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ABSTRACT

Software Product Line Engineering (SPLE) is a software development
technique that aims to apply the principles of industrial manufac-
turing to obtaining software applications: i. e., a Software Product
Line (SPL) is used to build a family of products with common fea-
tures and whose members, however, may have some distinguished
features. To identify these commonalities and variabilities a priori
maximizes the reuse, and reduces the costs and development time.
In this context, to describe these relationships among products with
enough expressiveness becomes the key to success.

In recent years Model Driven Engineering (MDE) has emerged as
a paradigm that allows dealing with software artifacts with a high
level of abstraction. As a result, SPLs can benefit greatly from the
standards and tools that have emerged within the community of
MDE.

However, a good integration between SPLE and MDE has not been
achieved yet. As a consequence, the mechanisms for variability
management are not expressive enough. Thus, it is not possible to
deal with variability issues in an effective way in complex software
development processes, where different views of a system, model
transformations and code generation play an important role.

This thesis presents MULTI@PLE, a framework and a tool which
aims to integrate accurate and efficient variability management mec-
hanisms (which are inherent to SPLs development) together with
MDE techniques. MULTIPLE provides domain specific languages to
specify different views of software systems. Among these views
special emphasis has been placed on the variability view because
it is crucial for the specification of a SPL. Precise mechanism of
specification, instantiation, validation and verification are provided
for this view. MULTIPLE also allows to implement complex software



development processes of using model transformations and code
generation.

The MULTIPLE tool has been used in five case studies in areas as
diverse as the development of families of expert systems, the analysis
of a large SPL in an industrial environment, bioinformatics, software
metrics and software architectures.
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RESUMEN

La Ingenieria de Lineas de Productos Software —Software Product
Line Engineerings (SPLEs) en inglés— es una técnica de desarrollo
de software que busca aplicar los principios de la fabricacion indus-
trial para la obtencién de aplicaciones informaticas: esto es, una
Linea de productos Software —Software Product Line (SPL)— se
emplea para producir una familia de productos con caracteristicas
comunes, cuyos miembros, sin embargo, pueden tener caracteristi-
cas diferenciales. Identificar a priori estas caracteristicas comunes
y diferenciales permite maximizar la reutilizacién, reduciendo el
tiempo y el coste del desarrollo. Describir estas relaciones con la sufi-
ciente expresividad se vuelve un aspecto fundamental para conseguir
el éxito.

La Ingenieria Dirigida por Modelos —Model Driven Engineer-
ing (MDE) en inglés— se ha revelado en los ultimos afios como un
paradigma que permite tratar con artefactos software con un alto
nivel de abstraccion de forma efectiva. Gracias a ello, las SPLs puede
aprovecharse en gran medida de los estandares y herramientas que
han surgido dentro de la comunidad de MDE.

No obstante, atin no se ha conseguido una buena integracion entre
SPLE y MDE, y como consecuencia, los mecanismos para la gestién
de la variabilidad no son suficientemente expresivos. De esta manera,
no es posible integrar la variabilidad de forma eficiente en procesos
complejos de desarrollo de software donde las diferentes vistas de un
sistema, las transformaciones de modelos y la generacién de codigo
juegan un papel fundamental.

Esta tesis presenta MULTI@PLE, un marco de trabajo y una he-
rramienta que persiguen integrar de forma precisa y eficiente los
mecanismos de gestion de variabilidad propios de las SPLs dentro de
los procesos de MDE. MULTIPLE proporciona lenguajes especificos de
dominio para especificar diferentes vistas de los sistemas software.

vii



Entre ellas se hace especial hincapié en la vista de variabilidad ya
que es determinante para la especificacion de SPLs. Para esta vista se
proporcionan mecanimos precisos de especificacion, instanciacion,
validacion y verificacion. MULTIPLE permite, ademas, implementar
procesos complejos de desarrollo de software empleando transfor-
maciones de modelos y generacion de cédigo.

La herramienta MULTIPLE ha sido utilizado en cinco casos de estu-
dio en ambitos tan diferentes como el desarrollo de familias de siste-
mas expertos, el analisis de una SPL de gran tamafo en un ambiente
industrial, la bioinformatica, las métricas software o las arquitecturas
software.
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RESUM

L’Enginyeria de Linies de Productes de Programari —Software Pro-
duct Line Engineerings (SPLEs) en anglés— és una tecnica de desen-
volupament de programari que busca aplicar els principis de la fa-
bricaci6 industrial per a I’obtencié d’aplicacions informatiques: és
a dir, una Linia de Productes de Programari —Software Product
Line (SPL)— s’empra per produir una familia de productes amb ca-
racteristiques comuns, les quales, pero, poden tenir caracteristiques
diferencials. Identificar a priori aquestes caracteristiques comuns i
diferencials permet maximitzar la reutilitzacid, reduint el temps i
el cost del desenvolupament. Descriure aquestes relacions amb la
suficient expressivitat es torna un aspecte fonamental per aconseguir
Iexit.

L’Enginyeria Dirigida per Models —Model Driven Engineering
(MDE) en angles— s’ha revelat en els ultims anys com un paradig-
ma que permet tractar amb artefactes de programari amb un alt
nivell d’abstraccié de forma efectiva. Gracies a aixo0, les SPLs poden
aprofitar-se en gran mesura dels estandards i les eines que han sorgit
dins de la comunitat de MDE.

No obstant aixo, encara no s’ha aconseguit una bona integracié
entre SPLE i MDE, i com a conseqiiéncia, els mecanismes per a la
gestio de la variabilitat no sén prou expressius. Amb la qual cosa no
és possible integrar la variabilitat de manera eficient en processos
complexos de desenvolupament de programari on les diferents vistes
d’un sistema, les transformacions de models i la generacié de codi
juguen un paper fonamental.

Aquesta tesi presenta MULTI@PLE, un marc de treball i una eina
que persegueixen integrar de forma precisa i eficient els mecanismes
de gestid de variabilitat propis de les SPLs dins dels processos de MDE.
MULTIPLE proporciona llenguatges especifics de domini per especifi-
car diferents vistes dels sistemes. Entre elles es fa especial émfasi en
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la vista de variabilitat, ja que és determinant per a la especificacié de
SPLs. Per a aquesta vista es proporcionen els mecanismes necessaris
d’especificacio, instanciacid, validacié i verificacié. MULTIPLE per-
met, a més, implementar processos complexos de desenvolupament
de programari emprant transformacions de models i generacio6 de
codi.

L’eina MULTIPLE ha estat utilitzada en cinc casos d’estudi en ambits
tan diversos com el desenvolupament de families de sistemes experts,
I'analisi d’'una SPL de grans dimensions en un entorn industrial, la
bioinformatica, les metriques de programari o les arquitectures de
programari.



« (When you make the finding yourself
—even if you're the last person on Earth to see the light—
you never forget it»

— Carl Sagan

American Astronomer, Writer and Scientist, 1934-1996
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INTRODUCTION

« (1: feed applied science by starving basic science

is like economising on the foundations of

a building so that it may be built higher.

Tt is only a matter of time before the whole edifice crumbles.»

— George Hornidge Porter
British Chemist, Nobel Prize in Chemistry in 1967, 1920 - 2002

Software development has become an important industry. Infor-
mation systems have become increasingly more difficult to develop
because of their complex structures, their distributed character, the
importance of functional and nonfunctional requirements and their
highly dynamic nature. These characteristics have led to that the
time spent on software development and maintenance has increased
significantly in recent years. Therefore, several proposals and re-
use techniques for software development have arisen in order to
automate these processes and reduce the time to market.

Since the late *60s the importance of reuse—as a mean to improve
the quality and maintainability of the software—was pointed out to
reduce development efforts (McIlroy 1968). The reuse of software
reduces the implementation time because the same piece of code
can be used in different parts of the same application or different
applications. Moreover, this mechanism most likely ensures that the
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code contains fewer bugs because it has already been used and tested
previously (Sommerville 2004).

1.1 MOTIVATION

Reuse mechanisms traditionally have been applied to low-level arti-
facts (code, modules, etc.). In order to improve these mechanisms in
software development processes, the approximation of the Software
Product Lines (SPLs) has emerged. This proposal looks forward to
implementing industrial development processes for software devel-
opment (as if an assembly line is involved). It is inspired by the
processes to produce physical systems in other areas, e. g. automo-
tive industry, aeronautics, electronics, electrical appliances, etc.

A sPL is designed with the aim of developing a family of products,
and not only a single and isolated product. This family will consist
of products that have a set of common features, and a number of
distinct characteristics. In this sense, the reuse mechanisms are
designed in an SPL a priori; i. e., a domain study of SPL is performed
to characterize the entire product family.

A key aspect in this context is the capture and expression of com-
monalities and variabilities among different products. To reflect the
variability of the products, feature models (Kang et al. 1990) are a
widespread and accepted notation.

The goal pursued by this thesis is to study the different proposals
that have appeared to represent and characterize the variability in re-
cent years; to study their relation with other code reuse and software
development paradigms; analyse its advantages and disadvantages
and to propose, define, implement and exploit new ideas improving
the existing approaches. An important paradigm on Software Engi-
neering is the Model Driven Engineering (MDE), which can provide
the foundations needed to implement automated SPL development
processes. The merger of MDE and SPL opens a new paradigm of
software development which involves a change in the artifacts and
processes that are used today: the Model Driven Product Line En-
gineering (MDPLE). This thesis will focus on the variability view of



1.2 OBJECTIVES

MDPLE and how this new conception of SPLs affects to the design of
production plans. This thesis makes original proposals, implements
them and demonstrates that in some aspects are better than current
practices. Finally, it pursues to put the proposal in practise, provid-
ing the necessary tools to validate the proposal in different fields of
application.

1.2 OBJECTIVES

The Model Driven Software Development (MDSD) community has
achieved significant advances by providing tools for the specification
and use of models in industrial environments—for example, the
Eclipse Modeling Framework (Eclipse 2011a). The SPL community,
on their part, has been providing languages and methodologies to
deal with the variability in product families, but lacks of the needed
standards and tools. The objective of this thesis is to fill the gap
between both communities from the variability point of view. Specif-
ically, this thesis aims to:

1. Study the feasibility of integrating Software Product Line En-
gineering and Model Driven Engineering. To consider the
possibility of effectively represent the configurations of model
features at the instance level (as opposed to the configuration
through specialization), to overcome the inability of the cur-
rent proposals to be integrated with model transformations.

2. Define a metamodel expressive enough to describe the vari-
ability in software product families.

3. Implement such a metamodel in an extensible and widely
adopted metamodeling tool for industrial environments.

4. Provide mechanisms to define instances of variability models
(i. e., configurations) in a simple and user friendly way. These
instances must respect the conformance relationships defined
by the used modeling standards.

Both the SPL
community and the
MDE community
can provide great
benefits to the
software
development world.
The former, can
provide the
methodologies to
capture variability
in a proper way,
and the latter can
provide the
standards and tools
to apply such
methodologies
successfully.
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10.

11.

12.

1.3

Provide the necessary mechanisms to define complex model
constraints and the tools needed to check them.

Avoid building an inbreeding system. All the previously spec-
ified artifacts should be reused and integrated into complex
MDE processes.

Provide the appropriate graphical editors for all those artifacts,
reducing the learning curve using Domain Specific Languages
(DSLs).

Leverage and reuse the existing industrial tools for automatic
code generation, minimizing the development effort and fol-
lowing the MDSD paradigm.

Provide an integrated framework to implement complex MDE
processes, such as Model Driven Software Product Lines
(MDSPLs), and exploit such a framework in different case stud-
ies and domains which demonstrate the power of the solution.

Demonstrate through a case study that the software artifacts
defined by the proposed methodologies and tools are truly
interoperable and can be integrated in complex software de-
velopment processes.

Use an example Software Product Line Engineering (SPLE)
process to study the implications of the active use of more
expressive feature models, and the impact in its development.

Validate the scalability of the proposal to represent and deal
with large scale models by using a real case study from the
industrial area.

STRUCTURE

This document is structured as follows: part Il summarizes the state

of the art in MDE and SPLs. Specifically, chapter 2 introduces the main
standards on top of which this thesis is built; chapter 3 describes the



1.3 STRUCTURE

main tools that provide support for MDE; and chapter 4 introduces
what SPLs are and how variability issues are managed.

Part III studies in depth the variability view and how it can be
represented using current metamodeling standards. Chapter 5 intro-
duces the concept of multi-model, and the role the variability view
plays in a Multi-Model Driven Software Product Line (MMDSPL).
Chapter 6 goes into the main issues which have prevented the use
of feature models in complex MDE processes until today; and chap-
ter 7 describes a method to easily and effectively integrate feature
models to manage variability in complex MDE processes and more
specifically in MMDSPLs.

Next part, part IV, describes the MULTI@PLE framework and the
main case studies where it has been used to develop and analyse
MMDSPLs. Chapter 8 describes in detail the MULTIPLE architecture
and user interface. Chapter 9 describes how a traditional SPL is trans-
formed into a MMDSPL and how the latter is implemented using the
MULTIPLE framework. Chapter 10 shows how the MULTIPLE frame-
work has been used to represent and analyse a large-scale industrial
feature model.

In part V some additional case studies are presented. In these cases,
we used the MULTIPLE tool as a framework to implement generic MDE
processes. Specifically, chapter 11 shows how MULTIPLE is used to
carry out a data transformation process in order to animate and
simulate biological processes by using coloured petri nets. Chapter
12 presents the Software Measurement Framework (SMF). SMF is a
generic framework which uses model transformations to measure
any type of software entity. Specifically, SMF uses the MULTIPLE frame-
work to execute such model transformations. Chapter 13 presents
MORPHEUS, a tool which provides support for Architecture gener-
aTed from Requlrements applying a Unified Methodology (ATRIUM).
ATRIUM is a methodology which allows to define software architec-
tures and requirements concurrently with the goal of generating a
proto-architecture of the system’s to be. MORPHEUS uses internally
the MULTIPLE framework to perform both constraints checking and
model transformations.
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Finally part VI closes this thesis. In chapter related works are pre-
sented and in chapter 15 the conclusions of this thesis are discussed.
Chapter 16 presents the different works that have been published
throughout the development of this thesis.
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SUMMARY

Model Driven Engineering and Software Product Line Engineering
are two code reuse techniques which aim to increase the quality
of software products and to reduce the time-to-market. Both ap-
proaches have gained great relevance in the Software Engineering
community; and both have their own languages, standards and tools.

This part of the document describes the foundations of these
proposals, which provide the background to this thesis. First, chap-
ter 2 introduces the basic concepts of MDE and its related standards.
Second, chapter 3 describes the tools available to implement MDE
processes. Finally, chapter 4 describes what SPLs are and which mech-
anisms they provide to represent and describe the variability of the
systems to be.

1






MODEL DRIVEN ENGINEERING: AUTOMATING
CODING IN SOFTWARE DEVELOPMENT

« Clearly the most unfortunate people are those
who must do the same thing over and over again,
every minute, or perhaps twenty to the minute.

They deserve the shortest hours and the highest pay.»

— John Kenneth Galbraith

Canadian-American economist, 1908-2006

Technology evolution in the Software Engineering field has made
the development of increasingly complex systems possible, specially
due to the introduction of techniques that have raised the level of
abstraction in the description of problems and their solutions: e. g.,
structured analysis in the 1970s and ’8os (Dahl et al. 1972; Marca
and McGowan 1987), object-oriented analysis and design in the "9os
(Rumbaugh et al. 1991), etc.

The emergence of Computer Aided Software Engineering (CASE)
technology in the 1980s was a big step in this direction. CASE tools
aim to provide methods for creating software supporting different
analysis and design techniques. These tools allowed developers to
express their designs using graphical notations such as structured
diagrams or state machines. However CASE technology did not suc-
ceed in this decade as expected. The reason must be sought in the
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limitations of the translation processes that transferred the graphical
representations of software systems (using general-purpose graphi-
cal notations) to a specific programming platform or technology.

Advances in the development of programming languages over the
past two decades have succeeded in raising the abstraction level in
software development, solving the translation problems of the first
CASE tools. The advent of languages based on the Object-Oriented
paradigm, such as Java, C++ or C#, are more expressive compared
to traditional languages like Fortran or C. However, the evolution
and maintenance of software systems has become a task that still
involves excessive effort.

MDE aims at organizing software artifacts at different abstraction
levels and support their definition by using software development
methodologies, advocating for the use of models as the key artifacts
to be built and maintained.

A model consists of a set of elements that provide a precise and
abstract description of a system from a view point. The term MDE
was proposed by Kent (2002) as a general framework to specify the
necessary tasks and models to carry out a software development
project entirely.

Any system specification can be expressed using models which
may express any aspect of a system. The development process be-
comes thus a series of refinements and transformations of models
where the abstraction level decreases on each step (i. e., models be-
come closer to the implementation platform). In the end, a trivial
transformation step is done to generate code because there exists a
one-to-one mapping between the most refined model and the code.
A MDE process must clearly define the sequence of models to develop
at each level and must describe how to refine models in order to
decrease the level of abstraction. The system is initially described by
means of a model that captures the requirements, regardless of the
specifics of the target platform or implementation technology. This
is a model with a high level of abstraction which describes only the
problem to be addressed.
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With the emergence of these technologies, the application of the
MDE approaches to the CASE tools only needed to overcome the last
obstacle: the lack of standardised modeling languages and method-
ologies that support the development of software systems throughout
the whole project life-cycle. Moreover, the existence of industrial
standards is needed to provide real interoperability among different
tools.

2.1 MODEL DRIVEN ENGINEERING OPEN STANDARDS

To address the issues presented in the previous section, the Object
Management Group (OMG) (OMG 2011b) launched the Model
Driven Architecture (MDA) initiative (OMG 2003) as an approach
to specify interoperable systems by using formal (or semi-formal)
models. In MDA, models that are implementation independent—
Platform Independent Models (PIMs) as will be described in the
next subsection—are initially expressed in a language which is also
implementation independent, such as the Unified Modeling Lan-
guage (UML). Later, the PIM is translated to another model—the
Platform Specific Model (PSM)—which is specific to the desired tar-
get platform or language (e. g. Java) by using a set of transformation
rules. Finally, starting from the PSM the system code is generated
in a object oriented language (Java, C#, ...). Moreover, the MDA
approach proposes to automate the use model transformations and
code generation techniques Czarnecki and Eisenecker 2000, thus,
the software development process is focused in modeling tasks in-
stead of coding tasks.

MDA relies on a great amount of the OMG standards, some of them
are the following:

META OBJECT FACILITY is the common language (meta-meta-
model) used to describe metamodels in the MDA approach.
Subsequent metamodels (such as UML) are described by using
Meta Object Facility (MOF).
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UNIFIED MODELING LANGUAGE providesalanguage to describe
different systems. UML is a domain-independent language, al-
though its origins are in the object-oriented modeling.

OBJECT CONSTRAINT LANGUAGE isadeclarative language with-
out side-effects to express queries and describe constraints
over MOF and UML models.

QUERY/VIEW/TRANSFORMATION is a standard to describe mo-
del transformations and equivalence relationships among
MOF-based models. It uses OCL to express complex queries
over the candidate models (i. e., the models that take part in a
given transformation).

XML METADATA INTERCHANGE is an XML-based language that
provides the persistence mechanisms to store and interchange
models among MOF-compatible tools.

