�ned to stablish the relation-
ships between both domains.�is transformation is detailed in its
textual representation in Appendix D. Table 8.2 summarizes the
equivalences. As can be observed, the same set of basic primitives is
shared among both domains (although using di�erent names). Fea-
ture attributes are not considered, as analysis of attributed features
models is very limited compared to traditional FODA feature models.
Next, the di�erent relations are shown in its graphical representa-

tion toghether with a short explanation.
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CARDINALITY-BASED

FEATUREMODEL
FAMA FEATUREMODEL

FeatureModel FeatureModelType

Feature GeneralFeature

StructuralRelationship BinaryRelationType

Group SetRelationType

Implies RequiresType

Excludes ExcludesType

BoundableElement Cardinality

Table 8.2: Correspondences between Cardinality-based feature models

and FaMa

model2model relation �e Model2Model relation states
that, if a FeatureModel referencing a Feature (root) exists in the
source domain; a FeatureModelType referencing a GeneralFeature
(�rst) must exist in the target domain too. In this case, both features
(root and �rst) must have the same name.

root : Feature 

mdomain fdomain 

C 
E 

model : FeatureModelType 
«domain» fmodel : FeatureModel 

«domain» 

Model2Model 

name = rname 

first : GeneralFeature 
name = rname 

rootFeature 

feature 

Figure 8.14:Model2Model relation
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name = 'Relation_to_' + cname lowerBound = lower 
upperBound = upper 

pcomponent : System 

fdomain 

E 

ffeature : GeneralFeature 
«domain» 

model : FeatureModel 
«domain» 

StructuralRelationship2BinaryRelation 

connector : Connector 

mfeature : Feature 
«domain» 

relationship : StructuralRelationship 

childs 

binaryRelation : BinaryRelationType 

binaryRelation 

name = fname 

name = fname 

cfeature : Feature 

name = cname 

to 

lowerBound = lower 
upperBound = upper 

name = 'Relation_to_' + cname 

generalFeature : GeneralFeature 

name = cname 

cardinality : CardinalityType 

min = lower 
max = upper 

solitaryFeature 
cardinality 

Figure 8.15: StructuralRelationship2BinaryRelation relation

model : FeatureModel 
«domain» 

Group2SetRelation 

connector : Connector 

mfeature : Feature 
«domain» 

relationship : StructuralRelationship 

childs 
setRelation : SetRelationType 

name = fname 

cfeature : Feature 

name = cname 

to 

lowerBound = lower 
upperBound = upper 

name = 'Grouped_Relation' 

generalFeature : GeneralFeature 

name = cname 

cardinality : CardinalityType 

min = lower 
max = upper 

groupedFeature 
cardinality 

group : Group 

group 

pcomponent : System 

ffeature : GeneralFeature 
«domain» 

setRelation : SetRelationType 

setRelation 

name = fname 

«domain» 

cardinality : CardinalityType 

min = lower 
max = upper 

«domain» 

Figure 8.16: Group2SetRelation relation
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structuralrelationship2binaryrelation relation
�e StructuralRelationship2BinaryRelation relation describes the e-
quivalence of parent-child relationships between both domains. In
this case, if a StructuralRelationship is de�ned between two features
in the source domain, a BinaryRealtionType relationship must be
de�ned in the target domain. Parent features (mfeature and �eature)
must share the same name; and the same applies to the child fea-
tures (cfeature and generalFeature). When the BinaryRelationType
element is created, a CardinalityType element must also be created.
�is element stores the cardinality that the source StructuralRela-
tionship de�nes.

group2setrelation relation �e Group2SetRelation re-
lationship de�nes how the groups of features must be treated.�is
case is handled similarly to the previous one, when only parent-child
features are considered.�e only di�erence resides in the existence
of theGroup element in the source domain, which is mapped to a Se-
tRelationType element in the target domain.�e rest of the elements
are mapped almost the same, i. e., parent features must share the
same name, child features must also share the same name too, and
the lower and upper bound of the source relationship are mapped
to a CardinalityType element in the target domain.

excludesrelationship2excludestype relation �e
ExcludesRelationship2ExcludesType relationship describes how the
excludes relationships must be transformed. In this case, given an
Excludes relationship in the source domain, anExcludesTypeElement
must be created in the target domain.�e name of the features that
the Excludes element relates (fromFeature and toFeature) are used to
�ll the excludes and feature attributes of the ExcludesType element.
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excludesRelationship : Excludes 

fdomain 

E 
model : FeatureModel mdomain 

C 

ExcludesRelationship2ExcludesType 

rootFeature : Feature 

name = rootName 

toFeature : Feature 

name = toName 

to 

rootFeature 

excludes : ExcludesType 

name = excludesName 
excludes = fromName 
feature = toName 

excludesRelationship : Excludes 

fromFeature : Feature 

name = fromName 

from 

«domain» 

relationships 

famaModel : FeatureModelType 

name = rootName 

feature : GeneralFeature 

feature 

«domain» 

excludes 

excludesName = 'Excludes_from_' + from.name + '_to_' + to.name 

where 

Figure 8.17: ExcludesRelationship2ExcludesType relation

excludesRelationship : Excludes 

fdomain 

E 
model : FeatureModel mdomain 

C 

ImpliesRelationship2RequiresType 

rootFeature : Feature 

name = rootName 

toFeature : Feature 

name = toName 

to 

rootFeature 

requires : RequiresType 

name = requiresName 
excludes = fromName 
feature = toName 

requiresRelationship : Implies 

fromFeature : Feature 

name = fromName 

from 

«domain» 

relationships 

famaModel : FeatureModelType 

name = rootName 

feature : GeneralFeature 

feature 

«domain» 

excludes 

requiresName = from.name + '_requires_' + to.name 

where 

Figure 8.18: ImpliesRelationship2RequiresType relation
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impliesrelationship2requirestype relation �e Im-
pliesRelationship2RequiresType relationships de�nes how to trans-
form an Implies relationship to a Requires relationship. As the Im-
plies relationships are de�ned in a similar way than the Excludes
relationships, this rule is almost equal to the ExcludesRelation-
ship2ExcludesType rule. In this case, the mapping is established
between an Implies and a RequiresType element.

8.3.3 Modular metamodel support

For the speci�cation of the modular view metamodel several propos-�e modular
metamodel

implemented in
MULTIPLE is a simple
functional model
which implements
the modular view

proposed by
Limón Cordero

(2010).

als have been analyzed.MULTIPLE provides support to specify both
the modular and the component–connector view of a system as pro-
posed in (Shaw and Clements 2006). In this sense, Limón Cordero
(2010) proposes two metamodels to specify these views based on the
relationships de�ned by Bass et al. (1998).
�is way, Fig. 8.19 shows an implementation of the Modular View

Metamodel (MM Modular view) as de�ned in (Limón Cordero
2010), using the class diagram representation of an Ecoremodel.�e
main element considered for this view is themodule itself.�is �g-
ure shows that amodel contains a set of modules (which can contain
di�erent functions), which are linked to othermodules by means of
relations (decomposition, uses and layer). A module can be made
up of several modules by using the decomposition relationship.�is
allows us to de�ne hierarchical structures. By means of the Another
relevant relation is the Use relation, which speci�es relationships
among modules. �e labels in the links are useful for indicating
how the relation is made. Finally, the Layer relationship allows to
described layered models. �e complete speci�cation of the me-
tamodel can be looked up in chapters 3 and 5 of (Limón Cordero
2010).
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8.3.3.1 Internal structure

�e plugins which provide support to describe the system’s modular
view have been built using EMF and GMF. �is way, the code of
these plugins has been obtained almost entirely automatically. As
a consequence, their internal structure is very similar to plugins
presented previously. For this reason, only a short summary of the
implementation details will be provided.

es .upv.dsic .issi .mview �is plugin implements the metamo-
del to describe the modular view.�e core implementation of this
plugin is automatically generated by EMF, and requires the following
plugins:

org.eclipse.core.runtime—�e Eclipse basic runtime.

org.eclipse.emf.ecore—�e Ecoremetamodel.

�is plugin contains three packages as usual:

es.upv.dsic.issi.mview—�e interfaces package.

es.upv.dsic.issi.mview.impl—�e implementation package.

es.upv.dsic.issi.mview.util—�e utility package.

es .upv.dsic .issi .mview.edit �is plugin provides the icon
and label providers to customize how the model elements are shown
to the user in the di�erent model editors. �e es.upv.dsic.issi.
mview.edit plugin has the following dependencies:

org.eclipse.core.runtime—�e Eclipse basic runtime.

org.eclipse.emf.edit—�e edit provider basic runtime.

es.upv.dsic.issi.mview—�e modular view metamodel.

�e contents of this plugin are also automatically generated.�is
plugin only contains the es.upv.dsic.issi.mview.provider pack-
age.
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es .upv.dsic .issi .mview.editor �is plugin implements
the simple tree editor and the needed wizards to build modular
models. �e editor is the default editor for �les with the *.mview
extension.�e plugin has the following requirements:

org.eclipse.core.runtime—�e Eclipse basic runtime.

org.eclipse.core.resources—�e API to access workspace resources.

org.eclipse.emf.ecore.xmi—�e plugin to support XMI.

org.eclipse.emf.edit.ui—�e part of the edit framework which con-
tributes to the Eclipse UI.

org.eclipse.ui.ide—�e UI of the Eclipse IDE.

es.upv.dsic.issi.mview.edit —�e di�erent providers to represent
modular models.

�e contents of this plugin are created by EMF, and it only contains
the es.upv.dsic.issi.mview.presentation package.

es .upv.dsic .issi .mview.diagram �is plugin implements
the graphical editor to de�ne modular models.�is plugin has been
automatically created by the GMF runtime using the di�erent models
which de�ne the editor (the gmfgraphmodel, the gm�oolmodel and
the gmfmapmodel).
Fig. 8.21 shows the gmgraphmodel, which speci�es how the dif-

ferent elements should be represented. As can be observed in the
�gure, di�erent graphical primitives are speci�ed to representmod-
ules, uses relationships, function compartments and function labels.
Fig. 8.21 shows the elements that will appear in the palette of the
canvas, and �nally, Fig. 8.22 shows how the di�erent models are
interrelated. As can be seen, the main elements that can be dropped
in the canvas are the modules, and the links that can be painted
among them are uses relationships.
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Figure 8.20: Gmfgraph model used to generate the GMF-based modular
model editor

8.3.3.2 User Interface

�e modular metamodel subsystem contributes di�erent menus,
wizards and editors to the Eclipse interface. �ese contributions
are automatically generated by EMF or GMF, such as the new model
wizard or the tree editor.



8.3 built-in metamodels 151

standard contributions �e modular view metamodel
provides almost the same contributions to the Eclipse UI than the fea-
tures metamodel. Some of these contributions are EMF-dependent,
such as theNew modular model wizard and the Basic tree editor; and

Figure 8.21: Gm�oolmodel used to generate the GMF-based modular mo-
del editor

Figure 8.22: Gmfmapmodel used to generate the GMF-based modular mo-
del editor
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others are GMF-dependent, such as theNew modular diagram editor
or theModular view editor. Both the EMF and GMF-based generated
contributions are very similar among di�erent metamodels with
only a few di�erences. For example, if we compare Fig. 8.23 (which
shows the New modular model wizard) with Fig. 8.7 (which shows
theNew features model wizard) we observe that they look almost the
same.
For this reason and to avoid redundancy, we will not show what

the ‘‘standard UI contributions’’ look like from this moment on.
We understand as ‘‘standard UI contributions’’ the following: the
new model wizard (already shown in Figs. 8.7 and 8.23), the standard
tree editor (shown in Fig. 8.8), the new diagram wizard (shown in
Fig. 8.10) and the initialize new diagram �le menu (shown in Fig.
8.9).
An exception to this convention will be applied to the GMF-based

editors as they are metamodel-dependent. GMF-based editors imple-
ment a di�erent graphical DSL for each metamodel, and although
they share the same structure (canvas, palette, menus. . . ), they ex-
press substantial di�erences in their actual contents.

(a) Step 1 (b) Step 2 (c) Step 3

Figure 8.23: New modular model wizard
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modular view editor �e modular view editor is the com-
ponent that provides a user-friendly interface to de�ne newmodular
models. Built with the help of GMF, it implements a simple DSL that
can be used to de�ne modules, functions and simple use relation-
ships.
Fig. 8.24 show a simple example which illustrates it.�e editor is

divided in two parts: the canvas (le�) and the palette (right).�e
palette shows the tools that can be used to de�ne new graphical
elements.�e elements that appear in the palette are directly related
with the elements shown in the gm�oolmodel (shown in Fig. 8.21).
�e editor also provides some context-sensitive creation tools. For
example, the �gure shows a small pop-up balloon which is shown
when the mouse stands still on the canvas.�is balloon contains a
shortcut to the ‘‘Create new module’’ tool.
In the canvas a sample model which describes an electronic calcu-

lator (the system) is shown.�is system is made up of three modules:
the calculator module, the display, and the keyboard.�e calculator
module is in charge of performing arithmetic operations. It also
has a memory which is able to store a �oating point number.�is

Figure 8.24: GMF-based modular view editor



154 the multiple framework

memory can be accessed and cleared using the saveInMem(. . . ) and
getFromMem(. . . ) functions. �e calculator module makes use of
the other two modules. �e keyboard is managed by a controller
module, that is used to track the keystrokes. Finally, the display
module is in charge of showing the information to the user.

8.3.4 Component–connector metamodel support

�e component–connector metamodel has also been implemented�e component–
connector
metamodel

implemented in
MULTIPLE is a simple
architectural model
which implements
the component–
connector view
proposed by

Limón Cordero
(2010).

based on the proposal made in (Limón Cordero 2010). Fig. 8.25
shows the Component-Connector View Metamodel. A model is
made of a set of components and connectors, which are the main
elements. Both are derived from a more general component class
(TComponent).�e components provide a set of services through
a set of ports.�e connectors link the ports of the components by
means of their roles. Di�erent types of relations can be also de�ned
among components and connectors. �e complete speci�cation of
the metamodel can be found in (Limón Cordero 2010).

8.3.4.1 Internal structure

�e plugins that implement the component-connector metamodels
are built using EMF and GMF, as the previously presented metamod-
els. �is way, their structure is very similar to plugins presented
previously. Next, the plugins and summarized.

es .upv.dsic .issi .ccview �is plugin implements the meta-
model to describe the component-connector view. �e core im-
plementation of this plugin is automatically generated by EMF,
and requires the usual plugins (org.eclipse.core.runtime and
org.eclipse.emf.ecore).
�is plugin contains three packages:

es.upv.dsic.issi.ccview—�e interfaces package.

es.upv.dsic.issi.ccview.impl—�e implementation package.
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es.upv.dsic.issi.ccview.util—�e utility package.

es .upv.dsic .issi .ccview.edit �is plugin provides the icon
and label providers to customize how the model elements are shown
to the user in the di�erent model editors. �e es.upv.dsic.issi.
mview.edit plugin has the following dependencies:

org.eclipse.core.runtime—�e Eclipse basic runtime.

org.eclipse.emf.edit—�e edit provider basic runtime.

es.upv.dsic.issi.ccview—�e modular view metamodel.

�e contents of this plugin are packaged in a single package
(es.upv.dsic.issi.ccview.provider), which is automatically gen-
erated.

es .upv.dsic .issi .ccview.editor �is plugin implements
the simple tree editor and the needed wizards to build modular
models. �e editor is the default editor for �les with the *.ccview
extension.�e plugin has the following requirements:

org.eclipse.core.runtime—�e Eclipse basic runtime.

org.eclipse.core.resources—�e API to access workspace resources.

org.eclipse.emf.ecore.xmi—�e plugin to support XMI.

org.eclipse.emf.edit.ui—�e part of the edit framework which con-
tributes to the Eclipse UI.

org.eclipse.ui.ide—�e UI of the Eclipse IDE.

es.upv.dsic.issi.ccview.edit —�e di�erent providers to represent
component-conector models.

�e contents of this plugin are created by EMF, and it only contains
the es.upv.dsic.issi.ccview.presentation package.
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Figure 8.26: Gmfgraphmodel used to generate the GMF-based component-
connector model editor

es .upv.dsic .issi .ccview.diagram �is plugin implements
the graphical editor to de�ne component-connector architectural
models. As in previous metamodels, this plugin has been automati-
cally generated using the GMF runtime. Next, the di�erent models
which de�ne the editor are shown.
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Figure 8.27: Gm�oolmodel used to generate the GMF-based component-
connector model editor

Figure 8.28: Gmfmapmodel used to generate the GMF-based component-
connector model editor

Fig. 8.27 shows the gmgraph model. �is model speci�es the
graphical primitives that will represent the domain model elements
in the canvas. �is way, components are drawn using a rectangle,
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connectors are drawn using a rounded rectangle, ports are drawn
using a small rectangle (the size of the rectangle is speci�ed in the
unfolded children of the PortFigure element), roles are drawn using
an ellipse, etc.
Fig. 8.27 shows the elements that will appear in the palette of the

canvas. As can be seen, elements are grouped in three categories
Component Tools, Connector Tools and Links. �e tools to create
Componentes, Ports and Services are located in the �rst group; the
tools to create Connectors and Roles are located in the second group;
and �nally, the tool to create the Attachments among roles and ports
is located in the third group.
Finally, Fig. 8.28 shows how the di�erent models GMF are interre-

lated with the domain model.�e �gure shows that the top nodes
(the elements that are directly drawn in the canvas) are the com-
ponents and the connectors. Moreover, for both elements a label is
speci�ed (which is used to represent the name of these elements).
As can be seen, the component nodes can have both services and
ports.�e connector nodes can have roles. Finally, a link mapping
is established between roles and ports.

8.3.4.2 User Interface

�e component-connector metamodel contributes the same menus,
wizards and editors to the Eclipse interface than the modular me-
tamodel.�ese contributions are automatically generated by EMF
or GMF. �ese contributions are the previously presented as the
standard contributions, mainly: the New component-connector mo-
del wizard, the Basic tree editor, the New component-connector di-
agram wizard and the Component-connector view editor. As these
types of contributions were presented previously for variability mod-
els and modular models, they will not be shown again.

component-connector view editor �e component-
connector view editor is the contribution which provides a user-
friendly interface to de�ne new component-connector architectural
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models. As in previous metamodels, it has been built with the help
of GMF and provides the classical notation for component models
(i. e., components, connectors, roles, ports and attachments).
Fig. 8.29 shows an example architectural model. �is example,

extracted from (Costa-Soria 2011), shows the architectural model for
the Agrobot. �e Agrobot is an autonomous agricultural robot for
plague control. It is in charge of looking for pests or disease attacks
in a small �eld. If a threat is detected, the robot sprays insecticide or
fungicide to �ght the disease.

8.3.5 PRISMA metamodel support

PRISMA (Pérez Benedí 2006) is an architectural model based on PRISMA is an
architectural
metamodel
developed within
the ISSI research
group.�e
metamodel
implemented in
MULTIPLE is based
on an Ecore
implementation
developed by
Costa-Soria (2011).

aspects and components. It provides a DSL for components de�ni-
tion which allows to describe so�ware architectures at a high level of
abstraction. PRISMA integrates two approaches for systems develop-
ment: the Component-Based So�ware Development (CBSD) (Szyper-
ski 2002) and Aspect-Oriented So�ware Development (AOSD) (Fil-
man et al. 2005).
PRISMA architectural models are de�ned in terms of the metamo-

del shown on Fig. 8.30. Next, the elements that make up the PRISMA
metamodel are explained.
PRISMA has three types of architectural elements: components,

connectors and systems.

component A component is an element that captures the system
functionality. It consists of a set of aspects (functional, distri-
bution, etc.), and one or more input and output ports, whose
type is speci�ed by an interface. Components interact with
other architectural elements by means of their ports.

connector A connector is an element of the system that acts as
a coordinator between various elements. It consists of a set
of aspects and a set of input and output roles that have as an
interface type. Connectors interconnect and sync components,
other connectors or systems by means of their roles.
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system A system is a component that encapsulates a set of connec-
tors, components and other systems properly connected. In
addition, it is characterized by the de�nition of links (LinkEle-
ments) between the system ports and the ports of the compo-
nents that it encapsulates.

To interconnect the architectural elements of PRISMA it provides
the following elements:

linkelement establishes a connection between two architectural
elements, speci�cally between the port of a component and
the port of a connector. It can be of two di�erent types: At-
tachment and Binding.

Other elements in the metamodel used to specify the architectural
elements are:

port represents the interaction points among architectural ele-
ments.

interface provides a set of services. �ere are di�erent types
of interfaces, one for each type of aspect. It describes the
signature of the services that can be invoked through it.

playedrole de�nes the behavior of a port with a given role and
the behavior of a particular interface. Moreover, it establishes
how and when the services of an interface may be required or
provided.

aspect de�nes the structure and behavior of a component. An
aspect can be seen as the union of a set of interfaces of the
type of that aspect, plus the speci�cation of the semantics of
its structure and behavior de�ned by: attributes, services, pre-
conditions, valuations, constraints, roles, protocols and roles.
�ere are di�erent types of aspects: functional, distribution,
coordination, etc.
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attributes store the information required by aspects. Attributes
can be derived or not.�e value of derived attributes is cal-
culated using a derivation rule, and this value is not stored
explicitly. Non-derived attributes can be constant or variables.
Constant attributes store a value which does not change, i. e.,
its value can not be modi�ed at runtime. Variable attributes
store a value which can be modi�ed at runtime.

service is a process that executes a set of actions to produce a
result.

protocol provides the services of an aspect that can be executed.
It de�nes a process that coordinates the services of an aspect.

valuation de�nes the change of the state of an aspect when one
of its services is executed.

precondition de�nes conditions to execute an action.

constraint are conditions that must be met through whole exe-
cution of the process of an aspect.

8.3.5.1 Internal structure

�e plugins that implement the PRISMA metamodel is built using
EMF as the previously presented metamodel. Next, the plugins and
summarized.

es .upv.dsic .issi .prisma �is plugin implements the meta-
model to describe PRISMA models.�e core implementation of this
plugin is automatically generated by EMF, and requires the usual plu-
gins (org.eclipse.core.runtime and org.eclipse.emf.ecore).
�is plugin contains three packages:

es.upv.dsic.issi.prisma—�e interfaces package.

es.upv.dsic.issi.prisma.impl—�e implementation package.

es.upv.dsic.issi.prisma.util—�e utility package.
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es .upv.dsic .issi .prisma .edit �is plugin provides the providers
to customize how the model elements are shown.�e es.upv.dsic.
issi.prisma.edit plugin has the following dependencies:

org.eclipse.core.runtime—�e Eclipse basic runtime.

org.eclipse.emf.edit—�e edit provider basic runtime.

es.upv.dsic.issi.prisma—�e PRISMA metamodel.

�e contents of this plugin are packaged in a single package
(es.upv.dsic.issi.prisma.provider), which is automatically gen-
erated.

es .upv.dsic .issi .prisma .editor �is plugin implements
the tree editor and wizards to build PRISMA models.�e editor is
the default editor for *.prisma �les. �e plugin has the following
requirements:

org.eclipse.core.runtime—�e Eclipse basic runtime.

org.eclipse.core.resources—�e API to access workspace resources.

org.eclipse.emf.ecore.xmi—�e plugin to support XMI.

org.eclipse.emf.edit.ui—�e part of the edit framework which con-
tributes to the Eclipse UI.

org.eclipse.ui.ide—�e UI of the Eclipse IDE.

es.upv.dsic.issi.prisma.edit—�e di�erent providers to represent
PRISMA models.

�e contents of this plugin are created by EMF, and it only contains
the es.upv.dsic.issi.prisma.presentation package.
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8.3.5.2 User Interface

�e PRISMA metamodel contributes the standard menus, wizards
and editors to the Eclipse interface that EMF provides.�ese contri-
butions are, mainly, theNew prisma model wizard and the Basic tree
editor. Both types of contributions were presented previously.

8.4 transformations subsystem

�e transformations subsystem is based on themedini QVT library
(ikv++ 2011). As discussed in section 3.5,medini QVT is open source,
but this license only applies to the transformations engine, and not to
the additional tools it provides, such as the textual editor, debugger,
etc.�erefore, it is convenient for our implementation to de�ne a
new plugin which contains the functionality of the transformations
engine.�e engine included inMULTIPLEhas been built directly from
the sources available in the public repositories. �e plugin which
encapsulates this functionality is es.upv.dsic.issi.qvt.engine.
To execute model transformations, the es.upv.dsic.issi.qvt.�e transformations

subsystem
implemented in

MULTIPLE is based
in the open source
transformations
enginemedini

QVT. We have built
di�erent interfaces,
which invoke the
core engine to

execute model trans-
formations.

launcher and the es.upv.dsic.issi.qvt.launcher.uiplugins have
been developed. Speci�cally, the �rst one encapsulates the logic to ex-
ecute model transformations, while the second one implements the
UI.�is way, they import the es.upv.dsic.issi.qvt.engine plugin,
and invoke the QvtProcessorImpl.evaluateQVT(...) method.
�e launcher plugin depends on two EMFmodels.�e �rst one

corresponds to the QVT transformation invocation model (see sect.
8.4.2).�is model allows specifying the information needed to ex-
ecute a model transformation at a high level of abstraction. �e
second model (described in sect. 8.4.3) corresponds to theMULTIPLE
traceability metamodel. �is metamodel is a generic metamodel
to describe a set of named links among elements of di�erent EMF
models. Moreover, the traceability metamodel provides a speci�c
editor which allows to de�ne and navigate these links. �is way,
every time a QVT transformation is executed, a traceability model is
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be created describing the mappings among the source and the target
models.

8.4.1 QVT engine

�e es.upv.dsic.issi.qvt.engine contains all the needed libraries
to execute model transformations de�ned in QVT–Relations. �e
plugin has been obtained from the sources of themedini QVT engine
directly (this includes the OSLO sources too), since we have made
slight modi�cations on it.
�is plugin depends both on Eclipse plugins and regular Java

libraries. With respect to the Eclipse plugins, dependencies are:

org.eclipse.core.runtime—�e Eclipse runtime.

org.eclipse.emf.common—Common functionality to support the
EMF infrastructure on Eclipse.

org.eclipse.emf.ecore—�e Ecoremetamodel.

org.eclipse.emf.ecore.xmi— XMI persistence for EMFmodels.

org.eclipse.emf.edit— EMF edit support subsystem.

org.eclipse.emf.transaction—Support for transactions on EMFmod-
els.

org.eclipse.emf.validation—Built-in validation capabilities for EMF-
based models.

Regarding the common libraries, dependencies are:

Apache Commons Collections (Apache 2011) (commons-collections-
3.2.jar).

CUP Parser Generator for Java (Hudson 2011) (CUPRuntime.jar).

Kent Modeling Framework (KMF2011) (KMF_Util.jar, KMF_XMI.jar,
KMFpatterns.jar, Util-1.2.jar)
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8.4.2 QVT transformation invocation model support

In order to easily deal with the information needed to invoke a mo-
del transformation an Ecore model has been de�ned. �is allows
us to easily generate the Java code to de�ne and query this infor-
mation programmatically. Moreover, we automatically obtain the
persistence mechanisms to serialize it and deserialize it.
�us, using the generated code, di�erent plugins can easily ex-

change the information of an invocation. InMULTIPLE is used for:

• First, the plugin that implements the UI to con�gure a new
transformation (es.upv.dsic.issi.qvt.launcher.ui) uses
the MVC pattern. Using the generated code we get the model
implementation for free.

• Second, according to the Eclipse API, the class that executes an
external process (org.eclipse.debug.core.model.ILaunch-
ConfigurationDelegate) should receive the launch con�gu-
ration data in plain text. Using the XMI persistence mecha-
nism, the textual representation of an invocation is obtained
automatically.

8.4.2.1 Internal structure

We have generated the model and the edit support plugins for the
QVT transformation invocationmodel. In this case, the editor plugin
is not generated as it is unnecessary (the model is only for internal
use).

es .upv.dsic .issi .qvt.launcher .model �e es.upv.dsic.
issi.qvt.launcher.model plugin contains the model and the gen-
erated code for the description of QVT transformations invocations.
It is shown in Fig. 8.31.
�is �gure shows that the model has only two classes QvtTrans-

formationInvocation and Domain.�e �rst one corresponds to the
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QvtTransformationInvocation
name : EString
path : IPath
toXMI() : EString throws IOException

Domain
name : EString
nsPrefix : EString
modelPath : IPath
isTarget() : EBoolean

<<datatype>>
IPath

<<javaclass>> org.eclipse.core.runtime.IPath

<<datatype>>
IOException

<<javaclass>> java.io.IOException

direction1

domains

2..*

invocation 1

Figure 8.31: QVT transformation invocation model

transformation itself and, as can be seen, a transformation has several
domains involved.
�eQvtTransformationInvocation class also stores all the relevant

information about the QVT transformation itself (i. e., the name of
the transformation and the path of the �le with the textual descrip-
tion).�e Domain class contains the information for each domain.
Speci�cally, the domain name, the nsPre�x of the metamodel that
the domain model conforms to, and the path of the �le containing
the instance model that will match to this domain. Finally, the di-
rection role which links the QvtTransformationInvocation class with
the Domain class indicates in which direction the transformation is
executed (i. e., which is the target domain).
�e plugin has the following dependencies:

org.eclipse.core.runtime — �e Eclipse runtime. It is where the
IPath interface is de�ned.

org.eclipse.core.resources—�e resources API plugin. It is required
to access the �les in the workspace.

org.eclipse.emf.ecore—�e Ecoremetamodel.

es.upv.dsic.issi.qvt.engine—�e QVT engine. It provides the mech-
anisms to parse and analyse a textual QVT transformation.
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When a transformation is parsed an Abstract Syntax Tree
(AST) is built. �is tree can be queried to get the necessary
information to build a QvtTransformationInvocation with its
corresponding domains.

�e generated code of this plugin has been modi�ed by hand to
extend its basic functionality. All the details about the modi�cations
can be found in (Gómez 2008). Next, a short description of the
packages of this plugin is presented.

es.upv.dsic.issi.qvt.launcher.model.qvtinvocation—�is is the inter-
faces package. It contains almost entirely the default generated
code as it does not contain executable code (except for some
minor changes).

es.upv.dsic.issi.qvt.launcher.model.qvtinvocation.impl—�is pack-
age implements most of the functionality this plugin provides.
�e following modi�cations to the default implementation
have been made:

1. �e isTarget(. . . ) method has been implemented in the
DomainImpl class (it is empty by default).

2. New factories have been added to theQvtinvocationFac-
toryImpl class (an empty instance, without domains, is
created by default). �is way, a new instance of Qvt-
TransformationInvocation can be obtained for a textual
QVT transformation.�is instance will be partially pop-
ulated with the transformation name and path. �e
corresponding domains will be also contained in the
QvtTransformationInvocation instance.�e value of the
modelPath attribute will remain unde�ned, as it is un-
known.

3. New methods have been de�ned to serialize and deseri-
alize user-de�ned datatypes (i. e., IPath): convertIPath-
ToString(. . . ) and createIPathFromString(. . . )
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4. �e implementation of the QvtTransformationInvoca-
tion.toXMI()method has been provided. It returns an
string with the XMI serialization of the invocation.

es.upv.dsic.issi.qvt.launcher.model.qvtinvocation.util —�is pack-
age contains the default implementation of the utility classes.

es .upv.dsic .issi .qvt.launcher .model .edit �is plugin
provides the basic functionality to represent the model elements in
graphical UIs. Since it contains the default implementation it will
not be described in further detail.

8.4.3 Traceability metamodel support

In medini QVT, treatment of traceability is done according to the medini QVT

provides limited
support for
traceability and
consequently does
not provide an
explicit traceability
metamodel. In
MULTIPLEwe have
decided to adapt
previous works
done within the ISSI
research group to
provide the
necessary tools and
editors.

recommendations of the QVT standard; i. e., it generates a trace class
for each rule in the transformation. Trace classes have a property for
each one of the domains of the rule.�us, when a transformation is
executed a set of trace instances are created, and these trace instances
are equivalent to the relation’s population of tuples.
However, medini QVT does not provide any tool for inspecting

traceability models. Furthermore, the variability introduced by the
existence of a traceability metamodel, which is dependent of the
metamodels of the domains involved, makes di�cult the creation of
a generic editor for viewing and navigating such models.�erefore,
we have decided to adapt the traceability metamodel used in MO-
MENT (Boronat et al. 2005a) and its related tools and editors, which
are explained in detail in (Gómez 2005), to deal with the traceability
models generated bymedini QVT.
Next, the three plugins which provide the traceability capabilities

are explained. It must be borne in mind that the plugins presented
here are a reduced and improved version of the proposal made in
(Gómez 2005).�is way, the technical details of the plugins will not
be explained in this document.
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8.4.3.1 Internal structure

es .upv.dsic .issi .traceability.metamodel �is plugin
contains the generated Java code for the Ecore model shown in
Fig. 8.32.

TraceabilityModel
name : EString
domainModels : URI
targetModels : URI

TraceabilityLink
manipulationRule : EString

<<datatype>>
URI

<<javaclass>> org.eclipse.emf.common.util.URI

EObject
(from ecore)

eClass() : EClass
eIsProxy() : EBoolean
eResource() : EResource
eContainer() : EObject
eContainingFeature() : EStructuralFeature
eContainmentFeature() : EReference
eContents() : EEList
eAllContents() : ETreeIterator
eCrossReferences() : EEList
eGet(EStructuralFeature) : EJavaObject
eGet(EStructuralFeature,EBoolean) : EJavaObject
eSet(EStructuralFeature,EJavaObject)
eIsSet(EStructuralFeature) : EBoolean
eUnset(EStructuralFeature)

links
1..*model

1

domain
1..*

range
1..*

Figure 8.32: MULTIPLE traceability metamodel

As can be observed in the �gure, the ‘‘root’’2 class of the model is
the TraceabilityModel class. A traceability model has a name and a
set ofURIs (domainModels and targetModels) of the source and target
domains. A URI is an indenti�er used in EMF to load and reference
models and metamodels (called EResources). A traceability model
can relate n source models with n target models.
A traceability model contains a set of mappings or Traceabil-

ityLinks. A traceability link has a name (manipulationRule, which
indicates the rule that generated the link), a set of domain elements
(which are instances of the classes of the domain models) and a set
of range elements (which are instances of the clasess of the target
models). Domain and range elements are of EObject type, which is

2 EMFmodels are typically shown as trees.�is way, it is recommended to de�ne a

class which acts as the root node of this tree.
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the generic type of EMF instances.�e dependencies of this plugin
are the following as usual:

org.eclipse.core.runtime—�e Eclipse basic runtime.

org.eclipse.emf.ecore—�e Ecoremetamodel.

es .upv.dsic .issi .traceability.metamodel .edit �is
plugin provides the basic functionality to show traceability models
in graphical editors. Its contents are almost the default contents.

es .upv.dsic .issi .traceability.metamodel .editor �is
is the latest plugin developed for the traceability management in
MULTIPLE. It includes the traceability editor as well as the wizard
to create new traceability model automatically. �e editor allows
visualizing a traceability model toghether with their domain and
range models simultaneously. It also allows navigating the traceabil-
ity links, showing automatically and easily the relationships between
the domain and range elements. Traceability models can also be
edited using the editor.�e only requirement of the editor to repre-
sent a traceability model that relates any set of EMFmodels is that
the corresponding metamodels must be previously registered in
EMF.�e wizard allows to create new traceability models. Although
traceability models are usually automatically created when a QVT
transformation is executed, this feature can be useful to create new
weaving models, i. e., models which de�ne a set of associations and
links among elements of di�erent models. Weaving models can be
useful for metamodel comparison, model matching, model annota-
tion, interoperability, etc. (Del Fabro and Jouault 2005; Boronat et al.
2005a; Jossic et al. 2007).
�e plugin has the following dependencies:

org.eclipse.core.runtime—�e Eclipse basic runtime.

org.eclipse.core.resources—�e API to access workspace resources.

org.eclipse.emf.ecore.xmi—�e plugin which provides support to
the XMI persistence format.
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org.eclipse.emf.edit.ui—�e part of the edit framework which con-
tributes to the Eclipse UI.

org.eclipse.ui.ide—�e UI of the Eclipse IDE, adds support for error
markers, input for �le editors, etc.

es.upv.dsic.issi.traceability.metamodel—�e traceability metamo-
del plugin.

es.upv.dsic.issi.traceability.metamodel.edit—Autility plugin which
implements the image and label providers for traceabilitymod-
els.

Furthermore, and as explained before, to be able to show the
models referenced by a traceability model it is necessary that the cor-
responding metamodels are correctly registered in the EMF registry.

8.4.3.2 User interface

�e traceabilitymetamodel contributes to the EclipseUI the standard
elements. However, these elements have been customized to deal
with the particularities of this kind of models.�e majority of the
modi�cations have been made in the standard tree editor. Next, this
contribution is explained.

traceability editor �e traceability editor has been imple-
mented using as the starting point the code generated automatically
by EMF.�is code has been modi�ed and cleaned up. Some super-
�uous functionaly has been removed, this way the traceability editor
is a sigle-page editor and not a multi-page editor.�e single-page
editor has been modi�ed, and two additional tree panels have been
added at both sides of the editor.�is way, the editor is able to rep-
resent three model trees simultaneously. Source models are shown
in the le� panel, target models are shown in the right panel, and
traceability links are shown in the middle panel.
�e behaviour of the editor has been also customized. When

the selection changes in any of the three tree panels, the links of
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the traceability model are navigated.�en, all the elements which
can be reached navigating the selected elements or links are also
automatically selected.
Fig. 8.33 shows an example traceability model. �is model has

been automatically obtained a�er the application of a QVT transfor-
mation. Speci�cally, the example transformation is the Features-
2Classes QVT transformation explained in Sect. 7.3. �e example
source model is the feature model describing a product line for cars,
which was explained in section 7.2.3.1 (page 89). �e application
of the QVT transformation generates the class diagram shown in
Fig. 7.19 placed on page 109.
�is way, Fig. 8.333 shows which elements are related in one of

the applications of the Feature2Class rule. In this sense, can be ob-
served that the featureWheel, which is contained in the FeatureCar

3 �e contrast of the selected elements has been arti�cially increased to enhance

visibility in printed media.

Figure 8.33: Navigating from a source element in the traceability editor
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Figure 8.34: Navigating from a traceability link in the traceability editor

Figure 8.35: Properties view of a domain element

feature model is transformed to theWheel EClass contained in the
FeatureCar EPackage.
Fig. 8.34 shows how the links are navigated when the user se-

lects an element of the source model. In this case, when the
Implies relationship is selected, the �gure shows that the Auto-
matic_implies_TCS annotation has been created in the Automatic
EClass through the ImpliesRelationship2ModelConstraint rule.
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Figure 8.36: Properties view of a traceability link

Due to the genericity of the traceability metamodel, it is not al-
ways possible to show all the relevant information in the tree editor.
Fig. 8.34 is an example of this. It can be observed that the label of
the Implies element does not show which elements are linked by it.
However, this information can be seen in the properties view, as it is
shown in Fig. 8.35.
Fig. 8.36 shows the properties view when a traceability link is

selected. �e �gure shows the properties of the ImpliesRelation-
ship2ModelConstraint link, which relates the elements shown in

Figure 8.37: Properties view of a traceability link
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Fig. 8.34, the domain property shows the referenced elements in
the source models, and the range the referenced elements in the tar-
get models.�e selected elements in the source and target domains
can be modi�ed �ltered and modi�ed using an additional dialog.
Such dialog is opened when the [. . . ] button is pressed. Fig. 8.37
shows the dialog for the domain elements of the ImpliesRelation-
ship2ModelConstraint link.

8.4.4 QVT Launcher

�e previous sections have shown and described the plugins that are�e QVT Launcher
implements the user
interface integrated
into the Eclipse

platform to invoke
the embeded
medini QVT

engine.

prerequisite to implement and execute automated model transfor-
mations.�is section shows how to make use of them invoking the
medini QVT engine and getting the result models.

8.4.4.1 Internal structure

�e functionality to execute model transformations is divided in two
di�erent plugins. �e �rst one, es.upv.dsic.issi.qvt.launcher,
is able to execute a model transformation given a speci�c launch
con�guration, which is the generic mechanism to execute external
processes within the Eclipse platform.�e second one, es.upv.dsic.
issi.qvt.launcher.ui, provides the user interface which creates
the launch con�guration and invokes the launcher plugin. Next these
plugins are explained.

es .upv.dsic .issi .qvt.launcher allows executing a model
transformation without user intervention.�e model transforma-
tion invocation is speci�ed as an instance of the es.upv.dsic.issi.
qvt.launcher.modelmetamodel.
�is plugin makes use of the Eclipse API to execute external pro-

grams.�is API speci�es that a class implementing the org.eclipse.
debug.core.model.ILaunchConfigurationDelegate interfacemust
be declared.�is class is the one in charge of executing a given launch
con�guration. �is code must be implemented in the launch(. . . )
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method. A launch con�guration can be de�ned in di�erent ways.
InMULTIPLE launch con�gurations are de�ned by means of the user
interface implemented in the next section, which shows up when
the ‘‘Run con�gurations. . . ’’ menu is selected in Eclipse.
�e plugin has the following dependencies:

org.eclipse.core.runtime—�e Eclipse basic runtime.

org.eclipse.debug.core—�e API to deal with launch con�gurations.

org.eclipse.emf.ecore.xmi—�e plugin which provides support to
the XMI persistence format.

es.upv.dsic.issi.qvt.engine—�eMULTIPLE plugin which provides
access to themedini QVT engine.

es.upv.dsic.issi.qvt.launcher.model—�e launcher model which al-
lows to de�nes and inspect the information to execute amodel
transformation (QVT–Relations rules, source models, target
model, etc.).

es.upv.dsic.issi.traceability.metamodel—�is plugin allows to cre-
ate and manipulate generic traceability models as de�ned in
the previous section. A traceability model is always built from
the information returned by themediniQVT transformations
engine.