2.2 MODEL DRIVEN ARCHITECTURE

As discussed before, the OMG has proposed a MDE framework known
as MDA which aims to establish itself as a de facto standard. MDA’s
main goal is to solve the problem of changing technology and inte-
gration. The main idea behind it is to use models, so that the system
properties and features are reflected in an abstract description. Thus,
models are not affected by technological changes.

MDA includes a software development process, therefore, its pur-
pose is to produce executable software systems. Moreover, MDA
expects to solve some problems such as low productivity in software
development and interoperability issues (Kleppe et al. 2003) . The
former is solved performing the analysis and development of systems
by evolving high-level models from which there would be possible
to automatically generate code. Interoperability can be solved be-
cause code generation techniques allow to obtain code for different
technologies, which adds another advantage: the reuse of models.
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Some basic concepts defined in the MDA standard are—quoted from
OMG (2003):

PLATFORM — ‘A platform is a set of subsystems and
technologies that provide a coherent set of func-
tionality through interfaces and specified usage pat-
terns, which any application supported by that plat-

form can use without concern for the details of how
the functionality provided by the platform is imple-
mented.”

PLATFORM MODEL — ‘A platform model provides a
set of technical concepts, representing the different
kinds of parts that make up a platform and the ser-
vices provided by that platform. It also provides,
for use in a platform specific model, concepts rep-
resenting the different kinds of elements to be used
in specifying the use of the platform by an applica-
tion.”

PLATFORM INDEPENDENT MODEL — ‘A platform
independent model is a view of a system from the
platform independent viewpoint. A PIM exhibits
a specified degree of platform independence so as
to be suitable for use with a number of different
platforms of similar type.”

PLATFORM SPECIFIC MODEL — ‘A platform specific
model is a view of a system from the platform spe-
cific viewpoint. A PSM combines the specifications
in the PIM with the details that specify how that
system uses a particular type of platform.”

The development of a system according to the MDA framework
begins with the construction of a PIM. Later, that PIM is transformed
to one or more PSM. Finally, the code is generated from the PSM.

The fundamental operation in MDA is to transform PIMs into PSMs.

The MDA guide (OMG 2003) states that PIMs and PSMs models are
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expressed as UMLs models and transformations must be automated
as much as possible.

Mellor et al. (2004) classify transformations into two types: ver-
tical and horizontal. A transformation is horizontal if the source
model and target model belong to the same level of abstraction. In
MDA this can be a PIM to PIM transformation or a PSM to PSM trans-
formation. A transformation is vertical when the source model and
target model are located at different levels of abstraction. In MDA,
transformations from PIMs to PSMs or PSMs to code are vertical trans-
formations. From the generic point of view of MDE, transformations
from PIM to PIM and from PSM to PSM are also interesting (according
to the classification of models defined by MDA) as can be used to
refine models.

Initial versions of MDA served as the background for MDE, which
generalizes the concepts of MDA, and defines the transformations
in the context of metamodeling. In MDE, the most accepted way to
define the models is through metamodeling techniques, and trans-
formations are defined using model transformation languages. In
contrast, in the original proposal of MDA, metamodeling was not a
necessary condition. It was only in later versions of MDA where the
ideas defined by MDE were incorporated, which led to the definition
of the MOF and QVT standards.

2.3 META OBJECT FACILITY

MOF is the basic vocabulary (called meta-metamodel) provided by
the MDA standard to describe metamodels, and therefore new vocab-
ularies (in fact we could say abstract languages, but we use the term
metamodel to avoid confusion). We can define new metamodels
using exactly the same tools used to define models.

However, one may wonder if there is a superior model vocabulary
used to define meta-metamodels. The answer is yes, this model
of meta-metamodels would be called meta-meta-metamodel. But,
as this artifact is also a model, could we continue to expand this
pyramid endlessly?
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Figure 2.1: MOF layers

In practice this makes no sense, and models and metamodels
are often organized into a four-layer M3-MO structure with the
following distribution:

o The level M3, which closes the structure at the top, contains
the basic vocabulary to describe metamodels. It should be
noted that this level usually contains a unique vocabulary
(meta-metamodel) that characterizes the modeling approach
chosen. This meta-metamodel must be defined using its own
constructs, thus, the structure is closed in this layer.

In MOF, the meta-metamodel is MOF itself. The syntax of the
MOF language can be considered as a subset of the Unified
Modeling Language 2.x (UML2) class diagram.

« Metamodels, the languages to describe new models, are found
in the lower layer, the M2 layer. MOF-compliant metamodels
are defined in terms of classes, attributes, associations, etc.,
which are the constructs provided by the meta-metamodel.



20

OCL is a language
closely related to
UML. Initially, it

was designed to
describe constraints
over the elements of
UML models in
order to specify
systems with a great
level of detail. With
new versions of
UML, OCL was
completed.
Nowadays it is
possible to add
almost any
expression to an
element of a

UML diagram.

MDE: AUTOMATING CODING IN SOFTWARE DEVELOPMENT

« Models are placed at the M1 layer. As we have introduced
earlier in this thesis, a model is an abstract description of a
system.

o The lower level, the MO level, is were data are found, i. e., the
instances of the system under study.

This four-layer structure (shown in Fig. 2.1) can get a wealth of
vocabulary to describe different types of systems, or provide different
views of the same system.

It is noteworthy to remark that this fixed hierarchy of levels can be
sometimes confusing. Perhaps, it is more interesting to look directly
to the relationship between a model and vocabulary, and realize that
this relationship occurs at all the levels described. This relationship
is usually called ““instance-of relationship”. We say that a model x
is an instance of a vocabulary x + 1, which is called metamodel. The
model is on the lower level (the instance level), and the metamodel
in the upper level (meta level). We can apply this duality to the
metamodel x + 1, and if we consider x + 1 as the instance level, we
see that also x + 1, necessarily, is defined by a vocabulary x + 2.
Therefore we can put a model at both the meta level and say that
it has instances, or at the instance level, and say that it is defined
using a metamodel. It is worth noting the special case of the meta-
metamodel (level M3) that defines itself, so we could say that is an
instance of itself.

MDA places at the M2 layer several well-known metamodels
which are defined using MOF, such as UML (OMG 2010b), OCL (OMG
2010a) or QVT (OMG 2008a).

2.4 OBJECT CONSTRAINT LANGUAGE

OCL is a notational language for the analysis and design of software
systems. It is defined as a standard language to complement UML.
Specifically, OCL gives support to UML for specifying constraints and
queries on models, allowing to define and document UML models
more precisely.
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A UML model, such as a class diagram or state diagram, does not
constitute a sufficiently precise and unambiguous specification of a
system. OCL expressions complete this specification, providing addi-
tional information for object-oriented models and other modeling
assets. Usually, this additional information can not be expressed by
means of a diagram.

Each OCL expression refers to a type (e.g. class, interface, ...)
defined in a UML diagram. Thus, an OCL expression is always linked
to a UML diagram and it does not make sense in isolation.

2.4.1 Language features

In UML 1.1, OCL was introduced as a language to express constraints
over the elements of a model, defined as restrictions over the attribute
values and instances of an object-oriented model or system.

In UML 2.x additional constructs were included to define queries,
reference values, status conditions, business rules, etc. In short, OCL
can be used to associate any expression on elements of a diagram.

OCL expressions can appear anywhere in a model to indicate a
value. A value can be a single value such as an integer, but may
also refer to an object, a collection of values, or a collection of object
references. An OCL expression may represent, for example, a boolean
value used in the condition of a state diagram, or a message in an
interaction diagram. An OCL expression may refer to a specific object
in an interaction or and object diagram.

OCL is based on set theory and predicate logic, and has formal
mathematical semantics (Richters and Gogolla 2000). Its notation,
however, does not use mathematical symbols. Thus, OCL provides
the rigor and precision of a formal language and an ease of use close
to that of the natural language.

OCL expressions are used to model and specify systems. However,
many models are not directly executable, and many will contain
OCL expressions even if no executable versions of the system exist.
However, it should be possible to verify the correctness of these
expressions, without having to produce an executable version of the

21

UML is designed to
specify software
systems. However,
many models are
not directly
executable in early
stages. Using OCL it
should be possible to
verify the
correctness of these
systems by checking
their OCL
expressions without
having to produce
an executable
version of

the models.



22

QVT is the language
proposed by the
OMG to describe

and perform model
transformations.

Model transforma-
tions defined in the
remaining of this
thesis will be
described using
this standard.

MDE: AUTOMATING CODING IN SOFTWARE DEVELOPMENT

model. Since OCL is a typed language its expressions can be checked
during modeling before implementation. Thus, model errors can be
eliminated early.

Another essential aspect is that OCL is a declarative language. In
procedural languages, like most programming languages, statements
are descriptions of the actions that need to be carried out. In a
declarative language, an expression describes what should be done,
but not how to do it. To ensure this, OCL expressions have no side
effects, i. e., an OCL expression can not change the system’s state.

2.5 QUERY/VIEW/TRANSFORMATION

Model transformations are a key issue in MDE. They guide the soft-
ware development process and allow to derive implementation code
from PIMs and PSMs. With the aim of providing a suitable framework
for model transformations, the OMG has proposed the Query/View/-
Transformation (QVT) standard (OMG 2008a) to complete the MDA
proposal. QVT lays on other two OMG standards, namely MOF 2.0
and OCL 2.0, reusing previous technology and reducing the learning
curve of the implementation.

The QVT specification is defined by two orthogonal dimensions:
language and interoperability, each of which has a number of levels.
The intersection of two dimensional levels defines a QVT conformance
point.

The language dimension defines the different transformation lan-
guages that the QVT specification defines. Specifically there are three:
Core, Operational and Relations, being the main difference among
them their declarative or imperative nature.

In the interoperability dimension we find those features that al-
low a compliant tool interoperate with other tools. Specifically,
there are four interoperability levels, namely syntax executable, XML
Metadata Interchange (XMI) executable, syntax exportable and XMI
exportable, according to the standard specification (OMG 2008a):



2.5.1

The QVT specification has a hybrid declarative/imperative nature,
with the former divided into a two-tier architecture that conforms
the basic framework for the execution semantics of the imperative

part.

2.5.1.1

2.5 QUERY/VIEW/TRANSFORMATION

SYNTAXEXECUTABLE — ‘An implementation shall
provide a facility to import or read, and then exe-
cute the concrete syntax description of a transfor-
mation in the language given by the language di-
mension. The execution shall be according to the
semantics of the chosen language [...]”

XMIEXECUTABLE — ‘An implementation shall pro-
vide a facility to import or read, and then execute
an XMI serialization of a transformation descrip-
tion that conforms to the MOF meta-model of the
language given by the language dimension. The ex-
ecution shall be according to the semantics of the
chosen language [...]”

SYNTAXEXPORTABLE — ‘Animplementation shall
provide a facility to export a model-to-model trans-
formation in the concrete syntax of the language
given by the language dimension.”

XMIEXPORTABLE — ‘An implementation shall pro-
vide a facility to export a model-to-model trans-
formation into its XMI serialization that conforms
to the MOF meta-model of the language given by
the language dimension.”

Languages

Declarative languages

The two declarative layers are structured as follows:
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Figure 2.2: Relationships among the QVT metamodels

A RELATIONS METAMODEL (and a user-friendly language that

gives both graphical and textual support for it) which enables
the definition of pattern-matching expressions (object tem-
plates) over complex sets of objects. The traceability links
among the models involved in a Relations transformation are
automatically created and maintained.

A CORE METAMODEL (and its associated textual language) which

is defined as a minimal superset of the Essential Meta-Object
Facility (EMOF) and OCL standards which provide basic trans-
formations capabilities. All the traceability classes must be
explicitly defined as EMOF models, and the maintenance of the
traceability links must be done manually as any other regular
object involved in a transformation.

The Operational Mappings language

This language is specified as the standard way to provide imperative
implementations of QVT transformations. It provides some exten-
sions to OCL which provide it with a more procedural style, and a
syntax closer to imperative languages. It is possible to write complete
model transformations using the operational mappings language.
Such transformations are called operational transformations.



2.5 QUERY/VIEW/TRANSFORMATION

2.5.1.3  Black Box Implementations

The QVT standard allows the definition of black box implementations,
in order to plug-in any MOF Operation with the same signature than
a Relation. This is useful for several reasons:

o It allows to implement complex algorithms in any program-
ming language (provided that it has a MOF binding).

o Itallows the use of domain specific libraries to calculate certain
model properties.

o Itallows to hide the implementation of certain parts of a model
transformation.

However, this integration can be dangerous since the black-box
implementations have free access to the object references of the
models, breaking some encapsulation mechanisms. Moreover, black-
box implementations do not have an implicit mapping among the
domains they transform, so that every black-box must explicitly
maintain the traceability links among the candidate objects of the
transformation (as a relation does automatically).

2.5.2 The Relations language

Next, the main features of the Relations language are explained. This
language will be extensively used throughout this document.

2.5.2.1  Transformations and Model Types

In the Relations language, a transformation among a set of candidate
models is specified as a set of relations that must hold for the trans-
formation to be successful. A candidate model is any model that
conforms to a model type (metamodel). Candidate models have a
name, and the types of the items that they may contain are restricted
to the elements of the metamodel they conform to.
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TRANSFORMATION EXECUTION DIRECTION A transforma-
tion invoked for enforcement, i. e. with the goal of effectively modify
a candidate model, must be executed in a particular direction by se-
lecting one of the candidate models as the target (destination) model.
The target model may be empty, or may contain elements that will
be related by the transformation. The transformation proceeds as
follows: first, it checks if all the relationships and constraints defined
in the transformations are met, and, second, when a relationship
does not hold, the target candidate model is modified (by creating,
modifying or deleting elements) in order to make the relationship
hold.

2.5.2.2 Relations and domains

Relations in a transformation define constraints that must be satisfied
by the elements of the candidate models. A relation defined for two
or more domains, and a pair of pre- and post-conditions (when and
where predicates as explained next), specify a relationship that must
be satisfied by the elements of the candidate models.

A domain is a typed variable to be matched in a model of a given
metamodel. A domain defines a pattern that can be viewed as a
graph of object nodes, their properties and the association links
originating from an instance of the type of domain. Alternatively, a
pattern may be considered as a set of variables and a set of constraints
that model elements bound to those variables must satisfy to validate
that pattern.

WHEN AND WHERE CLAUSES A relation may be constrained by
two sets of predicates: the when and where clauses. The when clause
defines the conditions under which a relation needs to hold. The
where clause defines the condition that must be satisfied by all the
elements of the models participating in the relationship, and may
restrict any of the variables of the relation and its domains.
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When and where clauses may also contain any OCL expression
besides any relation invocation. Relation invocation allows us to
build complex relations based on simple relations.

TOP-LEVEL RELATIONS A transformation may contain two
types of relations: top-level and non-top-level. The execution of a
transformation requires that all its top-level relations hold, while
non-top-level relations must hold only when they are invoked directly
or transitively from the where clause of another relationship.

A top-level relation is syntactically distinguished from a non-top-
level relation by the top keyword.

CHECK AND ENFORCE  Whether or not the relationship may be
enforced (i. e., it performs a model transformation) is determined
by the destination domain, which can be marked as checkonly or
enforce. When a transformation is executed in the direction of a
checkonly domain, it simply checks if a valid correspondence of the
relevant model satisfies the relationship. When a transformation is
executed in the direction of a enforce domain, if the test fails, the
target model is modified as necessary to satisfy the relationship.

2.5.2.3 Pattern-Matching

The patterns which are contained in the domains of a relation are
known as object template expressions. A relation may define different
object template expressions which will be used in the pattern match-
ing of the candidate models.

A template expression match results in a binding between the
model elements and the variables declared in the domain. A match
may be performed in a context where some variables have been
already bound to a model element (for example, in a when clause or
other object template expression). In this case, the match only binds
the free variables.

Arbitrarily deep nestings of template expressions are permitted,
and matching and variable binding proceeds recursively until there
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is a set of value tuples corresponding to the variables of the domain
and its template expression.

2.5.2.4 Keys and object creation using patterns

As mentioned previously, an object template expression also serves
as a template for creating an object in a target model. When for
a given valid match of the source domain pattern, there does not
exist a valid match of the target domain pattern, then the object
template expressions of the target domain are used as templates to
create objects in the target model.

However,when creating objects we need to ensure that duplicate
objects are not created when the required objects already exist. In
such cases we just want to update the existing objects. But how do
we ensure this? The MOF allows for a single property of a class to be
nominated as identifying. However, for most metamodels, this is
insufficient to uniquely identify objects. The relations metamodel
introduces the concept of Key, which defines a set of properties of a
class that uniquely identify an object instance of the class in a model.
A class may have multiple keys (as in relational databases).

Keys are used at the time of object creation; if an object template
expression has properties corresponding to a key of the associated
class, then the key is used to locate a matching object in the model;
a new object is created only when a matching object does not exist.

2.5.2.5 Executing a transformation in checkonly mode

A transformation can be executed in checkonly mode. In this mode,
the transformation simply checks if the relations are satisfied in all
directions, and reports errors when the relations do not hold. No
enforcement is done in any direction, regardless how the domains
are marked (checkonly or enforce).
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2.6 SUMMARY

We have presented an overview of the most important MDE stan-
dards proposed by the OMG and they are included in order to make
this thesis a self-contained document. The main goal of this chapter
was to give a concise introduction to MDA an the most important
standards and languages related to it, i.e., MOF to describe meta-
models, models and instances; OCL to define rich model constraints;
and QVT to describe correspondences and model transformations
among MOF models. These are the basic standards on top of which
this thesis is built.
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« la técnica es el esfuerzo para ahorrar esfuerzo
(Technology is the effort to save effort)»

— José Ortega y Gasset
Spanish philosopher and humanist, 1883-1955

The Model Driven Development (MDD) trend (Selic 2003) is aligned
with the MDE principles. MDD considers models as the main assets
in the software development process. Models collect the properties
that describe the information system at a high abstraction level,
which permits the development of the application in an automated
way following generative programming techniques. In this process,
models constitute software artifacts that experience refinements
from the problem space (where they capture the requirements of
the application) to the solution space (where they specify the design,
development and deployment of the final software product).

In this context it is essential to have the proper tool support to
define new models and metamodels, and to provide the necessary
implementations of the standards and languages proposed by the
industrial consortia, such as the OMG. Without the adequate tools
the new paradigm of MDD can not be implemented in any software
development process. Traditionally, the tools that provided support
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for modeling tasks were either context-specific, i. e., metamodel-
specific (ontologies, relations databases, etc.) or technology-specific.
With the advent of MDA and MOF, new modeling tools are being de-
signed to be easily customizable, providing support to define custom
models and metamodels. The adoption of MOF is also increasing the
importance of the DSLs trend. Thus, such modeling tools are being
designed following a new paradigm where modularity and extend-
ability are key attributes to maximize. In this context, the release of
the Eclipse platform, and its wide ecosystem of satellite projects, rep-
resents a turning point in the tooling support for the MDE trend and
all its associated standards (MDA, MOF, QVT, OCL, etc.). Throughout
the following section we will present the Eclipse platform and the
most relevant projects and tools that provide support to the different
standards that are employed in the implementation of this thesis.

3.1 THE ECLIPSE PLATFORM

Eclipse is an open source software development environment, whose
purpose is to provide a platform for highly integrated tools. Eclipse
consists of a central project that includes a generic core framework
for integrating tools, and a Java development environment built using
the previous framework. Other projects extend the core framework
to support other types of tools and specific development environ-
ments. Eclipse projects are implemented in Java and run on different
operating systems, including Windows, Mac OS X and Linux.