�e explanation of the source code of this plugin can be looked up
in (Gómez 2008). Next, to avoid verbosity, only a short description
of the packages of this plugin is presented.

es.upv.dsic.issi.qvt.launcher—�is package only contains the acti-
vator class (QvtLauncherPlugin) which controls the plugin life-
cycle. Moreover, this class contains some constant de�nitions
which are used to query the details of a launch con�guration.

es.upv.dsic.issi.qvt.launcher.internal—�is package contains three
classes: QvtLaunchCon�guration, QvtTransformationProcess
and QvtTransformationJob.
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�e QvtLaunchCon�guration class is responsible for recov-
ering the con�guration to execute an external process, and
launching it. All this is done by implementing the launch(. . . )
method de�ned in the ILaunchConfigurationDelegate inter-
face. �e class which represents the external process is the
QvtTransformationProcess class, which is instantiated by the
launch(. . . ) method.

�eQvtTransformationProcess class inherits from the IProcess
interface, which is the type expected by Eclipse to control the
external program’s life-cycle. However, the class which �nally
invokes the QVT engine is QvtTransformationJob. �is class
inherits from org.eclipse.core.resources.WorkspaceJob,
which enables monitorization capabilities within the Eclipse
platform.

Finally, the QvtTransformationJob class is in charge of invok-
ing the medini QVT transformations engine. First, it navi-
gates the QvtTransformationInvocation instance and gets its
domains. For every domain, the corresponding model and
metamodel are loaded. Models are speci�ed by the model-
Path attributes and metamodels are speci�ed by the nsPre-
�x attribute. Once all the required resourced are prepared,
and instance of the de.ikv.emf.qvt.EMFQvtProcessorImpl-
.EMFQvtProcessor class is created, and its evaluateQvt(. . . )
method is invoked. An example of this is shown in listing 8.1

It is noteworthy that a set of traces is returned. However,
these traces cannot be represented graphically in a generic
editor.�us, these traces are next transformed to our generic
metamodel. Finally, the result model and the newly created
traces model are saved.

�e complete code for this class can be found in Appendix F.

es .upv.dsic .issi .qvt.launcher .ui �is plugin is in charge
of providing the user interface to execute model transformations.
�e provided interface is integrated in the dialog window to execute
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Listing 8.1: evaluateQvt(. . . ) method
1 Collection <Trace > traces = emfQvtProcessorImpl.evaluateQVT(

2 qvtScriptReader ,

3 // Textual representation of the transformation

4 invocation.getName (),

5 // Name of the transformation to be executed

6 true ,

7 // Set enforce execution mode

8 invocation.getDirection ().getName (),

9 // Name of the target domain

10 models.toArray (),

11 // List of models to be matched with the transformation

domains

12 new ArrayList <Trace >(),

13 // Previous set of traces. Used if the target model is

not empty and comes from a previous execution

14 log);

15 // Log to store messages �
external programs of the Eclipse UI, as will be shown in the next
subsection.
To contribute new controls to this dialog a new class, which inher-

its from org.eclipse.debug.ui.AbstractLaunchCon�gurationTabGroup
must be implemented. Such class must be associated to a given
launch con�guration type in the manifest �le of the plugin. In this
case, the QvtLaunchCon�gurationTabGroup class has been imple-
mented. �is class is related with the launch con�guration type
that has been implemented in the es.upv.dsic.issi.qvt.launcher
plugin (i. e., QvtLaunchCon�guration).
�e plugin has the following dependencies:

org.eclipse.core.runtime—�e Eclipse basic runtime

org.eclipse.ui—�e Eclipse basic UI library. It provides construc-
tors to create new dialogs, etc.

org.eclipse.debug.ui—�is plugins provides the utility classes to
deal with the graphical aspects of launch con�gurations.
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org.eclipse.ui.ide —�is plugin provides some advanced dialog
boxes.

org.eclipse.jface.text —�is plugin provides a library which uses
theMVC pattern and which is built on top of Standard Widget
Toolkit (SWT) (Eclipse 2011d).�is library is specialized in
textual editors.

es.upv.dsic.issi.qvt.engine—�is plugin encapsulates the medini-
QVT engine. Allows to query and analyze QVT–Relations
transformations.

es.upv.dsic.issi.qvt.launcher — �is plugin provides the environ-
ment to automatically execute model transformations con�g-
urations.

es.upv.dsic.issi.qvt.launcher.model—�is plugin provides the mo-
del to specify model transformations con�gurations.

A short description of the packages of this plugin is presented
next:

es.upv.dsic.issi.qvt.launcher.ui —�is package only contains the
activator class, which controls the lyfe-cycle of the plugin.

es.upv.dsic.issi.qvt.launcher.ui.internal—�is package contains the
following classes: ExtensionFilter, ParamsCellModi�er, Param-
sContentProvider, ParamsLabelProvider, QvtLaunchCon�gu-
rationTabGroup,QvtLaunchShortcut,QvtMainTab,Resources-
TreeSelectionDialog.

�eQvtLaunchCon�gurationTabGroup class implements a tab
group which is associated to our launch con�guration type.
�e tab group contains aQvtMainTab (which implementes the
main UI contributed by this plugin), and the generic Eclipse
Common tab.�e QvtMainTab implements a table which is
used to specify the di�erent models that will match the QVT–
Relations transformation domains.�e ParamsCellModi�er,
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ParamsContentProvider and ParamsLabelProvider classes are
some utility classes used by the table contained in the Qvt-
MainTab class. Finally the ResourcesTreeSelectionDialog im-
plements a �le selection dialog, and the ExtensionFilter class
implements a �le �lter based on �le extensions.

8.4.4.2 User Interface

�e user interface that theMULTIPLE framework provides to execute
model transformations is provided by the es.upv.dsic.issi.qvt.
launcher.ui plugin.�is plugin provides an easy way to de�ne the
models that take part in a model transformation. Such interface
is integrated in the dialog window to execute external programs
included in the Eclipse platform. �is dialog is available can be
opened using the Run → Run con�gurations. . . menu. Figure 8.38
shows how to launch this dialog.
If this menu is used, the Edit con�guration dialog shown in Fig.

8.39 is shown. To be able to de�ne the models that take part in the
model transformation a *.qvt �le must be selected �rst.
Alternatively, and as an a shortcut, this dialog can be launched

using the contextual menu which appears when right clicking over a
‘‘*.qvt’’ �le as shown in Fig.
When this contextual menu is used, the dialog can be opened with

some values already de�ned, such as the QVT transformation �le, the

Figure 8.38: Run→ Run con�gurations. . . menu
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Figure 8.39: Edit con�guration dialog

launch con�guration name an the domains of the transformation.
�is way, the user only has to de�ne the �les that will match the
transformation domains. Fig. 8.41 shows how this dialog looks like
when it is opened using the contextual menu.

Figure 8.40: Run as. . .→ QVT Transformation contextual menu
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Figure 8.41: Edit con�guration and launch dialog window

Next, the user has to de�ne the input models that will match the
di�erent domains. For example, Fig. 8.42a shows how the feature
model of the example (the car example) is selected.�is dialog is
launched when the user clicks on the (. . . ) button which appears on
Fig. 8.41.
When the user has de�ned all the input models, he/she must

de�ne which is the �le name for the output �le. If this �le does
not exists yet, its name can be entered manually as the Fig. 8.42b
shows. In the example, and as the target domain conforms to the
Ecoremetamodel, the result �le has the *.ecore extension.
When all the domains have been de�ned, the Run button becomes

active (Fig. 8.43).�is way, it can be clicked and the model transfor-
mation begins.
Fig. 8.44 shows the progressmonitor which informs the user about

the progress of the model transformation. When the process �nishes
the progress monitor is closed and the result �les are created in the
Eclipse workspace.
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(a) Input model (b) Output model

Figure 8.42: Setting the input and output models of a model transforma-

tion

Finally, Fig. 8.45 shows the result �les (which are the selected �les).
As can be seen, two �les are created. First, we �nd the car.ecore �le,
which conforms to the Ecoremetamodel, and which has been cre-

Figure 8.43: QVT transformation ready to be executed
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Figure 8.44: Progress monitor of a model transformation

ated following the rules that the QVT transformation de�ne. Second,
we �nd the car.traces �le.�is �le, which is conformant to the meta-
model described in section 8.4.3, makes explicit the links between
the source models and the target models, which are derived from
the relationships that the QVT transformation de�nes.�e traceabil-
ity model can be looked up in Figs. 8.33 and 8.34, which show the
traceability editor.�e contents of the car.ecore �le are shown in the
right panel of the traceability editor of both �gures.

Figure 8.45: Result �les of the example model transformation

8.4.5 QVT Command-line interface

�eMULTIPLE Framework also provides support to execute model
transformations outside the Eclipse platform. For this, an standalone
Java program is provided.�is program can execute a model trans-
formation without user interaction if it is invoked using the proper
parameters.
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As it can be executed in a non-interactive way, it can be used by
any other 3rd party program to integrate model transformations,
apart of the technology used to develop it. For example, the QVT
Command-line Interface can be used by a program developed using
theMicroso� .NET Framework. An example of this case is shown in
Section 13.
Next, a short overview of this program is given.

8.4.5.1 Internal structure

�e QVT Command-line interface is a simple program which mostly�e QVT
Command-line

interface is an
standalone

application which
can execute model
transformations in

batch mode.

encapsulates the functionality provided by the es.upv.dsic.issi.
qvt.launcher plugin. Although this program can be executed in-
dependently of the Eclipse workbench, some core plugins of the
Eclipse platform are required. To this set of plugins someMULTIPLE
dependencies must be added. All the required plugins are:

qvtemf.jar—�e QVT engine packed as a single Java Archive (JAR)
�le.

org.eclipse.equinox.common—�e Equinox common runtime, i. e.,
the Eclipse implementation of the OSGi framework.

org.eclipse.emf.common—Common functionality of the EMF.

org.eclipse.emf.ecore—�e Ecoremetamodel.

org.eclipse.emf.ecore.xmi— XMI support for Ecore artifacts.

org.eclipse.emf.edit—�e EMF edit support plugin.

org.eclipse.emf.validation — �e validation subsystem for Ecore
models and instances.

org.eclipse.emf.transaction—�e plugin which provides support
for transactions when dealing with EMF artifacts.

es.upv.dsic.issi.traceability.metamodel—�eMULTIPLE traceability
metamodel.
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QvtTransformationInvocation
name : EString
tracesPath : EString
path : EString
toXMI() : EString throws IOException

Domain
name : EString
modelPath : EString
isTarget() : EBoolean

<<datatype>>
IOException

<<javaclass>> java.io.IOException

Metamodel
path : EString

PluginMetamodel
packageImplClass : EString

XMIMetamodel

direction
1

domains
2..*

invocation

1

metamodel
1

Figure 8.46: CLI invocation model

es.upv.dsic.issi.qvt.launcher.model.cli— (A customized version of)
theMULTIPLE QVT launcher model. Fig. 8.46 shows what this
modi�ed version looks like. As it can be observed, the main
di�erence resides in the declaration of the metamodels that
the domains conform to. In the CLI version, the metamodels
must be declared using a path in the �le system instead of by
means of their nsPre�x.�is is because they are not loaded
by default in the EMF package registry, and this task must be
done explicitly.

A metamodel can be declared using two di�erent ways. On
the one hand, an XMI representation of an Ecoremodel can be
used. On the second hand, an EMFmodel plugin can be used.
�is second choice can be useful to import metamodels which
include executable code. In this case, the FullyQuali�edName
(FQN) of the Package Implementation class must be provided.

�e internal code of the CLI engine is stored in a single pack-
age, es.upv.dsic.issi.qvt.cli.�is package contains two classes:
QvtTransformer and UnsupportedOptionException. �e latter is
thrown when the user does not declare the arguments of the pro-
gram properly.�e former class contains the main method which
parses the arguments of the program, loads the con�guration, and
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executes the evaluateQvt(. . . ) method as explained in the previous
section.
All the required plugins and libraries, within the classes of the

es.upv.dsic.issi.qvt.cli package are built all together in what is
called aFat JAR. AFat JAR is a single and self-contained JARwhich can
be easily distributed and executed without worrying about external
dependencies.

8.4.5.2 User Interface

�e program does provide a fully textual user interface. All the
required information to execute a model transformation must be
de�ned before the execution of the program, as it provides a non-
interactive interface.�is way, QVT transformations can take part in
batch processes.
When the program is not properly con�gured provides the fol-

lowing usage information:

Listing 8.2: Usage of the CLI of the QVT engine

1 c:\tests > java -jar qvtengine.jar

2 Usage: java -jar qvtengine.jar --config <xmi_config_filename >

[--debug on|off] [--traces on|off]

3 c:\tests > �
Where the arguments are:

--config <xmi_config_filename>—Required. De�nes the path
of the XMI �le which contains the information about the trans-
formation invocation. Itmust be an instance of themetamodel
shown in Fig. 8.46.

--debug on|off—Optional, default value off. Shows debug mes-
sages outputted by the QVT transformations engine.

--traces on|off—Optional, default value off. Creates a trace-
ability model which contains the links that have been created
between the sourcemodels and the targetmodel.�e traceabil-
ity model produced conforms to the traceability metamodel
presented in section 8.4.3.
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Listing 8.3: Example invocation �le: uml2rdbmscon�g.xmi

1 <?xml version="1.0" encoding="ASCII"?>

2 <qvtinvocationcli:QvtTransformationInvocation xmi:version="

2.0" xmlns:xmi="http://www.omg.org/XMI"

3 xmlns:qvtinvocationcli="http://es.upv.dsic.issi/qvt/

invocation/cli"

4 name="uml2rdbms"

5 path="uml2rdbms.qvt"

6 direction="rdbms"

7 tracesPath="result.traces">

8

9 <domains name="uml" modelPath="SimpleUML.xmi">

10 <metamodel xsi:type="qvtinvocationcli:XMIMetamodel" path=

"SimpleUML.ecore"/>

11 </domains >

12

13 <domains name="rdbms" modelPath="result.xmi">

14 <metamodel xsi:type="qvtinvocationcli:XMIMetamodel" path=

"SimpleRDBMS.ecore"/>

15 </domains >

16

17 </qvtinvocationcli:QvtTransformationInvocation > �
An example transformation invocation is shown in listing 8.3.�is

listing declares a transformation invocation for the transformation
uml2rdbms declared in the uml2rdbms.qvt �le.�is �le contains the
classical example which transforms a class diagram to a relational
database schema.�e transformation is executed in the direction of
the rdbms domain, and the traceability model that the transforma-
tion may generate will be saved in the result.traces �le.
�e transformation has two domains: uml and rdbms.�e uml

domain will match with the SimpleUML.xmimodel, which conforms
to themetamodel stored in the SimpleUML.ecore XMI �le.�e rdbms
domain will match with the result.xmimodel, which conforms to
the metamodel stored in the SimpleRDBMS.ecore XMI �le. As the
rdbms domain is the target domain, the result.xmi �le may not
exist.
Fig. 8.47 shows an execution of the previous example. First, the

contents of the directory are shown.�ere we �nd: (i) qvtengine.
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jar, the QVT engine executable; (ii) SimpleRDBMS.ecore, the target
metamodel; (iii) SimpleUML.ecore, the sourcemetamodel; (iv) SimpleUML.
xmi, the source instance; (v) uml2rdbms.qvt, the model transforma-
tion between the source metamodel and the target metamodel; and
(vi) uml2rdbmsconfig.xmi, the invocation con�guration.
Next, the transformation is executed, with the --traces option

enabled. Finally, in the new directory listing two additional �les can
be seen, result.xmi, which contains the result model, and result.
traces, which contains the traces model.
In case of executing the model transformation using the JAR �le

which implements the source metamodel, the uml domain should
be declared as described in listing 8.4.
Fig. 8.48 shows the example execution of the model transforma-

tion when the compiled version of the SimpleUML metamodel is
used. In this case, the metamodel is contained in the simpleuml_

Figure 8.47: Example of a model transformation using the CLI engine



8.4 transformations subsystem 193

Listing 8.4: Example invocation �le: uml2rdbmscon�gmod.xmi

1 <?xml version="1.0" encoding="ASCII"?>

2 <qvtinvocationcli:QvtTransformationInvocation xmi:version="

2.0" xmlns:xmi="http://www.omg.org/XMI"

3 xmlns:qvtinvocationcli="http://es.upv.dsic.issi/qvt/

invocation/cli"

4 name="uml2rdbms"

5 path="uml2rdbms.qvt"

6 direction="rdbms"

7 tracesPath="result.traces">

8

9 <!-- Modified code begins here -->

10 <domains name="uml" modelPath="SimpleUML.xmi">

11 <metamodel xsi:type="qvtinvocationcli:PluginMetamodel"

12 path="simpleuml_1 .0.0. jar"

13 packageImplClass="SimpleUML.impl.SimpleUMLPackageImpl"/

>

14 </domains >

15 <!-- Modified code ends here -->

16

17 <domains name="rdbms" modelPath="result.xmi">

18 <metamodel xsi:type="qvtinvocationcli:XMIMetamodel" path=

"SimpleRDBMS.ecore"/>

19 </domains >

20

21 </qvtinvocationcli:QvtTransformationInvocation > �
1.0.0.jar �le, and the results are the same than in the previous
execution.
Although in this case there is no di�erence between using an XMI

metamodel or a compiled metamodel, the latter is more powerful
and provides more possibilities. For example, using the compiled
version can be useful when metamodels have classes which contain
derived attributes or methods with custom code. Moreover, it also
allows including any arbitrary Java code in a model transformation,
enabling the use of black-boxes.
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Figure 8.48: Example of a model transformation using a compiled meta-

model and the CLI engine

8.5 validation subsystem

�e validation subsystem allows to check it the di�erent models
and instances that play a role in a MMDSPL are correct or not. In
this sense,MULTIPLE is able to check so�ware artifacts at two levels.�e validation

subsystem provides
consistency

checking and model
checking capabilities

to theMULTIPLE
framework.

First, it allows to validate if models conform to their corresponding
metamodels. In this conformance checking complex restrictions
(expressed as OCL expressions) are included. Second, it allows to
verify if cardinality-based feature models are correct or not. To
guarantee that the veri�cation process is properly done, it makes
use of the FaMa framework.�is framework is able to reason about
feature models by representing them in di�erent logical notations.
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8.5.1 OCL Support

�eOCL support plugin (es.upv.dsic.issi.ocl.validator.popup)
allows to evaluate if a given instance of an Ecoremodel violates any
constraint de�ned in it or not.�is plugin makes use of the built-in
OCL checker provided by EMF.�e Eclipse OCL checker provides a
full implementation of the OCL language both for Ecore and UML2
models. However, it does not provide a default way to de�ne OCL
expressions in such models nor a default UI to launch a checking
process.
�e goal of theMULTIPLE OCL Support plugin is to �ll this gap. MULTIPLE provides

support to evaluate
OCL constraints
embedded in Ecore
models by using
model annotations.
�e default
OCL/EMF engine is
used to check the
OCL expressions.

First, it de�nes away to includeOCL expressionswithinEcoremodels,
and second, it provides a simple UI to start a validation process and
show the results to the user.
To integrate OCL expressions within Ecoremodels, we have made

use of the EAnnotation element. EAnnotations can be attached to
any EModelElement and de�ne a source attribute which identi�es
them. Moreover, EAnnotations can group any number of detail en-
tries. Each one of these entries are, in the end, a pair of key and
value attributes. �is way, EAnnotations whose source attribute is
http://www.eclipse.org/ocl/examples/OCL describe a set of OCL
invariants whose context is the class containing the EAnnotation.
Each one of the entries contained in the EAnnotation describe one
invariant, where the key attribute represents the invariant name, and
the value represents the OCL expression.
Fig. 8.49 shows how the class diagram of the example car model

(shown in section 7.2.3.1) within its OCL invariants is represented in
EMF. In the �gure can be observed how the conventions used by the
OCL Support plugin have been applied.�is model represents the
exact same model that the class diagram shown in Fig. 7.19 plus the
OCL constraints of listing 7.4.
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Figure 8.49: Example car.ecoremodel with OCL constraints

8.5.1.1 Internal Structure

�e OCL support is packaged in a single plugin. Basically, this plugin
provides a user-friendly interface to query Ecore models that are
de�ned following the patterns expressed before, and invoke the
necessary operations in the built-in OCL checker provided by EMF.
�is process is done using a contextual menu, and the results are
shown to the user using a textual console.�is plugin requires the
following bundles to work:
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org.eclipse.core.runtime—�e Eclipse basic runtime.

org.eclipse.ui—�e Eclipse UI classes.

org.eclipse.core.resources—�e Eclipse API to access the resources
in the workspace.

org.eclipse.emf.ecore—�e Ecoremetamodel.

org.eclipse.ocl—�e generic OCL runtime.

org.eclipse.emf.ecore.xmi—�e plugin which provides support to
work with XMI resources.

org.eclipse.ocl.ecore—�e implementation of OCLwhich takes into
account the peculiarities of the Ecoremetamodel.

org.eclipse.ui.ide—�is plugin provides some advanced controls
of the Eclipse UI.

org.eclipse.ui.console—�e API to work with the integrated console
view of Eclipse.

�e plugin contains two packages: es.upv.dsic.issi.ocl.val-
idator.popup and es.upv.dsic.issi.ocl.validator.popup.ac-

tions.�e former only contains the activator class which controls
the plugin life-cycle (OCLValidatorPopupPlugin).�e latter contains
two action classes, ValidateAction and ConvertToTextAction; and
two utility classes, OclDiagnostic and OclDiagnosticChain.�e Val-
idateAction launches the validation process of the selected instance
in the workspace.�e ConvertToTextAction generates a textual �le
containing the OCL code that contained in the EAnnotations of an
Ecoremodel.

8.5.1.2 User Interface and Example

In section 7.2.3.1 an example feature model was shown. Next, section
7.3 presented a model transformation which transformed the exam-
ple feature model to the class diagram shown in Fig. 7.19 and the OCL
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Figure 8.50: Generating an OCL textual �le

constraints shown in listing 7.4. �is transformation process was
demonstrated in practice previously in this chapter. In section 8.3.1
and speci�cally in Fig. 8.12, the example feature model is represented
using theMULTIPLE feture modeling editor. Section 8.4.4.2 describes
how the transformations engine is con�gured to perform a model
transformation, and speci�cally, the car example feature model is
transformed to a class diagram. Finally, the application of the Fea-
tures2Classes transformation over the example model produces the
Ecoremodel shown in Fig. 8.49.

generation of an ocl file It is possible to create auto-
matically a full textual representation of the OCL invariants that are
embedded in an Ecore �le. Some modeling tools are able to import
Ecore models, and those programs usually provide support to im-
port textual �les with OCL expressions.�is way, the models that are
created in theMULTIPLE framework can be fully imported by third
party applications.
To generate the textual �le with theOCL expressions, the usermust

right-click over an Ecoremodel, as shown in Fig. 8.50. By selecting
theMULTIPLE → Convert to OCL �lemenu, the generation of the
OCL �le begins. �is process, which is almost instant, generates a
new �le with the same name than the source Ecoremodel, but ending
with the ‘‘*.ocl’’ extension.
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Fig. 8.51 shows an example workspace with the automatically gen-
erated �le (car.ocl). On the le�-hand side of the �gure part of the
contents of the �le are shown.�e complete contents of the �le are
shown in the listing 7.4 included previously in section 7.3.

instances validation Once we have an Ecoremodel (and
the needed OCL constraints embedded as EAnnotations), we can
make use of the standard EMF tools to create instances. Fig. 8.52
shows how a dynamic instance is created for the example class model.
In the case of the example model, an valid instance is equivalent to a
valid con�guration of the original feature model.
Fig. 8.53 shows an example instance. It shows a car con�guration

with automatic transmission, TCS, 4 wheels and engine.�e radius
of three of the wheels is 16 inches, and the radius of the fourth is 15
inches.�e power of the engine is 65,000 watts.�is con�guration

Figure 8.51: Generated OCL textual �le
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Figure 8.52: Creating an instance of an Ecoremodel dynamically

is invalid conforming to the restrictions applied to the metamodel.
We can check that by using theMULTIPLEOCL checker.
To launch a validation process, we can use the contextual menu

which appears when the user right-clicks over the �le which contains
the instance as shown in Fig. 8.54.
When the validation is perform, a dialog box appears showing the

global result (i. e., if all the invariants are met) as Fig. 8.55 illustrates.
When the �nal global result is false, it is necessary to know which in-
variants are not validated. To look up this information, theMULTIPLE
OCL checker provides a textual console as shown in Fig. 8.56. As
can be seen, in the console a message is printed for each instance
that violates an invariant. Such message is made up of the following
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Figure 8.53: Example of a incorrectly de�ned instance

Figure 8.54:MULTIPLE OCL checker contextual menu

information: �rst, the name of the class which containts the invariant
and the invariant name; second, the identi�er (if available) or the
URI of the object that triggered the message; and third, the result. By
default, only the false results are shown. If the checking process is
launched in debug mode, also valid checks (true results) are shown.
�is way, the console points out the following errors: First, the

wheel that sizes 15 inches does not meet the invariant expressed by
the ‘‘radius_lenght’’ restriction de�ned in the Wheel class. �is
restriction establishes that a wheel must size more than 15 inches.
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Figure 8.55:MULTIPLE OCL checker: unsuccessful check

Figure 8.56:MULTIPLE OCL checker: unsuccessful check details

Second, the instance does not satisfy the ‘‘same_radius’’ restriction,
which states that all the wheels must have the same radius. And
third, it does not satisfy the ‘‘power’’ invariant of the TCS class, that
states that if TCS is selected, the engine must be more powerful than
70,000 watts.
Once the errors presented by the console have been corrected,

a new validation step can be performed. Fig. 8.57 shows how the
example instance has been corrected. In this case, the power of the
engine has been increased, and the wheel whose size was di�erent
has been changed. As can be seen in the �gure, the validation process
assures that the corrections have been properly done, and the new
instance meets all the invariants that the model de�nes.
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Figure 8.57: Example of a correctly de�ned instance

8.5.2 OCL Support CLI

As in the case of the transformations engine, theMULTIPLE Frame-
work also provides a command-line version of the OCL checker that
can be executed outside the Eclipse platform. For this, an standalane
Java program is provided. �is program can execute an instance
validation without user interaction.
�is program can be used by any other 3rd party program apart of

the technology used to develop it. For example, theOCL Command-
line Interface can be used by a programdeveloped using theMicroso�
.NET Framework. MORPHEUS is an example of such a case. �is
case study is presented in chapter 13.

8.5.2.1 Internal structure

�e OCL Command-line interface (es.upv.dsic.issi.ocl.cli) is
a small program which mostly encapsulates the functionality pro-
vided by the es.upv.dsic.issi.ocl.validator.popup plugin.�e
program is provided as a single JAR �le which encapsulates some core
plugins of the Eclipse platform, within the functionality provided by
theMULTIPLE OCL Support plugin.�e required plugins are:

org.eclipse.equinox.common—�e Eclipse implementation of the
OSGi framework.

org.eclipse.emf.common—Basic utilities of EMF (noti�cation frame-
work, command framework, etc.).
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org.eclipse.emf.commonj.sdo— API for Service Data Objects (SDO).

org.eclipse.emf.ecore— Ecoremetamodel implementation.

org.eclipse.emf.ecore.change— API for describing and applying mo-
del changes.

org.eclipse.emf.ecore.change.edit— Editing support for the ecore.-
change API.

org.eclipse.emf.ecore.edit— Editing support for Ecoremodels.

org.eclipse.emf.ecore.sdo— API for supporting SDO in EMF.

org.eclipse.emf.ecore.sdo.edit — Editing support for the ecore.sdo
API.

org.eclipse.emf.ecore.xmi— XML and XMI serialization and deseri-
alization support.

org.eclipse.emf.edit— EMF editing support.

org.eclipse.emf.mapping.ecore2xml— API for mapping from Ecore
constructs to the XML representation of those constructs.

org.eclipse.emf.ocl — EMF compatibility API for OCL implementa-
tion.

org.eclipse.ocl— OCL implementation.

org.eclipse.ocl.ecore— OCL implementation for Ecoremodels.

org.eclipse.ocl.uml— OCL implementation for UML2models.

org.eclipse.xsd— API and implementation for XSD.

org.eclipse.xsd.edit— Editing support for the org.eclipse.xsd API.

net.sourceforge.lpg.lpgjavaruntime — Java runtime for the LALR
Parser Generator (LPG) tool.
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�e functionality implemented by the MULTIPLE framework is
grouped in a single package, es.upv.dsic.issi.ocl.cli, which
contains the following classes: OclEvaluator (main class), OclDiag-
nostic, OclDiagnosticChain and UnsupportedOptionException.

8.5.2.2 User interface

�e user interface provided by the programm is fully textual, and the
program runs in a non-interactive way. Once the required arguments
are properly de�ned, the program can be executed.�is behaviour
enables the reuse of this program in more complex tools.
When the program is not properly con�gured provides the fol-

lowing usage information:

Listing 8.5: Usage of the CLI of the OCL engine

1 C:\tests >java -jar oclevaluator.jar

2 Usage: java -jar <ocl_evaluator_jar_file > arguments

3 Required arguments:

4 --metamodel "metamodel_path"

5 --model "model_path"

6 Optional arguments:

7 --verbose [SHOW_PARTIAL_RESULT , SHOW_EXPRESSION] �
Where the arguments are:

--metamodel “metamodel_path”—Required. De�nes the path of
the Ecore �le containing the metamodel. It must be annoted
with the OCL expressions as explained in section 8.5.1.

--model “model_path”—Required. De�nes the path of the XMI
�lewhich conforms to themetamodel speci�ed in the previous
argument.

--verbose [SHOW_PARTIAL_RESULT, SHOW_EXPRESSION] — Op-
tional. Enables the printing of extra messages about the vali-
dation process.�e SHOW_PARTIAL_RESULTmodi�er enables
to show the result of every single check that is performed.�e
SHOW_EXPRESSION modi�er enables to show the textual OCL
expression together with the partial result.
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Figure 8.58: Example execution of the OCL CLI engine

Fig. 8.58 shows two example executions of the OCL CLI tool.�e
example takes as argument the example model shown in Fig. 8.53.
In that �gure, an incorrectly de�ned instance is shown. As can be
seen in Fig. 8.58, the engine is �rst executed without any optional
argument. In this case, only the global result is printed showing
that the model is invalid (Global result: false). Next, the engine is
executed again indicating that the partial results must be shown too.
In this case, we can observe that the constraints that are unmet are
the same as before, i. e., radius_length, same_radius and power.

8.5.3 Variability Model Checking

�e variability model-checking subsystem provides validation ca-
pabilities by communicatingMULTIPLEwith the FaMa framework.
FaMa accepts feature models in two di�erent formats: textual and
XML.MULTIPLEprovides support to automatically analyseXML-based
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FaMa feature models (conformant to the FaMa metamodel pre-
sented in section 8.3.2) within the Eclipse platform by using the
es.upv.dsic.issi.multiple.fama.bridges plugin.
To support manual tasks involving FaMa the es.upv.dsic.issi. InMULTIPLE feature

model checking is
performed by
invoking the built-in
FaMa engine.

multiple.fama.totext utility plugin is provided. It allows translat-
ing aMULTIPLE feature model to a FaMa textual model, which can be
manually edited and analysed using the standalone FaMa console.

8.5.3.1 Internal structure

es .upv.dsic .issi .multiple .fama .bridges �is plugin em-
beds theFaMa OSGi component withinMULTIPLE. It provides a set
of contextual menus to analyse FaMamodels with only a few mouse
clicks.
�is plugin depends on the following ones:

org.eclipse.core.runtime—�e Eclipse runtime.

org.eclipse.ui—�e Eclipse UI API.

org.eclipse.core.resources—�e Eclipse API to access the resources
in the workspace.

org.eclipse.ui.console—�e console API. It allows to handle textual
consoles in the Eclipse Console view.

es.us.isa.FaMaSDK (1.1.1) — �e FaMa library. It provides the
model-checking engine to represent and analyse feature mod-
els.

es .upv.dsic .issi .multiple .fama .totext �is plugin is in
charge of representingMULTIPLE variability models using the textual
representation accepted by FaMa.�is format has the advantage of
being compact, and easily understandable and editable (ISA 2011b,
p. 12 sq.).
�is plugin has the following dependencies:

org.eclipse.core.runtime—�e Eclipse runtime.
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org.eclipse.ui—�e Eclipse UI API.

org.eclipse.core.resources—�e Eclipse API to access the resources
in the workspace.

org.eclipse.emf —�e Eclipse Modeling Framework.

org.eclipse.emf.ecore—�e Ecoremetamodel.

org.eclipse.emf.ecore.xmi—�e plugin which provides support to
the XMI persistence format.

es.upv.dsic.issi.multiple.features—�eMULTIPLE features metamo-
del.

8.5.3.2 User interface

�e varibility model-checking capabilities are accessed by using
contextual menus. Fig. 8.59 shows an example feature model as
represented in theMULTIPLE graphical editor.�e top feature of the
model is Root, which has three children features: A, B and C.�e
former is an optional feature, and the last two are mandatory. A
has an alternative child group, where only featureA1,A2 orA3 can
be selected. Finally, and to illustrate the validation capabilites, an
excludes relationship is de�ned betweenB andC. Such a relationship
makes the model invalid.
Next, how this sample feature model is processed and analysed is

shown.

the fama contextual menu To analyse a feature model
using the FaMa contextual menu it is necessary to transform a
MULTIPLE feature model into a FaMa feature model. �is can be
achieved by executing the QVT transformation shown in section
8.3.2.2. Listing 8.6 shows the generated XML �le, and Fig. 8.60 shows
it as it is represented by theMULTIPLE built-in graphical editor.
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Root
Attributes

A
Attributes

[1..1]

B
Attributes

A1
Attributes

A2
Attributes

A3
Attributes

C
Attributes

[1..1] [1..1] [1..1]

[1..1]

[0..1]

[1..1]

Figure 8.59: Sample void feature model

Listing 8.6: Sample void feature model represented in FaMa-XML

1 <?xml version="1.0" encoding="ASCII"?>

2 <feature -model xmlns:xsi="http://www.w3.org /2001/ XMLSchema -

instance"

3 xsi:noNamespaceSchemaLocation="http://www.tdg -seville.info/

benavides/featuremodelling/feature -model.xsd">

4 <feature name="Root">

5 <binaryRelation name="Relation_to_A">

6 <cardinality max="1" min="0"/>

7 <solitaryFeature name="A">

8 <setRelation name="Grouped_Relation">

9 <cardinality max="1" min="1"/>

10 <groupedFeature name="A1"/>

11 <groupedFeature name="A2"/>

12 <groupedFeature name="A3"/>

13 </setRelation >

14 </solitaryFeature >

15 </binaryRelation >

16 <binaryRelation name="Relation_to_B">

17 <cardinality max="1" min="1"/>

18 <solitaryFeature name="B"/>

19 </binaryRelation >

20 <binaryRelation name="Relation_to_C">

21 <cardinality max="1" min="1"/>

22 <solitaryFeature name="C"/>

23 </binaryRelation >

24 </feature >

25 <requires feature="A1" name="A2_requires_A1" requires="A2"/

>

26 <excludes excludes="B" feature="C" name="

Excludes_from_B_to_C"/>

27 </feature -model> �
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Figure 8.60: Sample void feature model represented in FaMa

Once aMULTIPLE variability model is transformed into a FaMa
variability model, the FaMa contextual menu can be used to perform
the di�erent analysis. Fig. 8.61 shows how the ‘‘Detect and explain
errors’’ analysis is launched.
�e result of the analysis (Fig. 8.62) shows that the sample fea-

ture model is void, i. e., there does not exist a product that ful�lls
the constraints of the feature model. Speci�cally, it states that Ex-
cludes_from_B_to_C, Relation_to_B and Relation_to_C are contra-
dictory.

multiple feature model to fama textual model To
transform a MULTIPLE feature model to a FaMa textual model a
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Figure 8.61: Detect and explain errors contextual menu

contextual menu is also used. Fig. 8.65 shows what this menu looks
like. �e transformation is performed almost instantly, and Fig.
8.66 shows the resulting �le. As it can be observed, the textual
representation is much more simple than the XML-based one.

Figure 8.62: Result of detect and explain errors
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Figure 8.63: To FAMA feature model (as text) contextual menu

Figure 8.64: Sample feature model in the FAMA textual representation
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Figure 8.65: To FAMA feature model (as text) contextual menu

Figure 8.66: Sample feature model in the FAMA textual representation
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8.6 multiple emf utils

�is section describes some utility plugins which are bundled within
theMULTIPLE framework.�ese plugins extend the basic EMF func-
tionality and are not required to run theMULTIPLE framework. As
such, they are only brie�y described in a few words.

8.6.1 EMOF Converter utility

XMI is the canonical representation for any EMF artifact. However,
the default XMI representation used by Eclipse does not validate the
standardised speci�cation provided by the MOF standard. Although,
Eclipse is able to deal with standard XMI �les, there is not a shortcut
to easily transform EMF-XMI �les to MOF-XMI �les and vice versa.
�e es.upv.dsic.issi.emof.converter plugin provides a menu to
switch between the two representations.�ese options are grouped
inside an EMOF contextual menu with two sub-options: ‘‘Save as
Ecore. . . ’’ and ‘‘Save as EMOF. . . ’’.

8.6.2 Register EMF utility

EMF maintains an internal registry of the installed metamodels.
Installed metamodels can be instantiated, used, queried and ref-
erenced automatically. To install a metamodel it is necessary to
perform some complex tasks, such as generating code, export-
ing plugins, and installing plugins. �is work�ow is impractical
when dealing with models which are constantly changing. �e
es.upv.dsic.issi.moment.registeremf plugin allows to simmu-
late that a metamodel is installed without the necessity of generating
code or installing plugins. Using this plugin a new metamodel can
be ‘‘installed’’ in the internal registry by selecting the ‘‘Register
metamodel’’ option using the contextual menu over an ‘‘*.ecore’’
�le. Changes performed in the registry using this mechanism are
not persistent, i. e., they are lost once Eclipse is restarted.
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Figure 8.67:Metamodels view andMetamodel tree editor
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8.6.3 Registry viewer utility

As explained before, EMF has an internal registry of the registered
metamodels. However Eclipse does not provide a simpleUI to look at
this registry.�e es.upv.dsic.issi.moment.ui.registeredmodels
plugin provides a simple Eclipse viewwhich lists the contents of such
a registry. Using this view is also possible to easily open a registered
metamodel in a tree editor to look at its contents. Fig. 8.67 shows
what this view and the tree editor look like.

8.7 summary and conclusions

�is chapter has presented the MULTIPLE framework, an Eclipse-
based generic framework to describe Multi-Model Driven So�ware
Product Lines (MMDSPLs). Using EMF and it related tools it provides
a set of built-in metamodels together with the corresponding tree
editors and graphical editors to specify di�erent system views as de-
scribed in chapter 5.�anks to the variability metamodelMULTIPLE
can not only be used to implement simple MDE processes, but to
implement and analyse complex SPLs.
�eMULTIPLE framework provides: (i) a metamodel to describe

systems’ variability by using rich feature models; (ii) a metamodel to
describe functional views of so�ware systems; (iii) a metamodel to
de�ne architectural descriptions of so�ware systems; (iv) a metamo-
del to describe PRISMA architectural models, which allow to de�ne
executable architectural models; (v) a transformations subsystem
which is able to executeQVT–Relationsmodel transformations; (vi) a
validation subsystem, which is able to perform both conformance-
checking and model-checking operations; (vii) a standardized way
to interchange data and metadata among tools thanks to XMI; and
(viii) a extensible architecture thanks to Eclipse and its OSGi subsys-
tem.
All this capabilities are demonstrated in the remaining of this

thesis. Next chapters describe all the di�erent case studies where
theMULTIPLE framework has been used as a platform to implement
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both MMDPLE or basic MDE processes. Chapter 9 focuses in multi-
modeling, variability and con�guration aspects. Speci�cally it de-
scribes how a traditional MDSPL is transformed into a MMDSPL, and
how the production plan is then managed by using di�erent QVT–
Relations transformations. Chapter 10 focuses on validation and
model-checking aspects.�is chapter describes how the tools that
theMULTIPLE framework provides have been used to analyse a large-
scale feature model of an industrial SPL. Chapters in part V focus on
the genericity and extensibility of the framework.�is is done by
demonstrating the applicability of theMULTIPLE framework in third
party projects.�ese chapters show how the tool has been used as a
suitable environment to implement di�erent MDE processes in do-
mains in domains as diverse as bioinformatics (chapter 11), so�ware
measurement (chapter 12) and requirements elicitation and so�ware
architectures (chapter 13).





9
MULTIPLE IN PRACTICE: MULTI-MODEL DRIVEN
SOFTWARE PRODUCT LINE FOR DIAGNOSTIC
EXPERT SYSTEMS DEVELOPMENT

«An expert is someone who has succeeded in
making decisions and judgements simpler
through knowing what to pay attention to

and what to ignore»

— Edward de Bono
Maltese physician, author, inventor, and consultant, 1933–

�e development of Expert Systems (ES) (Giarratano and Riley 2005)
has become increasingly important in recent years creating a need
to properly support such applications. Since systems are more and
more relevant, the need for techniques for their development has
also becomemore important. Additionally, ES introduce a di�erence
regarding the decision making process: they store expert knowledge
in a Knowledge Base. However, these systems are complex because
their architectural elements vary.
To cope with this variability problem, SPLs emerge in an e�ort to

control and minimize the high costs of the so�ware development
process and to reduce the time to market of these new products. As
has been discussed extensively in previous sections, this approach is
based on having a base design that is shared by all the product family

219
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members. �us, a speci�c product can bene�t from the common
parts of the so�ware. �e base design can be re-used in di�erent
products by adding di�erent features that characterize them.
Moreover, automation and the use of open and standard mecha-

nisms are desirable in so�ware development to deal with the com-
plexity of so�ware systems. However, the automatic generation of
such systems is only possible when there is a framework that supports
this process. In this sense, the Model Driven Architecture (MDA)
proposed by the OMG advocates the use of standards and platform
independence in the so�ware development process as a new way of
producing applications.
In this context, the Baseline Oriented Modeling (BOM) frame-BOM is a

MDA-based
framework for the
development of
expert systems by

using SPL
techniques.

�roughout this
chapter we will
explain both the

BOM–Eager and the
BOM–Lazy

approaches and
their di�erences.

work, a MDA approach based on SPL for applications development,
is proposed in (Cabello Espinosa 2008).�is work follows the MDA
approach in order to automatically generate code from models, by
means of transformation rules and SPL techniques, to minimize the
variability impact on the cost of the so�ware production.�e PRIS-
MA framework (Pérez Benedí 2006) is the selected target platform,
and the diagnostic Expert System domain is the domain used to
validate the proposal.�erefore, BOM automatically generates Diag-
nostic Expert Systems (as PRISMA architectural models) based on
SPL by using the generative programming approach of theMDA trend.
�is framework based on SPL and MDA is the case study where the
methods and techniques proposed by this thesis have been applied
to demonstrate the bene�ts of the proposal.
�e products of the BOM SPL have been designed as PRISMA mod-

els that capture the architecture and functionality of the rule-based ES.
�e process of creating a SPL uses a set of reusable resources or assets
(core assets) to create a family of so�ware products, using two OMG
standards: the Reusable Asset Speci�cation (RAS) (OMG 2005b) and
the So�ware & Systems Process Engineering Meta-Model (SPEM)
(OMG 2008c).
As has been extensively remarked throughout this work, the key

element of a SPL is how to represent and manage variability an how it
impacts in the rest of artifacts whichwhich participate in the SPL.�e
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initial proposal of BOM, BOM–Eager, is implemented using classic
MDA and SPL techniques. However, this approach presented some
limitations when dealing with large-scale product lines. In order
to improve the BOM framework we built BOM–Lazy.�is prototype
outperforms the initial proposal in some aspects by using MMDPLE
techniques.
�e diagnostic ES example is used to illustrate BOM. �e main

goal of this kind of systems is to capture the state of an entity from
a series of data (observation variables) and to produce a diagnosis.
�e domain of expert systems for diagnosis includes systems for
medical diagnosis, educational diagnosis, and emergency diagnosis,
among others. In this thesis we present the medical diagnosis as
the application domain, using a case study of infantile infectious
diseases.
BOM has been built to achieve the following goals:

1. create new (diagnostic) systems in di�erent domains,

2. decrease production costs by reusing so�ware packages or
assets,

3. generate code automatically to increase the productivity and
quality of so�ware and to decrease the time to market,

4. construct systems in a simpler way by using diagnosis and
application domain models closer that are to the problem
domain and facilitating user interaction,

5. develop platform-independent systems from the problem per-
spective and not from the solution perspective, which will
provide generality in the development approach and applica-
bility in di�erent domains and platforms.

9.1 technological spaces

In order to deal with the complexity of the problem, this work inte-
grates various technological spaces (Kurtev et al. 2002). In this sense,
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a technological space is a working context with a set of associated
concepts, body of knowledge, tools, required skills, and possibilities.
�ese are described in turn:

• �e MDA as an approach to the MDE trend which is promoted
by theOMG for so�ware system development.

• �e SPL approach, which, from a practical point of view is
one of the most successful ones since it combines systematic
development and reuse of assets; i. e., the products are di�erent
in some features but share a basic architecture.

• �e PRISMA framework (Pérez Benedí 2006), which de�nes
the architectural elements (components, connectors, and sys-
tems) through their aspects.

• �e Expert Systems (Giarratano and Riley 2005), which cap-
ture the knowledge of experts and try to imitate their reason-
ing processes when solving problems in a speci�c domain.

9.2 field study : diagnostic expert systems

Cabello Espinosa (2008) presents a �eld study to learn about variabil-�e work presented
in this thesis is
based on a �eld

study performed in
the domain of

Diagnostic Expert
Systems performed
by Cabello Espinosa

(2008).

ity in Diagnostic Expert Systems. A subset of the Expert Systems do-
main has been chosen to describe our approach: the ES that are used
in diagnostic tasks, the so-called Diagnostic Expert Systems (DES).
�e diagnosis of an entity lies on the evaluation of its state by in-
terpreting its properties.�e cited study allows us to know the DES
behaviour and structure in several speci�c domains.�e following
examples were considered in the study: medical diagnosis, diagnosis
of victims in disasters, television diagnosis, educational program
diagnosis, and scholarship candidate diagnosis.�e remainder of
this chapter will refer to two paradigmatic cases: systems for medical
diagnosis and systems for educational diagnosis.
In the medical diagnosis example, the entity to be diagnosed is

the patient and the result of the process is the disease he/she su�ers.
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First, a clinical diagnosis is performed, which must be validated
then by a laboratory-based diagnosis. In the end, both diagnosis
are merged in a �nal diagnosis where the previous ones are taken
into account.�us, we can identify three basic functionalities: get
laboratory diagnosis, get clinical diagnosis, and get diagnosis. �e
�rst one is used by the laboratory assistant and the last ones are used
by the doctor. In this case, the properties of the entities considered
in the process vary during the whole process, which implies the
existence of several hypotheses that must be evaluated to determine
the valid one using di�erential reasoning.
In the educations reasoning example the entity to be diagnosed

is a post-graduate educational program where several quality crite-
ria are evaluated, and the result of the diagnosis is the advance of
the given program.�e properties of the entities remain the same
throughout the diagnostic process, therefore only one hypothesis
is created applying deductive reasoning. In this case the DES only
performs one task: get program advance, which is invoked by the
user of the tool.

9.2.1 Diagnostic Expert Systems Reference Architecture

In SPL, there are parts that are shared among all the products, but �e reference
architecture
represents the
structure that all
the members of the
SPL share.

some other parts vary from one product to another. In BOM the
common parts are represented by the reference architecture, which
captures the shared functionality.�e variable part shows additional
features that are speci�c for some products, and such parts are rep-
resented by the base architecture.�e reference architecture of DES is
expressed in our approach by a modular model made up of three
basic modules (see Fig. 9.1):

Figure 9.1: Reference Architecture of Expert Systems
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• Inference Enginemodule.�is module contains the inference
process that solves a problem in a speci�c domain.

• Knowledge Base module. �e Knowledge Base module con-
tains the knowledge about the domain

• User Interfacemodule.�is module allows the communica-
tion between the user(s) and the system.

�e reference architecture is used as the shared structure of an
application that is member of the product line, but, there also exist
additional features that are particular to a speci�c application.�is
implies the creation of a speci�c base architecture when a product
of the SPL is obtained from the reference architecture. However, the
base architecture that is generated from the reference architecture
is not unique, because systems vary not only in their structure but
also in their behaviour as explained in the following subsection.

9.2.2 Diagnostic Expert Systems Structural Variability

To illustrate how the architectural elements of a DES vary in their
structure, we have modeled the functional requirements that the
�nal productmust satisfy usingUMLCaseDiagrams.�ese diagrams
show the di�erent functionality that the user expects from the system
and how the system interacts with its environment. In particular, the
structure of the architectural elements vary according to the number
of use cases, the number of actors and the number of use cases that
are accessed by each actor.Although diagnostic

expert systems share
a reference

architecture, they
can vary in their
structure, their

behaviour and in
their application

domain.

Fig. 9.2 shows the use case diagram for the medical diagnosis
domain together with its corresponding base architecture. As Fig.
9.2a shows, the ES for medical diagnosis of our case study has two
actors: doctor and lab. assistant.�e �rst one uses the system to get
clinical diagnosis and the �nal diagnosis; and the second one uses
the system to get the laboratory diagnosis. �ese use cases a�ect
the �nal base architecture of the system. Since we implement the
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Doctor

Lab. Assistant

Get Diagnosis

Get Clinical Diagnosis

Get Laboratory Diagnosis

(a)

Doctor
User Interface

Lab. Assistant
User Interface

Deductive
Inference Engine

Diagnostic
Connector

C. Diagnostic
Connector

L. Diagnostic
Connector

Deductive
Knowledge Base

(b)

Figure 9.2: Medical diagnosis use case diagram (a) and its corresponding

base architecture (b)

SPLs assets using PRISMA so�ware architectures, i. e., PSM, the mod-
ules of the Expert System generic architecture must be mapped into
the following architectural elements: the Inference Engine Compo-
nent(s), which establishes system control and provides the general
resolution strategy for taking a decision; the Knowledge Base Com-
ponent(s), which contains the domain knowledge of the case study
using application domain rules (Horn clauses) and facts (constant
information); and the User Interface Component(s), which estab-
lish(es) the human-computer interaction. For example, Fig. 9.2b
shows that a user interface module is used for each one of the actors
shown in the diagram.�erefore, there is a correspondence among
themodules and their respective components. However, to be consis-
tent with the PRISMAmetamodel, it is necessary to incorporate a new
architectural element (connector) to establish the communication
among components.

9.2.3 Diagnostic Expert Systems Behavioral Variability

Behavioral variability of the architectural elements of an ES depends
on the type of diagnosis, and therefore the reasoning to be used. As
presented in the previous section, the inference process to apply is
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Medical diagnosis Educational diagnosis

Level 0 properties Level 1 properties Hypotheses
Deductive reasoning Di�erential Reasoning AND

Figure 9.3: Graph describing the inference processes for medical diagnosis

and educational diagnosis

de�ned according to the reasoning (it can be deductive or di�eren-
tial). Moreover, we say that the inference process is static if there is
only one hypothesis to evaluate and the entities involved keep the
same properties throughout the whole diagnostic process. However,
if the properties of the entities change during the process and there
is more than one hypothesis, we say that it is a dynamic process.�is
way, medical diagnosis is a dynamic process that requires di�eren-
tial reasoning (Fig. 9.3-le�); but educational diagnosis is an static
process which requires to apply deductive reasoning (Fig. 9.3-right)
(Cabello and Ramos 2009).�us, the base architecture for ESs in the
medical diagnosis domain will have a Di�erential Inference Engine
component.�e behaviour of this component will di�er from the
behaviour of the inference engine of the ES in the educative diagnosis
domain, which will have a Deductive Inference Engine component.
Fig. 9.3 represents the medical and educative diagnosis processes as
inference graphs.

9.2.4 Diagnostic Expert Systems Application Domain Variability

Variability management can not be completely achieved by using
the domain feature model and the functional feature model. Some
variability arises from the application domain: i. e., some products
will share the same features and PRISMA so�ware architecture. How-
ever, the PRISMA so�ware architecture should be decorated with
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di�erent element according to the application domain, as the entities
to diagnose will be di�erent, and the rules and the hypothesis will
vary too.

9.2.5 Conclusions

Based on the analysis of the diagnostic process carried out, we can
conclude that:

• Diagnosis consists of an interpretation of the states of the
involved entities (viewed as a set of properties), followed by
the identi�cation and speci�cation of domain properties using
rules.

• �ere is variability in the diagnostic process (system behavior)
and this variability can be described in terms of its features
as follows: (i) Entity views: an entity can be considered to
participate with the same properties (the same view) or have
di�erent properties (di�erent views) during the diagnostic
process. (ii) Property levels: the properties of the entities can
have n di�erent abstraction levels. (iii) Number of hypothe-
ses: the goal of the diagnosis is a single validated hypothesis,
but there can be one or several candidate diagnostic hypothe-
ses that must be evaluated in order to select the valid one.
(iv) Reasoning types: these show the ways in which the rules
are applied by the inference engine in order to infer a �nal
diagnosis.

• �ere is also variability in the user requirements. We have
elicited andmodeled asUMLUse Case diagrams (OMG 2010b)
the user interaction requirements since they impact on the
so�ware architecture structure. We can describe this variabil-
ity in terms of its features as follows: (i)Number of use cases of
the system and how the system interacts with the environment
(�nal users). (ii)Number of actors: number of �nal users of the
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system. (iii) Use cases per actor: an actor can access di�erent
use cases.

• However, the features of the application domain must also be
considered.�erefore, another variability emerges: the appli-
cation domain variability.�e features that correspond to a
speci�c application domain are: (i) Name and type of the enti-
ties’ properties by abstraction level. (ii) Rules by abstraction
levels (the rules describe how the entity properties are related
inter-levels). (iii) Level, name and type of the hypotheses used
in the diagnostic process.

9.3 bom initial proposal : bom–eager

BOM is a framework for variability elicitation, speci�cation, and�e initial BOM
proposal is called

BOM–Eager.
management in the Domain Engineering phase of a SPL. It is used
for the enactment of the so�ware production plan during the Product
Engineering phase of the SPL.

9.3.1 Variability management in BOM

Given the classi�cation of variability identi�ed in the �eld studiy, the
speci�cation of the variability and system functionality is modeled
in separate conceptual models in BOM. �e user introduces the
instances of these conceptual models in order to de�ne the domain
features used to produce the corresponding assets, or introduces
to BOM the application domain features used to con�gure the �nal
application, respectively.
�e process of developing a speci�c application (member of the

product line) begins with a domain-dependent generic architecture,
which is unique.�is implies that domain variability is captured in
additional features that are represented as variants of the variability
points.�is variability is initially re�ected in several base architec-
tures (which are derived from the generic architecture). We also
considered application domain variability to be necessary, and as a
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result, we found that there are two types of orthogonal variability:
the �rst one comes from the particular domain (diagnostic ES in our
case study), and the second one comes from the application domain
(for example, diagnostic medical ES).
For this reason, and based on the �eld analysis carried out, we con-

clude that the variants in ES are captured in two types of orthogonal
variability which should be managed separately:

1. Variants of the domain, for example, the diagnosis, (i. e., the BOM proposes to
manage two
orthogonal sources
of variability in two
stages.

features of the domain associated with the behavior of the
architectural elements), and the end-user requirements (i. e.,
features related to the structure of the architectural elements
and the system itself)

2. Variants of the application domain. �ese variants are the
features of the �nal products.

Fig. 9.4 presents a schema with features (variants) of these two
variabilities.�ese two variabilities (domain variability and applica-
tion variability) are managed in two stages.�ese stages correspond
to the development of the SPL in two steps: the base architecture
(SPL1), where a generic architecture is shared and the application in
a speci�c domain (SPL2), which shares a base architecture.
BOM captures both variabilities in two models: the Domain Con-

ceptual Model (DCM) and the ADCM, respectively.

9.3.1.1 First variability management

�e V1 variability (related to the features of the domain) is repre-
sented and managed through two models: the �rst model corre-
sponds to the functional model of the domain, represented by the
generic architecture of our SPL.�is architecture is shared by several
base architectures (or templates of base architectures), which repre-
sent the �rst SPL: SPL1.�e secondmodel is themodel of the domain
variability. Fig. 9.5 shows the original model used to describe the
domain variability. As described in (Cabello Espinosa 2008), it uses
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1 21 31 >11 2same change 1 1-2deductive di�erential

Nomenclature:

AND XOR Mandatory Requires

Figure 9.5: Original Feature Model of the �rst variability in BOM

an alternative notation to the traditional one, as it serves better for
its purposes.
Based on the previous feature model a DCM was manually built

as shown in Fig. 9.6. In this way, the features selected in the feature
model are instances of the DCM. For example, the domain features
in the medical diagnosis can be summarized as text as:
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1 entity views = same

2 property levels = 2

3 hypotheses = 14

4 reasoning = differential

5 use cases = 3

6 actors = 2

7 use cases by actor = { actor_a = 2, actor_b = 1} �
�e instances of this model are created by the domain engineer

capturing the �rst variability during the application engineering
phase.�ese instances are used to produce the skeleton base archi-
tecture that corresponds to the choice made (see Fig. 9.8).

9.3.1.2 Second variability in the BOM framework

�e second variability (V2 variability) is also represented and man-
aged using twomodels.�e �rstmodel corresponds to the functional
conceptual model of the application domain, which is captured by
the skeleton base architecture of the SPL1. �e second model cor-
responds to the feature model of the variability of the application
domain, which is translated to the ADCM.�e features of the applica-
tion domain are used to instantiate the skeletons in order to obtain
the PRISMA types (see Fig. 9.8).
It is important to mention that a skeleton base architecture can be

instantiated into one or more PRISMA architectures. An example of

Entity View
view : String

Property
level : Integer

Reasoning
type : String

Hypothesis
number : Integer

Actor
number : Integer

Use Cases
number : Integer

Use Cases
per Actor

number : Integer

belongs
1

has
1..*

relates
1..*

is_related
1

is_resulted 1

results1

obtains
1

is_obtained
1

uses 1..*

is_used
1

has 1

get
1..*

Figure 9.6:�e domain conceptual model
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Property
level : Integer
name : String
type : String

Hypothesis
level : Integer
name : String
type : String

Rule
clause: String
level : Integer

has 1..*

belongs
1..*

infers 1..*

is_infered
1

levelNplus1 1

levelN 1..*

Figure 9.7:�e application domain conceptual model

this situation appears in the two case studies: educative diagnosis and
television diagnosis.�ese two cases share the same skeleton base
architectures because they have the same variants of the �rst vari-
ability however they have di�erent PRISMA architectures, because
di�erent properties of the two application domains are inserted in
each skeleton base architecture.
�e second type of variability involves the features of the appli-

cation domain in a speci�c �eld, i. e., the SPL: SPL2.�is variability
allows the base architectures to be enriched or decorated with the
application domain features.
In the application variability management process, the variations

of the speci�c requirements of the application domain should be
selected.�is selection is rei�ed as an ADCM instance given by the
user. �e features are inserted in the base skeletons in order to
generate the types of the PRISMA so�ware artifacts. �ese PRIS-
MA architectural elements will be used to con�gure the PRISMA
architectural model of the application.
�e ADCM, which is shown in Fig. 9.7, captures the application

domain variability.�e instances of this model are created by the ap-
plication engineer, and they capture the speci�c application domain
variants. Some instances of this model for the diagnosis of infantile
infectious diseases are shown in Listing 9.1.



9.3 bom initial proposal : bom–eager 233

Listing 9.1: Sample instances of the ADCM

1 properties of level 0: cough , fever

2 properties of level 1: dry_cough , constant_fever

3 hypotheses of level 1: warmth , parotiditis

4 hypotheses of level 2: pneumonia , bronchitis

5

6 rules: IF (cough=true and fever=true and

respiretory_dificulty=tue) THEN syndrome=warth �
9.3.2 So�ware system views in BOM–Eager

In BOM, two kinds of views for expert systems are considered: the
System Variability View and the System Functional View.
�e System Variability View is described using the two variability

conceptual models: the DCM, which captures the domain and user
variabilities (V1), and the ADCM capturing the application domain
variability (V2).�e DCM conforms to the V1 Metamodel (MM V1),
and the ADCM conforms to theV2 Metamodel (MM V2). Both meta-
models are the UML2 class diagram metamodel, but other domain
speci�c metamodels can be used, producing other domain-speci�c
models to capture the System Variability View.
�e System Functional View is given during the production pro-

cess by means of two views, which are described using three archi-
tectural models:

the modular view for the Generic Architecture Model which
conforms to the Modular Metamodel (MM Modular),

the component-connector view for the BaseArchitecture
Models which conform to the Skeleton Metamodel (MM
Skeleton) and the PRISMA Architecture Models, which con-
form to the PRISMAMetamodel (MM PRISMA) for the �nal
product.�e Skeleton Metamodel is similar to the PRISMA
Metamodel, but it allows feature holders (holes).
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9.3.3 Relationships among system views

As expressed previously, the variability is managed in two di�erent
phases in BOM. Such phases, identi�ed as SPL1 and SPL2 involve
di�erent models and relationships among them.
Speci�cally, two types of relationships have been identi�ed: (i) the

relationships between theModular view and the Skeleton view, (ii) the
relations between the Skeleton view and the PRISMA view together
with the views that de�ne the SPL variability.�eir respective pro�les
are:

R1 : ModularMM × V1MM × SkeletonMM

R2 : SkeletonMM × V2MM × PRISMAMM

Fig. 9.8 shows the process followed in BOM–Eager in the construc-
tion of a SPL architecture.�is �gure illustrates how the two types of
varibility are considered in order to obtain the �nal product of the
SPL.
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Figure 9.8: Variability management and system views in BOM–Eager
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Use Cases
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deductive di�erential
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Figure 9.9: Binary Decision Tree to select a skeleton architecture for a DES

In the BOM–Eager approach, the di�erent assets that participate
in the SPL are developed at once and stored in the Baseline for each
input in the domain engineering phase (see section 9.3.4.1).
In this way, given all the variants, the �rst variability is managed by In BOM–Eager,

skeleton
architectures are
retrieved from a
repository by using
decision tree
techniques.

an access to the repository that implements the Baseline. By means
of decision tree techniques, we can select the base architecture of
the speci�c case, given the variants of the variability points (features
of the domain) as instances of the DCM.�e variability points of the
�rst variability are represented in the nodes of this decision tree, and
its leaves represent the asset families of the SPL.
Fig. 9.9 shows the decision tree for the DES domain.�is Binary

Decision Tree (BDT) is constructed using the information of the
featuremodel shown in Fig. 9.13. Given a con�guration of the feature
model, the decision tree selects the correct skeleton architecture from
the baseline.
�e second variability V2 is managed using Feature Oriented

Modeling (FOM) techniques. A decoration process of the base archi-
tectures is implemented employing the application domain features
given as instances of the ADCM.
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9.3.4 Modeling the BOM approach

BOM–Eager is based on two OMG standards: RAS, which identi�es,
describes, and packs assets in a standard way; and SPEM, which de-
�nes the standard language for modeling the so�ware process. In
BOM, a clear separation between the domain engineering and ap-
plication engineering phases is made.�is partition is the basis for
reuse and automation of the so�ware process. In the domain en-
gineering phase, a set of assets/transformation rules and processes
are created. In the application engineering phase, by executing the
production plan, these assets are used/created to produce so�ware
products of high quality with a minimal cost and time.
In BOM, the domain engineer creates the production plan and all

the so�ware artifacts that are necessary to carry out the various tasks.
�e application engineer provides information of the application
domain to the production plan process during its enactment, thus
obtaining the �nal product.

9.3.4.1 Domain engineering: building assets

In the domain engineering phase as Computational Independent
Model (CIM) and PIM all the so�ware artifacts are built.
�e domain engineer creates the baseline as the repository of allIn BOM–Eager, all

the core-assets are
built and stored at

the domain
engineering stage in
a repository called

baseline.

the assets necessary to obtain a SPL product as Fig. 9.10 represents.
�e baseline is structured as a set of Kit-Boxes and the production
plan (asset) of the SPL, where we store the assets and the know-how
of how to use them in order to produce the SPL.�e baseline and its
assets are modeled at a high abstraction level.
�e Kit-Boxes are packaged as a new composite asset, and they

contain all assets and know-how for building a speci�c application
and are the recovery units. A kit-box contains XML documents,
processes, models, information, and con�gurations.
�e Production Plan describes the process by means of tasks or

activities to obtain a �nal product of the SPL.�is process shows the
production life cycle of our SPL. In the domain engineering phase,
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Baseline

Production
Plan

Figure 9.10:�e baseline

this process is speci�ed in SPEM, and it is inserted in the Baseline
as an asset. In the application engineering phase, the Production
Plan is recovered and enacted to generate an application as one SPL
product.

9.3.4.2 Application engineering: executing the Production Plan

In the BOM–Eager approach, the user (application engineer) builds
an application (a product of the SPL), by just giving as input the
features of the variabilities V1 and V2 by means of instances of the
DCM and ADCM conceptual models, respectively.
�e Production Plan of our SPL in the BOM–Eager approach is

shown in Figure 9.11 by using SPEM notation.
�e Production Plan starts when BOM obtains (from the appli-

cation engineer) the features expressed as DCM’s instances of the
variability points of the �rst variability. Next, BOM selects the assets
from the Baseline, i. e., one Kit-Box asset that corresponds to the
speci�c product.�e Kit-Box that is selected by the engineer using
BOMmust be unpackaged in order for each asset to be used.
One of the assets recovered from the Kit-Box is the ADCM, which

is used by BOM in order to obtain (from the application engineer)
the features of the application domain considered as variants of the
second variability.
Other assets recovered from the Kit-Box are the Packaged Hy-

brids.�ese assets are in turn unpacked to produce the PRISMA type
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Figure 9.11: Production plan through BOM–Eager approach

aspects. BOM applies the Main Feature Insertion Process (which in-
vokes the individual features insertion processes) to �ll the selected
skeletons (aspects) with the speci�c features of the case study de�ned
by the engineer, thereby creating the PRISMA type aspects.
BOM uses the aspect PRISMA types and the other PRISMA type

artifacts (interfaces architectural elements, and architectural model)
to create the PRISMA con�guration. �ese artifacts are input to
the PRISMA-MODEL-COMPILER tool (Pérez et al. 2008) to auto-
matically generate the code (in C# .NET). At the end, BOM creates
the �nal system as an executable application, i. e., a �nal product
of the SPL.�is application is executed on top of the PRISMA-NET
MIDDLEWARE (Pérez et al. 2008).
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9.3.5 BOM–Eager implementation

�e prototype for the BOM–Eager approach is called ProtoBOM.�e
Production Plan process diagram is used as a graphical metaphor
for the user interface—GUI—in SPEM notation.

ProtoBOM can be used by the application engineer to generate �e initial BOM
proposal is
implemented in a
prototype called
ProtoBOM.

a product of the SPL. ProtoBOM integrates the use of several tools,
o�ering an approach to build applications, in a simple way. Some of
the tools have been developed on purpose in ProtoBOM and others
had already been created for other domains.�e application engineer
only introduces the variability features to the system in order to
build an application (product of SPL).�e rest of the activities will
be carried out automatically by ProtoBOM.
In ProtoBOM, the V1 variability is solved by means of our tool

using decision tree techniques in order to select a Base Architecture.
�e T2 transformation is executed by means of our tool using FOM
techniques, in order to decorate this architecture.�e baseline has
been implemented as a repository accessed by a web service. In
this way, the so�ware product lines that are developed can be eas-
ily shared and distributed, which promotes the reuse of the assets
contained in the baseline.
�e Asset Selection Process computes paths in the decision tree

which are used to select the assets in the baseline. �is process is
created by the domain engineer and uses the decision tree and the
assets of the baseline. �is process is executed by ProtoBOM in
the application engineering phase, when the application domain
engineer instantiates the DCM (i. e., inserting the speci�c domain
information into the system as variants of the domain variability
points).�is process uses the decision tree techniques in order to
carry out the V1 resolution.
�e Feature Insertion Process is used to insert the application do-

main features in their speci�c skeleton aspect.�is process uses the
FOM technique in order to carry out the V2 resolution.
We explain how to insert the application domain features in a skele-

ton aspect in order to obtain the corresponding PRISMA type aspect.



240 mmdspl for diagnostic expert systems development

�e features are modeled as functions, representing re�nements of
the input model. In the educational program diagnosis, we have:
Fx.i · S-KB-EDj, which means ‘‘add feature Fx.i to the S-KB-EDj

model’’, where S-KB-ED0 is the Skeleton-Knowledge Base Educa-
tional Domain, 0 6 j 6 n, and ‘‘·’’ denotes the application of the
function.�e gluing process is iterated step by step:

S-KB-EDj+1 = Fx.i · S-KB-EDj

In Table 9.1, an example of the functional aspect skeleton and its
respective aspect type for the Knowledge Base component of the
educational program diagnosis is presented.
�ese so�ware artifacts are XML documents that are speci�ed

using the PRISMA-Architecture Description Language (ADL). In
order to simplify this example, we have omitted the XML syntax. In
this Table, 〈Fx.i〉 are the features place holders.�ese features are
the following: FP.i = Features of the properties of level i, FH =

Features of the hypothesis, FR.i = Features of the rules of level i.
We have used the PRISMA-MODEL-COMPILER to automatically

generate C# code from the system architectural models and to create
the application (an instance of the SPL), which is executable over the
PRISMA-NET-MIDDLEWARE.
An example of (part of) the generated C# code (by the PRISMA-

MODEL-COMPILER) that corresponds to the Knowledge Base com-

Listing 9.2: Example code generated by the PRISMA-MODEL-COMPILER

1 namespace KBMD {

2 [Serializable]

3 public class KnowledgeBaseEducational : ComponentBase {

4 public class KnowledgeBaseEducationalDiag string name :

base(name) {

5 AddAspect(new FBaseED ());

6 InPorts.Add(" KnowPort", "IDomainED", "KNOW");

7 OutPorts.Add(" KnowPort", "IDomainED", "KNOW");

8 }

9 }

10 } �
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ponent of the educational program diagnosis case study is shown in
the Listing 9.2.

9.4 turning bom into a mmdsple process : the bom–
lazy proposal

�e initial proposal of BOM, BOM–Eager, proposes a simple but pow-
erful framework for the development of So�ware Product Line (SPL).
In BOM, variability is managed in two di�erent stages, �rst, the vari-�e BOM–Eager

approach uses
models to describe
the variability and

the systems’
structure, however,
these models are not
reused in a complex
MDE process.�e

BOM–Lazy
approach aims to
turn BOM–Eager
into a MMDPLE

process.

ability of the domain is taken into account; and second, the variability
of the application domain is considered.�e BOM–Eager proposal
is adequate qhen the baseline size is small, as all the assets are built
and stored extensively during the domain engineering phase. More-
over, decision tree techniques drive the V1management and Feature
Oriented Programming (FOP) techniques are used to manage the V2
variability.
However, when the size of the baseline is huge this proposal be-

comes ine�cient.�e BOM–Lazy approach arises as the solution to
this problem. �e BOM framework deals with several models (V1
and V2 variability models, modular model, skeleton models and
architectural models). �is way, a multi-model driven approach
can ease the use of di�erent models and systems views, and can
provide the tools to implement a production plan driven by model
transformations.
�is section describes how the di�erent BOMmodels have been

adapted to the MOF architecture, and how the production plan has
been adapted to usemulti-models.�is way, the relationships among
system views (which in BOM where managed using BDT and FOM
techniques) are now expressed using declarativeQVT-Relations rules.

9.4.1 Representing the �rst variability in BOM–Lazy

In BOM–Lazy, the V1 variability is also represented and managed
through two models: the functional model and the domain variabil-
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DiagnosticExpertSystems

View Reasoning Hypothesis PropertyLevel

number : Integer

Actor UseCase

name : Stringname : String

ChangeSame ManyOneDeductiveOportunistic useCaseByActor

[1..*] [1..*][1..*]

[m..n]

excludes

bi-implies

uses

XOR (select 1)

mandatory

clonable
from m to n

Figure 9.12: Feature Model of the �rst variability in BOM

ity model.�is model is represented by a feature model as shown in
Fig. 9.12.
�is feature model is an adaptation of the original feature model

to the cardinality-based feature modeling notation. As can be seen,
it makes use of feature multiplicities and feature attributes. To make
possible the use of such feature model in a complex MDE process,
this feature model is automatically translated to the equivalent DVM
as explained in section 7.3.
In the context of BOM, the DVM of the �rst variability corresponds

to the DCM following the naming conventions used in BOM–Eager.
�e automatically obtained DCM is shown in Fig. 9.13.�is way, the
features selected in the feature model are instances of the DCM as in
the BOM–Eager approach happens. However, in BOM–Lazy we avoid
the manual creation of the DCM as it is automatically obtained.
As in the initial proposal, the instances of the DCM are used to

produce the skeleton base architecture.

Figure 9.13:�e domain conceptual model
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Figure 9.14:�e application domain conceptual model

9.4.1.1 Representing the second variability in BOM–Lazy

�e second variability (V2) is represented using twomodels as in the
BOM–Eager approach.�e �rst model corresponds to the skeleton
architecture obtained from the �rst variability management phase
(SPL1).�e second model corresponds to the application domain
variability model.�is model is used to obtain the ADCM. However,
the ADCM is automatically obtained in BOM–Lazy; as it occurs in
the case of the DCM. �e instances of the ADCM are used to deco-
rate the skeleton architectures with the application domain features.
Nevertheless, in the BOM–Lazy approach the process to enrich the
skeleton architectures is performed by using model transformations
instead of FOM techniques as we will describe un section 9.4.3.
�e automatically obtained ADCM is shown in Fig. 9.14. It captures

the application domain variability.�e instances of this model are
created by the application engineer, and they capture the speci�c
application domain variants as in the case of BOM–Eager.

9.4.2 So�ware system views in BOM–Lazy

In BOM two kinds of views are considered for expert systems: the
System Variability View and the System Functional View.
On the one hand, the System Variability View is described using

the two variability conceptual models (DCM and ADCM) which con-
form to the UML2 class diagram metamodel.
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On the other hand, the System Functional View is described using
three architectural models:

• �e Generic Architecture Model, which conforms to the Mod-
ular Metamodel (MM Modular).

• �e Base Architecture Model which conform to the Skeleton
Metamodel (MM Skeleton).

• �e PRISMA Architecture Model, which conform to the PRIS-
MAMetamodel (MM PRISMA).

We have used theMULTIPLE built-in metamodels based on the
Modular and Component-Connector view types proposed by Shaw
and Clements (2006) and Limón Cordero (2010).
Fig. 8.19 (see page 147) shows the Modular ViewMetamodel (MM

Modular view). �e main element considered for this view is the
module itself.�is �gure shows that amodel contains a set of mod-
ules (which can contain di�erent functions), which are linked to
othermodules bymeans of relations (decomposition, uses and layer).
�e more relevant relation is the Use relation, although other types
have been considered.�e labels in the links are useful for indicating
how the relation is made.
Fig. 8.25 (page 155) shows the Component-Connector View Me-

tamodel (MM Component-Connector view).�e component class
and connector class are the main elements. Both are derived from
a more general component class (TComponent).�e components
provide a set of services through a set of ports.�e connectors link
the ports of components by means of their roles. Di�erent types of
relations can be also de�ned between components and connectors.

9.4.3 Relationships among metamodels

We used QVT to de�ne relationships among metamodels in MOF.
Speci�cally, the QVT-Relations language is used to describe them.
�e source and target metamodels are identi�ed �rst.�e corre-

spondence among each element of the metamodels must be de�ned



246 mmdspl for diagnostic expert systems development

taking into account the way in which their rules are represented
through QVT. In this case, the source metamodels are theModularIn BOM–Lazy,

relationships among
the di�erent views
of a system are

described by using
QVT–Relations.

�us, it is possible to
specify in a

declarative way how
the behaviour and
the structure of a
system may vary
according to a
feature model
con�guration.

metamodel and the V1 variability metamodel.�e target metamodel
is the Skeleton metamodel.�e rules considered in the relationships
for the elements of the modular and V1 variability metamodels are
checkonly type (to verify the elements) in the le� part and enforce
type in the right part to create the elements of the skeleton metamo-
del.
Fig. 9.15 shows the transformations involved in the construction of

our SPL architecture.�is �gure is an adaptation of the process shown
in Fig. 9.8 to the MMDPLE approach. It illustrates how the model
transformations performed at the model level (M1) are applied to
re�ne the SPL assets until the �nal PSM is obtained.
�e modular model is made up of three modules: InferenceEngine,

KnowledgeBase, and UserInterface. �ese are all linked with each
other through dependence relationships. Next, the transformation
task for producing the skeleton model (target) is performed. To
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MOF meta-metamodel
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UML Class Diagrams metamodel
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Figure 9.15:�e T1 and T2 model transformations in BOM (located in the

MOF levels)
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do this, an instance of the DCM is used. A skeleton component
is produced for each module, and each dependence relationship
generates a skeleton connector.
�e MOF levelM1 is where the T1 and T2 transformations are

carried out. A �rst model (skeleton model) is obtained by the T1
transformation, using the modular model and a DCM instance as
sources.�is skeleton model is completed by means of the T2 trans-
formation by using an ADCM instance which allows the PRISMA
model to be obtained as a re�nement.�e T1 and T2model trans-
formations are PIM to PIM transformations.
In the T1 transformation, QVT-Relations takes into account the

generic architecture, the instance of conceptual model of the domain
variability, and the skeleton base architecture con�guration.�e T1
transformation pro�le is:

T1(GenArchmodel, V1modelinstance) = BaseArchmodel

In T2 transformation, QVT-Relations consider the base architec-
tures, the instance of the application domain variability, and the
PRISMA architecture con�guration.�e T2 transformation pro�le
is:

T2(BaseArchmodel, V2modelinstance) = PRISMAmodel

9.4.3.1 BOM–Lazy production plan

In the BOM–Lazy approach, the application engineer builds a product
of the SPL, by just giving as input the features of the variabilities V1
and V2 by means of instances of the DCM and ADCM conceptual
models, respectively.
�e Production Plan of the SPL taking the BOM–Lazy approach

is shown in Fig. 9.16 by using SPEM notation.�e Production Plan
starts (1) when BOM obtains (from the application engineer) the
features expressed as DCM’s instances of the �rst variability. Next,
(2) BOM executes the QVT-Relations transformation T1 and obtains
the base architecture that corresponds to the speci�c product.�en,
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Figure 9.16: Production plan through BOM–Lazy approach

(3) ADCM is used by BOM in order to obtain (from the application en-
gineer) the features of the application domain considered as variants
of the second variability. Next, (4) BOM executes the QVT-Relations
transformation T2 and produces the PRISMA architectural model.
�is PRISMA type artifact is sent to the PRISMA-MODEL-COMPILER
tool (5) , and the process continues as the BOM–Eager approach does.

9.5 bom–lazy implementation

�e BOM-Lazy architecture is shown in Fig. 9.17. In this approach,
the model transformations T1 and T2 are executed by means of our
tool using the QVT-Relations language.
�e tool is built on top of the Eclipse platform. It uses EMF as the

reference implementation of the MOF standard.�e tool is made up
by a set of graphical editors (used to de�ne the models that are part
of the SPL) and a QVT-Relations transformations engine.
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Next, the transformations which specify the correspondences
among the di�erent models of the SPL are described.�ese transfor-
mations are the core implementation of the production plan.

9.5.1 T1 transformation

As presented in section 9.4.3, the transformation in charge of creating
the base architectures of the SPL is called T1.�is transformation is
determined by the �rst variabilityV1.�us, this transformation takes
as inputs the model of the generic architecture, which describes the
common parts of the ES (i. e., theModular Model), and an instance
of the variability model that captures the variability of the speci�c
domain (i. e., instance of the DCM).
In order to increase the quality of the architectural design obtained,

we will follow good so�ware design practices as de�ned by Pressman
(2001). Such good design practices are encoded as a set of patterns
in the de�nition of the QVT rules, and will be applied to calculate
the base architectures. As expressed before, the signature of the
transformation is:

T1(GenArchmodel, V1modelinstance) = BaseArchmodel

As opposed to the BOM–Eager approach, where the baseline stores
all the knowledge about the base architectures in an explicit way,
in BOM–Lazy all the knowledge is stored implicitly. Such knowl-
edge is encoded by using a set of rules which describe how both

mediniQVT BOM
Metamodels

Graphical Modeling
Framework

Eclipse Modeling Framework

Eclipse Platform

Graphical Editing
Framework

BOM Graphical editors

Traceability
editor

Modular
editor

Component-
connector

editor
Variability

editor
BOM

Invocation
interface

Other
3rd party

Eclipse
tools

Figure 9.17:�e BOM–Lazy architecture
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system requirements (system variability view) and design patterns
(good practices) are interrelated.�is way, the creation of the base
architectures is moved from the domain engineering to the applica-
tion engineering phase. Each architecture is calculated just in the
moment when it is needed, and not before.
Next, the QVT-Relations rules of the T1 transformation together

with the good design pattern they satisfy are speci�ed.

9.5.1.1 Design patterns and quality guidelines

A pattern, is a three-part rule, which expresses a relation between aBase architectures
in BOM–Lazy can

be created
considering good
design patterns.

certain context, a problem, and a solution (Alexander 1977). In this
section we detail the patterns and guidelines that will drive the T1
transformation. Pressman (2001) enumerates the following quality
guidelines to achieve a good design:

1. “A design should exhibit an architecture that (a)
has been created using recognizable architectural
styles or patterns, (b) is composed of components
that exhibit good design characteristics [. . . ], and
(c) can be implemented in an evolutionary fashion,
thereby facilitating implementation and testing.

2. “A design should be modular; that is, the so�ware
should be logically partitioned into elements or sub-
systems

3. “A design should contain distinct representations of
data, architecture, interfaces, and components.

4. “A design should lead to data structures that are
appropiate for the classes to be implemented and
are drawn from recognizable data patterns.

5. “A design should lead to components that exhibit
independent functional characteristics.

6. “A design should lead to interfaces that reduce the
complexity of connections between components and
with the external environment.
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7. “A design should be derived using a repeatable
method that is driven by information obtained dur-
ing so�ware requirements analysis.

8. “A design should be represented using a notation
that e�ectively communicates its meaning.”

Moreover, Pressman (op cit.) suggests to classify the design ele-
ments (speci�cally design classes in the literature) in �ve di�erent
groups:

1. User interface classes— de�ne the abstractions that are neces-
sary for Human-Computer Interaction (HCI) interaction.

2. Business domain classes— identify the attributes andmethods
that are required to implement some elements of the business
domain.

3. Process classes— implement lower-level business abstractions
required to fully manage the business domain classes.

4. Persistent classes— represent data stores.

5. System classes— implement so�ware management and con-
trol functions.

Given this classi�cation of so�ware artifacts and quality guidelines,
the following design decisions were made.�ese design decisions
will be later encoded as QVT-Relations object templates, which, in
turn, specify a set of transformation patterns.

1. Hierarcical organization. As speci�ed before, a design must
de�ne a hierarchical organization that controls so�ware com-
ponents in a smart way. In order to satisfy this criterion, the
modular metamodel contains the ModulesModel element,
which contains an organizes the rest of the elements which
take part on it. In a similar way, the Component–Conector
Metamodel contains the CCModel element which plays the
same role.
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�is way, there is a one–to–one relationship between both
ModulesModel and CCModel elements.

2. Connectors. Use cases constitute a partition of the system
based on functionality. �us, taking into account that a de-
sign should be modular and that so�ware should be logically
partitioned; for each use case we will create a connector in
charge of coordinating the di�erent components of the use
case.�is way, there is a one-to-one relationship between use
cases and connectors.

�e number of connectors in the skeleton architecture will
be equals to the number of use cases found de�ned in the V1
instance model.

3. User interfaces.�e reference architecture of ES is usually con-
formed by three modules: Knowledge Base, Inference Engine
and User Interface.�e Knowledge Base and Inference Engine
modules lead to theKnowledge Base and Inference Engine com-
ponents respectively. However, with the aim of reducing the
complexity of connections between modules and with the ex-
ternal environment, the User Interfacemodule is transformed
into as many components as actors appear in the domain
variability model (V1).
�is way, a one–to–onemapping is de�ned between the actors
of the V1 instance model and the user interfaces in the target
model. As a result, the number of User Interface components
will be equals to the number of actors which interact with the
system.