The Eclipse Foundation, founded in 2004, is a not-for-profit foun-
dation of several companies that have committed to provide support
to the Eclipse project in terms of time, expertise, technology or
knowledge. This organization was created by Eclipse.org, a consor-
tium founded in 2001 when IBM released the Eclipse Platform into
Open Source.

The Eclipse Platform is a framework to build Integrated Devel-
opment Environments (IDEs). It is usually described as an IDE for
everything and nothing in particular (Eclipse 2003), as it simply de-
fines a basic IDE structure. Specific tools extend this basic framework,
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and are plugged-in to define a particular IDE configuration all to-
gether.

The basic unit of functionality (e. g., a component), is called a
plug-in. The Eclipse platform itself, and the tools that extend its
functionality are made of plug-ins. A single tool can be a single
plug-in, but more complex tools are typically divided into several
plug-ins.

From a packaging perspective, a plug-in includes everything
needed to run a component, such as Java code, images, localized
text, etc. It also includes some manifest files (MANIFEST.MF and
plugin.xml typically), which declare the connections with other
plug-ins. The manifest declares, among other things, the following
items:

REQUIRES — the dependencies from other Eclipse plug-ins.

EXPORTS — which internal classes will be visible for other Eclipse
plug-ins.

EXTENSION POINTS — declaration of functionality points (de-
fined at a high level of abstraction) which are public. Other
plug-ins may connect to these points.

EXTENSIONS — which extension points are used. These extension
points may be declared by other plug-ins.

When Eclipse is launched, it scans and discovers all the installed
plug-ins and connects the extensions with the corresponding exten-
sion points. In the following sections we describe the main frame-
works of the Eclipse ecosystem which are related with modeling and
metamodeling tasks: the Eclipse Modeling Framework (EMF) and
the Graphical Modeling Framework (GMF).

3.1.1  Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) provides modeling, meta-
modeling and code generation capabilities within the Eclipse plat-
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form. Additionally, it can be used as a standalone library to deal
with models and metamodels in Java applications.

EMF is just an environment to describe models and their instances,
and is used to generate new software artifacts from a model de-
scription (such as a Java implementation of the model). EMF moves
on the direction of MDA, but it is not fully aligned with it since it
has been designed from a practical point of view, keeping in mind
implementation details of Java programs.

EMF allows to define models in different ways. Traditionally, mod-
els were built using annotated Java, XML Schema Definition (XSD)
or UML models from Rational Rose. Nowadays, it is quite common
to use EMF-based class diagrams or UML models from the Eclipse
UML2 project. The capabilities of the framework remain the same
regardless of the way used to define the EMF model. EMF uses Ecore
(Steinberg et al. 2009) as the canonical language to describe models,
and thus, any of the previous ways to define an EMF model generates
an Ecore model in the end.

3.1.1.1 EMF models

An Ecore model is, essentially, a subset of the UML class diagram and
thus, can be considered as an implementation of the EMOF language
proposed by the OMG (OMG 2006). This way, an Ecore model is a
model of the classes of a software application (i. e., the structural
description). Because of this, several benefits of modeling can be
obtained in an standard Java development environment, given that
the correspondence between an Ecore model and its Java implemen-
tation is natural and straightforward.

An Ecore model describes, however, concepts at a higher level of
abstraction than mere classes and attributes. Looking at the gener-
ated Java code that implements an Ecore model we will note that, for
example, attributes are transformed into getter and setter methods
enforcing encapsulation. Unlike traditional implementation, these
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Figure 3.1: Simplified version of the Ecore metamodel

methods have the ability to notify changes to different observers'
(Gamma et al. 1995). In addition, references can be bidirectional,
and referential integrity is always maintained automatically. These
references can also exist among different resources (documents), etc.

3.1.1.2 The Ecore (meta)model

As noted before, the metamodel used to describe EMF-based models
is Ecore. Following an approach similar to MOF, Ecore is defined
using Ecore itself, which implies that Ecore is the meta-metamodel
of the Ecore metamodel.

Ecore is a language designed to define any kind of metamodel.
With this goal, it provides the necessary constructs to describe con-
cepts and the relationships among these concepts. Using Ecore we
can define new vocabularies (or DSLs) which allow us to work with

The observer pattern is a software design pattern in which an object, called the
subject, maintains a list of its dependents, called observers, and notifies them
automatically of any state changes.
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models in different contexts. Fig. 3.1 shows a simplified subset of the
Ecore metamodel.

The main element is EClass, which models the concept of class. Its
semantics is similar to that of UML Classes. EClass is used to describe
new concepts in Ecore. An EClass comprises a set of attributes (EA?-
tributes) and a set of references (EReferences) to other EClasses, as
well as any number of superclasses (also as the UML standard does).
The remaining elements of the Ecore metamodel are the following:

ECLASSIFIER isthe abstract datatype which groups all the elements
that describe concepts.

EDATATYPE is used to represent the type of an attribute. An
EDataType can be a basic datatype (such as integer or float),
an EClass, or a java class (such as java.util.Date).

EATTRIBUTE is the element used to define the attributes of an
EClass. EAttribute has (among other properties) a name and
a type. As a specialization of ETypedElement, EAttribute in-
herits some properties such as cardinalities (lowerBound and
upperBound), if it is required or not, if it is a derived attribute,
etc.

EREFERENCE allows to model relationships among EClasses. Specif-
ically, an EReference can be used to model associations and
compositions as the UML standard does. As well as EAttribute,
EReference is an specialization of ETypedElement and inherits
the same properties.

EReference also has the containment property, which is used to
model the disjoint aggregations (or compositions as described
in UML).

EPACKAGE is used to group a set of EClasses in a modular way
as UML packages do. Its main attributes are the name, the
prefix (nsPrefix) and the Uniform Resource Identifier (URI).
The URI is a unique identifier used to reference the EPackage
unambiguously.
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Similarities between EMF and UML are evident, given that MOF
is based in UML class diagrams. However, Ecore is preferred by the
Eclipse community over UML it is is smaller and simpler. But unlike
UML, it can not model the behaviour of a system in addition to its
structure. Another particularity that we find in the context of EMF,
is that an Ecore model is only composed by a single root EPackage.
This way, an Ecore model is identified by the URI of its unique root
EPackage.

3.1.1.3 XMI serialization

As described previously, a conceptual model can be described in
EMF in different ways (Java code, XSD, Rational Rose, etc.), however,
the canonical representation of a conceptual model is Ecore and its
persistence format is XMI (OMG 2011c¢), the standard proposed by
the OMG for MOF metadata exchange.

Both Eclipse and EMF provide automatic support for XMI persis-
tence for Ecore model. Moreover, when an Ecore model is used to
create the Java implementation of a given system, it automatically
creates the code used to retrieve and store the model instances in
secondary storage (i. e., the program data themselves).

3.1.1.4 Code generation

The main advantage of EMF (which is common to other model-
ing frameworks and techniques) is the increase in the productivity
brought by the code generation mechanisms. From an Ecore mo-
del it is possible to obtain a Java implementation only with a few
clicks by using EMF built in wizards. Moreover, as EMF is generic, it
can be used to build new code projectors to different technologies.
This can be used to provide textual representation to any arbitrary
DSL, or can be used to generate full implementations in any Object-
Oriented language. An example of the latter case is the EMF4CPP
project (Gonzalez et al. 2010). This project is able to generate C++
code form an Ecore model, among other features. Nevertheless, this
project is not only a C++ code generator, it also reimplements some
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of the EMF functionality in C++ which enables the execution of the
generated C++ programs.

3.1.2  Graphical Modeling Framework

The Graphical Modeling Framework (GMF) (Eclipse 2011e) emerges
to cover a need in the development of Graphical User Interfaces
(GUIs) and graphical editors in Eclipse. Traditionally, the develop-
ment of graphical editors in Eclipse has been done by using the
Graphical Editing Framework (GEF). GEF is a library that uses the
Model-View-Controller (MVC) architectural pattern (Burbeck 1987),
and is composed by several plug-ins. Specifically, the org.eclipse.
draw2d plug-in provides the basic functionality for rendering and
ordering graphical elements in a canvas.

As GEF uses the MVC pattern, developers had to define their own
models, and had to build the corresponding mechanisms to store an
retrieve these models. Given that EMF provides a generic framework
for modeling, and it provides the persistence mechanisms for free, it
is the perfect tool to build these models in an easy way. This way, to
easily build new graphical editors we only need to map these model
elements (provided by EMF) with the graphical elements (provided
by GEF and org.eclipse.draw2d). Following a MDD approach, this
mapping is be done by using models. Thus, GMF is a bridge between
EMF and GEF to build DSLs editors.

Figure 3.2 shows the main components and models used during
GME-based development. The process begins with 3 models: the
domain model, the graphical definition and the tooling definition. The
first one corresponds to the EMF model for which we wish to create
the new editor. The second one describes which graphical primitives
will be drawn in the editor without defining any correspondence
with the domain model elements. The third model defines the tools
that are shown on the palette of the editor (and other GUI elements
such as menus, toolbars, etc.). These tools are used to create new
elements and to draw links among them.
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Figure 3.2: GMF workflow overview

A graphical definition can be valid for different domains. For
example, in the UML class diagram we find different elements that are
extremely similar in appearance and structure. In GMF a graphical
definition can be reused for different domains. This is achieved
by using a separate model called mapping model which links the
graphical elements and the tool definitions with the desired elements
of the domain model.

Once the mappings have been defined, GMF provides a generator
model that can be used to tune the last implementations details used
in the automatic code generation phase. The production of an editor
plug-in based on the generator model will target a final model, the
diagram runtime or notation model. The runtime will bridge the
notation and domain model when a user is working with a diagram,
providing their persistence and synchronization.
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3.1.3 Model Development Tools

The Model Development Tools (MDT) project (Eclipse 2011b) is an
Eclipse project which aims to provide both a set of industry stan-
dard metamodels and the tools to work with them. Its creation is
relatively recent, and emerges as a reorganization of different small
modeling projects inside the Eclipse ecosystem. Some of the sub-
projects that this project hosts are: BPMN2, implementing the next
Business Process Model and Notation (BPMN) v.2 (OMG 2011a) stan-
dard; IMM, which implements the forthcoming Information Man-
agement Metamodel (IMM) (OMG 2005a) specification; MoDisco
(Bruneliere et al. 2010), used for software modernization; MST, a
subproject to give full compatibility with Complete Meta-Object
Facility (CMOF) (OMG 2006) specifications; Papyrus (Eclipse 2011¢);
and SVBR, which implements the Semantics of Business Vocabulary
and Business Rules (SBVR) specification (OMG 2008b). Other meta-
models and tools that compose the MDT project which are used in
the implementation of this thesis, and are key components of this
work are:

ocL subproject provides an implementation of OCL for EMF-based
models and metamodels. This set of utility libraries are used
and integrated in different tools that have been produced in
the implementation of this thesis (see 8.5.1 and 8.5.2).

uML2 is the reference project, which implements the UML2 meta-
model using Ecore as its meta-metamodel.

UML2 TOOLS provide a set of GMF-based editors for drawing and
editing UML2 models. It aims to provide automatic generation
of editors for all UML diagram types.

xsD is the library which implements the XSD metamodel, and pro-
vides an Application Programming Interface (API) for manip-
ulating its instances as described by the World Wide Web
Consortium (W3C) XSD specifications (Gao et al. 2008), as
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well as an API for manipulating the Document Object Mo-
del (DOM)-accessible representation of XML.

3.2 MOMENT: A FRAMEWORK FOR MODEL MANAGEMENT

MOMENT (Boronat et al. 2005b; Boronat 2007) is a tool that provides
support to different OMG standards including capabilities to trans-
form models. The tool uses both an industrial modeling front-end
and an algebraic back-end for the execution of the transformation
and query tasks. The algebraic background runs in the high per-
formance rewriting system called Maude (Clavel et al. 2002). The
industrial modeling environment used by MOMENT is Eclipse and
EMEF.

In its first version, MOMENT used the QVT standard to provide a
transformations language, unlike other popular transformation tools,
such as IBM Model Transformation Framework (MTF) (Demathieu
etal. 2005) or ATLAS Transformation Language (ATL) (INRIA 2011),
which provide their own proprietary languages. The tool offers
an implementation of the QVT Relations language as well as the
OCL language. For this language, MOMENT gives wide support for
unidirectional transformations. Moreover, the tools provides full
support to the query operators of the OCL language.

3.3 ATLAS TRANSFORMATION LANGUAGE

ATLAS Transformation Language (ATL) is a transformation lan-
guage and a toolkit initially by the AtlanMod team—initially ATLAS
Group—(AtlanMod 2011). ATL is a Model-to-model (M2M) trans-
formation language which was designed as an answer to the OMG
MOF/QVT Request for proposal (RFP) (OMG 2002)—cf. ATLAS
(2005); Jouault and Kurtev (2006). The ATL proposal was rejected in
favor of the proposal made by Appukuttan et al. (2003). Neverthe-
less, ATL has gained relative popularity and has become an Eclipse
project (INRIA 2011) inside the MDT project (Eclipse 2011b). Nowa-
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days ATL is published under the terms of the open-source Eclipse
Public License (EPL).

Although ATL is aligned with the QVT standard, it does not pro-
vide the same architecture nor a pure declarative transformation
language; rather it provides a hybrid language (imperative/declara-
tive) to perform MOF-compliant model transformations.

3.4 IBM MODEL TRANSFORMATION FRAMEWORK

IBM Model Transformation Framework (MTF) (Demathieu et al.
2005) was the proposal of IBM in order to help with the standard-
isation of QVT. MTF provided a prototype which used EMF as it
underlying modeling framework. A model transformation was de-
fined in MTF by defining relationships among model elements using,
for example, the relate and equals keywords. Although this proposal
is quite similar to the QvT-Relations language, MTF did not succeed
and the tool remained as a prototype. Nowadays MTF has been aban-
doned in favor of other languages, e. g. QVT and ATL, and the MTF
site has been shut down.

3.5 MEDINI QVT

mediniQVT is a tool entirely implemented in Java, and integrated as
a set of Eclipse plug-ins. This tool supports model transformations
using the QVT standard. It has been developed by the company ikv++
technologies ag (ikv++ 2011), located in Germany. The engine was
originally released as a free product in 2007—free as in free beer (FSF
2011)—and was in early 2008 when the source code was released
under the EPL open source license.

From the technical point of view, medini QVT uses EMF as its
modeling and metamodeling environment. For the definition of
model transformations implements a QV'T Relations engine, giving
support for complex model-to-model transformations. Internally,
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medini QV'T uses the Open Source Library for OCL (0SLO) toolkit
(OSLO 2011).
The main features of the tool are:

o Allows QVT transformations using the textual concrete syntax
of the QVT Relations language.

« Provides a textual editor with syntax highlight and code com-
pletion capabilities.

o Includes an advanced debugger to trace the execution of model
transformations step by step throughout the application of the
different relations.

« Implements the concept of key of the Relations language, al-
lowing the execution of incremental transformations.

« Supports transformations with more than two different do-
mains (n-domain transformations).

« Is able to execute bidirectional transformations (if the trans-
formation is unambiguous in its definition).

All this functionality is implemented in different Eclipse plug-ins.
It is remarkable that only the plug-in in charge of executing the model
transformations is public and open source. All the remaining plug-
ins that implement additional functionality (text editor, debugger,
etc..) are closed source.

According to these licenses, the prototype which is presented in
this thesis and is in charge of executing model transformations only
makes use of the open source component which can be freely reused.
This way, the core transformations engine of medini QV'T has been
packaged in our tool to provide a set of user-friendly interfaces
that execute our model transformations as is described in detail in
section 8.4.
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3.6 SUMMARY

This chapter has briefly described the tools which are available in the
market to carry out complex MDE processes. In this case, the tools
which are interesting for the purposes of this thesis must be interop-
erable and must comply with the industrial standards for modeling,
metamodeling and model transformations. In this sense, EMF and
the tools that are built on top of it fulfill our expectations and will
be used to implement and exploit the models and transformations
proposed in this work. Regarding to the transformations engine, we
have selected mediniQVT as it provides support for QVT-Relations
which is a declarative and standardised language, and the source
code can be reused under the terms of the EPL.



SOFTWARE PRODUCT LINES:
DEALING WITH COMMONALITIES AND
VARIABILITIES IN SOFTWARE FAMILIES

« hinking is the hardest work there is,
which is probably the reason why so few engage in it.»

— Henry Ford

Pioneer of the assembly-line production method, 1863-1947

The changing nature of technology leads us to need multiple versions
of the same or similar application in short time periods. Due to cost
and time constraints it is not possible for software developers to
make a product from scratch for each new customer, so the reuse of
software should be enforced. Because of that, Software Engineering
must provide the tools and methods which allow us to develop a fam-
ily of products with different capabilities and adaptable to changeable
situations, in place of developing only a single product. Under these
circumstances, the Software Product Line (SPL) concept arises with
the aim of controlling and minimizing the high costs of the software
development process. According to Clements and Northrop (2001),

‘a SPL is a set of software-intensive systems sharing a
common, managed set of features that satisfy the specific
needs of a particular market segment or mission and that
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SOFTWARE PRODUCT LINES

are developed from a common set of core assets in a pre-
scribed way.”

This approach is based on the creation of a design that can be
shared among all the members of a family of programs within an
application domain. This way, a design that has been done explicitly
for a product can get benefit from the core assets (architecture, mod-
els, requirement specifications, components, code, test cases...) that
can be reused in different products, reducing costs and development
time.

In short, we can say that a product line is a group of products
that have a common set of features and vary only in some specific
features. Features are an abstract concept to describe similarity and
variability, and can be used to distinguish the products of a SPL. Each
feature is an increase in product functionality. In section 4.2 we will
describe in detail what features and feature modeling are.

From a practical standpoint, SPLs are one of the most successful
approaches to software reuse, as they focus on developing families of
systems which share a basic architecture. This way, SPLs provide an in-
dustrial approach to software development processes. Traditionally,
SPLs aim to develop a framework to represent a family of products,
which is adapted to develop individual products. A product family
is a collection of similar products that share many features.

4.1 SOFTWARE PRODUCT LINE ENGINEERING

Software Product Line Engineering (SPLE), or software product line
practice (Clements and Northrop 2001), is the systematic reuse of
core assets to assemble, instantiate or generate the multiple products
that constitute a SPL. The SPLE approach to software development
involves changing the existing development process by introducing
a distinction between the domain engineering and application en-
gineering stage. Such a division is fundamental in the application
of SPL techniques. We describe a domain as a specialized body of
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knowledge, an area of expertise or a collection of related functional-
ity.

In the domain engineering phase, all the information and knowl-
edge about a particular domain is captured in order to create the
reusable software assets. At this stage the family of products is ana-
lyzed to determine the commonalities (common requirements) and
variabilities (product-specific requirements) among the members of
the SPL, and next, a reference architecture of the SPL is designed. The
reference architecture is the one that contains the components that
are common to all the members of the family. This architecture also
describes which optional components are required only by some
members and how they can be configured. The formal description
of this process (how to configure and assemble the different assets)
is known as the production plan. Finally, all the software assets that
will be used to produce software products are built and stored in
the baseline. A baseline is a specialized database that stores software
assets and facilitates their recovery and maintenance. Its aim is to
ensure the availability of core assets to support the development of
the SPL products.

The application engineering phase is responsible for product de-
velopment through the reuse of software assets using the designed
production plans. The reference architecture is used as a reference
model for building the products of the SPL. The baseline provides
the required assets for the development of each new product.

Fig. 4.1 shows the three essential activities that should be carried
out to develop a software product line:

CORE ASSET DEVELOPMENT represents the ongoing activities to
develop reusable building blocks. Their inputs are the core
assets used in the family of products and the production plan
that indicates how to use these assets to assemble a final prod-
uct.

PRODUCT DEVELOPMENT are the engineering activities to build
products using reusable assets that were described in the pro-
duction plan.
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Figure 4.1: Essential Activities for Software Product Lines

MANAGEMENT represents activities of technical and organizational
management.

These three activities are essential for the developments of a SPL
and all of them are interrelated. Each one can be carried out in any
order, leading to an iterative development. Table 4.1 summarizes the
goals of these three activities both in the domain engineering phase
and the application engineering phase as described by Clements and
Northrop (2001).

4.2 DESCRIBING VARIABILITIES AND COMMONALITIES IN
SOFTWARE FAMILIES

Software Product Lines aim to control and minimize the high costs
of developing a family of software products. As described previously,
this approach is based on the creation of a design that can be reused
among all the members of a family of programs. But the key aspect
that characterizes SPLs against other reuse techniques is that software
reuse is planned since the development process is designed.

The first stage when developing a SPL is to perform an analysis
in order to identify the commonalities and variabilities in the do-
main. To make things easy, it is desirable to have the results of the
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DOMAIN ENGINEERING

DOMAIN
ANALYSIS

The variability of the domain is studied and
analyzed.

Usually, this study is carried out to identify the
characteristics of the domain. A model with
such elements is built (a feature model, see
section 4.2).

CORE ASSET
DEVELOPMENT

The core assets (reusable building blocks) are
designed and implementd. This step not only
captures the functionality of the domain, but
also how the core assets can be extended
should be defined.

PRODUCTION
PLAN

This stage describes how the individual prod-
ucts should be assembled using the core assets.

APPLICATION ENGINEERING

PRODUCT CHAR-
ACTERIZATION

The features that characterize the desired prod-
uct should be selected.

PRODUCT
SYNTHESIS

The baseline is queried and the needed core
assets are retrieved to build the final product.

PRODUCT
CONSTRUCTION

The selected core assets are processed follow-
ing the production plan to obtain the final
product. The production plan can specify
that several tasks should be carried out (i. e.,
code generation, compilation, execution of
programs, etc.).

Table 4.1: Development and application of a SPL
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Original Feature Model
(FODA)
(KC Kang et al., 1990)
]

T T
FORM Feature FeatuRSEB

Model Feature Model
(KC Kang et al., (ML Griss et al., Generative
1998) 1998) Hein et al. Model Programming (GP) _
—— (A Hein et al., 2000) Feature Model
(K Czarnecki et al.,
Van Gurp et al. 201)0)
Feature Model | |
(@ van Gurp et al., 2001)
Riebisch et al. GP-Extended
Feature Model Feature Model
(M Riebisch et al., (K Czarnecki et al., 2002)

2002) l

Cardinality-Based
Feature Model
(K Czarnecki et al., 2004)

PLUSS Feature Benavides et al.
Model Feature Model

(M Eriksson et al., (D Benavides et al.,
2005) 2005)

Figure 4.2: Feature model genealogy (Kang 2009)

analysis in an organized way, allowing the reuse of this analysis in
the software development process. In 1990, a method for discovering
and representing commonalities among related software systems was
proposed by Kang et al. (1990). It is this context that the notion of
feature arises.

Because of the current activity in the feature modeling and vari-
ability management community, several systematic reviews have
been published recently (Chen et al. 2009; Kang 2009). From these
reviews follows that the conferences which give more coverage to
variability management and feature modeling are the SPLC (Inter-
national Software Product Line Conference), which already has 14
editions; and ICSE (International Conference on Software Engineer-
ing) which has 33 editions. For its part, the most relevant and active
authors in this community are K. Czarnecki and D. Batory.

The most important works appeared in the field of SPLs have been
studied, and throughout the following section we will summarize the
main contributions made in the last 20 years in the feature modeling
field. Starting with the proposal by Kang et al., next we will describe
the main variations made to this initial proposal.



4.2 DESCRIBING VARIABILITIES AND COMMONALITIES

4.2.1 Introduction

Features can be described as user-visible aspects or characteristics
of the domain according to Kang et al. (1990) or as a distinguish-
ing characteristic of a software item (e. g, performance, portability,
or functionality) as described by the IEEE 829-1998 standard (IEEE
1998).

The Feature-Oriented Domain Analysis (FODA) proposal pre-
sented by Kang et al. (1990) can be considered the most important
contribution for feature analysis and management (Kang et al. 1998;
Czarnecki and Eisenecker 2000; Kang et al. 2002), and subsequent
contributions are strongly based and influenced by this work as later
systematic reviews reflect (Chen et al. 2009). Fig. 4.2 presents the
genealogy of the different contributions made in this field. In this
figure Prof. Kang presents a summary about the evolution of feature
models to celebrate the 20th anniversary of the advent of the feature
modeling proposal.

Feature models are diagrams which express the commonalities
and variabilities among the products of a SPL. These models organize
the so-called features in a hierarchical structure. They describe a
set of relationships among parent features and child features. The
basic relationships between a feature and its children are: mandatory
relationships (which represent the shared design), optional relation-
ships, OR and different types of groups. Cross-tree relationships are
also common to describe inclusion or exclusion constraints. Other
extensions and variants have been proposed in different works. Next,
we will describe the most important proposals which are related
with our work.

4.2.2  Classic feature models (FODA proposal)

Classic feature models (FODA feature models) define only three kinds
of relationships between a parent feature and its children:
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MANDATORY Mandatory features represent features which are re-
quired to be included in a given product. These features rep-
resent the common aspects to all the members of the family.
A line drawn between a child feature and a parent feature
indicates that a child feature requires its parent feature to be
present. In the original FODA notation mandatory features
are those which are described with no special notation. For
example, in Fig. 4.3a both features F and A are mandatory.

OPTIONAL Optional features are those that may be included or
not in a given product of the family. In the original notation
optional features are denoted by using a circle. In Fig. 4.3b
feature F is mandatory (and must be included in any possible
product) and feature A is optional, and may be included or
not.

InFODA feature  ALTERNATIVE This relationship can be defined among a parent
models the shared feature and a set of children features. In this case, this rela-
design is represented tionship states that children features can be considered as a

by the mandatory o ]
features. The specialization of the parent feature, and only one child can be

variability can be present in a given product of the family. Fig. 4.3c describes
described by using a feature model where only two possible products are possi-
both optional ble, the first one is made up by the features F and A, and the

features and

alternative groups. second one is made up by the features F and B.

In addition to the previous relationships the so-called composition
rules cab be defined between any pair of features:

-

2
o]

> O0—

A

(a) (c)

~
o
=

Figure 4.3: Example of FODA relationships
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Listing 4.1: Textual representation for the FODA excludes and requires rela-
tionships

1 <featurel> (’requires’ | ’mutex-with’) <feature2> J

MUTUAL DEPENDENCY (REQUIRES) Thisrelationship states that
one feature requires the existence of another one (i. e., they
are interdependent).

MUTUAL EXCLUSION (MUTEX-WITH) implies that one feature
is mutually exclusive with another one (they cannot coexist).

The original FODA proposal does not define a graphical representa-
tion for composition rules, rather, it provides a textual representation
as shown in listing 4.1. Nevertheless, these relationships can be eas-
ily drawn in feature models by using an arc between the features
involved. Fig. 4.5 shows an example of a typical representation. The
exact notation can vary depending on the author by using dashed
lines, different arrow ends, etc. As it can also be observed, in modern
notations it is quite common to represent features as named boxes.

The semantics of all these relationships can be expressed by means
of propositional formulas (Batory 2005); this way, it is possible to
reason about the satisfiability of the feature model and its configura-
tions.

«implies» «excludes»

(a) (b)

Figure 4.4: Example of the implies (4.4a) and excludes (4.4b) relationships
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4.2.3 FeatuRSEB and PLUSS feature models

Griss et al. (1998) introduced FeatuRSEB, a new proposal to inte-
grate feature models into processes of the Reuse-Driven Software
Engineering Business (RSEB) approach (Jacobson et al. 1997). The
RSEB is a software reuse technique where architecture and reusable
subsystems are initially described by use cases, which are then trans-
formed to object models. In the RSEB proposal, variability is captured
by structuring use case and object models using explicit variation
points and variants. However the RSEB does not provide explicit
models which describe the commonalities for all the products of the
family. This way, FeatuRSEB adds an explicit domain engineering
phase and a explicit feature model to support domain engineering
and component reuse.

FeatuRSEB provides almost the same primitives to build feature
models than the traditional FODA approach. The FeatuRSEB can
describe mandatory features, optional features, alternatives (XOR
groups) and OR groups. The last primitive is a new kind of group
which allows to select one or more children features in compari-
son with the alternative relationship of the original FODA notation,
which allows to select only one child. The FeatuRSEB notation also
provides requires and mutex-with constraints.

The graphical notation proposed by FeatuRSEB is quite similar to
the FODA notation. Mandatory and optional features are described
respectively as in Figs. 4.3a and 4.3b

F F

] ]

A B A B
() (b)

Figure 4.5: XOR (4.5a) and OR (4.5b) groups in FeatuRSEB
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Groups of features are represented using rectilinear arcs, and OR
and XOR groups are identified using black and white diamonds
respectively. This way, Fig. 4.5a describes an alternative group equiv-
alent to Fig. 4.3c, where only one child feature can be selected (A or
B). In the case of Fig. 4.5b either feature A, feature B, or both A and
B can be selected.

Eriksson et al. (2005) presented the Product Line Use case mod-
eling for Systems and Software engineering (PLUSS) toolkit, which is
based on FeatureRSEB proposal. However, this work uses feature
models from a different point of view. Unlike FeatuRESB, where
feature models play a key role in the development process, in the
PLUSS toolkit they are only used as a tool for visualizing variants in
an abstract product family use case model.

The semantics of the feature models that can be described in the
PLUSS toolkit are exactly the same than in the FeatuRSEB approach.
However, in the PLUSS toolkit the authors provide a different graph-
ical notation, as shown in Fig. 4.6, due to limitations in their tool
support. This way, features represented by a black and white circles
are mandatory and optional respectively. Alternative features (XOR)
are renamed as Single Adaptor features, and are represented by a gray
circle with an ““S” inside it. Finaly, OR groups are called Multiple
Adaptor features, and describe the relation at-least-one-out-of-many.

. 0O
a uel\\‘“esiy -7 b
aa ab ac  ba bb bc
0BG B ¢ 8E e B
D >
aaa aab aac aba abb bba bbb beca bcb  bec

Figure 4.6: Example PLUSS feature model extracted from (Eriksson et al.
2005)

55



56 SOFTWARE PRODUCT LINES

Typical excludes and requires relationships can also be described as
shown in the figure.

4.2.4 Cardinality-based feature models

Cardinality-based ~ Cardinality-based feature modeling (Czarnecki et al. 2005a) inte-
feature models  grates several extensions that have been contributed to the original
provide a more

expressive notation
than traditional

FODAfeature SYMBOL SHORT DESCRIPTION
models. This thesis
uses this kind o
. f Mandatory feature (cardinality [1..1])
models to describe

system’s variability
as next chapters
show.

o Optional feature (cardinality [0..1])

Feature with cardinality [n..m].
If m > 1 then Fis a clonable feature

2

n..

(]

Feature group with cardinality (1..1)
(exclusive or group)

Feature group with cardinality (1..k),
where k is the number of group elements

/N
AN

(or group)
/N"j > Feature group with cardinality (i..j),
where0 <i<j<k

F(T) Feature with attribute type T

Table 4.2: Cardinality-based feature modeling basic primitives
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FODA notation. Table 4.2 describes the main elements of the pro-
posed modeling language. A cardinality based feature model is a
hierarchy of features; the main difference with the original FODA pro-
posal is that each feature has associated a feature cardinality which is
expressed in a UML-like notation. Feature cardinality can be used as a
general way to describe mandatory and optional features. Mandatory
features have a lower bound equal to 1, and an upper bound equal to
1. In contrast, optional features have a lower bound equal to o and
an upper bound equal to 1. Features can also have an upper bound
higher than 1, which specifies how many clones (instances) of the fea-
ture are allowed in a specific product configuration. Cloning features
is useful in order to define multiple copies of a part of the system that
can be differently configured. Moreover, features can be organized in
feature groups, which also have a group cardinality. Feature groups
are a generalization of the notion of the alternative features (XOR
groups) and OR groups proposed by previous approaches. Group car-
dinality restricts the minimun and the maximun number of group
members that can be selected. Cardinality-based feature models also
allow to specify an attribute type for a given feature. Thus, a primi-
tive value (string, integer, etc.) for this feature can be defined during
configuration, which is useful to define parameterized features.

Fig. 4.7 shows an example cardinality-based feature model. The
model describes a configurable text editor. Notice that the docu-
mentClass(String) and the ext(String) features are clonable. Both
features have also an attribute type (String, in both cases). The fea-

editorConfig

wuiotive]  [backupOnChange] [ on] ]

[0.*]

file.bak file.ext.bak syntaxDefinitionFile(String)
file.bak.ext [removeBlankLines| | [ dosUnixConversion

spellCheck

Figure 4.7: Text editor configuration example, extracted from (Czarnecki
et al. 2005a)
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ture commands has a group with cardinality (0..3) (which means
that it is an OR group).

Cardinality-based feature models also allow to describe con-
straints between features such as the implies and the excludes re-
lationships, which are the most common used ones (Czarnecki and
Kim 2005). In classic feature models, the semantics of these con-
straints can be expressed by using propositional formulas (Batory
2005). However, this interpretation for feature models is not very
adequate when dealing with cardinality-based feature models (Czar-
necki and Kim 2005) since we can have multiple copies of the same
feature. Therefore, it is necessary to clearly define the semantics of
the constraint relationships in a context where features can have
multiple copies, and features can have an attribute type and a value.
In this case, we need more expressive approaches to (i) define con-
straints between features; and (ii) perform formal reasoning over
the feature models and their constraints.

4.2.5 Feature model configurations

A configuration of a feature model can be defined as a valid set of
instances of a feature model. A configuration is made up from the
mandatory features of the model, and a subset of selected optional
features (for simple FODA models). In Fig. 4.8a an example feature
model is represented. The model represents a system S, with two
features A and B. The former is mandatory (i. e., feature A must

(] [or]

(b) (c)

Figure 4.8: Example of a feature model (4.8a) and the two possible config-
urations that it represents (4.8b and 4.8¢)
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be included in every possible product of the product line), and the
latter is optional (feature B can be included in a particular product
or not). Thus, we have two possible configurations for this feature
model, which are represented in figures 4.8b and 4.8c.

4.3 SUMMARY

SPL is a software reuse technique where a common design is shared
among the different members of a family of products. In a SPL it
is crucial to describe the variabilities and commonalities among
such products in an explicit and understandable way. To achieve
this, feature models have arisen as a suitable notation to describe
such commonalities and variabilities. Feature modeling has been
an important discussion topic in the SPL community, and a great
amount of proposals have arisen in the last 20 years. Table 4.3 shows
a summary of the most important graphical notations proposed for
feature modeling. Notice that one of the most expressive notations is
the cardinality-based feature modeling notation, which allows clon-
able features, feature groups with cardinalities and typed features
(which can be used to express parameterized features and feature
attributes).
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SUMMARY

In this part we present our feature-based approach to manage vari-
ability in Multi-Model Driven Software Product Lines. Chapter 5
introduces what MMDSPLs are, and how they are related with the
different views of a system. Chapter 6 describes the main issues that
arise when feature models are used to describe the variability view in
complex MDE processes. In chapter 7 we define our cardinality-based
metamodel. We use MOF to describe feature models and we fully
exploit them using the Eclipse Modeling Framework (EMF). Feature
models can be enriched with complex model constraints that can
be automatically checked by means of the pre-built OCL interpreters.
All these EMF features allow developers to start a Software Product
Line (SPL).
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MULTI-MODEL DRIVEN PRODUCT LINE
ENGINEERING

« ontrolling complexity is
the essence of computer programming»

— Brian Kernighan
Canadian computer scientist, developer of Unix and C, 1942-

Software Product Line Engineering (SPLE) enables the rapid develop-
ment of product families. As discussed in chapter 4, a basic require-
ment is the management of the variability among family members.
Therefore, an important factor in the design of a SPLs is feature mod-
eling.

On the other hand, MDA is the ideal framework for the representa-
tion of software artifacts from the modeling point of view. Both SPLE
and MDA provide benefits in software development. SPLE provides
the methodology for the variability management both in the domain
engineering and application engineering phases. For its part, MDA
provides mechanisms for abstraction, modeling standards, persis-
tence and data and metadata exchange. The proposal for the joint
use of both approaches is what is known as MDPLE.

However, the power of the union between MDA and SPLE does not
(only) come from the use and reuse of feature models to guide the
process of gluing code snippets and other assets. The real power of
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this approach is that feature models can be used and combined in
complex MDE development processes. This way, all kinds of artifacts
and models have their place in the design and implementation of
the production plans in SPLs.

Thus, the proposal for variability management of this thesis is
beyond the MDPLE. This work is in line with what we will call Multi-
Model Driven Product Line Engineering (MMDPLE). The multi-
modeling approach arises from the need of rigorously integrate
different modeling languages in the software development process.

The use of multiple languages can cover different domains and
system views. In turn, it enables the specialization of developers and
reduces the learning curve in the use of modeling and specification
languages. Moreover, the separation of different concerns (i.e., a
particular set of behaviors of a software system) in a multidimen-
sional way alleviates the problems that can arise when designing
software. One of the means to carry out a separation in dimensions is
through the decomposition of a system in structures which represent
the system views. As explained by Courtois (1985), an understand-
ing of the concept and properties of nearly decomposable structures is
essential for an understanding of the behavior of systems with many
scales and for solving the problems raised by their analysis. The use
of system views (which are described by using different models in a
multi-model) pursues the goal of decomposing systems in order to
make them understandable.

The main problem that comes up in the use of multi-models is how
to maintain consistency between the different views (or submodels)
and how to establish the relationships among them. In this sense, the
declarative model transformations emerge as a key technology, as
they allow the definition of equivalence relationships (using patterns)
among the models that are part of a multi-model. Boronat et al.
(2008) discusses in detail the formal foundations of multimodel
languages as well as the role that model transformations play in this
proposal.

In MMDPLE, a SPL will represent a software development process
driven by different models, each one considering a different system
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Figure 5.1: Multi-Modeling Driven Software Product Line Engineering

Functional

view. Fig. 5.1 shows a generic description of a multi-model driven
SPL. There, several models describe the assets that participate in the
software development process. Such models can describe variability
aspects, functionality aspects, quality aspects, etc. Following the
MDE approach, the production plan may also be defined as part of
this multi-model. Specificalle, the production plan is the asset which
describes how the different models are combined to provide the
whole system view. This way, the production plan will mainly consist
of declarative model transformations which will relate the different
models of the multi-model.