4. Uniqueness of the Knowledge Base. Each use case generates an
architectural model composed of three components: Knowl-
edge Base, Inference Engine and User Interface, coordinated
by a coordinator connector. We de�ne as a design criteria
the uniqueness of the Knowledge Base component, because
knowledge must be unique for the entire system. For each
use case there is a di�erent view of the Knowledge Base.�is
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is accomplished by adding a port to the Knowledge Base that
binds each connector with a di�erent role. �e Knowledge
Basewill have as many ports as views, i. e., it will have as many
ports as use cases. A many–to–one relationship between use
cases and the Knowledge Base. �e number of ports in the
Knowledge Base shall be equal to the number of existing use
cases in the instance of the V1 domain variability model.

5. Uniqueness of the Inference Engine.�e type of reasoning in
the diagnostic process is given by the Reasoning variant in
the V1 domain variability model. Reasoning can be de�ned
as Deductive or Di�erential and will determine the type infer-
ence engine to use. �e inference process can be deductive
or di�erential but not both simultaneously. For each use case
there will be a di�erent view of the Inference Engine.�is will
be achieved by adding the needed ports to the Inference En-
gine. Such ports will be linked to roles of the corresponding
connectors.

�e Inference Engine will have as many ports as views, i. e. it,
will have as many ports as use cases we �nd in the DCM. A
many–to–one relationship is de�ned between use cases and
the Inference Engine. �e number of ports of the Inference
Engine will be equal to the number of existing use cases in the
instance of the V1 domain variability model.

6. Interaction pattern. Previously we speci�ed that for each actor
a User Interface component will be used. However, an actor
can access several use cases. �us, as the functionality of
accessed by an actor can be partitioned, the same division
will be done in the UI component.�e di�erent functionality
of the User Interface component will be accessed by di�erent
ports. �us, the number of ports of each UI component is
equal to the number of use cases that the user can access.

7. Connectors merge �is pattern extends the semantics de�ned
by the pattern number 2.�e existence of an includes relation-
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ship between two use cases implies the merger of connectors.
An included use case describes a subprocess of its parent.�e
number of connectors is equal to the number of top-level use
cases in the instance of the V1 domain variability model.

9.5.1.2 QVT Rules

�e design decisions and guidelines described in the previous sec-
tion are encoded using QVT. �is allows us to specify them in an
unambiguous way.�ey are visually described using the graphical
notation of the QVT–Relations language.�e metamodels involved
in the transformation process are the ones described in section 9.4.2.
�e whole code of the transformation can be found in the Appendix
B.

modulesmodel2componentsmodel relation Fig. 9.18
shows theModulesModel2ComponentsModel relation.�is relation-
ship is top-level, and transforms theModulesModel element of the
modular metamodel to the CCModel in the Component-Connector
metamodel.�e rules assigns to the new element the name of the
source element.�e where clause invokes the UseCaseToConnector
relation.�is rule codi�es the pattern number 1.

varModel: DomainConceptualModel 
«domain» 

ccdomain 

E 

componentsModel : CCModel 

«domain» 

Name = modelName 

modulesModel : ModulesModel 

«domain» 

name = modelName 

UseCase2Connector (modulesModel, varModel, componentsModel) 

where 

ModulesModel2ComponentsModel 

Figure 9.18:ModulesModel2ComponentsModel relation
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connector : Connector 

name = ucname + 'Connector' 

useCase : UseCase 

name = ucname 

varModel: DomainConceptualModel 
«domain» 

ccdomain 

E 

componentsModel : CCModel 

«domain» 

name = modelName 

modulesModel : ModulesModel 

«domain» 

name = modelName 

Module2Component(modulesModel, varModel, componentsModel, connector, useCase) 

where 

useCase : UseCase 

name = ucname 

UseCase2Connector 

connector : Connector 

name = ucname + 'Connector' 
useCase 

tcomponents 

Figure 9.19: UseCase2Connector relation

usecase2connector relation Fig. 9.19 shows the Use-
Case2Connector rule using the graphical notation of the QVT lan-
guage.�is rule creates, for each one of the use cases of the source
variability model one connector of the component–connectormodel.
�e name of such connector stands for the concatenation of the use
case name and the su�x ‘‘Connector’’. Finally, the where clause
states that theModule2Component relation must be considered as
the post-condition of the current rule (UseCase2Connector).�us,
this rule should be properly applied a�er the UseCase2Connector
relation is checked.�is rule describes the pattern number 2.

module2component relation �is rule (Fig. 9.20) cre-
ates, for each module of the modular model, a component in the
component-connector model.�e name of the new component is
calculated using the getComponentName OCL query (see listing 9.3).
If the module to transform is the User Interfacemodule, the compo-
nent name is formed by the module name and the name of the actor
that accesses the use case related with the module. If the module is
the Inference Engine or the Knowledge Base, the component name
also re�ects the type of reasoning (deductive or di�erential) speci�ed
by Reasoning variant selected in theV1 variability model. Finally the
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module : Module module : Module 

useCase Actor : UseCase 

actor : Actor 

connector : Connector 

name = ucname + 'Connector' 

varModel: DomainConceptualModel 
«domain» 

componentsModel : CCModel 

«domain» 

name = modelName 

modulesModel : ModulesModel 

«domain» 

cname = getComponentName(varModel, actor, module) 
if module.name = 'User Interface' then 
    Module2RolePort(module, useCaseActor, connector, component) 
else 
    Module2RolePort(module, useCase, connector, component) 
endif; 
Function2Relation(module, componentsModel, connector, component); 

where 

actor : Actor 

Module2Component 

component : Component 

name = cname 

actor 

tcomponents 

useCase : UseCase 

useCase Actor : UseCase 

uses_UseCase 

«domain» 
dcmdomain 

C 

connector : Connector 

«domain» tmodules 

Figure 9.20:Module2Component relation

where clause states that theModule2RolePort rule should be invoked
if the rule is applied over the User Interface module. In such case,
the rule takes as arguments the module and the use cases accesses by
the actor related with it (as the pattern number 6 describes). In any
other case, theModule2RolePort rule is invoked with the use case
related with the module as the patterns 3, 4 and 5 specify. Finally,
the Funtion2Relation rule is invoked.

module2roleport relation �e criterion Uniqueness of
the knowledge base indicates that knowledge must be unique for the
entire system. In order to meet this requirement, there is only one
Knowledge Base component in our base architecture. Given that
for each use case exists a di�erent view of the Knowledge Base, we
must merge each one of these views.�eModule2RolePort (see Fig.
9.21) relation is in charge of creating the necessary roles and ports
in the components and connectors of the target metamodel (as the
should not be duplicated if it is not necessary).�is is represented
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Listing 9.3: getComponentName(...) OCL query

1 query getComponentName(varModel : dcm:: DomainConceptualModel ,

actor : dcm::Actor , module : mview:: Module) : String {

2

3 if module.name = ’User Interface ’ then

4 module.name + ’ - ’ + actor.name

5 else

6 if module.name = ’Inference Motor’ or module.name = ’

Knowledge Base’ then

7 if varModel.Reasoning.ReasoningFeatures.oclIsTypeOf(dcm

:: deductive) then

8 ’Deductive ’ + module.name

9 else

10 if varModel.Reasoning.ReasoningFeatures.oclIsTypeOf(

dcm:: differential) then

11 ’Differential ’ + module.name

12 else

13 ’Error ’ + module.name

14 endif

15 endif

16 else

17 module.name

18 endif

19 endif

20 } �
in the Knowledge Base component by adding a port that allows the
communication of such views with the rest of the components. To
achieve this, the name of the port is composed by the use case name
and the ‘‘Port’’ su�x.
To allow the communication among views, it is also necessary to

add the corresponding roles to the adequate connectors.�e name
of the roles is composed by the name of the module plus the ‘‘Role’’
su�x.�is way, a one-to-one relationship is de�ned between use
cases and theKnowledge Base ports, which also implies a one-to-one
relationship between use cases and the roles of the di�erent connec-
tors.�is rule also creates the corresponding ports in the Inference
Engine and User Interfaces components, and their corresponding
roles in the involved connectors.�e where clause indicates that the
ConnectRoleAndPort and Function2Service relations should be con-
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port : Port 

name = ucname + 'Port' 

role : Role 

name = mname + 'Role' 

module : Module 

ConnectRoleAndPort(role, port); 
if (connector.name.oclIsUndefined() or connector.name = useCase.name + 'Connector') then 
    Function2Service(module, port, component) 
else 
    true 
endif; 

Module2RolePort 

component : Component 

useCase : UseCase 

«domain» 

connector : Connector 

«domain» 

«domain» 

name = mname 

name = ucname 

where 

«domain» 

port : Port 

name = ucname + 'Port' 

role : Role 

name = mname + 'Role' 

crole 

port 

Figure 9.21:Module2RolePort relation

C 

role.rport.oclIsUndefined() and port.prole.oclIsUndefined(); 

ConnectRoleAndPort 

ccdomain 

E 

when 

port : Port 

role : Role 

name = rname 
prole 

ccdomain 

«domain» 

«domain» 

role : Role 

name = rname 

Figure 9.22: ConnectRoleAndPort relation

sidered as post-conditions.�eModule2RolePort relation represents
the patterns 4, 5 and 6.

connectroleandport relation �is rule can be consid-
ered an utility rule. ConnectRoleAndPort (Fig. 9.22) relates elements
of the Component–connector metamodel. Speci�cally, it establishes
the link between the given Role and the given Port.
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function : Function 

name = fname 
type = ftype 

service : Service 

name = fname 
type = ftype 

module : Module 

Function2Service 

component : Component 

function : Function 
ccdomain 

E 

«domain» 

name = fname 
type = ftype 

«domain» 

port : Port 

service : Service 

name = fname 
type = ftype 

function 

port : Port 

«domain» port 

cservice 

Figure 9.23: Function2Service relation

relat : PeerToPeer 

name = mname + 'Attachment' 
type = 'attachment' 
service = fname 
type = ftype 

function : Function 

name = fname 
type = ftype 

module : Module 

Function2Relation 

ccdomain 

E 

«domain» 

name = mname 

function : Function 

name = fname 
type = ftype 

function 

connector : Connector 

«domain» 

component : Component 

«domain» 

componentsModel : CCModel 

«domain» 

relat : PeerToPeer 

name = mname + 'Attachment' 
type = 'attachment' 
service = fname 
type = ftype 

connector : Connector component : Component 

relations 

component 
connector 

ccdomain 

Figure 9.24: Function2Relation relation

function2service relation Fig. 9.23 describes the Func-
tion2Service relation. �is rule creates a new service on the corre-
sponding component of the Component–Connector model.�is
service is generated from a given function of amodule of the modu-
lar model.�e new service is created with the same name and type
of the source function.
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model : CCModel 
«domain» 

prismadomain 

E 

arch : PRISMAArchitecture 

«domain» 

name = modelName 

adcm : AppDomainConceptualModel 

«domain» 

name = modelName 

Component2Component(adcm, model, arch); 

where 

CCModel2PRISMAArchitecture 

Figure 9.25: CCModel2PRISMAArchitecture relation

function2relation relation �e rule represented in
Fig. 9.24 states that a function of a module of the source model
(ModuleModel) will generate a Relation element in the target model
(CCModel).�is Relation will link a connector with its correspond-
ing component in the Component–Connector model.

9.5.2 T2 transformation

�e T2 transformation is the last step before obtaining the exe-
cutable application.�ree domains participate in the transformation:
the ccview domain (the skeleton Component–Connector metamo-
del), the adcmdomain (the V2 application domain variability mo-
del) and the prismadomain (the PRISMA architectural model).�e
CCModel2PRISMAArchitecture rule is top-level and will be the �rst
relation to be invoked.�e other rules are non-top-level and will be
invoked as post-conditions of other rules.
Next, all the rules of the T2 transformation are shown and de-

scribed in detail. �e code of the transformation can be found in
the Appendix C.

9.5.2.1 QVT Rules

ccmodel2prismaarchitecture relation �e CCMo-
del2PRISMAArchitecture rule shown in Fig. 9.25 transform a CC-
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pcomponent : System 

name = cname 

prismadomain 

E 

arch : PRISMAArchitecture 

«domain» 

adcm : AppDomainConceptualModel 

«domain» 

Port2PortInterface(arch,adcm,ccomponent,pcomponent); 

where 

Component2Component 

connector : Connector 

name = ucname + 'Connector' 

model : CCModel 

«domain» 

ccomponent : Component 

name = cname 

tcomponents pcomponent : System 

name = cname 

includes 

Figure 9.26: Component2Component relation

Model element to a PRISMAArchitecture element, and assigns to it
the same name.�e CCModel element is the one that contains the
rest of the Component-Conector model elements. �e PRISMAAr-
chitecture element will play the same role, but in the prismadomain
domain.

component2component relation �e relation shown
in Fig. 9.26 describes the Component2Component relation. It trans-
forms each component in the source domain to a component in the
target domain, and assigns to it the same name.

port2portinterface relation �ePort2PortInterface rule
(see Fig. 9.27) transforms each port of a component in theComponent–
Connector metamodel to the corresponding port in a component of
the PRISMA domain.�e type of the new port es de�ned by creating
the corresponding interface in it.

component2functionalaspect relation Fig. 9.28 shows
theComponent2FunctionalAspect rule. It creates a functional aspect
in each PRISMA component. It also transforms each component
service in a PRISMA service with the same name and type; and
assigns it to the new aspect of the PRISMA component. It also as-
signs the set of interfaces that the aspect implements. �e where
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pport : Port 

name = pname 

cport : Port 

name = pname 

adcmdomain prismadomain 

C E 

adcm : AppDomainConceptualModel 

«domain» 

Component2FunctionalAspect(adcm, ccomponent, pport, interface, pcomponent); 
Connector2ConnectorPortInterface(pport, pcomponent, prole, adcm, ccomponent, arch); 

where 

Port2PortInterface 

ccomponent : Component 

name = cname 

pcomponent : System 

has 

arch : PRISMAArchitecture 

«domain» 

«domain» 

cport : Port 

name = pname 

port 

«domain» 

prole : Role 

prole 

pport : Port 

name = pname 

interface : Interface 

name = 'I' + cname 

typed 

Figure 9.27: Port2PortInterface relation

pservice : Service 

name = sname 
servType = stype 

interface : Interface 

aspect : Aspect 

name = 'F' + cname cport : Port 

name = pname 
 

cdomain prismadomain 

C E 

adcm : AppDomainConceptualModel 

«domain» 

Propery2Parameter(adcm, service); 
Hypotheses2Parameter(adcm, service); 
AddServices2Interface(service, interface); 
AddPlayedRole2Aspect(pport, interface, aspect); 
Property2ConstantAttribute(adcm, aspect); 
Hypotheses2VariableAttribute(adcm, aspect); 
Rule2DerivedAttribute(adcm, aspect); 

where 

Component2FunctionalAspect 

ccomponent : Component 

name = cname 

pcomponent : Component 

imports 

«domain» 

cservice : Service 

name = sname 
type = stype 

cservice 

«domain» 

pport : Port 

aspect : Aspect 

name = 'F' + cname 

interface : Interface 

using 

interface : Interface 

«domain» «domain» 

p
ri

sm
ad

o
m

ai
n

 

pservice : Service 

name = sname 
servType = stype 

providesRequires 

isInInterface 

Figure 9.28: Component2FunctionalAspect relation
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property : Property 

name = pname 
value = pvalue 
type = ptype 

attribute : ConstantAttribute 

name = pname 
value = pvalue 
type = ptype 

C 

Property2ConstantAttribute 

prismadomain 

E 

aspect : Aspect 

described_by adcmdomain 

«domain» 

attribute : ConstantAttribute 

name = pname 
value = pvalue 
type = ptype 

adcm : AppDomainConceptualModel 

«domain» 

property : Property 

name = pname 
value = pvalue 
type = ptype 

properties 

Figure 9.29: Property2ConstantAttribute relation

clause invokes the following rules: AddServices2Interface to assign
the public services to the port interfaces; AddPlayedRole2Aspect to
create the played_role in the aspect of its corresponding interface
(the one which de�nes its behavior).�is rule in turn invokes the
AddPlayedRole2Port rule, which assigns the played_role to the ap-
propriate port.�e Property2ConstantAttribute, Hypotheses2Varia-
bleAttribute, Rule2DerivedAttribute rules are also invoked to create
the attributes of the PRISMA aspect. Such rules are explained next.

property2constantattribute relation Fig. 9.29 shows
the Property2ConstantAttribute relation. It transforms each property
of the ADCM in a constant attribute of a PRISMA aspect.�e rule
assigns to the attribute the same name and type.

hypotheses2variableattribute relation Fig. 9.30 shows
the Hypotheses2VariableAttribute relation. It transforms each hy-
pothesis of the ADCM in a variable attribute of a PRISMA aspect.
�e rule assigns to it the same name and type.

rule2derivedattribute relation �e Rule2DerivedAt-
tribute relation (see Fig. 9.31) transforms each rule of the ADCM in a
derived attribute of a PRISMA aspect.�e relation assigns the clause
of the rule as its term.
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attribute : VariableAttribute 

name = hname 
value = hvalue 
type = htype 

hyp : Hypotheses 

name = hname 
value = hvalue 
type = htype 

C 

Hypotheses2VariableAttribute 

prismadomain 

E 

aspect : Aspect 

described_by 

adcmdomain 

«domain» 

attribute : VariableAttribute 

name = hname 
value = hvalue 
type = htype 

adcm : AppDomainConceptualModel 

«domain» 

hyp : Hypotheses 

name = hname 
value = hvalue 
type = htype 

hypotheses 

Figure 9.30: Hypotheses2VariableAttribute relation

attribute : DerivedAttribute 

name = rname 
complexTerm = rclause 

rule : Rule 

name = rname 
clause = rclause 

C 

Rule2DerivedAttribute 

prismadomain 

E 

aspect : Aspect 

described_by 

adcmdomain 

«domain» 

attribute : DerivedAttribute 

name = rname 
complexTerm = rclause 

adcm : AppDomainConceptualModel 

«domain» 

rule : Rule 

name = rname 
clause = rclause 

rules 

Figure 9.31: Rule2DerivedAttribute relation

parameter : Parameter 

name = pname 
paramKind = ptype 

property : Property 

name = pname 
type = ptype 

C 

Property2Parameter 

prismadomain 

E 

service: Service 

has adcmdomain 

«domain» 

parameter : Parameter 

name = pname 
paramKind = ptype 

adcm : AppDomainConceptualModel 

«domain» 

property : Property 

name = pname 
type = ptype 

properties 

Figure 9.32: Property2Parameter relation

parameter : Parameter 

name = hname 
paramKind = htype 

hyp : Hypotheses 

name = hname 
type = htype 

C 

Hypotheses2Parameter 

prismadomain 

E 

service: Service 

has adcmdomain 

«domain» 

parameter : Parameter 

name = hname 
paramKind = htype 

adcm : AppDomainConceptualModel 

«domain» 

hyp : Hypotheses 

name = hname 
type = htype 

hypotheses 

Figure 9.33: Hypotheses2Parameter relation
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property2parameter relation Fig. 9.32 shows the Pro-
perty2Parameter relation. It transforms the properties of the ADCM
in the parameters of the services of a PRISMA aspect.�e rule assigns
the same names and types.

hypotheses2parameter relation �e Hypotheses2Para-
meter relation (see Fig. 9.33) transforms the hypothesis of the ADCM
in parameters of the services of an aspect.�e relation assigns to
them the same names and types.

connector2connectorportinterface relation �e
Connector2ConnectorPortInterface relation (sowhn in Fig. 9.34) trans-
forms each connector in the source domain to a PRISMA connector,
and assigns to it the same name.�e roles of the source connector
are transformed to PRISMA ports (with their corresponding names)
in the new connector. Moreover, the type of the port is also de�ned
by creating the corresponding interface.

role : Port 

name = pname 

pconnector : Connector 

name = cname cdomain prismadomain 

C E 

adcm : AppDomainConceptualModel 

«domain» 

iname = 'I' + cname + '-' + pname 
ConnectRolePort(arch, pport, ccomponent, role, pcomponent); 
Connector2CoordinatorAspect(adcm, role, interface, cconnector, pconnector); 

where 

Connector2ConnectorPortInterface 

ccomponent : Component 
arch : PRISMAArchitecture 

sychronizes 

«domain» 
«domain» 

pport : Port 

pconnector : Connector 

name = cname 

interface : Interface pcomponent : System 

«domain» «domain» 
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role : Port 

name = pname 
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prole : Role 
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cconector : Connector 

cowner 

name = cname 

name = pname 

typed 
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C
 

Figure 9.34: Connector2ConnectorPortInterface relation
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link : LinkElement 

name = cname 

clink : Relation 

name = cname 

prismadomain prismadomain 

C E 

AddAttachmentsBindingsToPortAndArc(link, pport, arch); 

where 

ConnectRolePort 

ccomponent : Component 

pcomponent : System 

hasLinks 
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«domain» 

pport : Port 

link : LinkElement 

name = cname 
arch : PRISMAArchitecture 

«domain» 

«domain» 
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role : Port 

targetPort 

clink : Relation 

clink 

name = cname 

role : Port 

«domain» 

pport : Port 

sourcePort 

Figure 9.35: ConnectRolePort relation

interface : Interface 

aspect : Aspect 

name = 'C' + cname 

cdomain prismadomain 

C E 

adcm : AppDomainConceptualModel 

«domain» 

AddPlayedRole2Aspect(role, interface, aspect); 
Property2ConstantAttribute(adcm, aspect); 
Hypotheses2VariableAttribute(adcm, aspect); 
Rule2DerivedAttribute(adcm, aspect); 

where 

Connector2CoordinatorAspect 

cconnector : Connector 

name = cname 

pconnector : Connector 

imports 

«domain» 

«domain» 

role : Port 

aspect : Aspect 

name = 'C' + cname 

interface : Interface 

using 

interface : Interface 
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Figure 9.36: Connector2CoordinatorAspect relation

connectroleport relation Fig. 9.35 shows the Connec-
tRolePort relation. �is rule transforms each relation which con-
nects a role and a port in the component–connector metamodel to
a LinkElement in the PRISMA metamodel.�e created LinkElement
attaches the corresponding ports between a PRISMA component
and a PRISMA connector.�e where clause invokes the AddAttach-
mentsBindingsToPortAndArc rule which adds the links that have
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service : Service 

C 

AddServices2Interface 

prismadomain 

E 

interface : Interface 

publish prismadomain 

«domain» 

service : Service 

service: Service 

«domain» 

Figure 9.37: AddServices2Interface relation

been created to the root element of the architectural model (PRIS-
MAArchitecture).

connector2coordinatoraspect relation �is rule,
shown in Fig. 9.36, creates a coordinator aspect in every PRISMA

component, and assigns to it the interfaces that it uses.�e where
clause invokes theAddPlayedRole2Aspect,AddPlayedRole2Port, Pro-
perty2ConstantAttribute, Hypotheses2VariableAttribute, Rule2Deri-
vedAttribute rules which have been explained before.

addservices2interface relation As show in Fig. 9.37,
the AddServices2Interface rule adds the services that have been cre-
ated in the PRISMA domain to the interface that publishes them.

addplayedrole2aspect relation �e AddPlayedRole2-
Aspect is shown in Fig. 9.38.�is rule adds the PlayedRole element
to the corresponding PRISMA aspects, specifying the behaviour of
an interface.

addplayedrole2port relation �is simple rule, as shown
in Fig. 9.39 assigns the PlayedRole to its corresponding port.

addatachmentsbindingstoportandarc relation
�e AddAtachmentsBindingsToPortAndArc rule (Fig. 9.40) adds the
newly created attachments to the root element of the architectural
model (the PRISMAArchitecture element). It also adds them to the
related ports.
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plays : PlayedRole 

name = 'Played_role_' + pname 

AddPlayedRole2Aspect 

aspect : Aspect 

plays 

«domain» 

plays : PlayedRole 

pport : Port 

«domain» 

prismadomain 

E 

interface : Interface 

«domain» 

interface : Interface 

name = 'Played_role_' + pname 

name = pname 

for 

AddPlayedRole2Port(plays, pport); 

where 

Figure 9.38: AddPlayedRole2Aspect relation

C 

AddPlayedRole2Port 

prismadomain 

E 

pport : Port 

behaves prismadomain 

«domain» 

plays : PlayedRole 

«domain» 

plays : PlayedRole 

Figure 9.39: AddPlayedRole2Port relation

attachment : Attachment 

name = lname 

link : LinkElement 

 AddAttachmentsBindingsToPortAndArc 

arch : PRISMAArchitecture 

connects 

«domain» 

attachment : Attachment 

link : LinkElement 

«domain» 

prismadomain 

C 

sport : Port 

name = lname 

name = lname 

tport : Port 

sourcePort targetPort 

sport : Port tport : Port 

sourcePort targetPort 

pport : Port 

link : LinkElement 

«domain» 

attachmentBindings 

Figure 9.40: AddAttachmentsBindingsToPortAndArc relation

9.6 summary and conclusions

�is chapter describes how to develop a SPL in a speci�c domain
(Diagnostic Expert Systems in this thesis, but not limited to them)
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by using Multi-Model Driven techniques.�e development of such
a kind of systems is a complex process because of elements that com-
pose their architecture vary not only in their behaviour but also in
their structure.�is situation implies that several base architectures
are obtained on the same reference architecture. Our approach uses
QVT–Relations as the model transformations language to manage
the variability along the whole process. Our approach also enhances
the development ofDES by applying SPL techniques, as they are useful
when the members of a family of programs share a common design.
�is way, a speci�c design can be used in di�erent products, reducing
costs, time to market, e�ort and complexity. By applying MDA tech-
niques, we are able to build systems that are platform-independent,
and we can think about them from the problem perspective and
not the solution perspective.�is makes possible to apply such so-
lutions to di�erent domains. Moreover, we provide a framework
with several technical spaces where modern so�ware development
languages and techniques coexist in a coordinated way (i. e., they
conform a multi-model).
It is noteworthy to point out that the proposal covers the whole

SPL life-cycle. First, wemanage the variability for the �rst stage of the
development process of DES. Such process continues until the base
architecture is obtained.�e second stage has been also implemented
and the base architecture is then decorated with the application
domain features.�e result of the second stage produces a �nal and
speci�c architecture. In our SPL the �nal architectural model is a
PRISMA (Pérez Benedí 2006) model. As explained before, PRISMA
is a framework to describe architectural models that provides the
PRISMA-MODEL-COMPILER tool (Pérez et al. 2008).�is tool is
able to automatically generate executable C#.NET code, covering
the whole development process.
Furthermore, in traditional approaches such as the BOM–Eager

proposal, the group of base architectures is de�ned and implemented
at design time of the SPL (domain engineering) and it remains un-
changed throughout the whole life-cycle of the SPL (application do-
main). In the BOM–Lazy approach, the use of the T1 transformation
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allows us to move the creation of the base architectures to the appli-
cation domain phase.�is allows us to de�ne the base architectures
by using a set of rules that encode patterns of good design practices
(as well as other design decisions), in a generic way. �is avoids
the need to de�ne all of them explicitly. As the SPL grows in size,
BOM–Lazy becomes an adequate approach to manage variability, as
it supposes a great work to build a priori the base architectures for
all the possible products of the SPL.�us, the main e�ort is done in
the domain engineering stage, where the acquired knowledge is for-
malized and encoded in a set of declarative rules (the knowledge is
stored explicitly). So, it is not necessary to develop extensively all the
possible combinations of base architectures (the knowledge is stored
implicitly).�at will increase the e�ciency on the application engi-
neering phase, where each base architecture is obtained only when
it is needed by using the explicitly stored knowledge. Regarding to
the T2 transformation, the use of QVT–Relations raises the abstrac-
tion level in comparison with traditional FOP techniques, as we are
dealing with high level concepts directly. In this sense, our proposal
do not need to deal with XML documents o Extensible Stylesheet
Language Transformations (XSLT) transformations, but it deals with
equivalence patterns with describe the transformation step in a very
natural way. Table 9.2 summarizes the domains, transformation
rules and involved elements. In summary, we can conclude that the
main characteristics of BOM–Lazy are:

1. Variability is managed at a high abstraction level (i. e. at the
model level rather than at the program level).

2. �e system variability is modeled using models that are sepa-
rate from their functional models.�e DSL for expressing the
variability are suited for the domain, instead of adding tangled
variability annotations directly to the functional models (UML
or ADL) as other approaches have proposed.
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3. Variability is operated by two orthogonal ways: one provided
by the features of the domain, and another one provided by
the features of the application domain.

4. �e variability is given by instances of the conceptual models
(DCM and ADCM).

5. Model generation and transformation are implemented using
QVT–Relations in the Production Plan. In BOM–Lazy, the
model transformations are resolved in an e�ective, scalable
and user friendly way. Its expressiveness is also richer and
clearer in comparison with traditional approaches which use
Decision Tree and FOM/FOP techniques.

6. Various technological spaces are integrated, conforming a
multimodel, to deal with the complexity of the problem.�ey
are current trends in So�ware Engineering.

7. BOM–Lazy uses OMG standards and implements a generic ap-
proach to SPL development that can be applied to di�erent
domains, application domains, systems, and platforms.

8. BOM–Lazy o�ers an approach to build so�ware applications in
a simple way: the user only inputs the features of the domain
and the application domain.
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10
AUTOMATED ANALYSIS OF FEATURE MODELS IN
MULTIPLE: AN INDUSTRIAL EXPERIENCE

«Get the habit of analysis
–analysis will, in time,

enable synthesis to become your habit of mind»

— Frank Lloyd Wright
American architect, writer and educator, 1867–1959

Feature models are a suitable artifact to describe variability in prod-
uct families. As such, the use of feature models to describe product
lines is an increasing practice in industry today. To get the bigger
pro�ts, we have to deal with consistent and well-formed feature
models.
However, as these models become larger, inconsistencies increase

in number and complexity. It is essential to discover these errors
and correct them in an easy and incremental way in order to avoid
incorrect product designs and extra costs derived from a late detec-
tion.
Feature models must be reliable, since they are used as the input

in many other SPLE processes such as code generation (Czarnecki
and Eisenecker 2000; Czarnecki and Antkiewicz 2005) or feature
orientedMDD (Batory 2003; Trujillo 2007; Cabello and Ramos 2009;
Cabello et al. 2009).�e analysis of feature models is an important

273
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task, and it must be done before starting any other activity to avoid
the propagation of errors. If we are dealing with large-scale feature
models it is almost impossible to perform the analysis manually and
we need a tool allowing us to do it in an automated way. Nowa-
days, there are di�erent proposals to automate the analysis of feature
models (Benavides et al. 2010). One of the most interesting tools
is FeAture Model Analyser (FaMa) (ISA 2011a).�is framework,
developed by researchers of the Universidad de Sevilla, provides a
way to perform analysis operation over feature models. Its main ad-
vantage lies in its formal semantics, which avoids misinterpretation.
As it can use either constraint programming (Tsang 1995), boolean
satis�ability techniques (Cook and Mitchell 1997) or binary decision
diagrams (Bryant 1986) to represent feature models rigorously, it
becomes a reliable tool to automate feature model analysis.
�e Ingeniería del So�ware y Sistemas de Información (ISSI) Re-

search Group, where this thesis has been developed, has started a
collaboration with Rolls-Royce plc in the context of the ‘‘MULTIPLE:
MultimodelingApproach ForQuality-Aware So�ware Product Lines’’
project, funded by the Spanish Ministry of Science and Innovation
(ref. TIN2009-13838).�anks to this collaboration, we have been
able to study the variability which arises when developing so�ware
for embedded systems in the aero-engine industry.
�e main purpose of this chapter is to provide a discussion about

feature modeling in industry by means of performing automated
analysis over a real industrial feature model and to show the results
obtained a�er its complete analysis.�e analysis is done using the
MULTIPLE framework, presented in chapter 8, which relies on the
FaMa analysis tool.

10.1 context and motivation

Nowadays, performing a complete analysis of a large-scale feature
model represents a big challenge. In this context, having a set of
tools to ease this task is a must. It is also a must to keep on feeding
the discussion about what kind of errors are more common in large-
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scale industrial feature models, and how to correct them. We need,
then, to get relevant results obtained from the analysis over real
large-scale industrial feature models.
�ere exist di�erent automated analysis tools which are based Feature models

must be specially
reliable when they
are used in
MMDPLE processes.
for this reason, we
need automatic
tools to analyse
large-scale feature
models as they are
more error-prone.

on a speci�c representation (model) of a feature model. �is way,
our model must be adapted to �t a speci�c notation in order to be
analysed. To analyse our feature model by means of an automated
analysis tool is not an immediate task. Probably our model wouldn’t
adapt totally to the representation accepted by the tool. In addition,
if our model is too large, it is possible that it contains syntactical
errors.�ese errors are hard to detect manually and can that make
the model not analysable.
�us, to analyse our model, we need one or more intermediate

steps in which:

1. �e syntactic correctness of the model is checked.

2. �e model is adapted to the notation used by the automated
analysis tool.

In chapter 8 we presented the MULTIPLE framework. �is tool
incorporates feature modelling capabilities in a MDA environment,
implementing a set of components to manage extended feature mod-
els. Next, we present a case study and we present how we have used
MULTIPLE to represent and analyse a feature model:

1. A parser processes data from the source model and creates
XMI instances that satis�es theMULTIPLE feature metamodel.
Moreover, the syntactic analysis and correction of the model
is automated.

2. Amodel transformation (MultipleFeatures2FamaFeatures, see
Appendix D) is used to generate a feature model understand-
able by FaMa.

3. �e integrated component to validate FaMa feature models is
used to analyse the large-scale feature model providing:
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a) Error detection.

b) Error classi�cation.

c) Solutions to the errors.

d) Model correction rates.

10.2 case study

Aircra� engines are big and complex systems which are made up byTo illustrate the
capabilities of the

MULTIPLE
framework we have

analysed an
industrial and

large-scale feature
model from an
aircra� engine
manufacturer.

several components. For example, a jet engine must have speci�c
subsystems to guide the air and fuel �ow, lubrication, water injection,
noise levels, etc. To control these elements several devices (such as
turbines, compressors, valves, actuators, gearboxes. . . ) must be con-
trolled. To keep these elements in working order di�erent electronic
controllers are used. Such controllers must be programmed and
coordinated, which is a quite complex task.
�ree are the most important aircra� engine companies world-

wide: GE Aviation (GE 2011), subsidiary of General Electric); Rolls-
Royce plc (Rolls-Royce 2011); and Pratt & Whitney (Pratt &Whitney
2011), subsidiary of United Technologies Corporation (UTC). Such
companies build di�erent engine models, which are installed in dif-
ferent aircra�s. In this situation it is very important to cope with the
variability problem to ease the development of new engine variants

INTAKE COMPRESSION COMBUSTION EXHAUST

Air Inlet Combustion Chambers Turbine

Cold Section Hot Section

Figure 10.1: Basic components of a gas turbine engine (FAA 2007)
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which can be sold to di�erent aircra� manufacturers, such as Boeing
(Boeing 2011) or Airbus (Airbus 2011).

10.2.1 Feature modeling in Rolls-Royce plc

An aero-engine (Fig. 10.1) can be seen as a complex operating unit
that works thanks to the interaction of di�erentmechanisms (turbine,
compressor, combustion chamber. . . ).�ese mechanisms can be of
very di�erent types and can be con�gured in di�erent ways.�ere �e initial feature

model has been
developed using the
FeatureRSEB

proposal, which is a
subset of the
MULTIPLE proposal
for feature
modeling.

are lots of details to take into account in the development of those
artifacts, as well as a high degree of variability. As a consequence,
Rolls-Royce has characterized the variability of aircra� engine by
using feature models. But, developing feature models is a hard task
as they are very complex and contain much variability. Moreover,
the analysis of these models (which is necessary to assure that they
are correct) is mandatory.
�e feature model developed by Rolls-Royce plc uses the PLUSS

approach, which is, basically, the original FODA proposal adding
the OR group. PLUSS providesmandatory or common features, op-
tional features, single adaptor features andmultiple adaptor features
that may have cross-tree requires and excludes relationships with
other features. Since PLUSS is almost equivalent to FODA, it can

Domain

a

aa

aaa aab aac

ab

aba abb

ac

b

ba bb

bba bbb

bc

bca bcb bcc

«req
uire
s»

«excludes»

<1-2> <1-3><1-1> <1-1>

<1-1>

Figure 10.2: Cardinality-based feature model equivalent to the one shown

in Fig. 4.6



278 automated analysis of feature models in multiple

pluss cardinality-based

Common Mandatory ([1..1])

Optional Optional ([0..1])

Single adaptor XOR (<〈1-1〉)

Multiple adaptor OR (〈1-k〉)

Requires Implies

Prohibits Excludes

Table 10.1: Correspondences between Cardinality-based feature models

and PLUSS

be implemented in a subset of the cardinality-based proposal of
MULTIPLE.�at way, it is possible to transform a PLUSS feature mo-
del to a cardinality-based one. Fig. 10.2 shows a cardinality-based
feature model which is equivalent to the feature model shown in
Fig. 4.6 (page 55). Notice that the mappings between both models
are straightforward. Table 10.1 summarizes the correspondences
between the PLUSSmodels and cardinality-based feature models1.

10.2.2 Analysis process overview

We have shown that transforming a PLUSS feature to a cardinality-
based one is straightforward.�is allowed us to import the feature
model developed by Rolls-Royce plc into theMULTIPLE framework,
with the aim of analysing its correctness.�is way, we can test the

1 Some relationships that appear in our cardinality-based proposal are not shown

for the sake of clarity.�e biconditional relationship can be expressed by using two
di�erent requires relationships in the PLUSS proposal. However, the use relation-
ship that we propose does not have a correspondence, as PLUSS does not support

cloning of features.
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scalability of theMULTIPLE framework when dealing with real and
large-scale feature models provided by the industry. We used FaMa For the analysis of

the industrial
feature model we
propose to use the
MULTIPLE feature
model as the pivot
artifact, using EMF
for its canonical
representation.

to implement amethod that allows us to perform a complete analysis
(syntactic and semantic) of the Rollws-Royce feature model. Our
proposal is outlined in Fig. 10.3. As our metamodel is a superset of
the PLUSSmetamodel, we can represent any PLUSS feature model an
get the bene�ts that theMULTIPLE framework provides. �is way,
the imported feature model can be enriched with complex model
constraints written in FMCL; it can be edited using the MULTIPLE
feature modeling editor; or we can useMULTIPLE to create model
con�gurations and check whether they are valid or not.

10.2.2.1 Process details

�e tool support for the PLUSS approach is built on top of the
DynamicObject-Oriented Requirements System (DOORS) tool (IBM
2011). To work with the feature model inMULTIPLE, we must �rst
export the feature model as a Comma-Separated Values (CSV) �le.
�e analysis process is divided in two parts. First (1), an analyzable

CSV

PLUSS Modeler
(DOORS)

(A)
Parser

Export

Syntactical
Errors Report

CSV
File

EMF-MULTIPLE
Feature Modeling Support

Feature Modeling Editor

Con�guration Editor

FMCL

(B)
QVT

Transformation XML

FAMA
File

<xml>
<model>

</model>
</xml>

Analysis
Subsystem

(C)
Analysis
Engine

MULTIPLE
Feature Model

File

Semantical
Errors Report

XMI

MULTIPLE
(Eclipse platform)

(1) Building an analyzable feature model (2) Perform automated analysis

Figure 10.3: Schema of the proposal
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feature model must be built. For that purpose, the Parser component
(Fig. 10.3, element A) maps the source feature model (contained
in the CSV �le) that uses PLUSS notation into a XMI instance of our
metamodel.
Building an analyzable feature model also implies that a syntac-

tic analysis is performed to detect and �x possible errors in the
source model.�e syntactic errors are here introduced by the users
who created the feature model manually.�ese errors are produced
because DOORS is a requirements management tool, and it is not
specially designed for feature modeling, so no checking capabilities
are provided.
Once the source featuremodel has been translated to an equivalent

feature model inMULTIPLE, we can use any of the framework tools,
including model transformations. �is way, it is very simple to
transform a feature model to any other model type. Using a QVT
model transformation—Fig. 10.3, (B)—the featuremodel is projected
to the FaMa representation.
�e second part of the process (2) comprises the analysis using

FaMa—semantic analysis, element (C) in Fig. 10.3. Both parts of the
process are performed by the prototype in a way transparent to the
user.

10.2.3 Source Model structure

�e source 10.2 feature model contains 1195 features, so we consider �e source feature
model has been
extracted as a plain
text �le which uses
a comma-separated
value structure.

it a large-scale feature model. Table 10.2 shows an small fragment of
the model that illustrates its actual structure as a CSV �le. Module
and feature names have been removed. We must remark that the
data used in this case study are protected by the non-disclosure
agreement signed between Roll-Royce plc and the ISSI research group.
As a consequence, tables, �gures and examples in the remaining of
this chapter will be anonymized to obey this agreement.
As table shows, the model is codi�ed as a plain text in a tabular

structure, in which features are de�ned as table rows. An screenshot
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which shows the actual contents of the �le is shown in Fig. 10.4.�e
meaning of each columns of the table is detailed below:

Module Name—Contains the name of the SPLmodule to which
the feature belongs to.

Module Number — Contains the number of the SPL module to
which feature belongs to.

Absolute Number—Contains the number that identi�es the feature
in the module.

Parent Number—Contains the number of the parent feature.

Object Number—Contains the number that represents the feature
in the feature hierarchy.

Object Heading —Contains the feature name.

Feature Node— It may contain two di�erent values: ‘‘Feature’’ or
‘‘Feature Group’’, that indicate if the feature has children or
not (leaf).

Variation—Contains the type of variation that represents the fea-
ture. It can have four di�erent values: ‘‘Common’’, ’’Optional’’,
’’Single’’ or ’’Multiple’’, according to the PLUSS notation.

Requires—Contains the feature or features that this feature requires
when it is selected (should be also selected).

Prohibits—Contains the feature or features that can not be selected
when this feature is selected.