51 SYSTEM VIEWS AND THE MULTI-MODEL

Several analogies have been drawn to describe what a system view is.
Kruchten (1995) describes system views as the plans which describe
a building from different perspectives, such as the floor plan or the
elevation of a building; and Bass et al. (1998) illustrate views using
the human body as an example. In this case, a view can be considered
as the perception of the body that different medical specialist have
when treating with a patient. L. e., doctors may be interested in the
circulatory system (e. g., cardiologists) or the digestive system (e. g.,
gastroenterologists). Each specialist gets focused only in certain
properties of the system (the human body) which are important for
him/her. This way, a view is an abstraction as defined by Shaw (1984):
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a simplified description, or specification, of a system that emphasizes
some of the system’s details or properties while suppressing others.

How to deal with system’s views has been a long standing issue
in Software Engineering, and several works have proposed different
models to represent them. Among the most relevant proposals we
have Kruchten (1995), Hofmeister et al. (1999)—also know as the
Siemens proposal—, and the Software Engineering Institute (SEI)
proposal (Bass et al. 1998; Clements et al. 2003).

The SEI proposal considers three kinds of views as the basic struc-
tures to describe a software architecture, namely, the modular style,
the component-connector style and the allocation style. The modular
style (modular view) makes a partition of the system’s functional-
ity, where each part is considered as a module. The component-
connector style (component-connector view) aims to model runtime
aspects, such as concurrency and communication issues. Compo-
nents and connectors are the elements used to represent the software
entities which play a role while executing the system. Finally, the
allocation style (allocation view) is used to relate the elements of the
previous views with the elements existing in the environment where
the system is executed.

In the context of the MDA and system’s views we find the proposal
of Limén Cordero (2010). This work, based on the SEI proposal,
presents a framework to (i) describe different views of a system and;
(ii) to establish the correspondences among them by using model
management techniques. Limén Cordero proposes the use of two
basic views: the modular view and the component-connector view.
Limoén Cordero provides the MOF-compliant metamodels to describe
the system’s views. Furthermore, the allocation view is provided by
a set of QVT-Relations rules to describe the correspondences among
the different views of a system.

As can be observed, this last proposal is very close to the definition
of a multi-model. However, it does not consider the variability view,
which is a fundamental view when dealing with software families in
the context of a MDSPL. This thesis aims to cover this gap, and we
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propose to add the system’s variability view in order to be able to
develop MMDSPLs.

5.2 VIEWS, MODELS AND METAMODELS IN MULTIPLE

This thesis presents MULTI@PLE, a framework and a tool to describe
and implement MMDSPLs. This way, different metamodels and DSLs
must be provided to describe a system as a whole. The proposed
framework aims to be extensible thanks to the capabilities provided
by state of the art modeling tools. However, MULTIPLE provides out
of the box support to define three main system views: the variability
view, the modular view and the component-connector view. These
views are models specified using different metamodels and domain-
specific editors, which have been defined using MOF:

THE VARIABILITY METAMODEL allows to specify the variants in
a software family. That is, it allows to describe which parts of
the products are common to all the members and which parts
may vary from a single product to another. This metamodel is
inspired by the most relevant proposals in the feature model-
ing literature over the last 20 years. Chapters 6 and 7 describe
in detail the variability metamodel, whose implementation is
described in chapter 8, section 8.3.1.

THE MODULAR METAMODEL is based on the proposal made by
Limén Cordero. It allows to describe a system in terms of
modules, functions and different types of relationships that can
be established between modules. This metamodel is spec-
ified in precise in Limoén Cordero (2010, p. 144 sqq.). The
implementation of this metamodel in MULTIPLE is presented
in section 8.3.3.

THE COMPONENT-CONNECTOR METAMODEL isalsobased on
Limoén Cordero (2010, p. 150 sqq.). It allows to describe a sys-
tem in terms of components, connectors, services, roles, ports
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and relations. The implementation of this metamodel using
MOF is presented in section 8.3.4.

THE PRISMA METAMODEL is a specialization of the component-
connector metamodel. It allows to describe systems in terms
of components and connectors, but adding support for as-
pects (Kiczales et al. 1997). We include an Ecore implemen-
tation of the PRISMA metamodel described by Pérez Benedi
(2006). Thanks to the tools that are provided together with the
specification of this metamodel it is possible to automatically
generate code from PRISMA architectural descriptions—i. e.,
PRISMA-NET-MIDDLEWARE and PRISMA-MODEL-COM-
PILER (Pérez et al. 2008). Since, this metamodel has been
precisely specified in previous literature (Pérez Benedi 2006;
Pérez et al. 2008; Ali 2008; Costa-Soria 2011), only the im-
plementation details of this metamodel are presented in sec-
tion 8.3.5.

5.3 SUMMARY

This chapter has introduced what a multi-model is, and how using
this concept Multi-Model Driven Software Product Lines (MMDSPLs)
can be built. A MMDSPL is a SPL built using different modeling lan-
guages and notations, and based on the MDE principles. In this sense,
the previous works done in the context of software systems’ views
provide a fundamental background to characterize the most relevant
views that should be considered (Bass et al. 1998; Clements et al.
2003; Limén Cordero 2010). Specifically, this thesis is based on the
proposal of Limén Cordero (2010), which provides a comparison
among the different proposals made in the last years to character-
ize the software systems’ views; moreover, it makes a proposal to
describe and interrelate them by using the MDA. In MULTIPLE three
views are considered: the modular and the component-connector
views, which are based in previous literature; and the new variability
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view, which previous works do not manage in a explicit way and is
fundamental when dealing with SPLs.

All these views, together with the relationships among them, make
up the multi-model which defines a SPL as shown in Fig. 5.1. In
this thesis each view can be defined by using a particular DSL, and
each view can be related with each other by using declarative model
transformations. All these tasks are supported by the corresponding
tool support as next chapters will demonstrate.
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CARDINALITY-BASED FEATURE MODEL
CONFIGURATION ISSUES

« Lhe significant problems we have cannot be solved
at the same level of thinking with which we created them.»

— Albert Einstein
German physicist and Nobel prize in Physics in 1921, 1879-1955

Feature modeling plays a key role in the definition of a SPL. As a
modeling approach, it can be exploited by means of metamodeling
standards such as MDA.

In this chapter we discuss the main issues that arise when trying
to use feature models in a MDE process, and how to easily over-
come them. Here, and in the remaining of this thesis, we present
our approach to allow developers of SPLs to define, use and exploit
feature models in a modeling and MOF-compliant metamodeling
tool (such as EMF). Moreover, since the EMF framework provides
several tools which permit us to enrich these models (by means
of OCL expressions) and to deal easily with them (by using model
transformations),we will use this framework to start a SPL.

73



74

The MOF standard
provides a suitable
basis to define
feature models and

configurations.

FEATURE MODEL CONFIGURATION ISSUES

6.1 INTRODUCTION

Feature models are diagrams which express the commonalities
and variabilities among the members of a family of products. The
cardinality-based feature modeling approach (see section 4.2.4) in-
tegrates several extensions that have been proposed to the original
FODA notation.

A configuration of a feature model, can be defined as a valid set of
instances of a feature model (see section 4.2.5). Expressed in terms
of the Object-Oriented (00) paradigm, the relationship between a
feature model and a configuration is comparable to the relationship
between a class and an object. Fig. 4.8 (page 58) shows an example
feature model with its two possible configurations. Notice that the
feature selection process (according to the defined constraints) is
closely related with a copy mechanism, that is, a configuration of
a feature model is a more restrictive copy of the original one that
represents exactly one variant.

This definition is quite intuitive when dealing with ““traditional”
feature models (those that can be defined by using the original FODA
notation). In this case, every instantiation of the elements of the
feature model will follow the singleton pattern (Gamma et al. 1995),
that is, every feature can have at most one instance. Fig. 4.8 (see
page 58) show an example of this.

6.2 FEATURE MODELS, CONFIGURATIONS AND MOF

The MOF standard, as presented in section 2.3, defines a strict clas-
sification of software artifacts in a four-layer architecture. Since it
provides support for modeling and metamodeling, we can use MOF
to define feature models by defining their metamodel. Fig. 6.1 shows
the example feature model presented in Fig. 4.8 in the context of MOF.
The EMOF language is represented in a simplified way in M3. In M2,
the feature metamodel is represented by using the MOF language
(also in a simplified way). The example feature model is shown in
level M1 (left-most feature model).
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Figure 6.1: Configuration of FODA feature models in MOF

A configuration of a feature model is built by selecting a subset of
features of a model. Obviously, mandatory features must be always
selected, and optional features may be selected or not. In practice,
this implies that they can be removed from the feature model (Con-
figuration 2 in Fig. 4.8). This configuration mechanism (deletion
of optional features) is done at the model level as instances are not
usually identified as such in the feature modeling community. This
can be done (and is somewhat intuitive) as features can have only a
single instance and configurations at the MO layer are equivalent to
their corresponding feature models at the M1 layer.

When cardinality-based feature models were proposed, the same
mechanism to build feature model configurations was adopted (Czar-
necki et al. 2005b; Czarnecki et al. 2005a). In this case, when features
have an upper bound greater than 1, they can be cloned. Thus, we can
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Figure 6.2: Staged configuration through specialization

have multiple copies of the same feature. This configuration steps are
also done at model level until only one variant of the feature model
is possible. Figure 6.2 shows an example of this.

Fig. 6.3 shows an example of the configuration through specializa-
tion mechanism in the context of MOF: several feature models are
built until a feature model without variability (which identifies the
configuration) is defined.
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Figure 6.3: Configuration through specialization in the context of MOF
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However, this approach to configure cardinality-based feature
models presents some problems when using feature models in a
MDE process. These problems come from the classical definition of
configuration of a feature model (the set of features that are selected
from a feature model). This definition mixes different levels of ab-
straction as it tends to define the configuration as a copy mechanism
instead of as an instantiation mechanism. That is, the configuration
is a refinement of the feature model instead of an actual instance of
it.

The misconception in the instantiation process becomes more
apparent when feature models also have attribute types. In this case,
the relationship between a feature model and a configuration is more
clear: it is similar to the relationship between a class with attributes
and an object which defines its state in terms of the values for its
attributes. Taking this into account, the configuration mechanisms
are more similar and understandable as an instance-of relationship
rather than as a copy-and-refinement-of relationship.

Mixing different levels of abstraction when dealing with software
artifacts (such as the feature models) is also problematic when trying
to apply existing MDE technologies. For example, to execute model
transformations it is necessary to clearly define the involved artifacts
and their relationships. A model transformation defines a set of
rules among a set of metamodels. A set of candidate models (which
conform to the metamodels) can be checked (or enforced) against
the defined rules. Model transformations can be applied not only at
metamodel/model level (M2 and M1 layers) but also to any x + 1
and x levels (such as the model/instance layers). Fig. 6.4 describes

METAMODEL 1 Roles METAMODEL 2}

T Conforms to T Conforms to J

MODEL 1 Automatic ‘:;Zyﬂyfarmn[imz MODEL 2

Figure 6.4: Example of a model transformation
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Figure 6.5: Definition and configuration of feature models in the context
of MOF

an example transformation schematically with only two candidate
models (and metamodels). The diagram describes the artifacts in-
volved in a model transformation. In this example, a set of Rules
defines how to transform from the metamodel METAMODEL 1 to
the metamodel METAMODEL 2. An initial model (MobDEL 1, which
conforms to METAMODEL 1) is automatically transformed to obtain
the MobDEL 2, which conforms to METAMODEL 2.

As a consequence of the above explanations, in order to integrate
feature models in model transformations we must place each soft-
ware artifact in its corresponding abstraction level. Fig. 6.5 shows
where feature models and configurations should be placed in a well-
defined MOF architecture. This way, a feature model which describes
all the variants of the family of systems should be placed at the M 1
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layer; and any valid configuration described by the feature model
should be placed at the MO layer.

Moreover, when features can be cloned and such features can
have an attribute type a new issue comes up: we can not represent
feature models as propositional formulas as in FODA. Propositional
formulas only allow two possible values: true or false, i.e., the
feature is selected or not. In cardinality-based feature models we
need to express how many clones of a feature exist, which are the
values of the attributes (which can be strings, integers, ...), etc. In
this case, we need to use more expressive languages that allows us
(i) to deal with sets of features (i. e. n copies of feature F); and (ii) to
deal with typed variables which values can be unbound in order to
easily represent attribute types.

6.3 DESCRIBING FEATURE MODEL CONFIGURATIONS AS
INSTANCES

The previous section has shown the importance to describe a configu-
ration as an instance of a feature model. MOF provides the conceptual
background to describe feature models and configurations. Now,
we must find the way to implement such approach in a modeling
environment. EMF, the industrial framework that can be considered
as an implementation of the MOF standard, can be used to achieve
this goal.

Ecore, the EMF metamodeling language, can be placed at layer
M3 of the four-layer MOF architecture. Using Ecore, developers can
define their own models which will be placed at the metamodel
layer (M2). An example of such metamodels is the one to build
cardinality-based feature models. Finally, these Ecore models can be
used to automatically generate graphical editors which are capable
of building instance models, which will be placed at M1 layer. In
the case of feature modeling, these instance models are the feature
models. Fig. 6.6 shows this architecture.

A drawback of most of the modeling frameworks which are avail-
able today is that MO is empty. Specifically, EMF provides a modeling
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Figure 6.6: EMF and the four-layer architecture of MOF

language to define new models and their instances, but it only covers
two layers of the MOF architecture: the metamodel (M2) and the
model (M1) layers. However, in the case of feature modeling we
need to work with three layers of the MOF architecture: metamodel
(cardinality-based feature metamodel), model (cardinality-based
feature models), and instances (configurations).

Fig. 6.7 shows how we overcome this drawback to provide com-
plete feature modeling support in MULTIPLE: we define a model-to-
model transformation to convert a feature model (i. e. the model
represented by Feature model which can not be instantiated) to an
Ecore model—which we call the Domain Variability Model (DVM)—,
that represents the Feature model as a new class diagram. Thus, it
is possible to represent a feature model at the metamodeling layer,
making the definition of its instances possible. This allows us to
take advantage of EMF again, and automatically generate the editors
to define feature model configurations in MULTIPLE, and validate
them against their corresponding feature models thanks to their new
representation, the DVM. Moreover, as the DVM is an Ecore model
(a simplified UML class diagram) we automatically obtain support
to check complex constraints (by using OCL) over the feature mo-



6.4 SUMMARY AND CONCLUSIONS

~
Ecore
Confo r‘m;/’ WWH 10
Domain
Feature L
Variability
Metamodel Model
) _Moadel |
lﬂode
Instance 0/I N\()d“l—;0,-17latin)l I] nstance. of
‘ 0’
t"“ﬂs’
Feature
Configuration
Model 9
(%) (%}
J

Figure 6.7: Dealing with feature model configurations in EMF

del configurations. Chapter 7 describes how this is implemented in
MULTIPLE in detail.

6.4 SUMMARY AND CONCLUSIONS

Feature models are used to define the variability of a family of prod-
ucts. A specific variant of a feature model is described by a feature
model configuration. Using modeling and metamodeling terminol-
ogy, a feature model configuration is in turn an instance of a feature
model. However, traditionally the feature modeling community has
considered a feature model configuration as a refined feature model
instead of as an instance (the so-called configuration through special-
ization mechanism). This chapter has summarized the main issues
that this idea implies. These problems become more apparent when
dealing with cardinality-based feature models.

Configuration through specialization implies that a configuration
is represented by a feature model which describes only one variant.
This keeps us from using feature models in MDE processes, as we
need to place software artifacts in the right levels of MOF. Represent-
ing configurations as actual instances of feature models allows us
to describe in a more natural way the relationship between them.
Furthermore, using the proper representation for feature models
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and their configuration eases the validation tasks: the instance-of
relationship guarantees the coherence between the elements at the
MO and the M1 layers.

Cardinality-based feature models also have some characteristics
that make them quite different to classic feature models (FODA).
Specifically, traditionally feature models were analysed using propo-
sitional formulas. However, cardinality-based feature models can
have attribute types, which can not be described by this kind of logic.
Thus, we need other kind of languages to analyse feature models and
describe model constraints.

To overcome all this issues in MULTIPLE we propose to use an
industrial modeling framework to build feature models and their
configurations. However, some technical issues arise. Nevertheless,
these issues can be easily solved by means of model transformations.
This way, our proposal consists of transforming a feature model to a
Domain Variability Model (DVM). Such diagrams allow us to easily
define configurations as real instances, we can integrate them in
complex MDE processes which use model transformations, and we
can use existing technologies and constraint languages to analyse
feature models and their configurations.



USING FEATURE MODELS IN MODEL-DRIVEN
ENGINEERING PROCESSES

« Lundamental progress has to do
with the reinterpretation of basic ideas»

— Alfred North Whitehead

English mathematician and philosopher, 1861-1947

The basis of variability management in MULTIPLE is the cardinality-
based feature metamodel, which permits to define feature models.
As a result of state of the art review presented in section 4.2, we
have decided to design a metamodel to define (a variant of) the
cardinality-based feature models. The proposed metamodel can
be considered a superset of the most relevant proposals for feature
modeling. This chapter describes in detail our metamodel proposal,
and how this metamodel can be used to define feature models and
feature model configurations.

71 PROCESS OVERVIEW
As explained in the previous chapter, the use of feature models in

MDE processes using nowadays modeling tools is not straightforward.
The main problem that arises is the inability of these tools to deal
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with software artifacts in more than two layers at the same time (i. e.,
they only support the instance-of relationship). This thesis proposes
to use model transformations to overcome this drawback.

The use of model transformations has an impact in the process of
defining a feature model and a feature model configuration, and such
impact should be considered. Fig. 7.1 describes such process using
Software & Systems Process Engineering Meta-Model (SPEM) (OMG
2008c). First, the domain engineer defines a feature model (which
conforms to the feature metamodel described in section 7.2). Such
feature model is used—together with the Feature Model (FM) to DVM
QVT transformation—as an input of the Obtain Domain Variability
Model task. such task, which is automatically executed, generates a
DVM. Using the DVM the application engineer performs the Feature
Selection task. In such task is when the application engineer selects
the desired product of the SPL, and as a result, obtains a Feature
Model Configuration.

Next sections detail each one of these tasks: section 7.2 describes
the feature metamodel, which in turn determines how a feature
model is defined; section 7.3 explains how a DVM is obtained from
a given feature model; and finally section 7.4 describes how feature
model configurations are defined by using the bvMm.

Application  f
Engineer

N N
[] « Define Feature "\, <out» «in» [ Obtain Domain \, «out an» Feature «outy
performs» tair !
-~ Model > > | Variability Model > > Selection >

Domain Feature iy f Domain Vari- Feature Model
Engineer Model ability Model Configuration

e

FMto DVM
QVT transformation

Figure 7.1: Feature models and MDE: process overview
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7.2 CARDINALITY-BASED FEATURE METAMODEL

In our proposal we have decided to represent explicitly the relation-
ships between features. Thus, our metamodel represents in an uni-
form way the hierarchical relationships and the restrictions between
features. Table 7.1 classifies and summarizes the types of relationships
that the feature metamodel is able to represent.

7.2.1 Feature models structure

Relationships represented in table 7.1 classify relationships in two
orthogonal groups:

o Vertical vs. horizontal relationships. Vertical relationships de-
fine the hierarchical structure of a feature model and horizon-

Vertical (~h leral"ch1cal) Horizontal relationships
relationships
Biconditional /
'_éL Mandatory o l/
£ Implication
=
5
I
e Exclusion
<
E Optional
(0] [0..n]."
Use
a . 0<sj<k<m [j.k]
oy
2 Generic /4>\
<
L
k= 0<j<1 (j.-1]
e XOR
s
[
£y 0<j<l<k<m [j.-kl]
<] OR
]

*where m is the number of childs

Table 7.1: Cardinality-based feature metamodel: proposed types of rela-
tionships between features
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tal relationships define dependecies and restrictions between
features.

« Binary vs grouped relationships. Binary relationships define
relationships between two single features. In turn, grouped
relationships are a set of relationships between a single feature
and a group of childs.

Given this classification, the following relationships exist:

e Binary and vertical relationships. This relationships define
structural relationships between two single features. In our
approach, they represent a has_a relationship between a par-
ent and a child feature. They can be mandatory and optional
depending on the lower bound value. The upper bound (1)
can be on both cases 1 or greater than 1, and indicates how
many instances of the child feature will be allowed.

o Grouped and vertical relationships. Grouped and vertical re-
lationships are a set of binary relationships where the child
features share a is_a connotation with respect to their parent
feature. A group can have an upper and a lower bound. These
bounds specify the minimun and the maximun number of fea-
tures that can be instantiated (regardless of the total number
of instances).

« Binary and horizontal relationships. These relationships are
specified between two features and do not express any hier-
archical information. They are explained in the following
section (sect. 7.2.2).

7.2.2.  Feature model constraints

As was pointed out in section 6.1, it is quite common in feature mod-
eling to have the possibility to define model constraints in order to
describe more precisely which configurations should be considered
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as valid. Typically, these constraints are described by means of impli-
cation or exclusion relationships. This kind of relationships are the
binary and horizontal relationships that our metamodel provides.
The binary and horizontal relationships are specified between two
features and they can express constraints (coimplications, implica-
tions and exclusion) or dependencies (use). The first group applies
to the whole set of instances of the involved features, however, the
second one allows us to define dependencies at instance level, i. e.:

o Implication (A° — B): If an instance of feature A exists, at
least an instance of feature B must exist too.

o Coimplication (A <— B): If an instance of feature A exists,
at least an instance of feature B must exist too and vice versa.

o Exclusion (A <x—x B): If an instance of feature A exists, can
not exist any instance of feature B and vice versa.

o Use (A —— — B): This relationship will be defined at config-
uration level, and it will specify that an specific instance of
feature A will be related to one (or more) specific instances of
feature B as defined by its upper bound (n).

Besides these kind of relationships that describe coarse-grained
restrictions, our metamodel provides capabilities to describe fine-
grained restrictions. To describe these fine-grained restrictions we
propose a constraint language, called Feature Modeling Constraint
Language (FMCL). FMCL is a formal language without side-effects
(does not modify the model instances) whose syntax is based on the
widely known OCL and its semantics are defined by a set of patterns
that describe the equivalences between FMCL expressions and OCL
expressions.

7.2.3  Cardinality-based feature metamodel in MOF

Fig. 7.2 shows our feature metamodel. Such metamodel has been
defined taking into account that every element will have a different
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Figure 7.2: Cardinality-based features metamodel
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graphical representation. This way; it is possible to automatically
generate the graphical editor to draw feature models based on such
metamodel. In that figure, a feature model is represented by means
of the FeatureModel class, and a feature model can be seen as a set
of Features and the set of Relationships among them. A feature
model must also have a root feature, which is denoted by means of
the rootFeature role.

Binary relationships in table 7.1 are represented in the features
metamodel as descendants of the Relationship class. Class Struc-
turalRelationship represents the so called Vertical relationships and
GenericRelationship represents the Horizontal ones. StructuralRela-
tionships relate one parent RelatableElement (a Feature or a Group)
with one child Feature. A Group specifies that a set of StructuralRe-
lationships should be considered as a group.

Complex model constraints expressed in FMCL are stored in a
Constraints Set instance, and can be applied to any subclass of the
abstract class ConstrainableElement (context role), i. e., Feature-
Model, Feature, Group or Uses. The restrictions are expressed as a
textual expression (body attribute of the Constraint class).

It is noteworthy to point out two slight differences of our approach
with respect to the classical cardinality-based feature models. First,
we represent feature multiplicities at relationship level instead of at
feature level (by means of the BoundableElement class). This allows
us to easily define mandatory and optional relationships explicitly.
Second, features can not have an attribute type. In turn, this infor-
mation is expressed in terms of feature attributes. Feature attributes
express information which is complementary to a feature and can
be used to describe parametric features.

7.2.3.1  Example feature model

Fig. 7.3 shows an example feature model using the proposed notation.
The feature model describes a simple product line for cars. A car must
have four wheels (of a given radius), one engine (of an specific power
in watts) and a transmission (which can be manual or automatic). As
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Constraints

TCS.selectd() implies Engine.power > 70000

[4.4]
Wheel Engine

radius : Integer power : Integer

Transmission

‘ Manual ‘ ‘ Automatic

Constraints

self.radius > 15
Wheel.allInstances()->forAll(w1, w2 | w1 <> w2 implies wi.radius = w2.radius)

Figure 7.3: Example cardinality-based feature model

an optional equipment the car can have a Traction Control System
(TCS). The feature model also describes four constraints: the arrow
between the feature TCS and Automatic states that if an automatic
transmission is selected, the TCS must be selected too; the annotation
attached to the TCS feature states that the TCS can only be selected if
the power of the engine is higher than 70.000 watts; and finally, the
annotation attached to the Wheel feature specifies that the radius of
the instances of the wheel must be higher than 15 inches and that all
the wheels must be of the same size.

73 THE DOMAIN VARIABILITY MODEL

The DVM is a class diagram (an Ecore model) whose instances are
equivalent to the configurations of a feature model. It is intended to
ease the definition of feature models configurations in EMF as was
explained in section 6.3. This model can be automatically generated
by means of a model-to-model transformation. The following para-
graphs describe the transformation which converts a feature model,
to a DVM (expressed as an Ecore model that can be instantiated).
As feature models describe not only the structure of the features
but also the relationships and restrictions among them, it is neces-
sary to define rules to generate both the structure of the DvM and
the restrictions that apply to it. First, the structure of the DVM is
defined by means of Ecore containment references and inheritance
relationships; and second, restrictions are defined by means of OCL
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expressions. These OCL expressions are included on the DVM itself
by means of EAnnotations. These EAnnotations are automatically
used in next steps by our prototype to check that configurations are
valid.

7.3.1  The structure of the DVM

The transformation regarding to the structure of the DVM is almost
a one-to-one mapping. For each Feature of the source model an
EClass (with the same name) is created. All the classes are created
inside the same EPackage, whose name and identifier derives from
the feature model name. Moreover, for each feature Attribute, an
EAttribute in its corresponding EClass is created in the target model.
Any needed EDataType is also created.

Regarding to the relationships, for each StructuralRelationship
from a parent Feature, a containment EReference will be created
from the corresponding EClass and for each Group contained in a
Feature a containment EReference will be created from the corre-
sponding EClass. This EReference will point to a new abstract class,
whose name will be composed by the Feature name and the suffix
“Type”. Additionally, an EClass will be generated for each Feature
belonging to a Group. Moreover, each one of these EClasses inherit
from the abstract EClass that has been previously created.

Following the MDA guidelines, the mappings described previously
informally have been clearly defined by using the Relations language
defined in the QVT standard (OMG 2008a). Next, the relations are
described using the graphical notation for QVT-Relations. Appendix
A contains the full textual specification of the QVT transformation.

7.3.1.1 Feature2Class relation

The Feature2Class relation (Fig. 7.4) describes the mapping between
Features and Classes. This relation is top-level, i. e., it is enforced on
its own (it is not a pre- or post-condition for another relation).
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The rule specifies that, given a feature model (whose name is mod-
elName) and a feature (whose name is featureName), an EPackage
containing an EClass must exist in the target domain. The EPackage
name, nsPrefix and nsUR| must match the feature model name. The
EClass name must match the feature name.

7.3.1.2 FeatureAttribute2ClassAttribute relation

The FeatureAttribute2ClassAttribute relation (Fig. 7.5) is a top-level
rule which specifies the mappings between feature attributes and
class attributes. Thus, for each FeatureModel, an EPackage with the
same name (and identifiers) must exist. For each feature Attribute an
EAttribute with the same name must also exist. Such attributes are
contained in their corresponding elements, i. e., feature attributes are
contained in a Feature and EAttributes are contained in an EClass.
These elements (Features and EClasses) must have the same name.

Finally, every feature Attribute must have a type. For each feature
attribute type, an EDataType must exist in the declared EPackage.
Such EDataType must correspond to a Java type contained in the
java.lang package.

Feature2Class

«domain»
«domain» pkg : EPackage
model : FeatureModel S name = modelName
name = modelName NG nsPrefix = modelName
\‘~<:> _ nsURI = ‘http://’ + modelName
am
-------- >
E
«domain» R .
& eClassifiers
feature : Feature T

name = featureName 24

class : EClass

name = featureName

Figure 7.4: Feature2Class relation



73 THE DOMAIN VARIABILITY MODEL

FeatureAttribute2ClassAttribute

pkg : EPackage
«domain» name = modelName
model : FeatureModel nsPrefix = modelName
name = modelName nsURI = ‘http://’ + modelName
<, 7 eClassifiers
S g e
«domain» RN Tl e type : EDataType
feature : Feature <:> name = featureAttType,
instanceTypeName = ‘java.lang.’ + featureAttType
name = featureName
o, N \%“:r
& o,
L %,
e IR _
o v ey «domain»
attributes class : EClass
—————— name = featureName
featureAttribute : Attribute
name = featureAttName, eStructuralFeatures
type = featureAttType eType
type : EDataType eattribute : EAttribute
name = featureAttName

Figure 7.5: FeatureAttribute2ClassAttribute relation

7.3.1.3  StructuralRealtionship2Reference relation

This top-level rule (see Fig. 7.6) transforms the binary relationships
between two Features to a containment EReference between two
EClasses. As the previous rules, it checks that a Feature Model exists,
and enforces that an EPackage with the same name also exists.

The rule also checks that for each StructuralRelationships between
two Features whose names are featureName and childFeatureName,
an EReference with the same name between two EClasses must exist.
The names of the EClasses must be featureName and childFeature-
Name. The lower and upper bound of the EReference must be the
ones specified by the StructuralRelationship (lowerBound and up-
perBound). Finally, the containmet attribute of the EReference must
be true.
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StructuralRelationship2Reference

«domain»

model : FeatureModel

name = modelName

S
%
~ 8
%,
%
[aRN
«domain» ~
feature : Feature
name = featureName
e
S
o
childs o C
r

relationship : StructuralRelationship

lowerBound = lower
upperBound = upper

child : Feature

name = childFeatName

to childClass : EClass

«domain»

pkg : EPackage

nsURI = ‘http://’ + modelName

eClassifiers

childClass : EClass

name = childFeatName

«domain»

class : EClass

name = featureName

eStructuralFeatures

reference : EReference

eType

name = childFeatName
containment = true
lowerBound = lower
upperBound = upper

Figure 7.6: StructuralRealtionship2Reference relation

Group2Reference

«domain»

model : FeatureModel

typeClass : EClass

name = groupName
abstract = true

group : Group

name = groupName

childs ‘

: t
childRelationship : StructuralRelationship u

to

childFeature : Feature

name = childFeatName

- where

parentClass : EClass

name = featureName

eStructuralFeatures

reference : EReference

name = featureName + ‘Features’
containment = true

lowerBound
upperBound = -1

eClassifiers
name = modelName ASNCH .
e, «domain» eClassifiers
«domain» c pkg : EPackage }— childClass : EClass
feature : Feature TTETT > | nsURI= ‘http://’ + modelName ‘ name = childFeatName
P
name = featureName \e’&,—’
e eClassifiers
group ‘

GroupChild2Classes(childFeature, typeClass, childClass);
GroupChild2ChildrenAnnot(feature, parentClass);
GroupChild2LowerAnnot(childRelationship, parentClass);
GroupChild2UpperAnnot(childRelationship, parentClass);

Figure 7.7: Group2Reference relation
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7.3.1.4 Group2Reference relation

The Group2Reference top-level relation is in charge of transforming
a Group of Features to a set of EClasses, EReferences and EAnno-
tations. This rule has several post-conditions, GroupChild2Classes,
GroupChild2ChildrenAnnot, GroupChild2LowerAnnot and Group-
Child2UpperAnnot, which are explained next.

Fig. 7.7 shows the object template which is applied to transform
a Feature Group to the class diagram domain. First, as usual, it
checks that both a Feature Model and an EPackage are found in the
source and target domains with the same identifiers. It also checks
that for each Feature which contains a Group, two EClasses must be
present in the target domain. The first EClass must have the name
of the feature (featureName). The second class must be an abstract
class whose name must match the Group name (groupName). As
was explained in page 86, grouped and vertical relationships denote
an is_a relationship between a parent feature and its children. This
way, this EClass is created to make explicit the is_a relationship
mentioned before, as every child feature will inherit from it. The
inheritance relationship is enforced when the GroupChild2Classes
relation is applied. The abstract EClass is referenced from the parent
EClass by means of a containment EReference. The lower and upper
bound of the EReference are set to o and -1 respectively, which are
the generic values to describe a zero to many elements multiplicity.
The actual values of the different relationships are checked using OCL
constraints. Such constraints are created by the post-conditions of
the rule.

Finally, a Group in the source domain points to a set of child
Features. For each one of these child features, an EClass with the
same name (childFeatName) must exist in the target domain.

7.3.1.5  GroupChild2Classes relation

The GroupChild2Classes (Fig. 7.8) is executed as a post-condition
of the Group2Reference and creates an inheritance relationships be-
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GroupChild2Classes

«domain» d .
«aomain»

childFeature : Feature w. %, childClass : EClass

= chi Ny
name = childFeatureName \\fe name = childFeatureName
c s
> classdiagram
o e
R <// eSuperTypes
N stas
«domain» Viss
typeClass : EClass typeClass : EClass

Figure 7.8: GroupChild2Classes relation

tween two EClases: childEClass and typeClass. The name of the
child EClass matchs the name of an already created Feature.

7.3.1.6  GroupChild2ChildrenAnnot relation

One of the main differences of our proposal with respect to the tradi-
tional cardinality based feature models is how the group cardinalities
are specified. I. e., we differentiate between the group cardinalities
and the child cardinalities. When a group cardinality is specified,
it restricts how many features can be instantiated (regardless of the
number of instances of the feature), and the number of instances is
restricted by the child cardinality.

Fig. 7.9 shows and example feature model. In it, an exclusive or
group is defined (i. e., the group cardinality is [1..1]). This means
that only one child feature can be instantiated (B or C, but not both).
However, features B and C are clonable, and, as such, several in-

— Group cardinality
‘ [1.1]

[o..2]

[0..3] -
"\ Child cardinality

Child cardinality -~ E.

Figure 7.9: Cardinalities in feature groups
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GroupChild2ChildrenAnnot

«domain»
parentClass : EClass

«domain»
feature : Feature feature classdiagram
R SN !
name = featureName c £ eAnntations

group

oclAnnotLower : EAnnotation

grp: Group source = ‘http://www.eclipse.org/ocl/examples/OCL’

lowerBound = lower
upperBound = upper details

oclEntryLower : EStringToStringMapEntry

key = ‘checkChildren’ + featureName
value = oclExpresion

- when
parentClass.eAnnotations->select(
annot : EAnnotation | not annot.details->select(
entry : EStringToStringMapEntry | entry.key = 'checkChildren' + featureName)->isEmpty())->isEmpty();
- where
oclExpression =
toString(lower) + ‘ <= ( “ + buildGroupConstraint(feature) + ) and ( * + buildGroupConstraint(feature) + ‘) <= ‘ + toString(upper)

Figure 7.10: GroupChild2ChildrenAnnot relation

stances can be created (up to 3 instances of B and up to 2 instances
of C).

Fig. 710 shows the GroupChild2ChildrenAnnot relation. It checks
(and enforces) that for each Feature containing a Group a corre-
sponding EAnnotation must exist in the parent EClass. To identify
the EAnnotation the featureName will be used. The content of the
EAnnotation will be an OCL expression. The when clause specifies
the pre-condition of the relation, and states that the rule will be only
applied if the EClass does not contain an EAnnotation with the same
key attribute. The where clause builds the OCL expression which spec-
ifies that the number of EClasses with instances must be between
the lowerBound and upperBound values of the Group. To count the
number of EClases with instances the buildGroupConstraint(...)
query is used (see Listing 7.1).

Finally, the Listing 7.2 shows the toString(...) function, which
is able to convert an integer to string using OCL. This function is
necessary because OCL is a strong typed language, and does not
provide any built-in function to perform typecasting.
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Listing 7.1: buildGroupConstraint(...) OCL query

© ® N o

10

query buildGroupConstraint(parentFeature : Feature) : String
{
parentFeature.group.childs->iterate(
-- We iterate for each relationship contained in the
group
relationship : StructuralRelationship;
-- The text of the OCL expression is stored in the "
result” var
result : String = 7’
| -- Starting from here, the body of the loop
result.concat(
’(if self.’ + parentFeature.name + ’Features->select(
f : ’ + parentFeature.group.name + ’ | f.
oclIsKindOf(’ + relationship.to.name + ’))->
notEmpty () then 1 else 0 endif) + )
).concat(’0’)

Listing 7.2: toString(...) OCL query

© N o v &

10

12
13
14
15
16
17
18
19

21
22

query toString(number : Integer) : String {
-- We define the following expression to translate an
Integer to
-- String. In this way, we avoid to include any external
library/method
-- to perform the conversion.
if number >= 0 then
OrderedSet{1000000, 10000, 1000, 100, 10, 1}->iterate(
-- We will support numbers <= 999.999
-- If greater numbers are needed, more powers of ten can

be added
denominator : Integer;
s : String = |

let numberAsString : String = OrderedSet{’0’,’1’,’2’,’3
140 050 060 070 187 790 )
->at (((number div denominator) mod 10) + 1)

in

if s=’’ and numberAsString = ’0’ then
s

else
s.concat (numberAsString)

endif

)

else

’-’.concat(toString(-number))
endif
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GroupChild2LowerAnnot

«domain»
parfeature : Feature parentClass : EClass
name = parentFeatureName
parentFeature
grp: Group < feature <:> classdiagram > eAnnotations
name = groupName C E
from [
oclAnnotLower : EAnnotation
«domain»
relationship  StructuralRelationship source = ‘http://www.eclipse.org/ocl/examples/OCL’
lowerBound = lower
details
to

oclEntryLower : EStringToStringMapEntry
feature : Feature

key = ‘lowerMultiplicity’ + featureName
value = oclExpresion

name = featureName

- when
parentClass.eAnnotations->select(
annot : EAnnotation | not annot.details->select(
entry : EStringToStringMapEntry | entry.key = ‘lowerMultiplicity' + featureName)->isEmpty())->isEmpty();
- where
oclExpression =
‘self.” + parentFeatureName + ‘Features->select(f :  + groupName + | f.oclIsKindOf(‘ + featureName + ))->notEmpty() implies’ +
‘self.” + parentFeatureName + ‘Features->select(f : ‘ + groupName + ‘| f.ocllskindOf(* + featureName + ))->size() >=* + toString(lower)

Figure 7.11: GroupChild2LowerAnnot relation

7.3.1.7  GroupChild2LowerAnnot relation

As explained before, in our proposal we diferentiate between group
cardinalities and child cardinalities. As the GroupChild2ChildrenAn-
not did for group cardinalities, the GroupChild2LowerAnnot creates
an EAnnotation containing an OCL expression to check if the lower
bound of a child cardinality is valid.