10.2.4 A step by step description of the process

�is subsection shows visually the steps that have been described
before, and shows how they have been put in practice using the
MULTIPLE framework.
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Figure 10.4: Rolls-Royce PLUSS feature model

10.2.4.1 Step 1: the initial model �le

First, we need to include in the workspace the feature model that
we want to analyze (i. e., the Rolls-Royce feature model).�is �le is
called RollsRoyceSample.csv (Fig. 10.4).

10.2.4.2 Step 2: Parser execution and syntactical analysis

Second, we execute the parser, which will create a new instance of the
pivot model (i. e., aMULTIPLE cardinality-based feature model). To
execute the parser, the user must use the contextual menu as shown
in Fig. 10.5. �e result model, called RollsRoyceSample.features, is
equivalent to the original model. In Fig. 10.6 a simpli�ed version of
this �le is shown (to see di�erent relationship types) in theMULTIPLE
feature modeling tree editor.
Additionally, a console with the results of the syntactical analysis

is shown (see Fig. 10.7). �ere, the model errors found and the
solutions applied to solve them are listed. When an error is detected,
the parser displays the following information: line number were the
error was found, the cause of the error and the solution adopted.
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Figure 10.5: Running the PLUSS parser

It is worth mentioning that the produced feture model can be
opened using the graphical feature model editor (shown in Fig. 8.12,
page 138). However, due to the enormous size of the Rolls-Royce
feature model this graphical representation it is not the best option
to visualize and navigate the model.
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Figure 10.6:�e Rolls-Royce feature model shown in the MULTIPLE fea-

ture modeling tree editor
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Figure 10.7: Console showing the syntactical analysis results
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10.2.4.3 Step 3: Model transformation execution

�ird, we must execute the MultipleFeatures2FamaFeatures QVT
transformation. which will generate an XML �le taht can be loaded
into the FaMa framework. �e transformation is executed in the
usual way as Fig. 10.8 shows.
As a result, a �le called result.fama is generated.�is �le can be

open by using a tree editor (see Fig. 10.9) to easily explore its contents.
�is is possible thanks to the FaMametamodel support provided
byMULTIPLE. It must be pointed out that the persistence format that
this editor uses is not the standard XMI serialization used by EMF,
rather it is the native XML format supported by the FaMa framework
as Fig. 10.10 shows.
A traces model is also obtained.�is model stores the mappings

between the source model and the target model, which are useful to
trace errors back when they are found by the FaMa framework.

Figure 10.8: Dialog box showing the theMultipleFeatures2FamaFeatures
transformation is ready to be executed
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Figure 10.9: Rolls-Royce model represented as a FaMamodel in the FaMa

tree editor
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Figure 10.10: Rolls-Royce model represented using the FaMa XML serial-

ization format
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10.2.4.4 Step 4: Running the FaMa analysis engine

MULTIPLE provides a contextual menu to perform the FaMa analysis
operations. Fig. 10.11 shows the operations which are available: De-
tect and explain errors,Number of products, Products andVariability
degree. �e results will by displayed in the Fama Analysis Console
as shown in Figs. 10.12, 10.14 and 10.13 respectively. Only a small

Figure 10.11: Running FaMa analysis from the MULTIPLE user interface
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number of operations have been �nally included, as the others did
not provide results in time (see section 10.3.4).�is way, only the
working operations have been included in the prototype.

Figure 10.12: Calculating the number of products using FaMa

Figure 10.13: Detecting errors using FaMa
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Figure 10.14: Calculating products using FaMa
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10.3 interpreting the obtained results

�is section contains the explanation of the errors found during the
analysis process. We also classify and provide solutions to those
errors.

10.3.1 Syntactic analysis

During the process to adapt the PLUSSmodel to our notation, we have Before using FaMa
to validate the
feature model, a
pre-process must be
carried out to tidy
up the source model,
i. e., any syntactical
error in the model
must be found and
corrected.

found some errors that make the source feature model inconsistent.
�ese errors can be classi�ed as follows:

empty features We identi�ed that the model contains un-
named features (Fig. 10.15a). �ese empty features are de�ned as
mandatory, so they must be present in every product of the So�ware
Product Line.
Every feature in the model has to de�ne a functionality, and these

empty features do not contribute in any way to the SPL.

Solution—We ignore empty features, since they are not signi�cant.
Moreover, the console displays the line of the model in which
the feature is placed and the solution taken (Fig. 10.15b).

Domain

F1 F2 F3

F31 F32

(a)

Domain

F1 F2 F3

F31 F32

(b)

Figure 10.15: Empty features in the original feature model 10.15a and a

possible solution 10.15b
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Domain

F1 F2 F3

F1

F311 F312

F32

(a)

Domain

F1 F2 F3

F32

(b)

Figure 10.16: Duplicated features in the original feature model 10.16a and

a possible solution 10.16b

duplicated features �e feature model contains duplicated
features. �is means that we have two or more features placed in
di�erent hierarchical positions due to the kind of feature model that
we are working with.
One of the main goals of de�ning a feature model is to capture

variabilities and commonalities between the di�erent products.�is
way, the feature model re�ects every possible feature combination
of the products of an SPL.
Every feature has to be unique. In cardinality-based feature mod-

els we can have cloned features, butwe can not have duplicate features
inside the same model in di�erent hierarchy locations.

Solution — By default, we leave just the �rst appearance of the
feature. If a feature to be removed contains children, they
will be removed too (Fig 10.16b).�e removed features could
represent di�erent product characteristics that have been in-
correctly de�ned using the same name.�ese errors also lead
us to the problem of removing some valid features obtaining
less potential products. �us, the user is warned about the
error and its location to be revised.



10.3 interpreting the obtained results 295

meaningful use of fields As we commented at the begin-
ning of this chapter, the source feature model is coded in plain text.
In the source model we �nd the Feature Node �eld, which informs
whether the feature belongs to a group (Single orMultiple) or not.
�is �eld can contain two values: Feature Group and Feature. We
can �nd features de�ned as groups that sometimes have children and
sometimes are leaf features. �e same happens when they are de-
�ned as Features. Moreover, this �eld is o�en unde�ned and even it
occasionally seems dependent on the variability.�ere is no pattern
in the use of this value.

Solution—We did not rely on this Feature Node �eld to identify
the parent-child relationships between features. We deduce
them from other �elds, such as the variability and the parent
number.

�e main problem arises while de�ning features in the model.
�ere is no pattern followed to set a feature to be a Feature
Group or a Feature. We take as correct practice to de�ne a
feature as a Feature Group if it has children and as a single
Feature otherwise.

Table 10.3 represents a fragment of the PLUSS feature model.
Declared Feature Node column contains the original values
of this �eld in the source model and Expected Feature Node
column contains the correct values expected given the tree
structure. Features with the Feature Node �eld value in red are
some examples of the errors found. As we can observe, feature
F2 is de�ned as a Feature, but it has two children. However,
F21 is de�ned as a group and it does not have children.�e
same happens with feature F12, it has children but it is not
de�ned as a group.

Fig. 10.17 shows the correct representation in Cardinality-
based notation.
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ID
DECLARED FEATURE

NODE VALUE

EXPECTED FEATURE

NODE VALUE

Domain Feature Group Feature Group

F1 Feature Group Feature Group

F11 Feature Feature

F12 Feature Feature Group

F121 Empty Feature

F122 Empty Feature

F123 Empty Feature

F2 Feature Feature Group

F21 Feature Group Feature

F22 Feature Feature

Table 10.3: Example of features incorrectly de�ned in the source CSV �le

Domain

F1

F11 F12

F121

F122

F123

F2

F21 F22

<1-2>

<1-1>

<1-1>

Figure 10.17: Correct representation using cardinality-based notation
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Domain

F1 F2 F3

M

F4

(a)

Domain

F1 F2 F3 F4

(b)

Figure 10.18: Example of ambiguous use of feature groups 10.18a and a

possible solution 10.18b

ambiguous use of variability Multiple Adaptor features
represent an at-least-one-out-of-many selection that has to be made
among a set of features.
In the model we can �nd the use of thisMultiple variability having

a set of just one feature (Fig. 10.18a), so there is no real option. You
cannot choose between more than one option because you have a
multiple Group with just one child. So we have an incorrect use of
theMultiple variability.

Solution— In the cases where a feature valued asMultiple is part
of a group of just one child, we replace this relationship with
amandatory relationship (Fig. 10.18b). Since the meaning of
theMultiple Adaptor is at-least-one-out-of-many,mandatory
is the most accurate relationship to represent it.

10.3.2 Semantic Analysis

As we have a large-scale feature model, we need an automated way �e semantic
analysis is
performed by using
FaMa, and �nds
any inconsistency
which make the
model totally or
partially invalid.

to analyse the information inside. InMULTIPLEwe use FaMa to do
this.
In order to obtain signi�cant results, we have selected only those

operations which apply to feature models (i. e. model-checking oper-
ations), and not feature model con�gurations since our framework
already provides this functionality.
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Domain

F1 F2

F21
«excludes»

(a)

Domain

F1 F2

F21

(b)

Figure 10.19: Invalid relationship 10.19a and a possible solution 10.19b

validation �e result of the validation is that the model is
unsatis�able.�e PLUSS Feature model is invalid because it contains
two cross-tree relationships of type Excludes that are not well de�ned
since they excludemandatory features (Fig. 10.19a).
When we de�nemandatory features, they cannot be excluded by

another mandatory feature (if all the parents of both features are also
mandatory) because that fact contradicts their mandatory de�nition.

Solution—When this kind of contradictions arise, there are two
ways to proceed:

1. To remove the troubled relationship (Fig. 10.19b).

2. To check the de�nition of features in the model to
identify if those features should be optional instead of
mandatory.

We took the �rst solution (remove troubled relationships)
because it is less intrusive with the structure of the SPL.�e
tool also warns the expert user to allow him/her to check the
model and �x whatever is needed.

products & number of products �is operation calcu-
lates all the possible con�gurations that the feature model represents.
�e analysis of the feature model detected 3073 di�erent potential
products in the product line. It is a high number because we are



10.3 interpreting the obtained results 299

Domain

F1

F11

F2

F21
«requires»

Figure 10.20: Example of a false-mandatory feature

dealing with a large-scale feature model.�e products operation also
provides the features combination for every product in the console.

error detection Besides validation errors, error detection
results revealed �ve additional errors in the model:

1. �ree false-mandatory features

False-mandatory features are those features that behave as
mandatory but they are not de�ned asmandatory.

For instence, feature F21 in Fig. 10.20 is a false-mandatory
feature because it is de�ned as optional but it is going to be
present in every product of the SPL. �is is because of the
Requires relationship between themandatory F11 feature and
F21.

Solution – To change the type of the feature tomandatory.

2. Two dead-features

�e most frequent reason for having dead features (features
that are present in no products) is the existence of contra-
dictory relationships. Fig 10.21a shows an example of dead
features. Features under theDomain feature are part of a XOR
group (or Single Adaptor, i. e., exactly-one-out-of-many). Fea-
ture F1 requires feature F2 and vice versa. In a XOR group
we can have just one feature selected, so this two Requires
relationships contradict the group de�nition.
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Domain

F1 F2 F3 F4 F5

<1-1>

«requires»

«requires»

(a)

Domain

F1 F2 F3 F4 F5

<1-5>

(b)

Domain

F1 F2 F3 F4 F5

<1-1>

(c)

Figure 10.21: Example of dead features (features F1 and F2 in 10.21a) and

two possible solutions (10.21b and 10.21c)

Solution — In this case, the problem can be at the Group
de�nition. An OR Group orMultiple Adaptor (at least-
one-out-of-many) would solve the problem (Fig. 10.21b),
because it allows us to select more than one feature.

Another solution is to remove the Requires relationships
(Fig. 10.21c).

�e solution would vary depending on what the model
aims to represent.

10.3.3 Conclusions about the analysis results

Table 10.4 shows the results of the analysis performed that give us the
necessary data to determine the correction of the featuremodel.�is
table re�ects the feature model percentage of correction grouped by
element type.
�e Source Model column refers to the elements of the original

feature model, and the Target Model column refers to the elements
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SOURCE

MODEL

TARGET

MODEL

%

CORRECT

Number of Features 1195 1016 85.02

Optional Features 295 263a 89.15

Mandatory features 833 692 83.07

Single features 53 53 100

Multiple features 14 5 35.71

Number of groups 258 19 7.36

Implies 70 63b 90

Excludes 6 4c 66.67

Total elements 1529 1099 71.88

a 266-3 false mandatory

b 65-2 relationships which cause dead features

c 6-2 relationships that make the model void

Table 10.4: Percentages of correction grouped by element type

of the corrected model obtained a�er the syntactic and semantic
analyses.�e percentage of correction has been calculated as follows:

Correction (%) = Correct model elements
Total (original) model elements

× 100

According to the results obtained, we can order the number of
errors as follows:

Groups de�ned >Multiple features >
Excludes relationships >Mandatory features >

Optional features > Implies relationships >
Single features
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10.3.4 E�ciency and limitations of the automated analysis tool

�is section describes the limitations found while performing some
of the operations that the FaMa Framework provides. Most of these
limitations are derived from the scale of the feature model we were
working with (1016 features). We used the FaMa 1.1.1b version re-
leased on April 14th, 2011, and a standard desktop computer2.
�e e�ciency and problems foundwhile performing each analysis

operation are listed below:

10.3.4.1 Validation

�is operation works well with our model, providing a quick result
in about 3 sec. However, problems arise when the model is void and
the tool tries to look for error explanations. �e tool is unable to
give a response in an acceptable time.

10.3.4.2 Products and Number of Products

�ese operations also work reasonably well with the model of the
case study. It takes some time for the tool to provide an answer
(about 30 minutes) but �nally it is able to generate a report with all
the potential products of the SPL.

10.3.4.3 Variability

�e FaMa tool was unable to provide an answer in 3 days, and the
execution was aborted. As a consequence, we were unable to get the
variability degree of the source model.

10.3.4.4 Error detection

�is operation works well with the model of the case study. Answers
were provided almost immediately providing the di�erent model
errors and their location. However, if it occurs in the variability

2 Windows 7 (x86). Pentium IV, 3.2GHz. 3GB RAM.
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calculation, the tool is unable to retrieve the explanations of the
errors.

10.3.4.5 Core Features and Variant Features

�is kind of operation was not available for the model of the case
study.�e FaMa tool provided the following information message:
Current model does not accept this operation.

10.4 summary and conclusions

In this chapter we have detailed the analysis process of an indus-
trial feature model provided by Rolls-Royce using the validation
capabilities provided byMULTIPLE.
First of all, we show step-by-step how to execute the tool to obtain

the results. Furthermore, we have described and classi�ed the errors
found during the semantic and syntactical analysis of the model
providing solutions.
�e results provided the company a mechanism to enhance their

large-scale feature model with the aim of integrating it in automated
processes. Being conscious of the inconsistencies contained in the
feature model, and having the analysis conclusions, they will be able
to take the necessary steps to correct the feature model. With all
that background, they will even be able to elaborate a set of good
practices to follow when modifying the product line, reducing the
number of errors incrementally.
On the other hand, the automated analysis allowed us to extract

some important information of the model that we would have been
unable to extract manually.
FaMa provides us with the mechanisms to keep track of errors in

feature models. It is a powerful and useful framework that integrates
the most important operations you need to analyse a feature model
saving time in performing these tasks. Nevertheless, the use of FaMa
with large-scale models reveals some tool limitations derived from
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the presence of cross-tree relationships (Requires and Excludes) in
such a big model.
�e tool presents scalability problems in providing answers about

some aspects of the input model, such as core and variant features,
and error explanation. We have not been able to calculate the degree
of variability of the model.
�e analysis also revealed a model with many errors in its elabo-

ration.�e use of error checking mechanisms becomes essential in
an industrial environment, where this model is being used as input
to many other processes. Our work has revealed that it is possible to
have a framework with enough power to perform a complete anal-
ysis (syntactic and semantic) of a large-scale feature model �tting
di�erent technologies together.
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THE MULTIPLE FRAMEWORK IN 3RD PARTY
PROJECTS AND TOOLS





SUMMARY

In this part we present some case studies in which the MULTIPLE
framework has been used as a generic set of tools to supportMDE pro-
cesses.�ese case studies have been developed in collaboration with
researchers of other universities and research groups. First, in chap-
ter 11 we present the INTERGENOMICS case study, a work done in
conjunction with the Institut für Informationssysteme at the Technis-
che Universität Braunschweig. In this work theMULTIPLE framework
is extended with additional metamodels and tools allowing to deal
with biological models. Such models can be transformed to a formal
speci�cation, such as petri nets.�is speci�cation can be executed,
and this way biological models can be validated. Second, chapter 12
presents a work done in the so�ware measurement �eld.�is work,
has been done in collaboration with theAlarcos research group,Uni-
versidad de Castilla–La Mancha. In this work, the QVT–Relations
transformations engine that theMULTIPLE framework provides is
used to measure di�erent so�ware artifacts. Finally, in chapter 13
the MORPHEUS tool is presented.�is tool aims to provide a tool to
support the Architecture generaTed from RequIrements applying a
Uni�ed Methodology (ATRIUM) methodology.�is work has been
done in collaboration with E. Navarro, tenured assistant professor
of the Universidad de Castilla–La Mancha, and the main researcher
behind the ATRIUMmethodology (Navarro 2007). In this work, the
QVT-CLI transformations engine provided byMULTIPLE is used to
generate so�ware architectures.
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11
INTERGENOMICS: BIOLOGICAL DATA MIGRATION
USING THE MULTIPLE FRAMEWORK

«Nothing can be more incorrect than
the assumption one sometimes meets with,

that physics has one method, chemistry another,
and biology a third»

—�omas Henry Huxley
English biologist, 1825–1895

�e traditional sequence of ‘‘experiment→ analysis→ publication’’
is changing to ‘‘experiment→ data organization→ analysis→ pub-
lication’’ (Emmett et al. 2006).�is is because, nowadays, data is
not only obtained from experiments, but also from simulations.�e
great amount of new data that can be generated from these exper-
iments is not always homogeneous and may be stored in di�erent
databases. Moreover, the quantity of data requires the development
of new computer tools that allow us to represent, analyze, and make
new simulations with them.
�ese problems are also found in the bioinformatics �eld, espe-

cially when analyzing and simulating cell-signaling mechanisms
(Signal Transduction Pathways). A signal transduction pathway is a
set of chemical reactions that occur inside the cell when it receives
a stimulus. In studies of this type, it is very common to �nd both
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independent databases and modeling tools. �us, the data of the
databases must be converted manually from the source databases
to the simulation tools in order to be used. For this scenario, it is
desirable to make interoperable tools available. It would certainly
be bene�cial to develop di�erent models for a signal transduction
pathway using di�erent speci�cation languages to be able to ap-
ply di�erent simulation tools. However, this is only possible if the
models do not have to be developed by hand but can be generated
automatically from the source databases.
Model Driven So�ware Development (MDSD) is an approach thatCollecting data

from di�erent
sources in

bioinformatics is a
very common task.

However data
heterogeneity is a
problematic issue.
MDE techniques
allow alleviating
this problem by
using model

transformations.

attempts to solve problems of this kind. A model de�nes the func-
tionality, structure or behaviour of systems (OMG 2003) depending
on the metamodel used. As it has been largely discussed throughout
this thesis, using models in aMDSD process allows the automation of
the development and evolution of the so�ware applications thanks
to generative programming techniques (Czarnecki and Eisenecker
2000) such as model transformations and code generation.
�is chapter shows how the MDSD philosophy can solve the prob-

lems that arise in the study of signal transduction pathways in the
bioinformatics �eld. Problems like interoperability between applica-
tions can be addressed in a systematic way, where the data structure
can be de�ned by using models and data is de�ned as a set of objects
that are instances of the classes of these models. Dealing with data
from theMDSD perspective helps to develop tools where the data pro-
cessing mechanisms are independent of the �nal persistence format,
obtaining more modular tools.�is also helps to automate the data
migration process bymeans ofmodel transformation techniques. All
these factors reduce the costs of the so�ware development process,
directly increasing the productivity of the users/biologists.
�is chapter is organized as follows: section 11.1 explains the bio-

logical context, introducing the reason for studying the signal trans-
duction pathways and describes the current approach, which is a
very ine�cient process. Section 11.2 describes the solution proposed
to cover the shortcomings of the current approach. Section 11.3
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Figure 11.1: Signal Transduction, cf. (Alberts et al. 2005)

shows a running example of the solution proposed. Finally, section
11.4 presents the conclusions and future works.

11.1 case study

In organisms, proteins have a wide variety of functions and they inter-
act with each other in similar multifaceted ways.�ese interactions Signal transduction

pathways are a
representation of
the chemical
reactions that occur
inside a cell when it
is stimulated by an
external event.

of proteins are described by means of signal transduction pathways
or networks, which are typically represented as certain kinds ofmaps.
A distinction is drawn between metabolic and regulatory pathways.
Metabolic pathways describe the conversion of classes of substances
into other classes of substances, whereas regulatory pathways de-
scribe how the function of something is regulated. In this case study,
the conversion of classes of substances into other classes is not sig-
ni�cant, but the transduction of signals is (cf. Fig. 11.1).�at is why
they are also called signal transduction pathways.
A signal transduction pathway describes how a cell responds to

an extracellular signal, e. g. a signaling molecule excreted by a bac-
terium.�e signaling molecule is received at a receptor protein and
then transferred via biochemical reactions into the nucleus, where
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it changes the behaviour that is currently active. Signal transduc-
tion pathways comprise di�erent kinds of molecules: proteins and
enzymes with di�erent kinds of functions interact with the help of
cofactors, second messengers, phosphatases and small e�ectors to
transmit the signal.�e mechanism of transmitting the signal is me-
diated through state changes of molecules like conformity changes
and the building of molecule complexes on the basis of biochem-
ical reactions. �ese molecule interactions cause the signal �ow
through the cell and the ampli�cation of the signal in order to reach
the nucleus. Figure 11.2 shows an example of a signal transduction
pathway, where the gray area represents the inside of a cell and the
light-colored area represents the outside.�e nucleus is represented
as a gray ellipse. In this map, molecules are represented with di�er-
ent shapes and colors, which encode the role that a certain molecule
plays in the signal transduction pathway under consideration. Ex-
amples for such roles are extracellular signals, which are represented
as stars; receptors, which are represented as rectangles across the
cell membrane; and adapter proteins, which are represented as blue
ellipses. Interactions of the molecules appear as lines and arrows,
whereas their di�erent shapes stand for di�erent kinds of interac-
tions, e. g. direct or indirect activation or inhibition. Molecules
also interact by building molecule complexes, which are represented
through narrow cumulations of molecules.
�ese signal transduction pathways are composed by experts,Signal transduction

pathways are built
in a collaborative
way by experts

worldwide. In the
majority of the cases
only small parts of
these pathways are
completely known.

who study the relevant literature that is produced by various groups
worldwide doing research on very small parts of signal transduction
pathways in di�erent kind of organisms, e. g. research about short
sequences of chemical reactions.�is information is then composed
bottom-up to a signal transduction pathway and introduced into
databases to provide an integrated view on the entire, pathway.
Examples for such signal transduction pathway databases are

TRANSPATH® (Krull et al. 2006), Kyoto Encyclopedia of Genes
and Genomes (KEGG) (Kanehisa et al. 2006), Reactome (Joshi-Tope
et al. 2005) and BioCyc (Karp et al. 2005).�ey usually provide a web
interface for interactive searches and also make their data available
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Figure 11.2: TLR4 signal transduction pathway in the TRANSPATH®
database

as text �les in �at �le or XML format. Some of the databases already
use a more or less standardized exchange format on XML basis, e. g.
Systems Biology Markup Language (SBML) (Hucka et al. 2004).

11.1.1 Toll-like receptors and the TLR4 signal transduction pathway

In order to give the reader a better understanding of what signal In this case study we
focus on the TLR4
signal transduction
pathway, which is
related with the
immune system in
mammalians.�e
TLR4 is one of the
best known signal
transduction
pathways.

transduction pathways are about, we take the TLR4 signal transduc-
tion pathway as an example: Sepsis is the systemic immune response
to severe bacterial infection (Motta and Brusic 2004). We are born
with a functional, innate immune system that recognizes bacterial
and viral products. In sepsis, when a bacterium attacks an endothe-
lial cell, di�erent kinds of mechanisms are activated. Receptors of
the innate immune system are activated by microbial components
such as the Lipopolysaccaride (LPS), an endotoxin which is a sig-
naling molecule involved in the initiation of the sepsis syndrome.
Receptors, which recognize such LPSmolecules, are a family of trans-
membrane receptors known as Toll-Like Receptors (TLRs). To date,
there are 12 TLRs identi�ed in mice and 10 TLRs identi�ed in humans.
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TLR4 is one of these and is identi�ed as a signi�cant receptor in mice
strain experiments. TLR4 is also annotated in TRANSPATH® and is
our example for the explanation of signal transduction pathway (see
Fig. 11.2).�e TLR4 signal transduction pathway is subdivided into
the MyD88-dependent and MyD88-independent pathway and consist
of four chains.�e whole pathway is speci�ed in (Dauphinee and
Karsan 2006). To give an overview over the general �ow of informa-
tion, it is su�cient to explain one part in detail.
One chain of the MyD88-dependent pathway in endothelial cells

starts with the LPS binding to the TLR4 receptor complex consisting
of CD14 and MD2. �is molecule complex is leading to the recruit-
ment of the adaptor molecules MyD88 and TIRAP. Following, IRAK
and IRAK4 are recruited to the receptor complex via interaction of
special parts of their spatial arrangements. IRAK recruits and acti-
vates TRAF6 which is one part of a molecule complex in addition
consisting of ECSIT and MEKK1. �is recruitment is leading to the
activation of IKKα and IKKβ which are molecules of a complex with
two IKKγmolecules.�e activation of the IKK-complex leads to the
degradation of Iκb.�is inhibition of Iκb facilitates the transloca-
tion of NF-κB in the nucleus. NF-κB is a transcription factor which
connects with its special promoter region. �is results in the ex-
pression of proin�ammatory molecules and furthermore normal
physiological functions of the endothelial cells are perturbed.�is
bacterial sepsis and its associated expression of proin�ammatory
molecules causes death with the utmost probability.
In order to exemplify the transformation of signal transduction

pathway data to Petri nets, we must �rst take a closer look at the
biochemical reactions below that occur at the beginning of the sig-
nal transduction pathway: a signal molecule LPS arrives at the cell
membrane and binds to the adaptor protein LBP (reaction 11.1) and
is delivered to the receptor CD14 (reaction 11.2).�is is the beginning
of the signaling by TLR4 as mentioned above.�e recruitment of the
adaptor molecules MyD88 and TIRAP by the TLR4 receptor complex
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can be inhibited by the sequestering of these critical adaptors during
LPS signaling by ST2 (reactions 11.3 and 11.4, respectively).

LPS+ LBP � LPS : LBP (11.1)
LPS : LBP + CD14� LPS : LBP : CD14 (11.2)

ST2+ TIRAP � ST2 : TIRAP (11.3)
ST2+MyD88� ST2 :MyD88 (11.4)

11.1.2 An approach to the study of the TLR4 signal transduction
pathway

Understanding the �ow of information inside a cell is fundamen-
tal for an in-depth understanding of the functioning of a cell as a
whole.�erefore, modeling and simulating this information �ow
is bene�cial because it helps to understand the �ow of signals in a
complex network, to test hypotheses in silico before validating them
with experiments, and to validate the data collected about a certain
signal transduction pathway. �e fact that a �ow of information Signal transduction

pathways have a
concurrent nature.
�us, to simulate
them by using
formalisms for the
study of concurrent
so�ware systems
(such as petri nets)
is straightforward.

in a complex network must be described has led to the idea of ap-
plying languages for the description of concurrent reactive systems
in this area, even if these were originally developed to assist the
construction or engineering of systems and not the description of
already existing systems (Fisher et al. 2004). A couple of speci�ca-
tion languages, such as Petri Nets, Life Sequence Charts, etc., qualify
for this task. All of them have di�erent advantages and drawbacks.
In the same way, the corresponding simulation tools have di�erent
strengths and weaknesses.
We are currently working on one of the major signal transduc-

tion pathways databases, TRANSPATH® (Krull et al. 2006), and we
are using Colored Petri Nets (Jensen 1997) among others (e. g. Life
Sequence Charts (LSCs) (Damm and Harel 2001), UML-Statecharts,
etc.) as the speci�cation language.�e corresponding simulation
tool is CPN Tools (Jensen et al. 2007). TRANSPATH® is a database
that is accessible by means of the usual methods, i. e., web interface,
text �les, XML (using its own XML format), etc. In January 2007,
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TRANSPATH® contained entries about 60,000 molecules, 100,000
chemical reactions, 20,000 genes and 57 signal transduction path-
ways.�e information was based on 30,000 publications.�e web
interface provides access to all these entries and also contains inter-
active maps, which give an overview of a certain signal transduction
pathway (cf. Fig. 11.2).�eXML version of the database is divided into
six �les containing data about molecules, genes, reactions, pathways,
annotations and references, respectively.�ey are accompanied by
Document Type De�nition (DTD) describing the structure of the
�les.
Coloured Petri nets are a formal representation for distributed

discrete systems that allow concurrent events to be represented. A
Petri net consists of two types of nodes (places and transitions, respec-
tively) and directed arcs. Arcs are always placed between transitions
and places (or places and transitions). Places may contain any num-
ber of tokens.�ese tokens can be moved from one place to another
when a transition is �red (the transitions are enabled if there are
tokens in all their input places). Figure 11.3 shows an example of a
Petri net. White circles represent the places, black rectangles repre-
sent the transitions, arrows represent the arcs, and large black dots
represent the tokens. Coloured Petri nets are an enhancement of
Petri nets and can contain di�erent kinds of tokens identi�ed by
colors. Now it is possible to represent di�erent dynamic behaviors
modeled by di�erent token colors in the same model. CPN Tools is
a tool for constructing and analyzing coloured Petri nets.
In (Taubner et al. 2006), data is extracted from the TRANSPATH®

database and introduced in theCPN Tools applicationmanually.�is

(a) Initial state    (b) Final state

Figure 11.3: Petri net example
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implies that the user/biologist who is going to perform the simulation
must manually query the database to extract the list of reactions
involved in the signal transduction pathway to be studied. With
the extracted data the corresponding Petri net must be built in the
simulation toolmanually (creating each one of the places, transitions,
arcs, tokens, etc. individually). In (Taubner et al. 2006), this means
to manually de�ning approximately 75 places, 50 transitions, and
100 colours.

11.2 a mdsd approach in biological data migration

In the initial work on the study of the TLR4 signal transduction
pathway, data migration from the source database to the simulation
tool (to represent this information as a coloured Petri net) was done
manually.
�e solution to the data migration problem is described as fol- We propose to use

declarative model
transformations to
perform the data
migration process
between di�erent
domains.

lows by means of model transformation techniques using the model-
driven so�ware development guides.�is implies the following tasks:
(i) development of the source domain data model (TRANSPATH®);
(ii) development of the target domain data model (CPN Tools);
(iii) de�nition of the transformation rules between the source do-
main and the target domain by means of the transformations lan-
guage; (iv) implementation of the pre-processing mechanism to
obtain the instances of the source model from the original data;
and �nally, (v) de�nition of the post-processing tasks that persist
the transformed data in the �nal �le format.�e next subsections
describe the designed solution. First, the transformation process
and the di�erent stages are described; second, the source and the
target models are presented, and last, the transformation process is
explained in more detail.
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Figure 11.4: Architecture of the tool

11.2.1 Architecture and overview of the tool

�e data migration process is performed in three steps: Ê recovering
and pre-processing of the input data,Ë execution of the transforma-
tion by means of the transformations engine andÌ post-processing
and persistence of the result data. In aMDSD approach, using a trans-
formation engine implies that the source and the target models of
the transformation must be developed in the �rst place to be able to
establish the mappings between the two domains.
�e solution presented in this case study uses theMULTIPLE frame-

work, which is integrated within the Eclipse platform and provides
support for model transformations.�is tool uses the Eclipse Model-
ing Framework (EMF), which provides Ecore as a modeling language.
Moreover, it uses XMI as the persistence format and allows the cre-
ation of Ecoremodels from, among others, XSD.
Nevertheless, the Ecoremodels obtained from XSD schemas are

complex and do not always clearly represent the real structure of the
data.�erefore, the source and the target models have been de�ned
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manually, taking into account only the information that is useful in
the case study. Figure 11.4 shows the architecture of the tool. It repre-
sents the three steps that are needed to perform the data migration.
First, the data is extracted from the TRANSPATH® database A©,
and the corresponding XMI instance B© of the TRANSPATH® Ecore
model C© is built. �is �rst step Ê is easily done in Java since the
mappings between the elements of the source data and the elements
of the EMFmodel can be established directly.�e implementation
of this pre-processing step has been adapted from the work done in
(Ziegler 2007).
�e second stepË is the most important and complex one of the

transformation process. It is performed by means of theMULTIPLE
tool and its transformation engine. It executes the transformation
from the TRANSPATH® domain (reactions, molecules, etc.) to the
CPN Tools domain (places, transitions, arcs, etc.). A�er the de�ni-
tion of the transformation rules D© between the source domain C©
and the target domain E©, the transformation is executed over the
data recovered from the database B© obtaining the needed informa-
tion in the CPN Tools domain F©. Finally, the third step Ì in the
data migration process is again a trivial process in which the EMF
data is stored in an XML �le readable from the CPN Tools application
G©. Other tasks can be performed in this stage; for example, the
execution of some layout algorithms over the elements of the Petri
net to represent the graphical elements properly in the drawing space
of the CPN Tools GUI.

11.2.2 Development of the source and the target models

First, a model that contains the most interesting elements to simu-
late a signal transduction pathway in the CPN Tools application has
been de�ned (removing unnecessary concepts from the complex
TRANSPATH® database).
Using a visual metaphor similar to the UML class diagram, Fig-

ure 11.5 shows the Ecoremodel that has been developed.�e Net-
work class is the main element in this model. A Network contains
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a set of Pathways, Reactions andMolecules. Moreover, a Pathway is
composed of several Chains of Reactions, and one Reaction can be
involved in several Chains. Finally, the reactions are related to the
molecules. One molecule can be a reactant or a product in a reac-
tion. It can also take part in a reaction as an inhibitor or a catalyst (if
the molecule is an enzyme).�e classes ReactantsCoe�cient, Prod-
uctsCoe�cient, EnzymesCoe�cient and InhibitorsCoe�cient inherit
from the Coe�cient class (omitted for reasons of clarity).�is class
contains an integer attribute (coe�cient1).
Figure 11.6 shows the model that has been created for the CPN We have de�ned the

metamodels for the
source and the
target domains.�e
correspondences
between these
spaces can be
de�ned by using
patterns.

Tools application. In this case, the design of the model is closer
to the application speci�c concepts than to the conceptual Petri
net concepts.�is design allows us to deal with all the interesting
concepts of the CPN Tools platform (e. g., position and color of the
graphical elements). Furthermore, this kind of design makes the
persistence process from EMF to the �nal XML �le easier.

Cpnet is the main class of the mode (see Figure 11.6). It is divided,
by using a dashed line, into two groups: the classes that are under the
Globbox element and the classes under the Page element.�e �rst
group (the Globbox group) allows the declarations of CPNs such as
colorsets (enumerated, complex), variables, blocks, etc.�e second
group of classes (those contained in the Page element) represents
all the visual elements of the coloured Petri net. All the graphical
elements inherit from the DiagramElement class, and can be con-
tained in di�erent groups (Group class).�us, a Page can hold Places,
Trans (transition), Arcs, Annot (annotations), etc. When a Place is
de�ned in the Petri net, it has an associated color set.�is color set
must be de�ned previously in the declarations part.�e relationship
between the Place and its color set is represented by means of the
type role from the class Place to the class ColorSet.�e classes Init-
Mark andMark are intended to represent the actual state of a given

1 �e coe�cient value represents the number of molecules that appear in the

equation of one reaction. For example, in the reaction 2H2 + O2 = 2H2O,

the coe�cients are the numbers that appear on the le� of the molecules, i. e.,

2H2 + 1O2 = 2H2O
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Place, indicating which tokens are in the Place.�e kind of tokens
is de�ned by the role colorSetElement between the classesMark and
ColorSetElement.

11.2.3 Transformation process

Finally, the transformation rules that can convert data from the
source domain to the target domain have been de�ned.�ese rules
express the mappings established by biologists between the data ex-
tracted from the TRANSPATH® database and the concepts available
in the CPN Tools application. Table 11.1 shows the simpli�ed map-
pings between both the source and the target domain.�e rules that
de�ne the direct relationships between the two domains have been
expressed in QVT–Relations.
�e transformation is executed as a top-down process.�e navi-

gation is performed through the containment relationships (de�ned
in Ecore bymeans of containment references), i. e., it begins from the
root element of the sourcemodel (Network) and goes down (Network

transpath cpn tools

Network Cpnet

Pathway Globbox, Page

Molecule (complex) Product

Molecule (simple) Enumerated

Reaction Trans

Molecule (reactant) Place, Arc (from Place to Trans)

Molecule (product) Place, Arc (from Trans to Place)

Table 11.1: Mappings between the source and the target domain
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→ Pathways → Chains → Reactions → Coe�cients → Molecules) cre-
ating the corresponding elements in the target domain as Table 11.1
de�nes. In the declarations group, the transformation will create
an Enumerated ColorSet from each simple molecule. In the case of
the complex molecules, the ColorSet created will be a Product.�is
Product will be be a compound of the Enumerated ColorSets corre-
sponding to the simple molecules which are part of the complex
molecule.
In the graphical elements group, the transformation process be-

gins from a Reaction element. An object of the class Trans is created
for each reaction. We obtain the reactant molecules through the
reactantsCoe�cient association in the class Reaction. A place is cre-
ated for each one of these molecules. Finally, each new place can
be linked with its corresponding Trans element by means of an Arc.
�ese arcswill be of type PtoT (Place to Trans, according to the CPN
Tools terminology). �e procedure is similar for the products of
the reactions; however in this case, the transformation navigates
through the productsCoe�cient association.
Figure 11.7 represents the result of the transformation process (in

the CPN Tools metaphor) for the reactions presented in the case
study. �e �gure shows four numbered triangles, each of which
corresponds to one of the reactions of the example.�us, for reac-
tion number 11.1 (LPS + LBP � LPS : LBP) the transformation
generates the elements inside the le� triangle (1).�e other three
triangles (2, 3, and 4) indicate the corresponding reactions (11.2, 11.3
and 11.4).
Appendix G lists the textual representation of the Transpath2CPN

transformation.

11.3 running example

�is section shows a running example using the example data pre-
sented before.�is way, the demonstration will use two initial �les:



11.3 running example 325

F
ig
u
re
11
.7
:
P
a
rt
ia
l
re
p
re
se
n
ta
ti
o
n
o
f
th
e
T
L
R
4
si
g
n
a
l
tr
a
n
sd
u
c
ti
o
n
p
a
th
w
a
y
in
CP
N
To
ol
s



326 biological data migration using multiple

example.xml—An XML �le containing the data extracted from the
TRANSPATH® database.�is �le contains information about
a single pathway (the TLR4 pathway).

transpath2cpn.qvt—�is �le contains the Transpath2CPN trans-
formation.

Fig. 11.8 shows the example workspace with these two �les.�e
example.xml�le is shown in its default editor, i. e., theTRANSPATH®
model editor.�is editor is able to represent the information ex-
tracted from TRANSPATH® as an instance of the transpath meta-
model. Fig. 11.9 shows the actual contents of the example.xml �le. As
can be observed, example.xml is an XML �le which has been directly
extracted from the TRANSPATH® database.

Figure 11.8: Workspace with the example �les
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Figure 11.9: Actual contents of the example.xml �le

To execute the model transformation the user can use the Run as
→ 1 QVT Transformationmenu, as it was shown in section 8.4.4.2.
To execute a model transformation, the di�erent domains of the
transformation must be set, as shown in Fig. 11.10.

11.3.1 Result �les

Once the transformation has been executed, two new �les appear
in the workspace. �e former corresponds with the result model

Figure 11.10: Transpath2CPN transformation ready to be executed
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(result.cpn in this example), and the latter corresponds with the
traces model (result.traces). Fig. 11.11 shows the Explorer view
with the result �les highlighted.
�e result �le is an XMI document, which is instance of the CPN

Tools metamodel. Fig. 11.12 shows the result.cpn �le in the Cpn
model editor. �e traces model can also be opened in the default
traces editor, which was shown in section 8.4.3.
To be able to open the result model in CPN Tools, it is necessary to

convert the result �le to a new XML document �rst.�is new XML �le
adheres to the XSD de�ned by CPN Tools.�is projectio step can be
done using the contextual menu shown in Fig. 11.13. Moreover, at this
point it is possible to execute a layout algorithm (if this step has not
been previously executed within the QVTmodel transformation).
Fig. 11.14 shows the contents of the �nal XML in the Eclipse default

textual editor. As it can be observed, this is a valid document that
can be opened by CPN Tools directly.

11.3.2 Result �le in CPN Tools

Finally, Fig. 11.15 shows what the petri net looks like in the CPN
Tools interface.�e position of the transitions and places can vary
depending on the result of the layout algorithm because it is non-
deterministic. It is not necessary to modify the petri net in any way
in order to perform simulations using the Simulation toolbox.