The relation states that for each Feature contained in a Group by
means of a StructuralRelationship, a corresponding EAnnotation
identified by the feature name must exist. As the when clause specifies,
the rule is only applied if the corresponding EAnnotation has not
been created yet. The where clause builds the OCL constraint. Such
constraint specifies that the number of instances of the Feature must
be higher than the lowerBound.

7.3.1.8  GroupChild2UpperAnnot relation

Fig. 7.12 shows the GroupChild2UpperAnnot relation. This relation
is in charge of creating the EAnnotation to validate the number of
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GroupChild2UpperAnnot

«domain»

parFeature : Feature parentClaﬂl

name = parentFeatureName

parentFeature
grp: Group feature <:> classdiagram eAnnotations
name = groupName < c E >
from [
domainy oclAnnotLower : EAnnotation
mns(l(ﬂp: Struct\W source = ‘http://www.eclipse.org/ocl/examples/OCL"

upperBound = upper

details

to

oclEntryLower : EStringToStringMapEntry
feature : Feature

key = ‘upperMultiplicity’ + featureName

name = featureName value = oclExpresion

- when
upper >0 and
parentClass.eAnnotations->select(
annot : EAnnotation | not annot.details->select(
entry : EStringToStringMapEntry | entry.key = ‘upperMultiplicity' + featureName)->isEmpty())->isEmpty();

- where
oclExpression =

‘self.” + parentFeatureName + ‘Features->select(f :  + groupName + * | f.oclisKindOf(‘ + featureName + ‘))->notEmpty() implies’ +

‘self.” + parentFeatureName + ‘Features->select(f : ‘ + groupName + | f.ocllsKindOf(* + featureName + ‘))->size() <=* + toString(upper)

Figure 7.12: GroupChild2UpperAnnot relation

instances of a child Feature in a feature Group. It is specified in the
same way than the GroupChild2zLowerAnnot relation.

7.3.2  Constraints over the DVM

The restriction relationships and model constraints (FMCL expres-
sions) are mapped to references and OCL expressions in the DVM.
The following paragraphs summarize how these constraints are rep-
resented in the DVM.

First, the restriction relationships (implies, excludes, etc.) can be
expressed as OCL expressions. The semantics of these relationships
can be expressed as:

o A implies B relationship (A — B):

1 context PackageName inv:

2 A.alllInstances()->notEmpty() implies B.allInstances()
3 ->notEmpty ())
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For example, the implies relationship that relates the features
Automatic and TCS in Fig. 7.3 can be expressed as:

1 context CarPackage inv:
2 Automatic.alllnstances()->notEmpty () implies
3 TCS.alllInstances () ->notEmpty())

o A if and only if B relationship (A <— B):

1 context PackageName inv:
2 A.alllInstances()->notEmpty() implies B.allInstances()
3 ->notEmpty ()) and

4 B.allInstances()->notEmpty() implies A.allInstances()
5 ->notEmpty ())

o A excludes B relationship (A x—x< B):

1 context PackageName inv:
2 A.alllInstances()->notEmpty() implies B.allInstances()
3 ->isEmpty()) and

4 B.allInstances()->notEmpty() implies A.allInstances()
5 ->isEmpty ())

Second, for each Uses relationship between two Features, an ERef-
erence will be created in the target model. This EReference will relate
two EClasses whose names will match the Features names.
Finally, the FMCL expressions are mapped to OCL expressions tak-  The FMCL language

ing into account the mappings explained in section 7.3.1. Fig. 7.3 can be considered as
OCL enriched with

syntactic sugar. This
way, transforming a
rectly using the OCL syntax. This way, an FMCL expression is directly  ramcr expression to

shows an example of this. As can be seen on the constraint that
applies to the Wheel feature, a FMCL expression can be expressed di-

transformed to an OCL invariant. The context of the invariant corre-  an OCL expression

sponds to the name of the ConstrainableElement that is linked to the is an
. o . straightforward
constraint (dashed line in the figure) and the text of the expression process.

remains the same:

1 context Wheel

2 inv: self.radius > 15

3 inv: Wheel.allInstances()->forAll(wl, w2 |

4 wl <> w2 implies wl.radius = w2.
radius)
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However, although the FMCL expressions are almost the same
than an OCL invariant, some simple conventions have been adopted
to make the definition of model constraints closer to the feature
modeling context. The semantics of these additions are defined by
means of transformation patterns (see section 7.3.2.6).

An example of the application of some of these patterns can be
seen in the constraint attached to the TCS feature (Fig. 7.3). The
example constraint is transformed to the following OCL expression:

1 context TCS inv:
2 TCS.allInstances()->notEmpty() implies Engine.allInstances()
->forAll (power > 70000)

Next, the QvT-Relations rules which perform the transformation
are explained in detail.

7.3.2.1 ExcludesRelationship2ModelConstraint relation

The top-level ExcludesRelationship2ModelConstraint relation (Fig.
7.13) is in charge of creating the OCL expression to guarantee that
the existence of a feature excludes the existence of another feature.
Thus, for each Excludes relationship contained in a FeatureModel,

ExcludesRelationship2ModelConstraint

fromFeature : Feature X
«domain»

name = fromFeatName

«domain» pkg : EPackage

model : FeatureModel nsURI = ‘http://’ + modelName

from

excl Bxcludes | name =

to relationships

toFeature: Feature feature classdiagram
€-mmmee e oesee>
name = toFeatName c E

source = ‘http://www.eclipse.org/ocl/examples/OCL"

eAnnotations

oclAnnotExcludes : EAnnotation

details

detailExcludes : EStringToStringMapEntry

key = fromFeatName + _exclusion_’ + toFeatName
value = oclExpresion

~where
oclExpression =
'(" + fromFeatName + '.allinstances()->notEmpty() implies ' + toFeatName + '.allinstances()->isEmpty()) and ' +
‘(' + toFeatName + '.alllnstances()->notEmpty() implies ' + fromFeatName + '.allinstances()->isEmpty())"

Figure 7.13: ExcludesRelationship2Modelconstraint relation
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ImpliesRelationship2ModelConstraint

fromFeature : Feature
name = fromFeatName _ «domains
«domain» ok : EPackage
from .
model: FeatureModel nsURI = ‘http:// + modelName
‘ impliesRelationship : Implies name = modelName ‘
’ eClassifiers
relationships
to
fromClass : EClass
toFeature: Feature feature classdiagram
DD A Ml name = fromFeatName
name = toFeatName c 3

eAnnotations

‘ oclAnnotFrom : EAnnotation ‘

[ source = ‘htp://www.eclipse.org/ocl/examples/ocL” |

details

detailFrom : EStringToStringMapEntry

key = fromFeatName + *_implies_’ +
value = +

Figure 7.14: ImpliesRelationship2ModelConstraint relation

an EAnnotation is created in the corresponding EPackage. Such
EAnnotation will define a key (an identifier) and a value (an OCL
expression). Such attributes get their values from the Features re-
lated by the Excludes relationship (i. e., fromFeature and toFeature).
Finally, the OCL expression is built in the where clause. It states that
if the set of instances of the fromFeature feature is not empty, the set
of instances of the toFeature feature must be empty and vice versa.

7.3.2.2 ImpliesRelationship2ModelConstraint relation

Fig. 7.14 shows the top-level relation ImpliesRelationship2Model-
Constraint. This relation creates an EAnnotation to check that, when
a feature has been selected, another feature has been selected too.
In terms of the DVM this is achieved by checking that, when an
EClass has at least one instance, the second EClass has at least one
instance too.

In page 100, the OCL invariant defines the EPackage as the context
of the constraint. However, this expression can be simplified if the
context is set to the fromClass (the fromClass is the EClass which
corresponds to the fromFeature). This way, the relation defines that
for each Implies relationship, contained in a FeatureModel, and be-
tween two features (fromFeature and toFeature), an EAnnotation
contained in the fromClass must exist. Such EAnnotation will con-
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BiconditionalRelationship2ModelConstraint

fromFeature : Feature

name = fromFeatName _
«domain»

from model : FeatureModel
\ : | rame = modetvame |

relationships

toFeature: Feature

name = toFeatName

fromClass : EClass
name = fromFeatName

eAnnotations

eClassifiers

‘ oclAnnotFrom : EAnnotation ‘

[ source = ‘ttp://www.eclipse.org/ocl/examples/ocl |

details

detailFrom : EStringToStringMapEntry

key = +_bi L+
value = toFeatName + “allinstances()->notEmpty)’

feature classdiagram
P G P
C

pkg : EPackage
nsURI = ‘http://’ + modelName

eClassifiers

toClass : EClass
name = toFeatName

eAnnotations

‘ oclAnnotTo : EAnnotation

[ source = htp://www.eclipse.org/ocl/examples/OC

details

detailTo : EStringToStringMapEntry

key = + L+

value = + ) y

Figure 7.15: BiconditionalRelationship2ModelConstraint relation

tain a key and a value. The value will contain an OCL expression to
check that the population of the EClass corresponding to toFeature
must be not empty.

7.3.2.3 BiconditionalRelationship2ModelConstraint relation

The top-level relation BiconditionalRelationship2ModelConstraint is
shown in Fig. 7.15. When a Biconditional relationship is defined
between two Features, this relation is in charge of creating the EAn-
notation to check that both (or none) of them have been instantiated.

The rule is written in a similar way to the ImpliesRelationship-
2ModelConstraint, as it expresses the same restriction but in both
directions.

7.3.2.4 UsesRelationship2Reference relation

As opposed to the previous relationships which define restrictions
at type level (regardless of the actual instance/s), the proposed Uses
relationship defines relationships at instance level. I. e., once the Uses
relationship is defined between two features (e. g., features A and B),
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UsesRelationship2Reference

«domain»
pkg : EPackage
nsURI = ‘http://’ + modelName
©
Sitacd
c\"’s%\’f/ eClassifiers
priaginy
toClass : EClass
@ - s, name = toFeatName
fromFeature : Feature ;\qp“)/’ \\:%er
(9 3 .
name = fromFeatName L € ~A «domain»
pkg : EPackage
from .
«domain» nsURI = ‘http://’ + modelName
usesRelationship : Uses model : FeatureModel
name = usesName name = modell eClassifiers
lowerBound = lower
upperBound = upper relationships fromClass : EClass
to name = fromFeatName
toFeature: Feature eStructuralFeatures
name = toFeatName
toClass : EClass }7 reference : EReference
eType
name = usesName
containment = false
lowerBound = lower
upperBound = upper
where
if (not usesRelationship.opposite.oclisUndefined()) then
u ionship2EOpposif ence( ionship.c ite, reference)
else true endif;

Figure 7.16: UsesRelationship2Reference relation

it can be used at configuration time to relate a specific instance of
feature A with a specific instance of feature B.

The top-level relation UsesRelationship2Reference transforms the
Uses relationship to an EReference, as EReferences are able to repre-
sent links among the instances of EClasses. Both the Uses relation-
ships and the EReference are directed. In the source domain, a Uses
relationships links a fromFeature with a toFeature. Such link has a
name, a lower bound and an upper bound.

For this information, the relation creates an EReference (which
is an eStructuralFeature of the fromClass) pointing to the toClass.
Both the fromClass and the toClass are identified by their corre-
sponding names.

The Uses relationship is directed and unidirectional. If the link
needs to be navigable in both ways, the Uses relationship must be
also defined in the opposite direction. This way, if it is defined in both
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UsesRelationship2EOppositeReference

«domain»

reference : EReference

«domain»

opposite : Uses feature classdiagram eOpposite
€--mmmm-- 0 D i

name = oppositeName c

oppositeReference : EReference

name = oppositeName

Figure 7.17: UsesRelationship2EOppositeEreference relation

ways, both relationships must be linked by means of the opposite
role.

The where clause is used to invoke the UsesRelationship2EOppo-
siteEReference relation. This relation is in charge of creating the
inverse EReference when the Uses relationship is bidirectional (it is
defined in both directions).

7.3.2.5 UsesRelationship2EOppositeEreference relation

The UsesRelationship2EOppositeEreference relation (see Fig. 7.17) is
executed as a post-condition of the UsesRelationship2Reference rule.
It receives a Uses relationship (which is the opposite one to the Uses
relationship created previously in UsesRelationship2Reference), and
whose name is oppositeName. This way, the rule creates a new
opposite EReference using the oppositeName value.

73.2.6  FMCLConstraint2OCLConstraint relation

FMCL expressions are transformed to OCL expressions in the DVM. In
the end, FMCL expressions are OCL expressions plus some syntactic
sugar. FMCL constraints are applied over a ConstrainableElement. In
the class diagram domain this is equivalent to describe an OCL in
a specific context. Moreover, FMCL expressions are transformed to
OCL using the simple patterns shown in Table 7.2. Such patterns are:
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FMCL EXPRESSION EQUIVALENT OCL
PATTERN DEFINITION
. ConstrainableElement .
ConstrainableElement allInstances()

. ConstrainableElement .
ConstrainableElement allInstances()->forAll(property
property op expression ,

op expression)

ConstrainableElement . ConstrainableElement .
selected() allInstances()->notEmpty()
FeatureName .childs () FeatureNameType.allInstances()

Table 7.2: Summary of transformation patterns from FMCL to OCL

1. Using the name of a ConstrainableElement directly in a FMCL
expression is a shortcut for using the allInstances() opera-
tion over that ConstrainableElement.

2. Taking into account the previous pattern, if operations are
applied to properties of ConstrainableElements, they are per-
formed/checked for all the corresponding instances.

3. The selected() operation can be used to query if a model
element has been selected in a configuration (i. e., there exist
instances of it).

4. The operation childs() can be used to collect all the child
instances of grouped features. For example, Transmission. -
childs() returns all the instances of the Manual and Auto-
matic features. The equivalent OCL expression is Transmis-
sionType.alllnstances().

Taking this patterns into account, Fig. 7.18 describes the relation
to transform a FMCL expression to an OCL expression. In this case,
only constraints applied to Features are transformed.

For each set of constraints in the source model which are applied
to a Feature, an EAnnotation attached to an EClass in the corre-
sponding EPackage will be created. Both the Feature and the EClass
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108 USING FEATURE MODELS IN MDE PROCESSES

FMCLConstraint20CLConstraint
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mdiConstraints : ConstraintsSet | ———| name = modelName |

constraints modelConstraints

eClassifiers

fromClass : EClass

constraint : Constraint feature classdiagram
Comm e m SN name = featureName
name = constraintName c E

body = constraintBody

eAnnotations

oclAnnotFrom : EAnnotation

source = ‘http://www.eclipse.org/ocl/examples/OCL"

details

detailFrom : EStringToStringMapEntry

key = constraintName
value = translateFMCLtoOCL(constraintBody)

Figure 7.18: FMCLConstraint20CLConstraint relation

must have the same name (featureName). A ConstraintSet contains
a set of expressions (constraints) with a given name and body. Such

expressions are transformed to the details of the created EAnnota-

Listing 7.3: translateFMCLtoOCL(...) OCL query

10
11
12

15
16

query translateFMCLtoOCL (expression : String) : String {

ConstrainableElement.allInstances()->iterate(
elt : ConstrainableElement;
s : String = expression |
-- The order when applying the substitutions is important
-- We must go from the most specific case to the most
general one
if (elt.oclIsTypeOf(features::Feature)) then
s.replace(’(’ + elt.name + ’\b)\.childs\(\)’, ’$1Type.
allInstances()’)
else
s
endif
.replace(’(’ + elt.name + ’\b)\.(\w+\s+\S+\s+.+)’ ’$1.
allInstances()->forAll($2)’)
.replace(’(’ + elt.name + ’\b)\.selected\(\)’, ’'$1.
allInstances () ->notEmpty()’)
.replace(’(’ + elt.name + ’\b)(?:\.allInstances\(\))?’, ’
$1.allInstances()’)
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tion. Finally, the body of the constraint is transformed to an OCL
expression using the translateFMCLtoOCL helper function (Listing
7.3). Such function applies the transformation patterns defined in
Table 7.2.

74 FEATURE MODEL CONFIGURATIONS

The main goal to transform a feature model to a class diagram is
to define feature model configurations. Previous section describes
how to convert a feature model to a DVM, which is in turn a class di-
agram. Fig. 7.19 shows the resulting model when the transformation
is applied to the example feature model shown in Fig. 7.3.

In Fig. 7.19 annotations containing the OCL constraints are omitted
for clarity purposes. The generated OCL expressions are shown in
Listing 7.4.

Given this specification now it is possible to define new model
configurations. Furthermore, it is possible to use any standard mod-
eling tool to define model configurations and to check if they are
valid or not. Fig. 7.20 shows a valid configuration for the example
feature model. It represents a Car with four wheels. Each one of the
wheels sizes 16 inches. The car is also equipped with an engine of
75,000 watts of power, automatic transmission and TCS.

Wheel Ejy/ %sion TCS
[4.4] 11
[4-4] g [11 lo.a]

3
Wheel Engine Transmission TCS
radius : Integer power : Integer
TransmissionFeatures
[04*]
«datatype» Integer Automatic TransmissionType Manual

«javaclass» java.lang Integer

Figure 7.19: Generated class diagram for the example cardinality-based
feature model
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diagram.
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Listing 7.4: Generated OCL expression for the example feature model

1 package FeatureCar

2

3 context Wheel

4

5 inv radius_length: self.radius > 15

6

7 inv same_radius: Wheel.allInstances()

8 ->forAll(wl, w2 | wl <> w2 implies wl.radius =
radius)

1 context TCS

13 inv power: TCS.allInstances()->notEmpty() implies

14 Engine.alllnstances()->forAll (power > 70000)

15

16

17 context Automatic

18

19 inv Automatic_implies_TCS: TCS.allInstances()->notEm

20

21

22 context Transmission

23

24 inv checkChildrenTransmission:

25 1 <= ( (if self.TransmissionFeatures->select(f

TransmissionType |

26 f.oclIsKindOf (Manual))->notEmpty () then 1
0 endif) +

27 (if self.TransmissionFeatures->select(f

TransmissionType |

28 f.oclIsKindOf (Automatic))->notEmpty () then
else 0 endif) + 0 )

29 and ( (if self.TransmissionFeatures->select(f

TransmissionType |

30 f.oclIsKindOf (Manual))->notEmpty () then 1
0 endif) +

31 (if self.TransmissionFeatures->select(f

TransmissionType |
32 f.oclIsKindOf (Automatic))->notEmpty () then

else 0 endif) + 0 ) <=1

34 inv lowerMultiplicityManual:

35 self.TransmissionFeatures->select (f
TransmissionType |

36 f.oclIsKindOf (Manual))->notEmpty () implies

37 self.TransmissionFeatures->select(f

TransmissionType |

w2 .

pty OO

else

1

else

1
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38 f.oclIsKindOf (Manual))->size() >=1
39
40 inv upperMultiplicityManual:
41 self.TransmissionFeatures->select(f
TransmissionType |
42 f.oclIsKindOf (Manual))->notEmpty () implies
43 self.TransmissionFeatures->select(f
TransmissionType |
44 f.oclIsKindOf (Manual))->size() <=1
45
46 inv lowerMultiplicityAutomatic:
47 self.TransmissionFeatures->select (f
TransmissionType |
48 f.oclIsKindOf (Automatic))->notEmpty () implies
49 self.TransmissionFeatures->select (f
TransmissionType |
50 f.oclIsKindOf (Automatic))->size() >=1
51
52 inv upperMultiplicityAutomatic:
53 self.TransmissionFeatures->select (f
TransmissionType |
54 f.oclIsKindOf (Automatic))->notEmpty () implies
55 self.TransmissionFeatures->select(f
TransmissionType |
56 f.oclIsKindOf (Automatic))->size() <=1

57
58 endpackage

w1 : Wheel
radius = “16”
w2 : Wheel ¢: Car
radius = “16” ——[Engine = e
Transmission = tr
Wheel = w1, w2, w3, w4
w3 : Wheel

radius = “16 tr : Transmission

e : Engine TransmissionFeatures = a

power = “75000”

w4 : Wheel

radius = “16” a : Automatic

Figure 7.20: A valid configuration of the example DvM
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75 SUMMARY AND CONCLUSIONS

In this chapter we have presented how to define and use feature mod-
els in a MDE process. This proposal addresses two issues: first, the
incapability of nowadays metamodeling tools to deal simultaneously
with artifacts located in all the MOF layers; and second, the complex-
ity to define model constraints in feature models where features can
be cloned and can have attributes. These problems have been solved
by transforming feature models to DVMs that can be instantiated and
reused in future steps of the MDE process.