Figure 11.11: Result �les



11.4 conclusions 329

Figure 11.12: Editor for cpnmodels

11.4 conclusions

�is chapter has presented a case study where the interoperability
problem between bioinformatic applications is addressed using a
model-driven approach.�e situation where several data sources
and simulation tools co-exist and must share heterogeneous data
is very common in the bioinformatics �eld. In this situation, the
easy representation of biological data using models allows us to
deal with these problems more e�ciently and more elegantly than
the traditional (manual) approaches. It is more e�cient because
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Figure 11.13: Export to CPN Tools

the so�ware development process is shorter. It is more elegant be-
cause the operations are done at a higher level of abstraction and
the language used is more expressive due to its declarative nature.
In (Garwood et al. 2006; Bhattacharya et al. 2005; Komatsoulis et al.
2007; Li et al. 2006; Song et al. 2007) also model-driven approaches
are applied in the life sciences but not in the �eld of signal transduc-
tion pathways.�is work presents the following advantages over the
traditional approaches: (i) It allows some tasks that were previously
done by hand to be automated. (ii)�is approach produces more
modular tools, making the transformation mechanism independent
from the data persistence format, improving the extensibility and
maintainability of these tools. (iii) Biologists do not need to know
technical details about the migration process, which increases their
productivity. (iv) It also takes advantage of model transformation
technologies. Using models to represent the data to be transformed
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Figure 11.14: Content of the �nal XML �le

Figure 11.15: Final result shown in CPN Tools
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permits the data structure to be more clearly represented making its
manipulation more intuitive since it deals with high-level concepts.
(v) Traceability capabilities are provided implicitly.�ese capabili-
ties help to locate invalid information in the data sources. Finally,
(vi) using languages such as QVT–Relations o�ers the advantage of
expressing the mappings between the source and the target domains
in a declarative way.�is way of representing the relationships be-
tween the two domains is more expressive than the traditional and
imperative approaches. With this case-study we have presented the
�rst steps in usingmodel-driven techniques in the live science, which
in the future can lead us to automatically generate more e�cient and
attractive visual metaphors and tools.



12
INGENIO: SOFTWARE MEASUREMENT BY USING
QVT TRANSFORMATIONS IN AN MDA CONTEXT

«One accurate measurement
is worth a thousand expert opinions»

—Grace Murray Hopper
American computer scientist and United States Navy o�cer, 1906–1992

�e current necessity of the so�ware industry to improve its com-
petitiveness forces continuous process improvement. �is must
be obtained through successful process management (Florac et al.
2000). Measurement is an important factor in the process life cy-
cle due to the fact that it controls issues and lacks during so�ware
maintenance and development. In fact, measurement has become a
fundamental aspect of So�ware Engineering (Fenton and P�eeger
1998).
So�ware Processes constitute the work base in a so�ware orga-

nization. Companies therefore wish to carry out an e�ective and
consistent so�ware measurement to facilitate and promote continu-
ous process improvement. To do this, a discipline for data analysis
and measurement (Dennis and Goldenson 2004), and measure de�-
nition, compilation and analysis in the process, projects and so�ware
products, is needed.

333
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�e great diversity in the kinds of entities which are candidates
for measurement in the context of the so�ware processes points to
the importance of providing the means through which to de�ne
measurement models in companies in an integrated and consistent
way. �is involves providing companies with a suitable and con-
sistent reference for the de�nition of their so�ware measurement
models along with the necessary technological support to integrate
the measurement of the di�erent kinds of entities.
With the objective of satisfying the exposed necessities, it is highly

interesting to consider the MDE paradigm (Bézivin et al. 2005) in
which So�ware Measurement Models (SMM) are the principal ele-
ments of the measurement process, so that designs are expressed
and managed a much higher level of abstraction.
So�ware measurement can bene�t from the MDE paradigm, pro-MDE provides a

suitable basis to
represent so�ware
artifacts with a high
level of abstraction
and precision.�is

way, so�ware
measurement

experts can bene�t
of the current

standards and tools.

viding integration and support to carry out an automatic so�ware
measurement of any so�ware type.�is implies that: (i) the de�ni-
tion of measurement models conform to a So�ware Measurement
metamodel; (ii) the de�nition of generic measurement methods are
applicable to any model-based so�ware artifact; and (iii) support for
computing measures, for storing results and for enhancing decision
making.
�ese aspects constitute the main interest of the work presented

in this chapter, in which the application of MDA principles, stan-
dards and tools are used in so�ware measurement.�e goal of this
proposal is to develop a generic framework to de�ne measurement
models which conform to a common measurement metamodel, and
to measure any so�ware entity with regard to a domain metamodel.
In order to develop this proposal, theMULTIPLE framework which
has been presented in chapter 8 has been used.
Some publications (García et al. 2006; García et al. 2005; Garcia

et al. 2007) are used as a starting point for this work.�ese works
present Framework for the Modeling and Evaluation of So�ware
Processes (FMESP), which consists of a framework based on MOF
andMDA.�is includes a so�ware measurement ontology and meta-
model, and the GenMETRIC tool which is used to de�ne so�ware
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measurement models, and to calculate de�ned measures for these
models.�e ontology permits the identi�cation of all the concepts,
proportions exact de�nitions for all the terms and clari�es the re-
lationship between them. �is chapter presents an adaptation of
FMESP to MDA, which is described in detail in following sections.
�e remainder of the chapter is organized as follows. Section 12.1

provides an overview of related works and Section 12.2 describes the
SMF, including conceptual architecture, technological aspects, and
method. In Section 12.3 the use of the framework is illustrated with
an example. Finally, conclusions are outlined in Section 12.4.

12.1 related works

We have found numerous publications which deal with tools that
have important success factors in so�ware measurement e�orts
(Komi-Sirviö et al. 2001), which supply work environments and
general approximations (Kempkens et al. 2000), or which give ar-
chitectures more speci�c solutions (Jokikyyny and Lassenius 1999).
Dennis and Goldenson (2004) give a list of tools which support the
creation, control and analysis of so�ware measurements. (Auer et al.
2003) furthermore examines various so�ware measurement tools,
such asMetricFlame,MetricCenter, Estimate Professional,CostXPert
and ProjectConsole, in heterogenic environments.
It is also possible to �nd certain proposals through which to tackle

so�ware measurement which are more integrated and less speci�c
than in the aforementioned cases. Palza et al. (2003) propose the
Multidimensional Measurement Repository (MMR) tool which is
based on the Capability Maturity Model Integration (CMMI) model
for the evolution of so�ware processes, and it is possible to consult
similar tools in (Harrison 2004; Lavazza and Agostini 2005; Scotto
et al. 2004).�ese proposals are, however, restricted to concrete
domains or to evaluation models of speci�c quality.
Vépa et al. (2006) present a metamodel which allows the storage

of measurement data, and a set of transformations through which
to carry out the measurement of models based on a metamodel.
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�is work focuses upon the technological aspects needed to imple-
ment the so�ware measurement with ATL technology, by o�ering
the user a variety of graphic representations of the measurement
results obtained.
�is �nal proposal and the one presented here are complemen-

tary as they both focus upon two key support elements of generic
measurement: the conceptual base, which is the main contribution
of FMESP, and technological implementation. Some di�erences from
technological point of view exist.
�e measurements which are applied by Vépa et al. (2006) are pre-

viously de�ned in the ATL transformation archives.�e measurable
entities are typical of the metamodels presented in this work (Kernel
Meta Meta Model (KM3) and UML2). For example, the measurable
entities for a model which is expressed in KM3 might be package,
class, attribute, reference etc.
�e measurements in the proposal presented here are de�ned

by the user, i. e. the model transformation needed to carry out the
measurement it is not a model previously de�ned, but this model is
de�ned according to the users needs.�e measurement de�nition is
possible thanks to the so�ware measurement model, which contains
all that is relative to the measurement to be carried out in each case.
Moreover, themeasurable entities are thosewhich are de�ned in their
corresponding domain and measurement metamodel (expressed in
Ecore). A further di�erence is that SMF uses QVT.

12.2 software measurement framework

In order to carry out this proposal it was considered of interest to
adapt FMESP to the MDE paradigm.�e objective of this was to ex-
ploit the bene�ts that the paradigm could contribute to so�ware
measurement by, on one hand adopting the so�ware measurement
metamodel de�ned in FMESP, and on the other by evolving Gen-
METRIC to an environment which would allow the de�nition of
so�ware measurement models and the computation of the models
de�ned. All this would take place within the context of models and
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model transformations of the MDA architecture.�e SMF is the evo-
lution of the FMESP, but is adapted to the MDE paradigm and uses
MDA technology.
�e following subsections explain the conceptual, technological

and methodological elements which are part of SMF.

12.2.1 Conceptual architecture

Due to the necessity of having a generic and homogeneous envi-
ronment for so�ware measurement (García et al. 2006; García et al.
2005; Garcia et al. 2007), a conceptual architecture and a tool with
which to integrate the so�ware measurement are proposed. In the
following section, the main characteristics of this proposal are de-
scribed. A more detailed description can be found in (Garcia et al.
2007).
�e proposed so�ware measurement described in this chapter FMESP is a

framework which
permits
representing and
managing so�ware
processes from the
perspectives of
modeling and
measurement.

is part of the FMESP framework (García et al. 2006). �e FMESP
framework permits representing and managing so�ware processes
from the perspectives of modeling and measurement. We focus on
the measurement support of the framework whose elements are
detailed according to the three layers of abstraction of metadata
that they belong to, according to the MOF standard. In Fig. 12.1, the
conceptual architecture for integrated measurement is represented.
As can be observed in Fig. 12.1, the architecture has been organized

into the following conceptual levels of metadata:

Meta-metamodel Level (M3)—At this level, an abstract language
for the de�nition of metamodels, is found. �is is the MOF
language.

Metamodel Level (M2)—In theM2 level, two genericmetamodels
which conform with this framework are required.�ese are:
theMeasurement Metamodel, to de�ne speci�c measurement
models; and Domain Metamodels, to represent the kinds of
entities which are candidates for measurement in the context
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Integrated Measurement: Conceptual Framework

MOF

Software
Mesaurement
Metamodel

Domain
Metamodels

Mesaurement
Models

Domain
Models

DataData DataData
M0

M1

M2

M3

Figure 12.1: Conceptual framework with which to manage so�ware mea-

surement

of the evaluation of the so�ware processes, such as, UML and
Process metamodels.

Model Level (M1) — Speci�c models are included at this level.
�ese models may be of two types: Measurement Models,
which are examples of themeasurementmetamodel in theM2
level and which are de�ned in such a way as to satisfy some
of the company’s information needs; and Domain Models,
which are de�ned according to their corresponding domain
metamodels.

In order to establish and clarify the concepts and relationships that
are involved in the so�ware measurement domain before designing
the metamodel, an ontology for so�ware measurement was devel-
oped (García et al. 2005).�e measurement metamodel was derived
by using the concepts and relationships stated in the ontology as a
base.�e So�ware Measurement metamodel (which is integrated in
SMF) is organized around four main packages—for greater detail see
(García et al. 2005):
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So�ware Measurement Characterization and Objectives — which
includes the constructors required to establish the scope and
objectives of the so�ware measurement process.

So�ware Measures—which aim at establishing and clarifying the �e So�ware
Measurement
metamodel is
organized in four
packages: So�ware
Measurement

Characterization

and Objectives,
So�ware Measures,
Measurement

Approaches and
Measurement

Action.

key elements in the de�nition of a so�ware measure.

Measurement Approaches—�is package introduces themeasure-
ment approach element which is used to generalize the di�er-
ent approaches used by the three kinds of measures to obtain
their respective measurement results. A base measure applies
a measurement method. A derived measure uses a measure-
ment function. Finally, an indicator uses an analysis model
to obtain a measurement result that satis�es an information
need.

Measurement Action—�is establishes the constructs related to
the act of measuring so�ware. A measurement (which is an
action) is a set of measurement results, for a given attribute
of an entity, using a measurement approach. Measurement
results are obtained as the result of performing measurements
(actions).

12.2.2 Technological aspects

In this section the technological aspects of SMF are explained.

12.2.2.1 Adaptation to MDA

In Fig. 12.2 the necessary elements for the FMESP adaptation to MDA
are presented according to MOF levels.
As can be observed in Fig. 12.2, two new elements, namely the

QVT–Relations Model and metamodel, have been added to adapt
the conceptual architecture illustrated in Fig. 12.1 to MDA.�e QVT–
Relations Model (which is described in greater detail in Section
12.2.2.2) is obtained automatically through a transformation from
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Figure 12.2: Elements of the FMESP adaptation in a MDA context

a Measurement model. It contains all the information necessary to
carry out the transformation of the SMF proposal. Ecore language
has been selected because it is a common and widely used modeling
language based on EMOF as it has been demonstrated throughout
this thesis.

12.2.2.2 QVT–Relations transformation

�e QVT–Relations model is the transformation needed to perform
the measurement. In this transformation two source models are
involved: a So�ware Measurement model and a domain model; the
target model is the So�ware Measurement Model with the measure-
ment results (see Fig. 12.2). Due to the fact that the proposal is about
generic measurement, it is very important that the QVT model is
obtained in a generic way.�e MDE paradigm and MDA technology
are applied for this reason.
�is transformation is obtained automatically from the previous

QVT transformation shown in Fig. 12.3.�e QVT–Relations model,
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Measurement Execution
Transformation

QVT Transformation

Extended QVT-Relations Model
(.qvt)

Basic QVT-Relations Model
(.qvt)

So�ware Measurement Model
(target)

So�ware Measurement Model
(source)

Figure 12.3: QVT–Relations transformation model

called the extended or �nalQVT–Relationsmodel, is obtained from a
QVT transformation, where there are two source models: the basic or
initial QVT–Relations model (which conforms to the QVT–Relations
metamodel) and the SMM previously de�ned.
�e extended QVT–Relations model extends the basic QVT–Rela-

tions model with the following aspects: In the MDA
adaptation of
FMESP, the
QVT–Relations
language is
represented as a
MOF artifact.�is
way, QVT
transformations can
be re�ned using
QVT itself. In
FMESP a So�ware
Measurement

Model is combined
with a Basic QVT
Transformation

Model to obtain a
Extended QVT

Transformation

Model.

• Transformation Model. To obtain the extendedQVT–Relations
model, the source model speci�cation is needed. In this case,
there are two source models: the SMM and the domain model.
Due to the fact that the SMM is always the same, this model is
already de�ned in the basic QVT–Relations model.�erefore,
only the domain model needs to be de�ned. �is informa-
tion is taken from the So�ware Measurement model which
contains all the measurement information.

• Relation Domain. In order to perform the transformation, it is
necessary to de�ne the checkonly domain object templates. In
this case there are two, one for each source model: the domain
model and the SMM.

• Function. �is element contains the necessary OCL queries
to carry out the measurement. �ese OCL queries are the
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Figure 12.4: So�ware Measurement Process

implementations of theMeasurement Action package de�ned
in the So�ware Measurement Metamodel.

�ese elements are empty in the basic QVT–Relations model, and
they are extended to obtain the extended QVT–Relations model, the
transformation model necessary to carry out the measurement. In
the Fig. 12.4 all the so�ware measurement process is shown.

12.2.3 Method

�e necessary steps to carry out the so�ware measurement by using
the SMF are explained below (see Fig. 12.2):

1. Incorporation of domain metamodel. �e measurement is
made in a speci�c domain. �is domain must be de�ned
according to its metamodel (it is situated in theM2 level and
it conforms to the Ecoremeta-metamodel).

2. Creation of measurement model.�e measurement model is
created according to the So�ware Measurement metamodel
which is integrated in SMF. �is �rst model is the source
model, so the results are therefore still not de�ned, i. e., the
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Measurement Action package from the So�wareMeasurement
metamodel is still not instantiated.

3. Creation of domain model, which is de�ned according to its
corresponding domain metamodel (created in the �rst step).
�e domain models are the entities whose attributes are mea-
sured by calculating the measurements de�ned in the corre-
sponding measurement models. Examples of domain models
are: the UMLmodels (use cases, class diagrams, etc.), or the
E/R models.

4. Measurement execution. the measurement execution is car-
ried out through QVT transformation, in which, the measure-
ment model is obtained by starting from the two source mod-
els (the measurement model and the domain model) where
the results are de�ned, i. e., theMeasurement Action package
is instantiated.�e targetmeasurementmodel is the extension
of the source measurement model.�e measurement results
are calculated by running OCL queries on the domain model.

An example of the method application is shown in the following
section.

12.3 example

To illustrate the bene�ts of the proposal, consider the example of
relational database measurement. For greater simplicity, only the fol-
lowing elements are shown in Fig. 12.5:Measurement Method, Entity
(to which the measurement method is applied) andMeasurement
result (the result is obtained by executing the measurement method
on the entity).
Furthermore, it is necessary for the domain metamodel, in this

case Relational Databases domain, to have been previously chosen.
Both metamodels are independent (Fig. 12.5), although they are logi-
cally related. In Fig. 12.5 the measurement and domain metamodels
have been represented in di�erent colours.
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Measurement Result
(from Measurement Action)

Measurement

Relational Schema

<<abstract>>
Model Element

<<abstract>>
Key

Measurement Method
(from Meassurement Approaches)

Entity Class
(from Characterization and Objectives)

Entity
(from Characterization and Objectives)

Table Foreign Key

Attribute Primary Key

Figure 12.5: Relationship between Relational Database (domain) Metamo-

del and SMM

In this example, the chosen measurement method has been
COUNT elements of type TABLE, which is an instantiation of the
abstract method COUNT elements of type X.
In order to carry out the measurement, the following four steps

must take place:

1. Incorporation of Relational Databases metamodel (repre-
sented in a dark colour in Fig. 12.6).

2. Creation of measurement model conforms to So�ware Mea-
surement metamodel. For the measurement method COUNT
elements of type TABLE, the values of Entity and Measure-
ment Method are Table and Count, respectively.�eMeasure-
ment Result is not still de�ned.
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Teacher Student Department School
id
name
o�ce
course

Course

course
name
key

id
name
degree
course

key
name
URL
course

id
name
URL

Figure 12.6: Relational Database model (relational schema)

3. Creation ofmodel conforms to the RelationDatabasemetamo-
del. In this case, the model (relational schema) is a university
domain composed of �ve tables with their corresponding pri-
mary keys (bold), foreign keys (underlined and italic), and
attributes (see Fig. 12.6).

�e extended QVT–Relations model is needed to carry out the
fourth step.�is transformation is obtained automatically (see
section 12.2.2.2).�e extended elements are detailed below:

Transformation Model—�e target model is the relational
databases domain model.

Relation Domain—�e checkonly domain of the relational
schema domain is indicated (see Listing 12.1).

Function— this contains the OCL queries with which to per-
form the measurement, in this case, the queries neces-
sary to implement the COUNT element of type X mea-
surement method where X is Table (see Listing 12.2).

4. �e source models used to carry out the measurement are:
the measurement model (second step), the domain model
(third step) and the extended QVT–Relations model.�e tar-
get model obtained is the measurement model with de�ned
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Listing 12.1: Relation domain elements from extended QVT–Relations mo-

del

1 checkonly domain relationDomain srcRelationalSchema :

RelationalSchema {

2 name = myRelationalSchema

3 };

4 checkonly domain measurementDomainSrc srcMeasurementModel :

MeasurementModel {

5 modelName = myModelName ,

6 measurements = dstMeasurement1 : Measurement {

7 name = myMeasurementName ,

8 method = dstMethod : MeasurementMethod {

9 nameMethod = myMethod

10 },

11 entity = dstEntity : Entity {

12 nameEntity = myEntity

13 },

14 result = dstResult : MeasurementResult {}

15 } // Result not defined yet

16 }; �
Listing 12.2: Function elements from extended QVT–Relations model

1 // [...]

2 enforce domain measurementDomainDst dstMeasurementModel :

MeasurementModel {

3 modelName = myModelName ,

4 measurements = dstMeasurement1 : Measurement {

5 name = myMeasurementName ,

6 method = dstMethod : MeasurementMethod {

7 nameMethod = myMethod

8 },

9 entity = dstEntity : Entity {

10 nameEntity = myEntity

11 },

12 result = measurementAction(srcRelationalSchema ,

myMethod , myEntity)

13 }

14 };

15 } // End of relation

16 function measurementAction(relationalSchema :

RelationalSchema , method : String , entity : String) :

Integer {

17 relationalSchema.modelElements ->select(

18 m : ModelElement | m.oclIsTypeOf(Table))-> size()

19 } �
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Listing 12.3: Measurement result

1 <?xml version="1.0" encoding="ASCII"?>

2 <measurement:MeasurementModel xmi:version="2.0"

3 xmlns:xmi="http://www.omg.org/XMI"

4 xmlns:measurement="http://bmora/metamodels/measurement"

5 modelName="ER_MEASUREMENT">

6 <measurements name="RELATIONAL SCHEMA MEASUREMENT">

7 <method nameMethod="COUNT"/>

8 <entity nameEntity="TABLE"/>

9 <result result="5">

10 </measurements >

11 </measurement:MeasurementModel > �
Measurement Result (see Listing 12.3). In this example the
value ofMeasurement Result is 5 (number of tables).

In the same way as is illustrated with Relational Databases, the
method can be applied to any other domains, such as for example,
UMLmodels, Project Management or Business Processes, etc.

12.4 conclusions

In this chapter a generic framework for the de�nition of measure-
ment models based on a common metamodel has been presented.
�e framework allows the integratedmanagement andmeasurement
of a great diversity of entities.
Following the MDA approach and starting from a (universal) mea-

surement metamodel, it is possible to carry out the measurement
of any domain by means of QVT transformation, and this process is
completely transparent to the user.
With SMF, it is possible to measure any so�ware entity.�e user

task consists in selecting the domain metamodel (the domain to be
measured) and de�ning the source models.�e so�ware metamodel
is integrated in the framework.





13
MORPHEUS: A SUPPORTING TOOL FOR THE
ATRIUM METHODOLOGY

«Perfection of means and confusion of goals seem,
in my opinion, to characterize our age.»

—Albert Einstein
German physicist and Nobel prize in Physics in 1921, 1879–1955

So�ware development process is always a challenging activity, espe-
cially because systems are becomingmore andmore complex. In this
context, the MDD (Selic 2003) approach is gaining more and more
attention from practitioners and academics. MDD has demonstrated
positive in�uences for reliability and productivity of the so�ware
development process due to several reasons (Selic 2003): it allows
one to focus on the ideas and not on the supporting technology; it
facilitates not only the analysts get an improved comprehension of
the problem to be solved but also the stakeholders obtain a better
cooperation during the so�ware development; etc. With those aims,
MDD exploits models both to properly document the system and
automatically or semi-automatically generate the �nal system.�is
is why the so�ware development is shi�ing its attention (Bézivin
2004) from ‘‘everything is an object’’, so trendy in the eighties and
nineties, to ‘‘everything is a model’’.

349
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ATRIUM (Navarro 2007; Montero and Navarro 2009) has been de-
�ned following the MDD principles, as models drive its application,
and the tool MORPHEUS—see (Navarro 2011) for demos—has been
built to support its models and activities. �is methodology hasMORPHEUS is a

tool which provides
support for ATRIUM
a methodology for
the concurrent
de�nition of

requirements and
so�ware

architectures.

been de�ned to guide the concurrent de�nition of requirements and
so�ware architecture, paying special attention to the traceability be-
tween them. In this context, the support of MORPHEUS is a valuable
asset allowing the de�nition of the di�erent models; maintaining
traceability among them; supporting the necessary transformation,
etc.�is chapter focuses on MORPHEUS, its support to a MDD pro-
cess, and how theMULTIPLE framework plays an important role on
this tool. MORPHEUS was developed and funded in the context of
the META1 and MDDRehab2 projects.
�is chapter is structured as follows. A�er this introduction, a

brief description of ATRIUM is presented in section 13.1. Section 13.2
describes the supporting tool ofATRIUM,MORPHEUS. Related works
are described in section 13.3. Finally, section 13.4 ends this paper by
presenting the conclusions and further works.

13.1 atrium at a glance

ATRIUM provides the analyst with guidance, along an iterative pro-
cess, from an initial set of user/system needs until the instantiation
of the proto-architecture. ATRIUM entails three activities to be iter-
ated over in order to de�ne and re�ne di�erent models and allow
the analyst to reason about partial views of both requirements and
architecture. Fig. 13.1 shows, using SPEM (OMG 2008c), the ATRIUM
activities that are described as follows:

Modelling Requirements—�is activity allows the analyst to iden-
tify and specify the requirements of the system-to-be by using
the ATRIUM Goal Model (Navarro et al. 2006), which is based

1 META: Models, Environments, Transformations and Applications, ref. TIN2006-
15175-C05. Department of Science and Technology (Spain) I+D+I.

2 MDDRehab project, ref. TC20091111. Universidad de Castilla–La Mancha.
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Figure 13.1: An outline of ATRIUM

on Knowledge Acquisition in autOmated Speci�cation (KAOS)
(Dardenne et al. 1993) and the Non-Functional Requirements
(NFR) Framework (Chung et al. 2000).�is activity uses as ATRIUM proposes

an iterative process
with three main
activities:
Modelling

Requirements,
Modelling

Scenarios and
Synthesize and

Transform

input both an informal description of the requirements stated
by the stakeholders, and the CD 25010.2 So�ware product
Quality Requirements and Evaluation (SQuaRE) quality model
(ISO 2008).�e latter is used as framework of concerns for
the system-to-be. In addition, the architectural style to be
applied is selected during this activity (Navarro 2007).

Modelling Scenarios —�is activity focuses on the speci�cation
of the ATRIUM Scenario Model, that is, the set of Architec-
tural Scenarios that describe the system’s behaviour under
certain operationalization decisions (Navarro et al. 2007b).
EachATRIUM Scenario identi�es the architectural and environ-
mental elements that interact to satisfy speci�c requirements
and their level of responsibility.
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Synthesize and Transform—�is activity has been de�ned to gen-
erate the proto-architecture of the speci�c system (Navarro
and Cuesta 2008). It synthesizes the architectural elements
from the ATRIUM scenario model that build up the system-
to-be, along with its structure. �is proto-architecture is a
�rst dra� of the �nal description of the system that can be
re�ned in a later stage of the so�ware development process.
�is activity has been de�ned by applyingM2M transformation
techniques (Czarnecki and Helsen 2006), speci�cally, using
the QVT–Relations language (OMG 2008a) to de�ne the nec-
essary transformations. It must be pointed out that ATRIUM
is independent of the architectural metamodel used to de-
scribe the proto-architecture, because the analyst only has to
describe the needed transformations to instantiate the archi-
tectural metamodel he/she deems appropriate. Currently, the
transformations to generate the proto-architecture instantiat-
ing the PRISMA architectural model (Pérez et al. 2006) have
been de�ned. PRISMA was selected because a code compiler
exists for this model.

ATRIUM has been validated in the context of the tele-operated
systems. Speci�cally, the Environmental Friendly and Cost-E�ective
Technology for Coating Removal (EFTCoR) (EFTCoR 2002-2005)
project has been used for validation purposes.�e main concern ofATRIUM and its

supporting tool
MORPHEUS have
been validated

using an industrial
case study in the
context of the

EFTCoR project.

this project was the development of a tele-operated platform for non-
pollutant hull ship maintenance. In this chapter, we are going to use
the speci�cationmade of the Robotic Device Control Unit (RDCU) to
brie�y illustrate how MORPHEUS provides support to each activity
of ATRIUM.�e RDCU is in charge of commanding and controlling
in a coordinated way the positioning of devices along with the tools
attached to them, however, it is not worth describing this case study
in too much detail.
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13.2 morpheus : a mdd supporting tool

�e main idea behindMORPHEUS is to facilitate a graphical environ-
ment for the description of the three models used by ATRIUM (Goal
Model, Scenarios Model, and PRISMA Model) in order to provide the
analysts with an improved legibility and comprehension. Several
alternatives were evaluated such as the de�nition of pro�les, or the
use of meta-modelling tools. Eventually, we developed our own tool
in order to provide the proper integration and traceability between
the models.
Fig. 13.2 shows the main elements of MORPHEUS.�e Back-End

layer allows the analyst to access to the di�erent environments, and
to manage the projects he/she creates. Beneath this layer, the dif-
ferent environments of MORPHEUS are shown, providing each one
of them support to a di�erent activity of ATRIUM.�e Repository-
Manager layer is in charge of providing the di�erent environments
with access to the repository where the di�erent models and meta-
models are stored. In addition, each one of the graphical environ-
ments (Requirements Model Editor, Scenario Editor, and Architec-
ture Model Editor) exploits Microso� O�ce Visio Drawing Control
2003 (Microso� 2003)—VisioOCX in Figs. 13.3, 13.8 and 13.12—for
graphical support.�is control was selected to support the graphical
modelling needs of MORPHEUS because it allows a straightforward
management, both for using and modifying shapes.�is feature is
highly relevant for our purposes because all the kinds of concepts
that are included in our metamodels can easily have di�erent shapes,
facilitating the legibility of the models. In addition, the user is pro-
vided with all the functionalities that Visio has, that is, she/he can
manage di�erent diagrams to properly organize the speci�cation,
make zoom to see more clearly details, print the active diagram, etc.
In the following sections, each one of the identi�ed environments is
described.
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Back-End

Repository Manager

Requirements
Environment

Scenarios
Environment

Software
Architecture
Environment

Figure 13.2: Main architecture of MORPHEUS

13.2.1 Requirements Environment

As described in section 13.1,Modelling Requirements is the �rst ac-
tivity of ATRIUM. In order to support this activity, the Requirements
Environment was developed. From the very beginning of the EFTCoR
project, one of the main problemwe faced was how the requirements
metamodel had to change to be adapted to the speci�c needs of the
project. With this aim, this environment was developed with two�e Requirements

Environment is the
subsystem of

MORPHEUS in
charge of supporting

theModelling
Requirements

activity.

di�erent work contexts.�e �rst context is the Requirements Meta-
Model Editor (RMME) in Fig. 13.3, which provides users with facilities
for describing requirement meta-models customized according to
project’s semantic needs (see Fig. 13.4).�e second context is the
Requirements Model Editor (RME), also shown in Fig. 13.3, which
automatically o�ers the user facilities to graphically specify models
according to the active metamodel (see Fig. 13.7).�ese facilities are
very useful to exploit MORPHEUS to support other proposals.
It can be observed in Fig. 13.4 that the RMME allows the user to

describe new meta-elements by extending the core metamodel de-
scribed in Fig. 13.5, that is, new types of artifacts, dependencies, and
re�nements.�e applicability of this metamodel was was evaluated
by analysing the existing proposals in requirements engineering
(Navarro et al. 2006). For instance, Fig. 13.4 shows that the two
meta-artifacts (goal and requirement) of the ATRIUM Goal Model
were de�ned using the RMME. In order to fully describe the new
meta-elements, the user can describe their meta-attributes and the
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OCL constraints he/she needs to check any property he/she deems
appropriate. Fig. 13.6 shows how the meta-artifact goal was de�ned
by extending artifact; describing its meta-attributes priority, author,
stakeholder, etc; and specifying two constraints (Fig. 13.6) to deter-
mine that the meta-attributes stakeholder and author cannot be null.
It is worth noting that automatic support is provided by the envi-

ronment for the evolution of the model, that is, as the metamodel is
modi�ed, the model is updated in an automatic way to support those
changes, asking the user to con�rm the necessary actions whenever
a delete operation is performed on meta-elements or meta-atributes.
�is characteristic is quite helpful because the requirement model
can be evolved as the expressiveness needs of the project do.
Once the metamodel has been de�ned the user can exploit it in

the modelling context, RME, shown in Fig. 13.7. It uses VisioOCX to
provide graphical support, as Fig. 13.2 shows, and has been struc-
tured in three main areas. On the right side, the stencils allow the
user to gain access to the active metamodel. Only by dragging and
dropping these meta-elements on the drawing surface in the centre
of the environment, the user can specify the requirements model.
He/she can modify or delete these elements by clicking just as usual
in other graphical environments. For instance, some of the identi�ed
goals and requirements of the EFTCoR are described in the centre of
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Figure 13.3: Main elements of the requirements environment
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Figure 13.4: Meta-Modeling work context of the MORPHEUS Require-

ments Environment

the Fig. 13.7. On the le� side of the RME, a browser allows the analyst
to navigate throughout the model and modify it. As Fig. 13.2 illus-
trates, the EventHandler is in charge of manipulating the di�erent
events that arise when the user is working on the RME.
In addition, as Fig. 13.2 illustrates, the RME uses two components

to provide support to OCL: MULTIPLE OCL-CLI and MOFManager.
�e former is an engine to check OCL constraints that was integrated
in MORPHEUS.�is OCL engine is provided by theMULTIPLE frame-
work and corresponds with the OCL Support CLI component of the
Validation subsystem (see section 8.5.2, page 203). �e later was
developed to allow us to manipulate metamodels and models in
MOF (OMG 2006) format.�is component behaves as a bridge be-

Dependency Artifact
name : String

description : String
Re�nement

Leaf

-depTo 0..1 -to 1
-refRoot

0..1-root1

-leafArtifact 1

-leaves
0..*

-refLeaf1
-leaves
1..*

-depFrom
0..1

-from
1

Figure 13.5: Core-metamodel for the requirements environment
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tween EMF and MORPHEUS. By exploiting these components the
constraints de�ned at the metamodel can be automatically checked.
For instance, when the active diagram was checked, two inconsis-
tencies were found that are shown at the bottom of the Fig. 13.7.
However, the support of the tool would be quite limited if it only

provides graphical notation. For this reason, the Analysis Manager,
shown in Fig. 13.2, has been developed to allow the user to describe
and apply those rules necessary to analyse its models.�ese rules are
de�ned by describing how the meta-attributes of the meta-artifacts
are going to be valuated depending on themeta-atributes of themeta-
artifacts they are related to by means of which meta-relationships.
Once these rules are de�ned, the Analysis Manager exploits them
by propagating the values from the leaves to the roots of the model
(Navarro et al. 2007a).�is feature can be used for several issues
such as, satisfaction propagation (Navarro et al. 2007a), change prop-
agation, or analysis of architectural alternatives (Navarro 2007).

13.2.2 Scenario Environment

As presented in section 13.1,Modelling Scenarios is the next activity
of ATRIUM.�is activity is in charge of describing the scenario mo-

Figure 13.6: Describing a new meta-artifact in MORPHEUS



358 morpheus : a tool for the atrium methodology

Figure 13.7: Modelling work context of the MORPHEUS Requirements En-

vironment

del.�is model is exploited to realize the established requirements in�e Scenarios
Enviroment is the

subsystem of
MORPHEUS in

charge of supporting
theModelling

Scenarios activitity.
Scenarios are
modelled using
extended UML2

sequence diagrams.

the goal model by describing partial views of the architecture, where
only shallow-components, shallow-connectors and shallow-systems
are described. In order to describe these scenarios, an extension
of the UML2 Sequence Diagram has been carried out to provide
the necessary expressiveness for modelling these architectural ele-
ments (Navarro 2007). In order to provide support to this activity the
Scenario Model Editor (SME), shown in Fig. 13.8, was developed.�e
Scenarios Editor uses the VisioOCX to provide the user with graphi-
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Figure 13.8: Main elements of the Scenarios Environment



13.2 morpheus : a mdd supporting tool 359

Figure 13.9: What the Scenario Model Editor looks like

cal support for modelling the Scenario Model.�e EventHandler is
in charge of managing all the events trigged by user actions. Fig. 13.9
illustrates how the SME has been designed. In a similar way to the
RMME described in the previous section, it has been structured in
three main areas. �e Model Explorer, on the le�, facilitates the
navigation through the Scenario Model being de�ned in an easy an
intuitive way and manages (creation, modi�cation and deletion) the
de�ned scenarios. It is pre-loaded with part of the information of
the requirements model being de�ned. It facilitates to maintain the
traceability between the Goal Model and the Scenario Model. In the
middle of the environment is situated the Graphical View where the
elements of the scenarios can be graphically speci�ed. In this case,
Fig. 13.9 depicts the scenario ‘‘OpenTool’’ that is realizing one of
the operationalizations of the goal model. It can be observed how
several architectural and environmental elements are collaborating
by means of a sequence of messages. On the right side it can be seen
the Stencil that makes available the di�erent shapes to graphically
describe the ATRIUM scenarios.
Another component of the Scenario Environment is the Synthesis

processor (see Fig. 13.10). It provides support to the third activity of
ATRIUM Synthesis and Transform which is in charge of the genera-
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Figure 13.10: Describing the Synthesis processor

tion of the proto-architecture. For its development, the alternative�e Synthesis
processormakes

use of theMULTIPLE
QVT command-line

interface.

selected was the integration an existing M2M transformation tool.
�e features that the candidates tools had to provide were, �rst, to
support the QVT–Relations language and second, to be easily inte-
grable with the existing work. Speci�cally, theMULTIPLE QVT-CLI

Figure 13.11: Generate architecture dialog
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Figure 13.12: Main elements of the So�ware Architecture Environment

tool was chosen as Fig. 13.12 illustrates. It accepts as inputs the meta-
models and their corresponding models in XMI format to perform
the transformation.�is engine is invoked by the Synthesis processor
which proceeds in several steps. First, it stores the Scenario Model
being de�ned in XMI. Second, it provides the user with a graphical
control to select the destination target architectural model, the QVT
transformation to be used and the name of the proto-architecture to
be generated. By default, PRISMA is the selected target architectural
model because the QVT rules (Navarro 2007) for its generation have
been de�ned. However, the user can de�ne its own rules and archi-
tectural metamodels to synthesize the Scenario Model. Finally, the
Synthesis processor performs the transformation by invoking theQVT
engine.�e result is an XMI �le describing the proto-architecture.
Fig. 13.11 shows the dialog which provides the UI to invoke the syn-
thesis processor with the corresponding �elds to select each one of
the source and target �les.

13.2.3 So�ware Architecture Environment

As can be observed, both the Requirements Environment and the
Scenario Environment provide support to the three activities of
ATRIUM. However, as speci�ed in section 13.1, a proto-architecture is
obtained at the end of its application.�is proto-architecture should
be re�ned in a latter stage of development to provide a whole descrip-
tion of the system-to-be. With this aim the So�ware Architecture
Environment (Perez et al. 2006) was developed. It makes available
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Figure 13.13: What the Architectural Editor looks like

a whole graphical environment for the PRISMA-ADL (Pérez et al.
2006) so that the proto-architecture obtained from the scenarios
model can be re�ned.
As Fig. 13.13 depicts, this environment integrates VisioOCX for�e So�ware

Architecture

Environment

provides full
support for the

PRISMA
Architecture
Description

Language, allowing
the use of the

PRISMA-MODEL-
COMPILER.

graphical support in a similar way to the previous ones.�e Archi-
tectural Model Editor is the component that provides the graphical
support, whose appearance can be seen in Fig. 13.12. It has three
main areas: the stencil on the right where the PRISMA concepts are
available to the user, the graphical view in the centre where the dif-
ferent architectural elements are described; and the model explorer
on the right. It is worthy of note that this browser is structured in
two levels following the recommendation of the ADL (Perez et al.
2006): de�nition level, where the PRISMA types are de�ned; and
con�guration level where the so�ware architecture is con�gured.
As this environment should allow the user to re�ne the proto-

architecture obtained from the synthesis of the scenariomodel, it pro-
vides her/him with facilities to load the generated proto-architecture
if PRISMA was the selected target architectural model. In addition,
it also provides an add-in that facilitates the generation of a textual
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PRISMA speci�cation, which can be used to generate C# code by
using the PRISMA framework.

13.3 related works

Nowadays,MDD is an approach that is gainingmore andmore follow-
ers in the so�ware development area, and lots of tools that support
this trend have arisen. Nevertheless, none of the existing solutions
can completely cover the capabilities of the MORPHEUS tool.
�e Eclipse Modeling Framework (EMF) has become one of the As opposed to other

pureMULTIPLE-
based tools,
MORPHEUS does
not use GMF to
implement the
di�erent graphical
editors it provides.
�is is due to the
inability of GMF to
easily deal with
models that evolve
at run time.

most used frameworks to develop model-based applications. EMF
provides a metamodelling language, called Ecore, that can be seen as
an implementation of the EMOF language. Around EMF lots of related
projects have grown that complement its modelling and metamod-
elling capabilities, such as OCL interpreters, model transformation
engines, or even tools able to automatically generate graphical edi-
tors, such as GMF (Eclipse 2011e).�e advantages are twofold: �rst
they are usually quite mature tools, and second it is easy to inter-
operate with them by means of the XMI format. �at is why the
MORPHEUS tool has theMOFManager component: it allows us to
reuse these tools as is the case of theMULTIPLE OCL checker and the
MULTIPLEmodel transformations engine. Nevertheless, a solution
completely based in EMF has also some important drawbacks.�e
main one is that, although it is notmandatory, this framework and its
associated tools are fundamentally designed to deal with static mod-
els that do not change at run time.�is factormakes frameworks like
GMF completely useless for our purposes, because in MORPHEUS
the requirements metamodel is populated with instances during its
evolution and it is necessary to be able to synchronize them.
Other analyzed alternatives are the MS DSL Tools (Cook et al.

2007).MS DSL Tools are a powerful workbench that also provides
modelling and metamodelling capabilities to automatically gener-
ate both code and graphical editors in Visual Studio. However, it
exhibits the same weakness than the previous solution: it is basically
designed to deal with models that do not evolve during time, so that,
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thesemodels can only bemodi�ed during design time and not at run
time. Moreover, it lacks of the wide community that provides com-
plementary tools to deal, check and analyze models, in comparison
with the solution that is completely based on EMF.�is disadvantage
is also present in other tools, like the ones associated to meta-CASE
(Gong et al. 1997) and domain speci�c modelling techniques, such
as MetaEdit+ (Metacase 2007; Kelly et al. 1996).

13.4 conclusions and further works

In this chapter a tool called MORPHEUS has been presented pay-
ing special attention to how it provides support to a MDD process,
ATRIUM, and how this tool makes use of the functionality provided
byMULTIPLE to enrich this MDD process. It has been shown how
each model can be described by using this tool and, specially, how
traceability throughout its application is properly maintained. It is
also worth noting the meta-modelling capabilities it has, providing
automatic support to evolve the model as the metamodel is changed.
�e integration of an OCL checker is interesting as it allows the user
to evaluate the model using the properties he/she deems appropriate.
�e use of QVT–Relations to generate the architectural models is
another key point.�is declarative language enables the use of any
architectural model that �ts the user’s needs.
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CLOSURE





SUMMARY

�is part closes this thesis. Chapter 14 describes some relevant works
which are closely related to theMULTIPLE framework and proposal.
Speci�cally, this chapter focuses in related works in the areas of
feature modeling and SPLs. Next, chapter 15 summarizes the con-
tents of this thesis and presents the conclusions of the work. Finally,
16 describes the most relevant works, which have been produced
throughout the development of this thesis, that have been published
in di�erent journals and conferences, both national and interna-
tional.
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14
RELATED WORKS

«Competition is not only
the basis of protection to the consumer,

but is the incentive to progress.»

—Herbert Clark Hoover
31st (1929–1933) President of the United States, 1874–1964

Model Driven Engineering, Feature Modeling and So�ware Product
Lines have been an important discussion topic in the So�ware Engi-
neering community.�ere are many studies on these subjects and a
great amount of proposals have arisen.
�is chapter summarizes other works that are closely related with

theMULTIPLE framework and the proposal described in this thesis.
Since our work covers several paradigms and stages of the devel-
opment of a SPL, related works can be grouped in the following
topics:MULTIPLE and other feature modeling proposals (including
the upcoming variability management proposal from the OMG); fea-
ture models and class diagrams; constraints in feature modeling
and;MULTIPLE and other SPLE approaches (both classical and model-
based). Next, they are presented.
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14.1 multiple feature models and other feature
modeling proposals

Most of the proposals for feature modeling are based in the original
FODA notation. Such proposals have contributed several extensions
to it (Chen et al. 2009). Our work is closely related with previous
research in feature modeling, however, there are several distinctive
aspects:
Czarnecki and Kim (2005) propose a notation for cardinality-Our proposal for

feature modeling is
strongly based on
previous literature.
HoweverMULTIPLE
stresses in a key
distinctive aspect:
con�gurations

should be
considered as actual
instances of feature
models to allow

their use in complex
MDE processes.

based feature modeling. In this sense, our tool shares most of this
notation as it is widely known and used, but we have included some
variants. First, in our approach features can not have an attribute
type, but rather, they can have typed feature attributes which can
be used to describe parameterized features. Second, according to
Czarnecki and Kim op. cit. both feature groups and grouped features
can have cardinalities. However, the possible values for grouped
features cardinalities are restricted. In our proposal, these values are
not restricted and have di�erent meanings: cardinality of feature
groups specify the number of features that can be instantiated, and
cardinality of grouped features specify the number of instances that
each feature can have.
Our work describes a prototype to de�ne con�gurations of feature

models. Previous work has been also done in this area, such as the
Feature Modeling Plugin (FMP) (Antkiewicz and Czarnecki 2004).
�is tool allows the user to de�ne and re�ne a feature model and
con�gurations by means of specializations. �e advantage of this
approach is that it is possible to guide the con�guration process by
means of constraint propagation techniques.�e main di�erence
with our work is that in FMP con�gurations are de�ned in terms of
the featuremetamodel and bothmodels and con�gurations coexist at
the same layer.�us, in order to be able to deal both withmodels and
con�gurations it is necessary to build complex editors (as they must
guarantee that the specialization process—as explained in chapter 6—
is properly done).
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Besides the di�erence stated before (con�guration by specializa-
tion vs. con�guration by instantiation), our tool also provide a more
intuitive graphical metaphor. We state that because feature models
inMULTIPLE are represented using the traditional notation (i. e., trees
of boxed features linked with decorated lines). �is advantage of
MULTIPLEwith regard to other tools not only applies for FMP, but also
for other feature modeling tools such as pure : :variants (Beuche
2007) or FeatureMapping (Heidenreich et al. 2008). An example
of such advantage is thatMULTIPLE is used by external researchers
which are not related with this thesis and its case studies, such as
Duran-Limon et al. (2011);

14.2 multiple and the omg common variability lan-
guage

Common Variability Language (CVL)—(OMG 2009)—is the OMG’s
upcoming standard for variability management. At this moment, �eMULTIPLE

proposal for
variability
management is
strongly aligned
with the upcoming
Common
Variability
Language MOF
standard.

CVL is still under development and only the Request for proposal
(RFP) document is publicly available. However, with respect to the
RFP, we can state thatMULTIPLE is strongly aligned with the upcom-
ingCVL standard, since: (i)MULTIPLEuses otherMOF standards (MOF,
UML,OCL,QVT, XMI); (ii)MULTIPLE is a functional tool based on EMF,
which guarantees interoperability; (iii)MULTIPLE can express vari-
ability on models using the most common variability mechanisms;
(iv)MULTIPLE provides support for de�ning and checking complex
constraints; (v) inMULTIPLE, variability is de�ned as a separate mo-
del and semantics of the variability language are de�ned by using
QVT; etc. Speci�cally,MULTIPLE complies with sections 5.1.x, 5.2.5,
6.1, 6.4.1, 6.5.1.x and 6.5.2.x of the CVL RFP (op. cit.).

14.3 feature models and class diagrams

Some previous works have already represented feature models as
class diagrams. In Czarnecki and Kim (2005) the translation from
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feature models to class models is performed manually, and no set
of transformation rules are described. In this work, OCL is also
presented as a suitable approach to de�ne model constraints, but
as the correspondences between feature models and class diagrams
are not precisely de�ned, there is no automatic generation of OCL
invariants.
Laguna et al. (2008) do present a set of QVT rules to automaticallySeveral proposal

which represent
feature models

using class diagrams
have arisen in the
last years. However,
none of them cover
all the same aspects
thanMULTIPLE does:

i. e., automatic
generation of class

diagrams and
model constraints
by using model
transformations
and automatic

support for model
con�gurations

de�nition.

generate class diagrams from feature models. However, in this case,
neither model constraints nor con�guration de�nitions support is
presented.

14.4 feature model constraints

Batory (2005) present a proposal for feature constraints de�nition
and checking. Speci�cally, this work proposes to represent features as
propositions and restrictions among them are represented as propo-
sitional formulas. However, in propositional formulas only true and
false values are allowed.�is approach is not suitable to our work,
as we can have typed attributes which can not be expressed by this
kind of formulas.�us, we state that more expressive languages are
needed. In this case, we propose OCL as our constraint de�nition
language.
To useDVMs allows us to address some satis�ability problems from

new points of view.�e introduction of cardinalities and unbounded
attribute types makes harder to reason about feature models (for
example, satis�ability of feature models).�us, richer formalisms
(compared with the traditional ones) are needed.
�e FaMa framework, which was presented in previous chapters,

has advanced in this are, and not only propositional formulas are
used to reason about feature models and their con�gurations, but
more powerful formalisms are integrated in this framework. �e
versatility of the FaMa framework has been a key point to choose
such a framework to perform model-checking tasks inMULTIPLE.
However, FaMa is still unable to deal with every constraint that can
be de�ned inMULTIPLE, since out tool provides FMCL an OCL-based
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language to de�ne model constraints which is can not be translated
to FaMa speci�cations.
Fortunately, class diagrams and OCL are widely used and known, Current approaches

for class diagrams
model checking can
be used to validate
cardinality-based
feature models,
going beyond the
current capabilities
of the state of the
art proposals for
feature models’
veri�cation.

and several formalisms to reason about them have been proposed.
In this sense, some interesting works have been published in this
are, and we have already done some preliminary works in model
consistency checking by using third party formal tools. Speci�cally,
we have reused UML2CSP (Cabot et al. 2007; Cabot et al. 2008) a
formal framework which is able to transform class diagrams, plus
the OCL constraints that they contain, to ECLiPSe (Apt and Wallace
2007), a variant of Prolog (Sterling and Shapiro 1986) for constraint
programming.

14.5 feature models and other spl approaches

Batory et al. (2006) capture the domain features in a feature mo-
del. In BOM, the case study whereMULTIPLE is demonstrated, we
capture features in two kinds of feature models. In our research, we
observed that the variability problem is not solved by means of a
unique feature model and the monotonic gluing of these features.
We have taken a new approach, which manages the variability in
two phases (one by building a base architecture using the domain
features, and another one by decorating these base architectures with
the application domain features) in order to obtain the �nal product.
Trujillo (2007) uses Feature Oriented Programming (FOP) as a

technique for inserting features into XML documents by means of
XSLT templates. In BOM-Lazy we use this technique but at the model
level—i. e. we use Feature Oriented Modeling (FOM)—by means of
QVT–Relations Transformations. �e features are inserted on the
skeleton model in order to obtain the PRISMA architecture model.
Clements and Northrop (2001) use the SPL development approach

considering a clear division between domain engineering and appli-
cation engineering phases for the reuse and the automation of the
so�ware process. In BOM–Lazy, we have already used this approach
to develop our SPL.
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Avila-García et al. (2006) use process modeling in SPEM to pack
reusable assets. In our approach we use this OMG standard, in con-
junction with some other standards, when we model the production
plan.
Bachmann et al. (2004) propose to separate the variability declara-

tion of the a�ected assets in separate artifacts. In BOM, the speci�ca-
tion of the variability and the functionality are captured in di�erent
feature models.�e use of instances of such feature models allows
the user to input the information of the domain features.�ose fea-
tures allow to build the associated assets, or to de�ne the application
domain features in order to con�gure the �nal application.
Regarding Model Driven So�ware Product Line Engineering

(MDSPLE) approaches, the AMPLE project (AMPLE 2011) emerges�e AMPLE project
is a reference

initiative in the
aspect-oriented

model-driven SPLs
�eld. It has been
developed by six

research centres and
three industrial
organisations.

as a reference initiative in the Aspect-Oriented Model-Driven So�-
ware Product Lines (AO-MD-SPL) �eld.�is project was developed
by a consortium of six research centres in the areas of SPLs, AOSDs
andMDE and three industrial organisations working with or seeking
to deploy product line solutions (Rashid et al. 2011). Although the
AMPLE project is focused in AOSD it is strongly rooted in MDE, and
thus, it is comparable in some aspects withMULTIPLE.
�e AMPLE project covers all the development stages of a SPL,

from the requirements elicitation (Sardinha et al. 2009; Weston et al.
2009; Shakil Khan et al. 2008) to the code generation stage (Fuentes
et al. 2009; Groher and Voelter 2009), where the �nal product is
obtained.
Groher and Voelter (2009) present a summary of the AMPLE

proposal where pure : :variants is used to de�ne feature models,
which are then transformed to an equivalent EMF-based custom me-
tamodel. According to this work, an AO-MD-SPL process must be
structured in 3 stages: problem space modeling (domain model), so-
lution space modeling (PIM) and solution space implementation (PSM,
code). Models are transformed from a stage to the next one using
model transformations. �is staged process resembles the staged
production plan proposed in the application of MULTIPLE to the
BOM–Lazy case study. However, some di�erences arise:
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First, variability is managed in a di�erent way. In BOM–Lazy
there is not a separation between problem space modeling and solu-
tion space modeling. In BOM we always deal with domain concepts
(whether they are domain features or application domain features).
In BOM, solution space concepts are represented by using modular
models, component–connector models or PRISMA models. More-
over, the third stage (the implementation stage) is fully automatic in
BOM, thanks to the PRISMA-MODEL-COMPILER.
Second, variability is managed in AMPLE by using aspects. Fea-

tures usually impact in the functionality of di�erent modules or
components, in the same way than cross-cutting concerns impact in
di�erent artifact in Aspect-Oriented Programming (AOP) (Filman
et al. 2005).�is way, using aspects to describe features is a e�ec-
tive and straightforward approach. InMULTIPLE, and speci�cally in
the BOM case study, we have modeled such impact from a generic
point of view by using a set of QVT rules which describe architectural
patterns. Using such patterns in a transformations engine we can
transform the a�ected artifacts (for example, by adding services,
roles, ports, etc.). Nevertheless, an AOSD approach can also be im-
plemented inMULTIPLE by using the PRISMA metamodel, which is a
language to describe aspect-oriented so�ware architectures.
�ird, althoughAMPLE is amodel-based approach, featuremodel

con�gurations are not expressed as instances of their corresponding
featuremodels.�is issue has a big impact in the AMPLE philosophy,
leading to the de�nition of several variability management languages
which provide support for model transformations in di�erent stages
of a SPL process. Such variability management languages, which
usually are textual languages, are in charge of relating feature mo-
del con�gurations and di�erent structural models (problem space
models, solution space models, aspect models, etc.).
Speci�cally, Groher and Voelter (2009) use a family of di�erent

languages to adapt the di�erentmodels based on the feature selection,
i. e. XWeave, XVar, Xtend and Xpand. Each one of these languages
are designed with a speci�c purpose, which has the advantage of
being compact, and easy to learn and understand. However, they
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also have their own syntax and limitations: some can only deal with
models conforming to the same metamodel (e. g. XWeave) while
others can only be used to de�nemappings to �lter structural models
(e. g.,XVar). InMULTIPLEonly one language is required (QVT), which
is able to deal with models conforming any metamodel, and can be
used to de�ne any kind of pattern, �lter or expression. Moreover,
QVT is a high level declarative language which can be graphically
represented and easily understood. For example, Groher and Voelter
(2009) use Xpand to de�ne aspect templates. In BOM a similar task
is performed by using the T2 transformation (see section 9.5.2, page
260), which populates a skeleton architecture using the application
domain features.
In contrast to theMULTIPLE approach, where only one language to

de�ne the mappings between models and con�gurations is needed,
Zschaler et al. (2010) propose VML*, a product line to generate vari-
ability management languages. Such a proposal aims to help SPL
designers to de�ne the mappings between con�gurations and struc-
tural models (since the lack of a proper representation for featuremo-
del con�gurations can be problematic, avoiding the use of high level
declarative languages).�is proposal is based on the premise that
general-purpose model transformation languages place too heavy a
burden on SPL engineers. VML* provides the methods and tools to
de�ne DSLs for variability management. Speci�cations in such DSLs
are in the end translated to a general purpose model transformation
language, hiding the intricacies of MDE to SPL designers.



15
SUMMARY AND CONCLUSIONS

«In nature there are no rewards or punishments,
there are only consequences.»

—Horace Annesley Vachell
English writer, 1861–1955

In this thesis we have presentedMULTI PLE, an approach to e�ec-
tively represent and manage variability in complex MDE processes.
�is work starts from the current feature-based approaches to vari-
abilitymanagement and tries to solve some of their drawbacks. Large
so�ware systems like the Linux kernel feature model—5400 features
approx. (She et al. 2010)—or the Rolls-Royce feature model—1200
features approx. as shown in chapter 10—serve as an example about
how feature models are not fully exploited, i. e., it is uncommon the
use of cardinality-based feature models; and feature models hardly
contain typed feature attributes. Such poorly-de�ned models lead
us to forget that feature models con�gurations are, in fact, instances
of feature models. Such idea takes us to avoiding the use of feature
models as active parts in MDE processes.
�e production plan of a SPL is the set of steps that must be done

to obtain a product given a speci�c con�guration and a set of core
assets. However, in traditional SPLs this process is reduced to a gluing
of code snippets because MDE techniques are not used. However,

377
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these techniques raise the level of abstraction and provide more
expressiveness to describe so�ware artifacts.�is provides indepen-
dence from the implementation platform, and allows to automate
several tasks. Moreover,MDE is becoming a mature discipline which
provides a wide range of standards and tools which support this
trend.
MDPLE emerges as a �rst approach to integrate bothMDE and SPLs.

�is proposal raises the level of abstraction, as themain assets of a SPL
aremodels, instead of code fragments. However, the same limitations
about variability management still remain.�is is because variability
is not considered as an active model which describes a new view of
the systems to be.
�e use of multi-models allows describing a system using the DSL�e use of

multi-models allows
to use di�erent DSLs
in the development
of so�ware systems.

that the developer deems appropriate.�e use of di�erent modeling
languages reduces the learning curve and allows to integrate di�er-
ent technical spaces. It also eases the decomposition of a system
in di�erent views which simplify the development process. More-
over, the use of multi-models allow to integrate modern so�ware
development paradigms.
Given this situation, we have shown how the multi-modeling tech-

niques can ease the development of SPLs, designing what we describe
as Multi-Model Driven So�ware Product Lines (MMDSPLs). In a
MMDSPL the system’s variability view is managed in an explicit way,
using a dedicated model and speci�c notation.�is way a variability
model is an active asset in the so�ware development process. More-
over, in a MMDSPLmodel transformations can (and should) be used
in any part of the development process. �e key elements which
enable the use of variability models using current modeling tools are
the DVMs. A DVM is an equivalent and intermediate artifact which
allows the de�nition of feature model con�gurations.
�is thesis provides the following contributions:
First, it extends previous works about so�ware system views.

We have adapted the concept of system view to the multi-modeling
approach and techniques. Moreover, we provide an operational-
ization of Limón Cordero’s proposal providing an implementation
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its metamodels (speci�cally, modular and component-connector
metamodels), and the corresponding graphical DSLs.
Second, this thesis introduces variability modeling as an addi-

tional view of the system. Speci�cally, this work puts feature models
and feature model con�gurations in the context ofMOF.�is implies
that each so�ware artifact is precisely de�ned at its corresponding
level of abstraction.
Third, we propose a MOF-compliant metamodel to describe �is thesis proposes

to manage
variability in an
explicit way in a
MOF compliant
framework, taking
advantage of
existing standards
and tools.

system’s variability.�is metamodel is very expressive, as it can be
considered as a superset of the most important contributions in the
variability management �eld over the last 20 years. Furthermore,
the proposal allows to overcome the main issues which arise when
trying to use feature models and feature model con�gurations in
recent metamodeling tools. �e use of the so called DVMs allows
maintaining the instance-of relationship between feature models
and con�gurations. �is relationship guarantees the consistency
between feature models and con�gurations for free, which turns out
to be more simple. Moreover, we provide a constraint description
language (FMCL) to describe complex model constraints; and the
semantics of our metamodel and the constraint description language
are clearly de�ned by a set of equivalence relationships among them
and MOF and OCL.
�anks to the equivalence relationships, feature models can be

instantiated by using the DVMs; and such models and instances can
be validated using common tools such asOCL checkers. Furthermore,
the use of class diagrams to describe variability models enables new
paradigms for variability model checking, using for example the
tools to check UML2 class diagrams.
Fourth, we provide an implementation of our proposal as an

integrated framework forMMDPLE.�e framework, calledMULTIPLE,
is a tool which stands out for its genericity, interoperability, exten-
sibility and ease of use. Fig. 15.1 shows the full architecture of the
MULTIPLE framework including all the additions that have been con-
tributed to the initial framework throughout the development of the
di�erent case studies.MULTIPLE provides support for describing the
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Figure 15.1: Extended architecture of the MULTIPLE framework
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variability view, the modular view and the component–connector
view using the corresponding graphical notations. Additionally, it
provides support to deal with FaMa feature models and PRISMA
architectural models.�e tool integrates a model transformations
engine, which can be accessed using the graphical UI or using the
command-line; and the same applies for the integrated OCL engine.
�e tool also integrates the FaMamodel-checker which allows to
analyse feature models. Finally, a set of model transformations are
providedwithin the framework (e. g., Feature2ClassDiagram orMul-
tipleFeatures2FamaFeatures among others, see appendixes A and D).
Fifth, proof of these features of theMULTIPLE framework is that

it has been successfully applied in �ve di�erent case studies of the
most diverse nature.
�e MULTIPLE framework and the proposed methodology has�eMULTIPLE has

been validated in
�ve di�erent case
studies and the
feature modeling
editor is used by

external researches.

been used to modernize the BOM–Eager SPL. As a result the BOM–
Lazy proposal has been designed. From this case study we can
conclude that an explicit variability management allows to concen-
trate all the e�orts in early stages of a SPL development. �is way,
all the work is done in the domain engineering phase; and it is in
this phase when the domain engineer captures all the knowledge
required to generate the �nal product. Moreover, the use of feature
models and other system’s views allows capturing such knowledge
in an explicit way using QVT to describe the relationships among
the di�erent views (i. e., a model transformation). In this case it is
noteworthy that a feature model is an active asset that can be used
and reused directly by means of MDE techniques. Besides, to de�ne
a model transformation to generate the �nal products allows us to
include additional information in such transformations, such as well
design patterns.�is opens new paths to analyse quality aspects in
SPLs, as in the case of a SPL the quality of the �nal product is not only
related with the quality of the core-assets but also with the quality of
the production plan—the transformation—itself (González-Huerta
2010; González-Huerta 2011).
Furthermore, the use of explicit and instantiable feature models

and the use of model transformations provide more �exibility, as the
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so�ware architectures are de�ned bymeans of patterns atmodel level.
Moreover, the use of so�ware patterns provide greater scalability, as
the relationships among the system’s views are de�ned regardless of
the number of products of the SPL. In this case, the di�erent products
of the SPL are de�ned in an implicit way by the QVT transformation.
Finally, in the case of BOM–Lazy the implementation e�orts are
reduced drastically thanks to PRISMA and the PRISMA-MODEL-
COMPILER.
We can also conclude that it is required to provide the necessary It is necessary to

provide validation
and veri�cation
mechanisms in
industrial
environments.
Large scale feature
models are very
complex and
error-prone, and
consequently,
veri�cation and
validation is not
straightforward and
can not be
performed by hand.

mechanisms to validate, check and analyse feature models and their
constraints. In the study of the industrial featuremodel we found that
the majority of the errors were introduced by abusing the notation.
�is abuse is produced by a poorly implemented feature modeling
tool. A feature modeling tool must provide the necessary mecha-
nisms to ensure that the feature models are not invalid. Having an
invalid feature model in a context where it is used for documenta-
tion purposes is just problematic; but to have such a model in aMDE
process can not be admitted, as the feature model is a fundamental
asset on top of which the process is built. However, it is not only
necessary to ensure that the notation is properly used, but also the
model checking mechanisms are fundamental. Proof of this is that
in the industrial case study we found that the feature model was
void, and it did not represent any product at all. Nevertheless, more
research in such issues is still required, as some scalability problems
arise when using current tools. In this sense, the relationships which
add more complexity are the cross-tree ones.
We can con�rm the bene�ts of applying theMULTIPLE framework

to di�erent case studies. Such case studies can be, in the end, consid-
ered as simple MMDPLE processes where the system variability view
is trivial (i. e., only a single product). We can verify that the solutions
based on MDE andMULTIPLE are more interoperable and allow us
to deal with heterogeneous data sources (such as in the case of the
INTERGENOMICS case study). �e solutions based onMULTIPLE
are more e�cient (the development time is reduced) and are more
elegant (the level of abstraction is raised).�e use of model transfor-
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mations eases the automation ofmanual tasks, such as the generation
of petri nets, or the de�nition of the �nal so�ware architecture in the
case of MORPHEUS. Moreover, model transformations are more pre-
cise, concise ans easy to understand than traditional and imperative
approaches. Serve as an example the INTERGENOMICS case study,
where the same transformation is implemented both in QVT and
Java (Gómez 2008). In this case, the Java code is≈ 4.5 times larger
than the QVT transformation (407 vs. 1810 lines of code). Besides,
declarative model transformations provide traceability capabilities
which are fundamental in complex processes.
Finally, the use of standards increases the interoperability and the

e�ciency, as the most adequate tool can be selected for a precise
task. For example, in the case of MORPHEUS the best tool for the
pursued purpose is selected. In this case the tool integrates di�erent
technologies in a transparent way: .NET, Java, EMF,MS O�ce Visio,
etc. �e use of standards in this merger of technologies eases the
development and allows obtaining a powerful tool with the best of
each one.
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A
TRANSFORMATION FEATURES2CLASSDIAGRAM

Listing A.1: Full Features2ClassDiagram transformation

1 transformation Feature2ClassDiagram(feature : features ,

classdiagram : \emph{Ecore }) {

2

3 key \emph{Ecore }:: EPackage{nsURI};

4 key \emph{Ecore }:: EClass{name};

5 key \emph{Ecore }:: EReference{name};

6 key \emph{Ecore }:: EAnnotation{source , eModelElement };

7 key \emph{Ecore }:: EDataType{name};

8

9 top relation Feature2Class {

10

11 checkonly domain feature feature : features :: Feature {

12 };

13

14 checkonly domain feature model : features :: FeatureModel {

15 };

16

17 enforce domain classdiagram pkg : \emph{Ecore }:: EPackage

{

18 name = model.name ,

19 nsPrefix = model.name ,

20 nsURI = ’http ://’ + model.name ,

21 eClassifiers = class : \emph{Ecore }:: EClass {

22 name = feature.name

23 }

24 };

25 }

26

27 top relation FeatureAttribute2ClassAttribute {

28

29 checkonly domain feature feature : features :: Feature {

30 attributes = featureAttribute : features :: Attribute {}

31 };

32

33 checkonly domain feature model : features :: FeatureModel {

34 };

35

36 enforce domain classdiagram pkg : \emph{Ecore }:: EPackage

{

395
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37 name = model.name ,

38 nsPrefix = model.name ,

39 nsURI = ’http ://’ + model.name ,

40 eClassifiers = type : \emph{Ecore }:: EDataType {

41 name = featureAttribute.type ,

42 instanceTypeName = ’java.lang.’ + featureAttribute.

type

43 }

44 };

45

46 enforce domain classdiagram class : \emph{Ecore }:: EClass

{

47 name = feature.name ,

48 eStructuralFeatures = eattribute : \emph{Ecore }::

EAttribute {

49 name = featureAttribute.name ,

50 eType = type

51 }

52 };

53 }

54

55 top relation StructuralRelationship2Reference{

56

57 checkonly domain feature model : features :: FeatureModel {

58 };

59

60 checkonly domain feature feature : features :: Feature {

61 childs = relationship : features ::

StructuralRelationship {}

62 };

63

64 enforce domain classdiagram pkg : \emph{Ecore }:: EPackage

{

65 nsURI = ’http ://’ + model.name ,

66 eClassifiers = childclass : \emph{Ecore }:: EClass {

67 name = relationship.to.name

68 }

69 };

70

71 enforce domain classdiagram class : \emph{Ecore }:: EClass

{

72 name = feature.name ,

73 eStructuralFeatures = reference : \emph{Ecore }::

EReference {

74 name = relationship.to.name ,

75 eType = childclass ,

76 upperBound = relationship.upperBound ,

77 lowerBound = relationship.lowerBound ,

78 containment = true

79 }
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80 };

81

82 }

83

84 top relation Group2Reference {

85

86

87 checkonly domain feature model : features :: FeatureModel {

88 };

89

90 checkonly domain feature feature : features :: Feature {

91 group = group : features ::Group {

92 childs = childRelationship : features ::

StructuralRelationship {

93 to = childFeature : features :: Feature {}

94 }

95 }

96 };

97

98 enforce domain classdiagram pkg : \emph{Ecore }:: EPackage

{

99 nsURI = ’http ://’ + model.name ,

100 eClassifiers = typeClass : \emph{Ecore }:: EClass {

101 name = group.name ,

102 abstract = true

103 },

104 eClassifiers = parentClass : \emph{Ecore }:: EClass {

105 name = feature.name ,

106 eStructuralFeatures = reference : \emph{Ecore }::

EReference {

107 name = feature.name + ’Features ’,

108 eType = typeClass ,

109 upperBound = -1,

110 lowerBound = 0,

111 containment = true

112 }

113 },

114 eClassifiers = childClass : \emph{Ecore }:: EClass {

115 name = childFeature.name

116 }

117 };

118

119 where {

120 GroupChild2Classes(childFeature , typeClass , childClass)

;

121 GroupChild2ChildrenAnnot(feature , parentClass);

122 GroupChild2LowerAnnot(childRelationship , parentClass);

123 GroupChild2UpperAnnot(childRelationship , parentClass);

124 }

125 }
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126

127 relation GroupChild2Classes {

128

129 checkonly domain feature feature : features :: Feature {};

130

131 checkonly domain classdiagram typeClass : \emph{Ecore }::

EClass {

132 };

133 enforce domain classdiagram parentclass : \emph{Ecore }::

EClass {

134 name = feature.name ,

135 eSuperTypes = eSuperTypes ->including(typeClass)

136 };

137

138 }

139

140 relation GroupChild2ChildrenAnnot {

141

142 checkonly domain feature feature : features :: Feature {

143 };

144

145 enforce domain classdiagram parentClass : \emph{Ecore }::

EClass {

146 eAnnotations = oclAnnotLower : \emph{Ecore }::

EAnnotation {

147 source = ’http ://www.eclipse.org/ocl/examples/OCL’,

148 details = oclEntryLower : \emph{Ecore }::

EStringToStringMapEntry {

149 _key = ’checkChildren ’ + feature.name ,

150 value = toString(feature.group.lowerBound) + ’ <=

( ’ + buildGroupConstraint(feature) + ’ )

and ( ’ +

151 buildGroupConstraint(feature) + ’ ) <= ’ +

toString(feature.group.upperBound)

152 }

153 }

154 };

155 when {

156 parentClass.eAnnotations ->select(

157 annot : \emph{Ecore }:: EAnnotation | not annot.

details ->select(

158 entry : \emph{Ecore }:: EStringToStringMapEntry |

entry._key = ’checkChildren ’ + feature.name)

->isEmpty ())->isEmpty ();

159 }

160 }

161

162 relation GroupChild2LowerAnnot {

163
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164 checkonly domain feature relationship : features ::

StructuralRelationship {

165 from = group : features ::Group {},

166 to = feature : features :: Feature {}

167 };

168

169 enforce domain classdiagram parentClass : \emph{Ecore }::

EClass {

170 eAnnotations = oclAnnotLower : \emph{Ecore }::

EAnnotation {

171 source = ’http ://www.eclipse.org/ocl/examples/OCL’,

172 details = oclEntryLower : \emph{Ecore }::

EStringToStringMapEntry {

173 _key = ’lowerMultiplicity ’ + feature.name ,

174 value = ’self.’ + group.parentFeature.name + ’

Features ->select(f : ’ + group.name + ’ | f.

oclIsKindOf(’ + feature.name + ’))->notEmpty ()

implies ’ +

175 ’self.’ + group.parentFeature.name + ’Features ->

select(f : ’ + group.name + ’ | f.oclIsKindOf(’

+ feature.name + ’))->size() >=’ + toString(

relationship.lowerBound)

176 }

177 }

178 };

179 when {

180 parentClass.eAnnotations ->select(

181 annot : \emph{Ecore }:: EAnnotation | not annot.

details ->select(

182 entry : \emph{Ecore }:: EStringToStringMapEntry |

entry._key = ’lowerMultiplicity ’ + feature.

name)->isEmpty ())->isEmpty ();

183 }

184 }

185

186 relation GroupChild2UpperAnnot {

187

188 checkonly domain feature relationship : features ::

StructuralRelationship {

189 from = group : features ::Group {},

190 to = feature : features :: Feature {}

191 };

192

193 enforce domain classdiagram parentClass : \emph{Ecore }::

EClass {

194 eAnnotations = oclAnnotUpper : \emph{Ecore }::

EAnnotation {

195 source = ’http ://www.eclipse.org/ocl/examples/OCL’,

196 details = oclEntryUpper : \emph{Ecore }::

EStringToStringMapEntry {
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197 _key = ’upperMultiplicity ’ + feature.name ,

198 value = ’self.’ + group.parentFeature.name + ’

Features ->select(f : ’ + group.name + ’ | f.

oclIsKindOf(’ + feature.name + ’))->notEmpty ()

implies ’ +

199 ’self.’ + group.parentFeature.name + ’Features ->

select(f : ’ + group.name + ’ | f.oclIsKindOf(’

+ feature.name + ’))->size() <=’ + toString(

relationship.upperBound)

200 }

201 }

202 };

203 when {

204 -- The rule is only executed when upperBound is > 0, i.

e.,

205 -- we only must create the restriction when there is an

upper bound

206 relationship.upperBound > 0

207 and

208 parentClass.eAnnotations ->select(

209 annot : \emph{Ecore }:: EAnnotation | not annot.

details ->select(

210 entry : \emph{Ecore }:: EStringToStringMapEntry |

entry._key = ’upperMultiplicity ’ + feature.

name)->isEmpty ())->isEmpty ();

211 }

212 }

213

214 top relation UsesRelationship2Reference{

215

216 checkonly domain feature model : features :: FeatureModel {

217 relationships = usesRelationship : features ::Uses {

218 from = fromFeature : features :: Feature {},

219 to = toFeature : features :: Feature {}

220 }

221 };

222

223 enforce domain classdiagram pkg : \emph{Ecore }:: EPackage

{

224 nsURI = ’http ://’ + model.name ,

225 eClassifiers = toClass : \emph{Ecore }:: EClass {

226 name = toFeature.name

227 }

228 };

229

230 enforce domain classdiagram pkg : \emph{Ecore }:: EPackage

{

231 nsURI = ’http ://’ + model.name ,

232 eClassifiers = fromClass : \emph{Ecore }:: EClass {

233 name = fromFeature.name ,
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234 eStructuralFeatures = reference : \emph{Ecore }::

EReference {

235 name = usesRelationship.name ,

236 eType = toClass ,

237 upperBound = usesRelationship.upperBound ,

238 lowerBound = usesRelationship.lowerBound ,

239 containment = false

240 }

241 }

242 };

243

244 where {

245 if (not usesRelationship.opposite.oclIsUndefined ())

then

246 UsesRelationship2EOppositeReference(usesRelationship.

opposite , reference)

247 else

248 true

249 endif;

250 }

251 }

252

253 relation UsesRelationship2EOppositeReference {

254

255 checkonly domain feature opposite : features ::Uses {

256 };

257

258 enforce domain classdiagram reference : \emph{Ecore }::

EReference {

259 eOpposite = oppositeReference : \emph{Ecore }::

EReference {

260 name = opposite.name

261 }

262 };

263 }

264

265 top relation ExcludesRelationship2ModelConstraint{

266

267 checkonly domain feature model : features :: FeatureModel {

268 relationships = excludesRelationship : features ::

Excludes {

269 from = fromFeature : features :: Feature {},

270 to = toFeature : features :: Feature {}

271 }

272 };

273

274 enforce domain classdiagram pkg : \emph{Ecore }:: EPackage

{

275 nsURI = ’http ://’ + model.name ,
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276 eAnnotations = oclAnnotExcludes: \emph{Ecore }::

EAnnotation {

277 source = ’http ://www.eclipse.org/ocl/examples/OCL’,

278 details = detailExcludes: \emph{Ecore }::

EStringToStringMapEntry {

279 _key = fromFeature.name + ’_exclusion_ ’ + toFeature

.name ,

280 value = ’(’ + fromFeature.name + ’.allInstances ()->

notEmpty () implies ’ + toFeature.name + ’.

allInstances ()->isEmpty ()) and ’ +

281 ’(’ + toFeature.name + ’.allInstances ()->

notEmpty () implies ’ + fromFeature.name + ’

.allInstances ()->isEmpty ())’

282 }

283 }

284 };

285 }

286

287 top relation BiconditionalRelationship2ModelConstraint{

288

289 checkonly domain feature model : features :: FeatureModel {

290 relationships = biconditionalRelationship : features ::

Biconditional {

291 from = fromFeature : features :: Feature {},

292 to = toFeature : features :: Feature {}

293 }

294 };

295

296 enforce domain classdiagram pkg : \emph{Ecore }:: EPackage

{

297 nsURI = ’http ://’ + model.name ,

298 eClassifiers = fromClass : \emph{Ecore }:: EClass {

299 name = fromFeature.name ,

300 eAnnotations = oclAnnotFrom: \emph{Ecore }::

EAnnotation {

301 source = ’http ://www.eclipse.org/ocl/examples/OCL’,

302 details = detailFrom : \emph{Ecore }::

EStringToStringMapEntry {

303 _key = fromFeature.name + ’_biconditional_ ’ +

toFeature.name ,

304 value = toFeature.name + ’.allInstances ()->

notEmpty ()’

305 }

306 }

307 },

308 eClassifiers = toClass : \emph{Ecore }:: EClass {

309 name = toFeature.name ,

310 eAnnotations = oclAnnotTo : \emph{Ecore }:: EAnnotation

{

311 source = ’http ://www.eclipse.org/ocl/examples/OCL’,
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312 details = detailTo : \emph{Ecore }::

EStringToStringMapEntry {

313 _key = toFeature.name + ’_biconditional_ ’ +

fromFeature.name ,

314 value = fromFeature.name + ’.allInstances ()->

notEmpty ()’

315 }

316 }

317 }

318 };

319 }

320

321 top relation ImpliesRelationship2ModelConstraint{

322

323 checkonly domain feature model : features :: FeatureModel {

324 relationships = impliesRelationship : features :: Implies

{

325 from = fromFeature : features :: Feature {},

326 to = toFeature : features :: Feature {}

327 }

328 };

329

330 enforce domain classdiagram pkg : \emph{Ecore }:: EPackage

{

331 nsURI = ’http ://’ + model.name ,

332 eClassifiers = fromClass : \emph{Ecore }:: EClass {

333 name = fromFeature.name ,

334 eAnnotations = oclAnnotFrom: \emph{Ecore }::

EAnnotation {

335 source = ’http ://www.eclipse.org/ocl/examples/OCL’,

336 details = detailFrom : \emph{Ecore }::

EStringToStringMapEntry {

337 _key = fromFeature.name + ’_implies_ ’ + toFeature

.name ,

338 value = toFeature.name + ’.allInstances ()->

notEmpty ()’

339 }

340 }

341 }

342 };

343 }

344

345 top relation FMCLConstraint2OCLConstraint{

346

347 checkonly domain feature model : features :: FeatureModel {

348 modelConstraints = modelConstraints : features ::

ConstraintsSet {

349 _context = _context : features :: ConstrainableElement

{},

350 constraints = constraint : features :: Constraint {}
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351 }

352 };

353

354 enforce domain classdiagram pkg : \emph{Ecore }:: EPackage

{

355 nsURI = ’http ://’ + model.name ,

356 eClassifiers = fromClass : \emph{Ecore }:: EClass {

357 name = _context.oclAsType(Feature).name ,

358 eAnnotations = oclAnnotFrom: \emph{Ecore }::

EAnnotation {

359 source = ’http ://www.eclipse.org/ocl/examples/OCL’,

360 details = detailFrom : \emph{Ecore }::

EStringToStringMapEntry {

361 _key = constraint.name ,

362 value = translateFMCLtoOCL(constraint._body)

363 }

364 }

365 }

366 };

367 }

368

369

370

371 query toString(number : Integer) : String {

372 -- We define the following expression to translate an

Integer to String.

373 -- In this way , we avoid to include any external library/

method to perform

374 -- the conversion.

375 if number >= 0 then

376 OrderedSet {1000000 , 10000, 1000, 100, 10, 1}->iterate(

377 -- We will supports numbers <= 999.999

378 -- If greater numbers are needed , more powers of ten

can be added

379 denominator : Integer;

380 s : String = ’’|

381 let numberAsString : String = OrderedSet{’0’,’1’,’2’,

’3’,’4’,’5’,’6’,’7’,’8’,’9’}

382 ->at((( number div denominator) mod 10) + 1)

383 in

384 if s=’’ and numberAsString = ’0’ then

385 s

386 else

387 s.concat(numberAsString)

388 endif

389 )

390 else

391 ’-’.concat(toString(-number))

392 endif

393 }
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394

395 query buildGroupConstraint(parentFeature : Feature) :

String {

396 parentFeature.group.childs ->iterate(

397 -- We iterate for each relationship contained in the

group

398 relationship : StructuralRelationship;

399 -- The text of the OCL expression is stored in the "

result" var

400 result : String = ’’

401 | -- Starting from here , the body of the loop

402 result.concat(

403 ’(if self.’ + parentFeature.name + ’Features ->

select(f : ’ + parentFeature.group.name + ’ | f

.oclIsKindOf(’ + relationship.to.name + ’))->

notEmpty () then 1 else 0 endif) + ’)

404 ).concat(’0’)

405 }

406

407 query translateFMCLtoOCL(expression : String) : String {

408

409

410 ConstrainableElement.allInstances ()->iterate(

411 elt : ConstrainableElement;

412 s : String = expression |

413 -- The order when applying the substitutions is

important

414 -- We must go from the most specific case to the most

general one

415 if (elt.oclIsTypeOf(features :: Feature)) then

416 s.replace(’(’ + elt.name + ’\b)\. childs \(\)’, ’$1Type

.allInstances ()’)

417 else

418 s

419 endif

420 .replace(’(’ + elt.name + ’\b)\.(\w+\s+\S+\s+.+)’, ’$1.

allInstances ()->forAll($2)’)

421 .replace(’(’ + elt.name + ’\b)\. selected \(\)’, ’$1.

allInstances ()->notEmpty ()’)

422 .replace(’(’ + elt.name + ’\b)(?:\. allInstances \(\))?’,

’$1.allInstances ()’)

423 )

424 }

425

426 } �





B
TRANSFORMATION MODULES2COMPONENTS

Listing B.1: Full Modules2Components transformation

1 transformation modules2components(mdomain : mview , dcmdomain

: dcm , ccdomain : ccview) {

2

3 key ccview :: Component{name};

4 key ccview :: Connector{name};

5 key ccview ::Port{name ,powner };

6 key ccview ::Role{name ,cowner };

7 key ccview :: Service{name ,sowner };

8 key ccview :: PeerToPeer{name ,service };

9

10 top relation ModulesModel2ComponentsModel {

11

12 checkonly domain mdomain modulesModel : mview::

ModulesModel {};

13

14 checkonly domain dcmdomain varModel : dcm::

DomainConceptualModel {};

15

16 enforce domain ccdomain componentsModel : ccview :: CCModel

{

17 name = modulesModel.name

18 };

19

20 where {

21 UseCase2Connector(modulesModel ,varModel ,componentsModel

);

22 }

23 }

24

25

26 relation UseCase2Connector {

27

28 checkonly domain mdomain modulesModel : mview::

ModulesModel {};

29

30 checkonly domain dcmdomain varModel : dcm::

DomainConceptualModel {

31 useCase = useCase : dcm:: UseCase {}

32 };

407
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33

34 enforce domain ccdomain componentsModel : ccview :: CCModel

{

35 tcomponents = connector : ccview :: Connector {

36 name = useCase.name + ’ Connector ’

37 }

38 };

39

40 where {

41 Module2Component(modulesModel , varModel ,

componentsModel , connector , useCase);

42 }

43 }

44

45

46 relation Module2Component {

47

48 checkonly domain mdomain modulesModel : mview::

ModulesModel {

49 tmodules = module : mview:: Module {}

50 };

51

52 checkonly domain dcmdomain varModel : dcm::

DomainConceptualModel {

53 Actor = actor : dcm::Actor {

54 uses_UseCase = useCaseActor : dcm:: UseCase {}

55 }

56 };

57

58 enforce domain ccdomain componentsModel : ccview :: CCModel

{

59 tcomponents = component : ccview :: Component {

60 name = getComponentName(varModel , actor , module)

61 }

62 };

63

64 enforce domain ccdomain connector : ccview :: Connector {};

65

66 checkonly domain dcmdomain useCase : dcm:: UseCase {};

67

68

69 where {

70 if module.name = ’User Interface ’ then

71 Module2RolePort(module , useCaseActor , connector ,

component)

72 else

73 Module2RolePort(module , useCase , connector , component

)

74 endif;

75
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76 Function2Relation(module , componentsModel , connector ,

component);

77 }

78 }

79

80 relation Module2RolePort {

81

82 checkonly domain mdomain module : mview:: Module {};

83

84 checkonly domain dcmdomain useCase : dcm:: UseCase {};

85

86 enforce domain ccdomain connector : ccview :: Connector {

87 crole = role : ccview ::Role {

88 name = module.name + ’ Role’

89 }

90 };

91

92 enforce domain ccdomain component : ccview :: Component {

93 port = port : ccview ::Port {

94 name = useCase.name + ’ Port’

95 }

96 };

97

98 where {

99 ConnectRoleAndPort(role , port);

100 if (connector.name.oclIsUndefined () or connector.name =

useCase.name + ’ Connector ’) then

101 Function2Service(module , port , component)

102 else

103 true

104 endif;

105 }

106 }

107

108 relation ConnectRoleAndPort {

109

110 checkonly domain ccdomain role : ccview ::Role {};

111

112 enforce domain ccdomain port : ccview ::Port {

113 prole = role

114 };

115

116 when {

117 role.rport.oclIsUndefined () and port.prole.

oclIsUndefined ();

118 }

119 }

120

121 relation Function2Service {

122
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123 checkonly domain mdomain module : mview:: Module {

124 function = function : mview:: Function {}

125 };

126

127 checkonly domain ccdomain port : ccview ::Port {};

128

129 enforce domain ccdomain component: ccview :: Component {

130 cservice = service : ccview :: Service {

131 name = function.name ,

132 type = function.type ,

133 port = port

134 }

135 };

136 }

137

138

139 relation Function2Relation {

140

141 checkonly domain mdomain module : mview:: Module {

142 function = function : mview:: Function {}

143 };

144

145 enforce domain ccdomain componentsModel : ccview :: CCModel

{

146 relations = relat : ccview :: PeerToPeer {

147 name = module.name + ’ Attachment ’,

148 type = ’attachment ’,

149 service = function.name ,

150 constraints = function.type ,

151 component = component ,

152 connector = connector

153 }

154 };

155

156 checkonly domain ccdomain connector : ccview :: Connector

{};

157

158 checkonly domain ccdomain component: ccview :: Component

{};

159

160 }

161

162 query getComponentName(varModel : dcm::

DomainConceptualModel , actor : dcm::Actor , module :

mview:: Module) : String {

163

164 if module.name = ’User Interface ’ then

165 module.name + ’ - ’ + actor.name

166 else



transformation modules2components 411

167 if module.name = ’Inference Motor’ or module.name = ’

Knowledge Base’ then

168 if varModel.Reasoning.ReasoningFeatures.oclIsTypeOf(

dcm:: deductive) then

169 ’Deductive ’ + module.name

170 else

171 if varModel.Reasoning.ReasoningFeatures.oclIsTypeOf

(dcm:: differential) then

172 ’Differential ’ + module.name

173 else

174 ’Error ’ + module.name

175 endif

176 endif

177 else

178 module.name

179 endif

180 endif

181 }

182 } �





C
TRANSFORMATION COMPONENTS2PRISMA

Listing C.1: Full Components2Prisma transformation

1 transformation Components2Prisma(adcmdomain : adcm , cdomain :

ccview , prismadomain: prisma) {

2

3

4 key prisma :: PRISMAArchitecture{name};

5 key prisma :: Component{name};

6 key prisma :: Connector{name};

7 key prisma :: Aspect{name};

8

9

10 top relation CCModel2PRISMAArchitecture {

11

12 checkonly domain adcmdomain adcm: adcm::

AppDomainConceptualModel {};

13

14 checkonly domain cdomain model : ccview :: CCModel {};

15

16 enforce domain prismadomain arch : prisma ::

PRISMAArchitecture {

17 name = model.name

18 };

19

20 where {

21 Component2Component(adcm , model , arch);

22 }

23 }

24

25 relation Component2Component {

26

27 checkonly domain adcmdomain adcm: adcm::

AppDomainConceptualModel {};

28

29 checkonly domain cdomain model : ccview :: CCModel {

30 tcomponents = ccomponent : ccview :: Component {}

31 };

32

33 enforce domain prismadomain arch: prisma ::

PRISMAArchitecture {

34 includes = pcomponent : prisma :: System {

413
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35 name = ccomponent.name

36 }

37 };

38

39 where {

40 Port2PortInterface(arch , adcm , ccomponent , pcomponent);

41 }

42 }

43

44

45 relation Port2PortInterface {

46

47 checkonly domain prismadomain arch: prisma ::

PRISMAArchitecture {};

48

49 checkonly domain adcmdomain adcm: adcm::

AppDomainConceptualModel {};

50

51 checkonly domain cdomain ccomponent : ccview :: Component {

52 port = cport : ccview ::Port {

53 prole = prole : ccview ::Role {}

54 }

55 };

56

57 enforce domain prismadomain pcomponent : prisma :: System {

58 has = pport : prisma ::Port {

59 name = cport.name ,

60 typed = interface :prisma :: Interface {

61 name = ’I’ + ccomponent.name

62 }

63 }

64 };

65

66 where {

67 Component2FunctionalAspect(adcm , ccomponent , pport ,

interface , pcomponent);

68 Connector2ConnectorPortInterface(pport , pcomponent ,

prole , adcm , ccomponent , arch);

69 }

70 }

71

72 relation Component2FunctionalAspect {

73

74 checkonly domain adcmdomain adcm : adcm::

AppDomainConceptualModel {};

75

76 checkonly domain cdomain ccomponent : ccview :: Component {

77 cservice = cservice : ccview :: Service {}

78 };

79
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80 checkonly domain prismadomain pport : prisma ::Port {};

81

82 checkonly domain prismadomain interface : prisma ::

Interface {};

83

84 enforce domain prismadomain pcomponent : prisma ::

Component {

85 imports = aspect : prisma :: Aspect {

86 name = ’F’ + ccomponent.name ,

87 using = using ->including(interface),

88 providesRequires = service :prisma :: Service {

89 name = cservice.name ,

90 servType = cservice.type ,

91 isInInterface = isInInterface ->including(interface)

92 }

93 }

94 };

95

96 where {

97 Propery2Parameter(adcm , service);

98 Hypotheses2Parameter(adcm , service);

99 AddServices2Interface(service , interface);

100 AddPlayedRole2Aspect(pport , interface , aspect);

101 Property2ConstantAttribute(adcm , aspect);

102 Hypotheses2VariableAttribute(adcm , aspect);

103 Rule2DerivedAttribute(adcm , aspect);

104 }

105 }

106

107 relation Propery2Parameter {

108

109 checkonly domain adcmdomain adcm: adcm::

AppDomainConceptualModel {

110 properties = property : adcm:: Property {}

111 };

112

113 enforce domain prismadomain service : prisma :: Service {

114 has = parameter : prisma :: Parameter {

115 name = property.name ,

116 paramKind = property.type

117 }

118 };

119 }

120

121 relation Hypotheses2Parameter {

122

123 checkonly domain adcmdomain adcm: adcm::

AppDomainConceptualModel {

124 hypotheses = hyp : adcm:: Hypotheses {}

125 };



416 transformation components2prisma

126

127 enforce domain prismadomain service : prisma :: Service {

128 has = parameter : prisma :: Parameter {

129 name = hyp.name ,

130 paramKind = hyp.type

131 }

132 };

133 }

134

135 relation AddServices2Interface {

136

137 checkonly domain prismadomain service : prisma :: Service

{};

138

139 enforce domain prismadomain interface : prisma :: Interface

{

140 publish = publish ->including(service)

141 };

142 }

143

144

145 relation AddPlayedRole2Aspect {

146

147 checkonly domain prismadomain pport : prisma ::Port {};

148

149 checkonly domain prismadomain interface : prisma ::

Interface {};

150

151 enforce domain prismadomain aspect: prisma :: Aspect {

152 plays = plays : prisma :: PlayedRole {

153 name = ’Played_role_ ’ + pport.name ,

154 for = interface

155 }

156 };

157

158 where {

159 AddPlayedRole2Port(plays , pport);

160 }

161 }

162

163 relation AddPlayedRole2Port {

164

165 checkonly domain prismadomain plays : prisma :: PlayedRole

{};

166

167 enforce domain prismadomain pport : prisma ::Port {

168 behaves = plays

169 };

170

171 }
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172

173

174 relation Property2ConstantAttribute {

175

176 checkonly domain adcmdomain adcm: adcm::

AppDomainConceptualModel {

177 properties = property : adcm:: Property {}

178 };

179

180 enforce domain prismadomain aspect : prisma :: Aspect {

181 described_by = attribute : prisma :: ConstantAttribute {

182 name = property.name ,

183 value = property.value ,

184 type = property.type

185 }

186 };

187 }

188

189

190 relation Hypotheses2VariableAttribute {

191

192 checkonly domain adcmdomain adcm: adcm::

AppDomainConceptualModel {

193 hypotheses = hyp : adcm:: Hypotheses {}

194 };

195

196 enforce domain prismadomain aspect : prisma :: Aspect {

197 described_by = attribute : prisma :: VariableAttribute {

198 name = hyp.name ,

199 value = hyp.value ,

200 type = hyp.value

201 }

202 };

203 }

204

205 relation Rule2DerivedAttribute {

206

207 checkonly domain adcmdomain adcm: adcm::

AppDomainConceptualModel {

208 rules = rule : adcm::Rule {}

209 };

210

211 enforce domain prismadomain aspect : prisma :: Aspect {

212 described_by = attribute : prisma :: DerivedAttribute {

213 name = rule.name ,

214 complexTerm = rule.clause

215 }

216 };

217

218 }
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219

220 relation Connector2ConnectorPortInterface {

221

222 checkonly domain prismadomain pport : prisma ::Port {};

223

224 checkonly domain prismadomain pcomponent : prisma :: System

{};

225

226 checkonly domain cdomain prole : ccview ::Role {

227 cowner = cconnector : ccview :: Connector {}

228 };

229

230 checkonly domain adcmdomain adcm: adcm::

AppDomainConceptualModel {};

231

232 checkonly domain cdomain ccomponent : ccview :: Component

{};

233

234 enforce domain prismadomain arch: prisma ::

PRISMAArchitecture {

235 synchronizes = pconnector : prisma :: Connector {

236 name = cconnector.name ,

237 has = role : prisma ::Port {

238 name = prole.name ,

239 typed = interface :prisma :: Interface {

240 name = ’I’ + pconnector.name + ’-’ + role.name

241 }

242 }

243 }

244 };

245 where {

246 ConnectRolePort(arch , pport , ccomponent , role ,

pcomponent);

247 Connector2CoordinatorAspect(adcm , role , interface ,

cconnector , pconnector);

248 }

249 }

250

251 relation ConnectRolePort {

252

253 checkonly domain prismadomain arch: prisma ::

PRISMAArchitecture {};

254

255 checkonly domain prismadomain pport : prisma ::Port {};

256

257 checkonly domain cdomain ccomponent : ccview :: Component {

258 clink = clink : ccview :: Relation {}

259 };

260

261 checkonly domain prismadomain role : prisma ::Port {};
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262

263 enforce domain prismadomain pcomponent : prisma :: System {

264 hasLinks = link : prisma :: LinkElement {

265 name = clink.name ,

266 sourcePort = pport ,

267 targetPort = role

268 }

269 };

270

271 where {

272 AddAttachmentsBindingsToPortAndArc(link , pport , arch);

273 }

274 }

275

276 relation AddAttachmentsBindingsToPortAndArc {

277

278 checkonly domain prismadomain link : prisma :: LinkElement

{};

279

280 enforce domain prismadomain pport : prisma ::Port {

281 attachmentsBindings = attachmentsBindings ->including(

link)

282 };

283

284 enforce domain prismadomain arch: prisma ::

PRISMAArchitecture {

285 connects = attachment : prisma :: Attachment {

286 name = link.name ,

287 sourcePort = link.sourcePort ,

288 targetPort = link.targetPort

289 }

290 };

291

292 }

293

294 relation Connector2CoordinatorAspect {

295

296 checkonly domain adcmdomain adcm : adcm::

AppDomainConceptualModel {};

297

298 checkonly domain prismadomain role : prisma ::Port {};

299

300 checkonly domain prismadomain interface : prisma ::

Interface {};

301

302 checkonly domain cdomain cconnector : ccview :: Connector

{};

303

304 enforce domain prismadomain pconnector : prisma ::

Connector {
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305 imports = aspect : prisma :: Aspect {

306 name = ’C’ + cconnector.name ,

307 using = using ->including(interface)

308 }

309 };

310

311 where {

312 AddPlayedRole2Aspect(role , interface , aspect);

313 Property2ConstantAttribute(adcm , aspect);

314 Hypotheses2VariableAttribute(adcm , aspect);

315 Rule2DerivedAttribute(adcm , aspect);

316 }

317

318 }

319

320 } �



D
TRANSFORMATION
MULTIPLEFEATURES2FAMAFEATURES

Listing D.1: MULTIPLE Features to FAMA features transformation

1 transformation MultipleFeatures2FamaFeatures(mdomain :

features , fdomain : FeatureModelSchema){

2

3 key BinaryRelationType {name};

4 key SetRelationType {name ,cardinality };

5 key GeneralFeature {name};

6 key FeatureModelType {feature };

7

8 top relation Model2Model {

9

10 checkonly domain mdomain fmodel : features :: FeatureModel

{

11 rootFeature = root : features :: Feature {}

12 };

13 enforce domain fdomain model : FeatureModelSchema ::

FeatureModelType {

14 feature = first : FeatureModelSchema :: GeneralFeature {

15 name = root.name

16 }

17 };

18 }

19

20 top relation StructuralRelationship2BinaryRelation {

21

22 checkonly domain mdomain model : features :: FeatureModel {

23 };

24

25 checkonly domain mdomain mfeature : features :: Feature {

26 childs = relationship : features ::

StructuralRelationship {}

27 };

28

29 enforce domain fdomain ffeature : FeatureModelSchema ::

GeneralFeature {

30 name = mfeature.name ,

31 binaryRelation = binaryRelation : FeatureModelSchema ::

BinaryRelationType {

32 name = ’Relation_to_ ’ + relationship.to.name ,

421
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33 cardinality = cardinality : FeatureModelSchema ::

CardinalityType {

34 max = relationship.upperBound ,

35 min = relationship.lowerBound

36 },

37 solitaryFeature = generalfeature : FeatureModelSchema

:: GeneralFeature {

38 name = relationship.to.name

39 }

40 }

41 };

42 }

43

44 top relation Group2SetRelation {

45 checkonly domain mdomain model : features :: FeatureModel {

46 };

47

48 checkonly domain mdomain feature : features :: Feature {

49 group = group : features ::Group {

50 childs = childRelationship : features ::

StructuralRelationship {

51 }

52 }

53 };

54 enforce domain fdomain feature2 : FeatureModelSchema ::

GeneralFeature {

55 name = feature.name ,

56 setRelation = setRelation : FeatureModelSchema ::

SetRelationType {}

57 };

58 enforce domain fdomain setRelation : FeatureModelSchema ::

SetRelationType {

59 name = ’Grouped_Relation ’,

60 cardinality= cardinality : FeatureModelSchema ::

CardinalityType{

61 },

62 groupedFeature = generalfeatures : FeatureModelSchema

:: GeneralFeature {

63 name = childRelationship.to.name

64 }

65 };

66 enforce domain fdomain cardinality : FeatureModelSchema ::

CardinalityType{

67 max = group.upperBound ,

68 min = group.lowerBound

69 };

70 }

71

72 top relation ExcludesRelationship2ExcludesType{

73
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74 checkonly domain mdomain model : features :: FeatureModel {

75 relationships = excludesRelationship : features ::

Excludes {

76 from = fromFeature : features :: Feature {},

77 to = toFeature : features :: Feature {}

78 }

79 };

80

81 enforce domain fdomain featureModel : FeatureModelSchema

:: FeatureModelType {

82 feature = feature : FeatureModelSchema :: GeneralFeature

{

83 name = model.rootFeature.name

84 },

85 excludes= exclude : FeatureModelSchema :: ExcludesType {

86 name= ’Excludes_from_ ’ + from.name + ’_to_’ + to.name

,

87 excludes=from.name ,

88 feature=to.name

89 }

90

91 };

92 }

93

94 top relation ImpliesRelationship2RequiresType{

95 checkonly domain mdomain model : features :: FeatureModel {

96 relationships = requiresRelationship :features :: Implies

{

97 from = fromFeature : features :: Feature {},

98 to = toFeature : features :: Feature {}

99 }

100 };

101 enforce domain fdomain featureModel : FeatureModelSchema

:: FeatureModelType {

102 feature = feature :FeatureModelSchema :: GeneralFeature {

103 name = model.rootFeature.name

104 },

105 requires= require:FeatureModelSchema :: RequiresType {

106 name = from.name + ’_requires_ ’ + to.name ,

107 requires = from.name ,

108 feature = to.name

109 }

110

111 };

112

113 }

114 } �





E
FAMA XML SCHEMA DEFINITION

Listing E.1: FAMA XML Schema De�nition

1

2

3 <?xml version="1.0" encoding="UTF -8"?>

4 <xs:schema xmlns:xs="http://www.w3.org /2001/ XMLSchema"

elementFormDefault="qualified">

5 <!-- a feature model coprises a root and 0..* constraints

-->

6 <xs:element name="feature -model">

7 <xs:complexType >

8 <xs:sequence >

9 <xs:element ref="feature"/>

10 <xs:element ref="requires" minOccurs="0" maxOccurs="

unbounded"/>

11 <xs:element ref="excludes" minOccurs="0" maxOccurs="

unbounded"/>

12 </xs:sequence >

13 </xs:complexType >

14 </xs:element >

15 <!-- a root is comprises with 0..* relations that can be

either binary or set relations -->

16 <!-- a general relation has an atribute name to indentify

it -->

17 <xs:complexType name="generalRelation">

18 <xs:attribute name="name" use="required"/>

19 </xs:complexType >

20 <!-- a relation is of the type generalRelation -->

21 <xs:element name="relation" type="generalRelation"/>

22 <!-- a binary relation is of an extended type of

generalRelation and comprises only one solitaryFeature

-->

23 <xs:element name="binaryRelation">

24 <xs:complexType >

25 <xs:complexContent >

26 <xs:extension base="generalRelation">

27 <xs:sequence >

28 <xs:element ref="cardinality" />

29 <xs:element ref="solitaryFeature" />

30 </xs:sequence >

31 </xs:extension >

425



426 fama xml schema definition

32 </xs:complexContent >

33 </xs:complexType >

34 </xs:element >

35 <!-- a set relation is of an extended type of

generalRelation and comprises 0..* cadninalities and

2..* groupedFeature -->

36 <xs:element name="setRelation">

37 <xs:complexType >

38 <xs:complexContent >

39 <xs:extension base="generalRelation">

40 <xs:sequence >

41 <xs:element ref="cardinality" maxOccurs="

unbounded"/>

42 <xs:element ref="groupedFeature" minOccurs="2"

maxOccurs="unbounded"/>

43 </xs:sequence >

44 </xs:extension >

45 </xs:complexContent >

46 </xs:complexType >

47 </xs:element >

48 <!-- a generalFeature is a type that has an attribute

called name to identified it and comprises 0..*

relations , it also has an element called attribute -->

49 <xs:complexType name="generalFeature">

50 <xs:sequence minOccurs="0" maxOccurs="unbounded">

51 <xs:element ref="binaryRelation" minOccurs="0"

maxOccurs="unbounded"/>

52 <xs:element ref="setRelation" minOccurs="0" maxOccurs

="unbounded"/>

53 </xs:sequence >

54 <xs:attribute name="name" use="required"/>

55 </xs:complexType >

56

57 <!-- a feature is of the type generalFeature -->

58 <xs:element name="feature" type="generalFeature"/>

59

60 <!-- solitaryFeature is of an extended type of

generalFeature and comprises of 1..* cardinalities -->

61 <xs:element name="solitaryFeature" type="generalFeature"/>

62

63 <!-- groupedFeature is of an extended type of

generalFeature and has implicitly the cardinality

[1..1] -->

64 <xs:element name="groupedFeature" type="generalFeature"/>

65 <!-- a cardinality comprises two attributes called min and

max indicating the boundaries of the cardinalities -->

66 <xs:element name="cardinality">

67 <xs:complexType >

68 <xs:attribute name="min" use="required"/>

69 <xs:attribute name="max" use="required"/>
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70 </xs:complexType >

71 </xs:element >

72 <!-- requires and excludes constraints an attribute

called name to identify it-->

73 <xs:element name="requires">

74 <xs:complexType >

75 <xs:attribute name="name" use="required"/>

76 <xs:attribute name="feature" use="required"/>

77 <xs:attribute name="requires" use="required"/>

78 </xs:complexType >

79 </xs:element >

80 <xs:element name="excludes">

81 <xs:complexType >

82 <xs:attribute name="name" use="required"/>

83 <xs:attribute name="feature" use="required"/>

84 <xs:attribute name="excludes" use="required"/>

85 </xs:complexType >

86 </xs:element >

87

88 </xs:schema > �





F
RUNNING A QVT TRANSFORMATION
PROGRAMMATICALLY USING MEDINI QVT

Listing F.1: Running a QVT transformation programmatically using me-

dini QVT:QvtTransformationJob class
1 package es.upv.dsic.issi.qvt.launcher.internal;

2

3 import java.io.IOException;

4 import java.io.InputStreamReader;

5 import java.io.Reader;

6 import java.util.ArrayList;

7 import java.util.Collection;

8 import java.util.Collections;

9 import java.util.HashMap;

10

11 import org.eclipse.core.resources.ResourcesPlugin;

12 import org.eclipse.core.resources.WorkspaceJob;

13 import org.eclipse.core.runtime.CoreException;

14 import org.eclipse.core.runtime.IProgressMonitor;

15 import org.eclipse.core.runtime.IStatus;

16 import org.eclipse.core.runtime.Status;

17 import org.eclipse.emf.common.util.Monitor;

18 import org.eclipse.emf.common.util.URI;

19 import org.eclipse.emf.ecore.EObject;

20 import org.eclipse.emf.ecore.EPackage;

21 import org.eclipse.emf.ecore.resource.Resource;

22 import org.eclipse.emf.ecore.resource.ResourceSet;

23 import org.eclipse.emf.ecore.resource.impl.ResourceSetImpl;

24 import org.eclipse.emf.ecore.xmi.PackageNotFoundException;

25 import org.oslo.ocl20.standard.lib.OclAnyModelElement;

26

27 import traces.TraceabilityLink;

28 import traces.TraceabilityModel;

29 import traces.TracesFactory;

30 import uk.ac.kent.cs.kmf.util.ILog;

31 import uk.ac.kent.cs.kmf.util.OutputStreamLog;

32 import de.ikv.emf.qvt.EMFQvtProcessorImpl;

33 import de.ikv.medini.qvt.QVTProcessorConsts;

34 import de.ikv.medini.qvt.Trace;

35 import es.upv.dsic.issi.qvt.launcher.QvtLauncherPlugin;

429
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36 import es.upv.dsic.issi.qvt.launcher.model.qvtinvocation.

Domain;

37 import es.upv.dsic.issi.qvt.launcher.model.qvtinvocation.

QvtTransformationInvocation;

38

39 public class QvtTransformationJob extends WorkspaceJob {

40

41 QvtTransformationInvocation invocation;

42

43 ResourceSet resourceSet = new ResourceSetImpl ();

44

45 public QvtTransformationJob(QvtTransformationInvocation

invocation) {

46 super("Running " + invocation.getName () + "

transformation");

47 this.invocation = invocation;

48 }

49

50 @Override

51 public IStatus runInWorkspace(IProgressMonitor monitor)

52 throws CoreException {

53

54 monitor.beginTask("Running ...", Monitor.UNKNOWN);

55

56 Resource targetResource = null;

57

58 ILog log = new OutputStreamLog(System.err);

59

60 EMFQvtProcessorImpl emfQvtProcessorImpl = new

EMFQvtProcessorImpl(log);

61

62 Reader qvtScriptReader = new InputStreamReader(

63 ResourcesPlugin.getWorkspace ().getRoot ().getFile(

invocation.getPath ()).getContents ());

64

65

66 Collection <Resource > models = (new ArrayList <Resource

>());

67 for (Domain domain : invocation.getDomains ()) {

68

69 Resource resource = null;

70

71 if (ResourcesPlugin.getWorkspace ().getRoot ().getFile

(domain.getModelPath ()).exists ()) {

72 try {

73 resource = resourceSet.getResource(

74 URI.createPlatformResourceURI(domain.

getModelPath ().toString (),false),

true);

75 resource.load(Collections.EMPTY_MAP);
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76

77 if (! resource.getContents ().isEmpty ()) {

78 emfQvtProcessorImpl.addMetaModel(resource.

getContents ().get(0).eClass ().

getEPackage ());

79 } else {

80 resource = resourceSet.createResource(

81 URI.createPlatformResourceURI(domain.

getModelPath ().toString (),false))

;

82 }

83 } catch (IOException e) {

84 return new Status(IStatus.ERROR ,

QvtLauncherPlugin.PLUGIN_ID ,e.

getLocalizedMessage (),e);

85 } catch (Exception e) {

86 if (e.getCause () instanceof

PackageNotFoundException) {

87 return new Status(IStatus.ERROR ,

QvtLauncherPlugin.PLUGIN_ID ,e.getCause

().getLocalizedMessage (),e.getCause ());

88 }

89 return new Status(IStatus.ERROR ,

QvtLauncherPlugin.PLUGIN_ID ,e.

getLocalizedMessage (),e);

90 }

91 } else {

92 resource = resourceSet.createResource(

93 URI.createPlatformResourceURI(domain.

getModelPath ().toString (),false));

94

95 resource.getContents ().clear();

96

97 Object [] keys = EPackage.Registry.INSTANCE.keySet

().toArray ();

98

99

100 for (Object key : keys) {

101 EPackage pkg = EPackage.Registry.INSTANCE.

getEPackage(key.toString ());

102 if (pkg.getNsPrefix ().equals(domain.

getNsPrefix ())) {

103 emfQvtProcessorImpl.addMetaModel(pkg);

104 }

105 }

106

107 }

108 models.add(resource);

109 }

110
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111 targetResource = resourceSet.getResource(

112 URI.createPlatformResourceURI(invocation.

getDirection ().getModelPath ().toString (),

false),true);

113

114 targetResource.getContents ().clear();

115

116 emfQvtProcessorImpl.setModels(models);

117 emfQvtProcessorImpl.setDebug(true);

118

119

120 emfQvtProcessorImpl.setProperty(QVTProcessorConsts.

PROP_DISABLE_TRACES , "true");

121

122 // emfQvtProcessorImpl.setProperty(QVTProcessorConsts.

PROP_DISABLE_TRANSACTIONAL_MODE , "true");

123

124 try {

125 Collection <Trace > traces = emfQvtProcessorImpl.

evaluateQVT(

126 qvtScriptReader ,

127 invocation.getName (),

128 true ,

129 invocation.getDirection ().getName (),

130 models.toArray (),

131 new ArrayList <Trace >(),

132 log);

133 TraceabilityModel traceabilityModel =

createTraceabilityModel(traces);

134

135 Resource tracesResource = resourceSet.createResource

(

136 URI.createPlatformResourceURI(invocation.

getDirection ().getModelPath ().

137 removeFileExtension ().addFileExtension("

traces").toString (),false));

138

139 tracesResource.getContents ().add(traceabilityModel);

140

141 targetResource.save(Collections.EMPTY_MAP);

142

143 tracesResource.save(Collections.EMPTY_MAP);

144

145 } catch (IOException e) {

146 return new Status(IStatus.ERROR ,QvtLauncherPlugin.

PLUGIN_ID ,e.getLocalizedMessage (),e);

147 } catch (Exception e) {

148 return new Status(IStatus.ERROR ,QvtLauncherPlugin.

PLUGIN_ID ,e.getLocalizedMessage (),e);

149 }
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150

151 return Status.OK_STATUS;

152 }

153

154 private TraceabilityModel createTraceabilityModel(

Collection <Trace > traces) {

155 TraceabilityModel traceabilityModel = TracesFactory.

eINSTANCE.createTraceabilityModel ();

156

157 traceabilityModel.setName("Transformation");

158

159 for (Domain domain : invocation.getDomains ()) {

160 if (domain != invocation.getDirection ()) {

161 traceabilityModel.getDomainModels ().add(URI.

createPlatformResourceURI(domain.getModelPath

().toString (),false));

162 } else {

163 traceabilityModel.getTargetModels ().add(URI.

createPlatformResourceURI(domain.getModelPath

().toString (),false));

164 }

165 }

166

167

168 for (Trace t : traces) {

169 TraceabilityLink traceabilityLink = TracesFactory.

eINSTANCE.createTraceabilityLink ();

170

171 traceabilityModel.getLinks ().add(traceabilityLink);

172

173 traceabilityLink.setManipulationRule(t.getRelation ()

.getName ());

174

175 for (Object obj1 : t.getBindings ()) {

176 for (Object obj2 : (( HashMap)obj1).values ())

177 if (obj2 instanceof OclAnyModelElement) {

178 OclAnyModelElement elt = (OclAnyModelElement)

obj2;

179 if (!(( EObject) elt.asJavaObject ()).eClass ().

eResource ().equals(

180 resourceSet.getResource(

181 URI.createPlatformResourceURI(

invocation.getDirection ().

getModelPath ().toString (),

false),true)

182 .getContents ().get(0).eClass ().

eResource ())) {

183 traceabilityLink.getDomain ().add(( EObject)

elt.asJavaObject ());

184 } else {
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185 traceabilityLink.getRange ().add(( EObject)

elt.asJavaObject ());

186 }

187 }

188 }

189 }

190

191 return traceabilityModel;

192 }

193 } �
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TRANSPATH2CPN TRANSFORMATION

Listing G.1: Full Transpath2CPN transformation

1 transformation TranspathToCPN(tpDomain:transpath , cpnDomain:

cpn)

2 {

3

4 // Key declaration

5

6 key Page {name};

7 key Globbox {id};

8 key Cpnet {page ,globbox };

9 key Block {idname };

10 key Enumerated {idname };

11 key Product {idname };

12 key ColorSetElement {name};

13 key Place {id};

14 key Trans {id};

15 key Initmark {id};

16 key Mark {initmark ,colorSetElement };

17 key Fusion {name};

18 key Arc {trans ,place};

19

20

21 /* ************************************************

22 ** Root elements

23 ************************************************ */

24

25 top relation NetworkToCpnet {

26

27 checkonly domain tpDomain network : transpath :: Network {

28 molecules = molecule : transpath :: Molecule {},

29 reactions = reaction : transpath :: Reaction {}

30 };

31

32 enforce domain cpnDomain cpnet : cpn::Cpnet{

33 page = page : Page {

34 id = network.pathway.id.first(),

35 name = network.pathway.name.first(),

36 posx = 200,

37 posy = 100,

38 width = 1000,

435
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39 height = 800

40 },

41 globbox = globbox : cpn:: Globbox {

42 id = ’Declarations ’

43 }

44 };

45 where {

46 ComplexMoleculeToProduct(molecule , globbox);

47 ReactionToGUIElements(reaction , page);

48 //page.performLayout (600, 400, 1000);

49 }

50 }

51

52 /* ************************************************

53 ** Declarations

54 ************************************************ */

55

56 relation ComplexMoleculeToProduct {

57

58 checkonly domain tpDomain molecule : transpath :: Molecule

{

59 statesOf = simpleMolecule : transpath :: Molecule {}

60 };

61

62 enforce domain cpnDomain globbox : cpn:: Globbox {

63 declarations = resourcesBlock : cpn::Block {

64 id = ’Resources ’,

65 idname = ’Resources ’

66 },

67 declarations = complexesBlock : cpn::Block {

68 id = ’Complexes ’,

69 idname = ’Complexes ’,

70 declarations = product : cpn:: Product {

71 idname = GetMoleculeType(molecule)

72 }

73 }

74 };

75 when {

76 IsComplexMolecule(molecule);

77 }

78 where {

79 SimpleMoleculeToEnumerated(simpleMolecule ,

resourcesBlock , product);

80 }

81 }

82

83 relation SimpleMoleculeToEnumerated {

84

85 checkonly domain tpDomain molecule : transpath :: Molecule

{
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86 };

87

88 enforce domain cpnDomain resourcesBlock : cpn::Block {

89 declarations = enumerated : cpn:: Enumerated {

90 idname = GetMoleculeType(molecule),

91 id = GetMoleculeType(molecule),

92 // usedIn = usedIn ->including(product),

93 colorElements = element : cpn:: ColorSetElement {

94 name = molecule.name

95 }

96 }

97 };

98 enforce domain cpnDomain product : cpn:: Product {

99 simpleColors =

100 simpleColors

101 ->including(enumerated)

102 ->sortedBy(colorSet : ColorSet | colorSet.idname)

103 };

104

105 when {

106 IsSimpleMolecule(molecule);

107 }

108 }

109

110 /* ************************************************

111 ** Graphical elements

112 ************************************************ */

113

114

115 relation ReactionToGUIElements {

116

117 checkonly domain tpDomain reaction : transpath :: Reaction

{

118 reactantsCoefficient = reactantsCoefficients :

transpath :: ReactantsCoefficient {},

119 producesCoefficient = productsCoefficients : transpath

:: ProductsCoefficient {}

120 };

121

122 enforce domain cpnDomain page : cpn::Page {

123 transs = transition : cpn::Trans {

124 id = reaction.name ,

125 text = ’bind ’ + BuildTransitionText(reaction),

126 width = 60,

127 hight = 40,

128 fillColour = ’White’,

129 fillPattern = ’Solid’,

130 fillFilled = false ,

131 lineThick = 1,

132 lineType = ’Solid’,
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133 lineColour = ’Black’

134 }

135 };

136

137 where {

138 ReactantToPlaceArc(reactantsCoefficients.reactants ,

transition , reaction.name , page);

139 ProductToPlaceArc(productsCoefficients.produces ,

transition , reaction.name , page);

140 }

141 }

142

143 relation ReactantToPlaceArc {

144

145 checkonly domain tpDomain reactant : Molecule {};

146

147 checkonly domain cpnDomain trans : cpn::Trans {};

148

149 primitive domain reactionName : String;

150

151 enforce domain cpnDomain page : cpn::Page {

152 places = place : cpn::Place {

153 id = GetMoleculeType(reactant),

154 lineColour =

155 if Reaction.allInstances ().producesCoefficient.

produces ->includes(reactant) then

156 ’Black’

157 else

158 ’Lime’

159 endif

160 },

161 arcs = arc : cpn::Arc {

162 id = ’{’ + reactant.name + ’} => {’ + reactionName +

’}’,

163 orientation = ’PtoT’,

164 trans = trans ,

165 place = place

166 }

167 };

168 where {

169 FillCommonAttributesInPlaces(place);

170 MoleculeToArcAnnot(reactant ,arc);

171 SimpleMoleculeToPlaceType(reactant , place);

172 ComplexMoleculeToPlaceType(reactant , place);

173 SimpleReactantToInitMark(reactant ,place);

174 }

175 }

176

177 relation ProductToPlaceArc {

178



transpath2cpn transformation 439

179 checkonly domain tpDomain product : Molecule {};

180

181 checkonly domain cpnDomain trans : cpn::Trans {};

182

183 primitive domain reactionName : String;

184

185 enforce domain cpnDomain page : cpn::Page {

186 places = place : cpn::Place {

187 lineColour =

188 if not(Reaction.allInstances ().reactantsCoefficient

.reactants ->includes(product)) then

189 ’Maroon ’

190 else

191 ’Black’

192 endif ,

193 id =

194 if Reaction.allInstances ().reactantsCoefficient.

reactants ->includes(product) then

195 GetMoleculeType(product)

196 else

197 product.name

198 endif ,

199 text =

200 if not(Reaction.allInstances ().reactantsCoefficient

.reactants ->includes(product)) then

201 ’Dead end’

202 else

203 ’’

204 endif

205 },

206 arcs = arc : cpn::Arc {

207 id = ’{’ + reactionName + ’} => {’ + product.name + ’

}’,

208 orientation = ’TtoP’,

209 trans = trans ,

210 place = place

211 }

212 };

213

214 where {

215 FillCommonAttributesInPlaces(place);

216 MoleculeToArcAnnot(product ,arc);

217 SimpleMoleculeToPlaceType(product , place);

218 ComplexMoleculeToPlaceType(product , place);

219 }

220 }

221

222 relation FillCommonAttributesInPlaces {

223

224 enforce domain cpnDomain place : cpn::Place {
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225 width = 60,

226 hight = 40,

227 fillColour = ’White’,

228 fillPattern = ’Solid’,

229 fillFilled = false ,

230 lineThick = 1,

231 lineType = ’Solid’

232 };

233

234 }

235

236 relation SimpleReactantToInitMark {

237

238 checkonly domain tpDomain reactant : transpath :: Molecule

{

239 };

240

241 enforce domain cpnDomain place : cpn::Place {

242 initmark = imark : cpn:: Initmark {

243 fillColour = ’White’,

244 fillPattern = ’Solid’,

245 fillFilled = false ,

246 lineThick = 1,

247 lineType = ’Solid’,

248 lineColour = ’Lime’,

249

250 id = GetMoleculeType(reactant),

251 marks = mark : cpn::Mark {

252 value =

253 --- This value is not a valid value , it is set in

this way in order to

254 --- obtain a valid CPNet. This marking must be

corrected by biologists.

255 --- Now , we initialize this value to the number

of molecules of each kind

256 --- that are involved in the reactions of the

pathway

257 reactant.rkoutsCoefficient.coefficient ->sum(),

258 colorSetElement = colorSetElement : cpn::

ColorSetElement {

259 name = reactant.name

260 }

261 }

262 }

263 };

264

265 when {

266 IsSimpleMolecule(reactant);

267 }

268 }
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269

270 relation SimpleMoleculeToPlaceType {

271

272 checkonly domain tpDomain molecule : Molecule {};

273

274 enforce domain cpnDomain place : Place {

275 type = enumerated : cpn:: Enumerated {

276 idname = GetMoleculeType(molecule)

277 }

278 };

279 when {

280 IsSimpleMolecule(molecule);

281 }

282 }

283

284 relation ComplexMoleculeToPlaceType {

285

286 checkonly domain tpDomain molecule : Molecule {};

287

288 enforce domain cpnDomain place : Place {

289 type = product : cpn:: Product {

290 idname = GetMoleculeType(molecule)

291 }

292 };

293 when {

294 IsComplexMolecule(molecule);

295 }

296 }

297

298 relation MoleculeToArcAnnot {

299

300 checkonly domain tpDomain molecule : Molecule {};

301

302 enforce domain cpnDomain arc : cpn::Arc {

303 headsize = 1,

304 currentcyckle = ’2’,

305 fillColour = ’White’,

306 fillPattern = ’Solid’,

307 fillFilled = false ,

308 lineThick = 1,

309 lineType = ’Solid’,

310 lineColour =

311 if IsSimpleMolecule(molecule) then

312 ’Lime’

313 else

314 ’Black’

315 endif ,

316 annot = annot : cpn::Annot {

317 fillColour = ’White’,

318 fillPattern = ’Solid’,
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319 fillFilled = false ,

320 lineThick = 1,

321 lineType = ’Solid’,

322 lineColour =

323 if IsSimpleMolecule(molecule) then

324 ’Lime’

325 else

326 ’Black’

327 endif ,

328 text =

329 if IsSimpleMolecule(molecule) then

330 ’1‘’ + molecule.name

331 else

332 ’(’ + BuildMoleculeComponentsList(molecule) + ’)’

333 endif

334 }

335 };

336

337 }

338

339 /* ************************************************

340 ** Helper functions

341 ************************************************ */

342

343

344 query IsSimpleMolecule(molec:Molecule):Boolean

345 {

346 (molec.statesOf -> isEmpty ())

347 }

348

349 query IsComplexMolecule(molec:Molecule):Boolean

350 {

351 (not(molec.statesOf -> isEmpty ()))

352 }

353

354 query GetMoleculeType(molecule : transpath :: Molecule) :

String

355 {

356 if IsSimpleMolecule(molecule) then

357 GetSimpleMoleculeType(molecule)

358 else

359 GetComplexMoleculeType(molecule)

360 endif

361 }

362

363 query GetSimpleMoleculeType(molec : Molecule) : String

364 {

365 if (molec.klass -> includes(’adaptor proteins ’))

366 then ’A’

367 else
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368 if (molec.klass -> includes(’receptors ’))

369 then ’R’

370 else ’O’

371 endif

372 endif

373 }

374

375 query GetComplexMoleculeType(complexMolecule : Molecule) :

String

376 {

377 complexMolecule.statesOf

378 ->collect(m : Molecule | GetSimpleMoleculeType(m))

379 ->asSet()

380 ->sortedBy(type : String | type )

381 ->iterate(type : String; complexBlockID : String = ’’ |

complexBlockID.concat(type))

382 }

383

384 query BuildTransitionText(reaction : Reaction) : String

385 {

386 let moleculeNames : Sequence(String) =

387 reaction.reactantsCoefficient.reactants.name

388 in

389 moleculeNames

390 ->excluding(moleculeNames.last())

391 ->iterate(moleculeName : String; text : String = ’’ |

text.concat(moleculeName).concat(’,’))

392 .concat(moleculeNames.last())

393 }

394 query BuildMoleculeComponentsList(molecule : Molecule) :

String

395 {

396

397 let moleculesSet : OrderedSet(Molecule) =

398 molecule.statesOf

399 ->asSet()

400 ->sortedBy(molecule : Molecule | GetMoleculeType(

molecule))

401 in

402 moleculesSet

403 ->excluding(moleculesSet.last())

404 ->iterate(molecule : Molecule; text : String = ’’ |

text.concat(molecule.name).concat(’,’))

405 .concat(moleculesSet.last().name)

406 }

407 } �
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