Our proposal has been designed following the MDE principles
and a metamodel for cardinality-based feature modeling has been
defined. Feature models are automatically transformed in DVMs that
are used to define configurations of feature models. Our approach
has proposes a simple infrastructure to build configurations. Con-
figurations are actually instances of a feature model (expressed by
means of the DVM), so we can take advantage of the standard mod-
eling tools. As feature models are described by DVMs that can be
instantiated, both models and configurations can be used in other
MDE tasks. Having a clear separation between feature models and
configuration eases the validation tasks as they can be performed by
means of built-in languages. Finally, as the transformation between
feature models and DVMs is performed automatically by means of a
declarative language we can trace errors back from DVMs to feature
models.

It is noteworthy to remark the importance of using feature models
and configurations at different layers. In chapter 8.4 an example
where this architecture is used to integrate feature models in a MDE
process is shown. This work describes how a model transformation
with multiple inputs (feature models and functional models) is used
to generate a software architecture automatically.



Part IV

THE MULTIPLE FRAMEWORK:

TOOL ARCHITECTURE

&

MULTI-MODEL DRIVEN
SOFTWARE PRODUCT LINES
DEVELOPMENT AND ANALYSIS






SUMMARY

This part describes the implementation of the MULTI@PLE frame-
work from a practical point of view, presenting both the tool archi-
tecture and the applications to different case studies. First, in chapter

8 the MULTIPLE framework is presented. This framework is built on

top of the Eclipse platform and allows to describe different views of
a software systems. Additionally, it provides the necessary tools to

exploit the system’s variability view. Second, in chapter 9 we present

the Baseline Oriented Modeling (BOM)-Lazy approach. In this case

study we put in practice our approach to describe and integrate fea-
ture models in a MMDSPL which in turn is a complex MDE process.
The BOM-Lazy approach in an enhancement of the SPL proposed

by Cabello Espinosa (2008) to the development of expert systems.
Finally, chapter 10 aims to present the MULTIPLE framework from an

industrial point of view. This chapter evaluates the scalability of the

approach, using MULTIPLE to represent and analyse a large scale fea-
ture model provided by a worldwide aircraft engine manufacturing
company.
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<« Lhere are no big problems,
there are just a lot of little problems»

— Henry Ford

Pioneer of the assembly-line production method, 1863-1947

MULTI@PLE is a generic framework which eases the development of
software systems by using a Model-Driven approach. This frame-
work is built on top of the Eclipse platform, and uses the Eclipse
Modeling Framework (EMF) as it underlying metamodeling subsys-
tem. However, MULTIPLE is not only a tooling to define models and
metamodels, but it also provides a set of additional tools and built-in
metamodels.

As MULTIPLE uses EMF, it can be considered a MOF-compliant
tool. Thus, it can be used to implement and integrate the variability
management proposal described in previous sections. This way,
MULTIPLE is not only the suitable framework to carry out classic
MDD processes, but also to design, implement and analyse multi-
model driven SPLs. This goal is achieved by providing the following
functionality:
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MULTIPLE is

an extendable
framework which
can be easily
enriched with new
features and

components.

THE MULTIPLE FRAMEWORK

+ An extendable modeling and metamodeling subsystem. Such
subsystem is populated by default with different metamodels
and DSLs. For example, MULTIPLE provides:

- A metamodel to describe systems’ variability by using
rich feature models.

- A metamodel to describe functional views of software
systems by defining its functional modules and the rela-
tionships among them.

- A metamodel to describe architectural descriptions of
software systems, using concepts such as components,
connectors, roles, ports, services, etc.

- A metamodel to describe PRISMA architectural mod-
els. The advantage of this metamodel is the ability to
automatically obtain executable systems.

« A transformations subsystem. This subsystem is able to exe-
cute QVT-Relations model transformations.

o A validation subsystem. This subsystem is able to perform
both conformance-checking and model-checking operations.

« A standardized way to interchange data and metadata among
tools.

Throughout the following chapter we will describe the architec-
ture of the tool, and the different components that make up the the
MULTIPLE framework will be presented.

8.1 SUBSYSTEMS AND COMPONENTS OVERVIEW

As explained, the MULTIPLE framework is built on top of the Eclipse
platform. This allows developers to easily extend the framework
as it is implemented following the Open Services Gateway initia-
tive (0SGi) standard (OSGi 2008). Fig. 8.1 shows a general view of
the architecture of the MULTIPLE framework. The figure shows the
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dependencies among the different bundles in a simplified way. Each
bundle (or plugin) is represented by a component. White compo-
nents represent Eclipse plugins, and black components represent
external tools which do not follow the OSGi architecture. Next, the
main elements that can be identified in the figure are explained:

ECLIPSE PLATFORM This element includes a subset of the most
representative plugins provided by the Eclipse platform which
are used by the MULTIPLE plugins. They provide the basic func-
tionality to execute the runtime and orchestrate the execution
of the different components.

VARIABILITY METAMODEL SUPPORT This set of plugins im-
plement the metamodel and the editors to define cardinality-
based feature models according to the proposal made in chap-
ter 7.

MODULAR METAMODEL SUPPORT This element provides the
metamodel and the DSL to describe the functional view of a
system by using modules, functions and dependency relation-
ships

COMPONENT-CONNECTOR METAMODEL SUPPORT  These
components describe the metamodel and implement the
graphical editor to define architectural models using a com-
ponent-connector metaphor.

PRISMA METAMODEL SUPPORT These plugins implement the
PRISMA metamodel. This allows the MULTIPLE framework to
interoperate with the PRISMA-CASE and the PRISMA-MO-
DEL-COMPILER tools.

TRANSFORMATIONS SUBSYSTEM This subsystem provides sup-
port to execute model transformations. It behaves as an inter-
face between the user and the transformations engine. It is
made up by the following sub-subsystems:
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Tranformations Subsystem

QVT Command Line Interface MediniQVT transformations Engine

de.ikv.medini.qvt

E ukiackentkmf.

% rgoslood20

MULTIPLE QVT Relations Support

E es.upv.dsic.issi.qvt.launcher.ui }

es.upv.dsic.issi.qut.engine

Traceability Metamodet

es.upv.dsic.issi.avt.Jauncher |

es.upv.dsic.ssi.traceability. metamodel

Launcher Model

E es.upv.dsic.issi.qut.launcher.model.edit

L 1
es.upv.dsic.issi.qvt.launcher.model
[

=
=

upv.dsic.issi. i editor

Eclipse Platform

A

org.eclipse.emf

org.eclipse.gef

orgeclipse.debug.ui
MULTIPLE EMF Utils

[ |
es.upv.dsic.issi.emof.converter |- T |
(I orgeclipse.deby | :
geclipse.debug.core orgedlipse.ui |-
| 2
| orgedlipse.draw2dg!-
[ S —

upv.dsic.issi.moment. b i
org.eclipse.core L )
‘ " F | org.edlipse.ocl
es.upv.dsic.issi.moment. ui.

All plugins which contribute to the Ul depend on org.eclipse.ui.*.
Such dependencies have been removed for clarity purpouses.
Grayed components are not eclipse plugins, but external libraries.

All eclipse plugins depend on org.eclipse.core.
Black components are external standalone tools.
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Modular Metamodel Support

% es.upv.dsic.issi.mview.diagram

% es.upv.dsic.issi.mview.editor

S o §
es.upv.dsic.issi.mview.edit

es.upv.dsic.issi.mview

PRISMA Metamodel Support

Component-Connector Metamodel support

E es.upv.dsic.issi.prisma.editor

es.upv.dsic.issi.ccview. editor

(.
es.upv.dsic.ssi.ccview.edit
L

CJ
es.upv.dsic.issi.ccview
-

es.upv.dsic.issi.coview. diagram
1

Validation Subsystem

OCL Support

~

-]
es.upv.dsic.issi.ocl.validator. popup
A

OCL Support CLI

es.upv.dsic.ssi.odl.li

Variability Model Checking

es.upv.dsic.issi.multiple.fama.totext

~

es.upv.dsic.issi.multiple.fama.bridges

{Hh

Variability Metamodel Support

es.upv.dsic.issi.multiple.features.editor

es.upv.dsic.issi.multiple.gmf. helpers

es.upv.dsic.issi.multiple.features.diagram (-

es.upv.dsic.issi. multiple.features.edit

{Hf

es.upv.dsic.issi.multiple.features

ZZ4
€55, FafAasDK
24

-

es.upv.dsic.issi.multiple.fama
[

% es.upv.dsic.issi.multiple.fama.editor

Figure 8.1: Architecture of the MULTIPLE framework
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e MEDINIQVT TRANSFORMATIONS ENGINE — This sub-sub-
system contains the implementation of the logic to exe-
cute MOF-compliant model transformations. It is based
on the open source medini QVT engine.

o MULTIPLE QVT—-RELATIONS SUPPORT — This sub-subsys-
tem provides the infrastructure to execute model trans-
formations inside the Eclipse platform. On the one hand,
it provides the user interface to configure and execute
model transformations. On the other hand, it provides
the metamodel and the tools to the with traceability is-
sues in a generic way.

e QVT COMMAND LINE INTERFACE — This sub-subsystem
is built as a standalone java application to execute model
transformations. It includes the plugins of the Transfor-
mation subsystem which do not contribute to the Eclipse
User Interface (UI), and builds around them a textual
interface to execute model transformations from a com-
and-line shell.

VALIDATION SUBSYSTEM This subsystem provides support for

validation tasks. Specifically, the OCL Support and OCL Sup-
port CLI elements provide support to check conformance re-
lationships between EMF models (with OCL constraints) and
EMF instances. They implement the user interface and commu-
nication mechanisms between user defined models and the
internal EMF OCL engine. The former provides a graphical UI
integrated in the Eclipse workbench, and the latter provides a
command-line interface provided by a standalone application
which packages the EMF OCL subsystem.

The Variability Model Checking component provides model
checking capabilities. In this case, the model-checking capa-
bilities are provided for models conformant to the MULTIPLE
Variability Metamodel and the FAMA metamodel (see section
8.3.2). The Variability Model Checking component makes use
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of the FAMA framework, an external tool which provides differ-
ent solvers to validate feature models using formal methods.

MULTIPLE EMF UTILS This element encompasses some utility
plugins, such as plugins to query and modify the metamodel
registry (to dynamically load new metamodels), or a plugin
to export models and metamodels using the standard XmI1
serialization format defined by MOF.

Next, the following sections explain each one of these subsystems
and their components in deep detail.

8.2 THE ECLIPSE PLATFORM

As it has been pointed out previously in this thesis, Eclipse is an  Eclipse has become
IDE which is built using a generic an extensible plugin system. The  the de facto

. . . . . . . standard tool to
runtime of Eclipse is called Equinox, and it is an implementation of implement
the 0SGi standard (McAffer et al. 2009). All of the components that | 7.1 pased
take part in the MULTIPLE framework are implemented as Eclipse  solutions in the

plugins. The only exceptions to this are the tools which provide  software
engineering
community thanks
to its extensibility
do already contain Eclipse plugins internally, and make use of their  and its ecosystem of
functionality (such as the EMF runtime). plugins and tools.

Although the Fig. 8.1 has been simplified and only shows a small

support to execute tasks using a command-line interface, which are
regular Java applications. However, these standalone applications

subset of the dependencies among plugins, it shows the most rele-
vant ones. In the figure can be observed that all the plugins of the
MULTIPLE framework depend on one or many core Eclipse plugins.
For example, all Eclipse plugins depend on one or more plugins of the
org.eclipse.core packages', as it provides the basic functionality
to access the filesystem, job manager, etc.

Fig. 8.1 represents several basic components which are relevant to
describe the MULTIPLE framework. These are:

1 Not all these dependencies have been drawn for clarity purposes.
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org.eclipse.core — This component groups different plugins which
provide basic functionality such as the org.eclipse.core.
runtime, which provides the basic runtime to execute Eclipse
plugins; the org.eclipse.core.resources, that allows plu-
gins to access the files in the active workspace or the org.
eclipse.core. jobs, which provide support to execute dif-
ferent tasks that can be monitored, among others.

org.eclipse.draw2d — This component provides the primitives to
draw basic figures on screen. It requires the org.eclipse. swt
library, which is the widget toolkit which interacts with the
system’s graphical API.

org.eclipse.ui — This component groups different plugins which
implement the basic elements used to build the Eclipse UL
Any plugin which contributes to the Eclipse Ul must include
it among its dependencies.

org.eclipse.gef — This component implements the GEF framework.
This is the basic framework used to create graphical editors
for different diagrams.

org.eclipse.debug.core — This component provides support for run-
ning programs, breakpoint management, expression manage-
ment, and debug events. It provides the basic extension points
used by the QVT launcher component.

org.eclipse.debug.ui — This component (or plugin) provides the
extension points to contribute the user interface elements to
run external programs, builders, etc. It is used to implement
the UI of the MULTIPLE QvT-Relations launcher.

org.eclipse.emf — This component groups all the plugins which
implement the EMF framework. It is required by any plugin
which deals with EMF models or metamodels. It provides the
basic functionality to register models and metamodels, define
instances, check basic conformance relationships, generate
code, etc.
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org.eclipse.gmf — This component implements the GMF framework.
This framework combines the functionality of both the EMF
and GEF frameworks. It allows developers to automatically
generate the graphical editors which implement DSLs based
on EMF models.

8.3 BUILT-IN METAMODELS

MULTIPLE provides by default some built-in metamodels to describe
different views of systems. We have used MOF for the specification
of these metamodels, as they can be easily implemented using Ecore.
These metamodels are: the variability metamodel, the FAMA meta-
model, the modular metamodel, the component-connector metamo-
del and the PRISMA metamodel. The plugins which implement these
metamodels are explained next in a schematic way, as most of its
code has been automatically generated by EMF.

8.3.1 Variability metamodel support

The built-in variability metamodel allows us to define feature models
to manage the variability of systems. The components that take part
in this subsystem implement the cardinality-based feature metamo-
del which was presented in section 7.2.

As it was shown in Fig. 7.2 (see page 88), the proposed metamodel
allows us to define a variant of cardinality-based feature models.
Such models can be enriched with feature attributes, cross-tree re-
strictions and complex model constraints using the FMCL language.

8.3.1.1 Internal structure

MULTIPLE provides different interfaces to manage variability in a
proper way. Thus, different plugins which provide different func-
tionality have been implemented. This way, feature models can be
defined in three ways: (i) programatically in Java, using the gener-
ated API; (ii) using a simple tree editor; and (iii) using a graphical
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editor which provides a DSL. Next the plugins which implement
these interfaces are summarized.

ES.UPV.DSIC.ISSI.MULTIPLE.FEATURES This plugin imple-
ments the proposed metamodel to define cardinality-based feature
models as an Ecore model. It is shown in Fig. 8.2 in the standard EMF
tree editor. The core implementation of this plugin is automatically
generated using the EMF code projector. The following plugins are
required to run the es.upv.dsic.issi.multiple.features plugin:

org.eclipse.core.runtime — The Eclipse basic runtime.

org.eclipse.emf.ecore — The Ecore metamodel.

This plugin contains three packages as it is usual in the plugins
generated by EMF:

features — This package contains the Java interfaces which are
implemented by the classes contained in the next package
(feature.impl). This way it is possible to simulate multiple
inheritance in Java. EMF generates one Java interface for each
one of the classes defined in the Ecore model.

features.impl — This package contains the classes that implement
the proposed metamodel. This package also contains one class
for each model class.

features.util — This package contains some utility classes.

The code generation patterns implemented by EMF are explained
in (Steinberg et al. 2009) in depth.

ES.UPV.DSIC.ISSI.MULTIPLE.FEATURES.EDIT  This plugin pro-
vides an intermediate layer between the user interface and the in-
stances of the features metamodel. It implements the icon and label
providers to customize how the model elements are shown to the
user in the different model editors. For example, Table 8.1 shows
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@) features.ecore 52 =8

4 @ platform:/resource/es.upv.dsic.issi.multiple.features/model/features.ecore
4 f features
» iz Anotaciones
a [ FeatureModel -» ConstrainableElement
5t features : Feature
5* rootFeature : Feature
5t relationships : Relationship
= modelConstraints : Constraints5et
4 [ Feature -» RelatableElement, ConstrainableElement
= group : Group
52 attributes : Attribute
S+ owner: FeatureModel
=+ parent : StructuralRelationship
E Relationship
4 [ Group -» BoundableElement, RelatableElement, ConstrainableElement
@ getName() : EString
5 parentFeature : Feature
4 [ StructuralRelationship -> Relationship, BoundableElement
S+ from : RelatableElement
5 to: Feature
4 [ GenericRelationship -» Relationship
5 from: Feature
5+ to: Feature
a [ Attribute
T name: EString
T type: EString
4 [ BoundableElement
= lowerBound : Elnt
= upperBound : Elnt
4 [ RelatableElement
52 childs : StructuralRelationship
E Bicenditional -» RestrictionRelationship
E Implies -» RestrictionRelationship
H Excludes -» RestrictionRelationship
4 [ Uses -» GenericRelationship, BoundableElement, ConstrainableElement
=+ opposite : Uses
[ RestrictionRelationship -> GenericRelationship
4 [ ConstrainableElement
= constraintsSet : ConstraintsSet
T name: EString
4 [ ConstraintsSet
5+ context : ConstrainableElement
5t censtraints : Constraint
a [ Constraint
T body: EString
Z name: EString

Figure 8.2: Features metamodel represented in an Ecore tree editor
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the icons that are used to represent each one of the elements of the
proposed features metamodel. It must be taken into account that dif-
ferent icons can represent the same element depending on the values
of its attributes. For example, the mandatory relationship icon and
the optional relationship icon are both used to represent structural
relationships. The lower and upper bounds of the relationship will
determine which one of the two icons should be used. If this can
not be determined, the generic structural relationship icon will be
used. The es.upv.dsic.issi.multiple.features.edit plugin has
the following dependencies:

org.eclipse.core.runtime — The Eclipse basic runtime.
org.eclipse.emf.edit — The edit provider basic runtime.

es.upv.dsic.issi.multiple.features — The features metamodel.

The contents of this plugin are also automatically generated. This
plugin only contains one package:

features.provider — This package contains the provider classes
which determine how the model elements will be shown. The
package contains one class for each class of the features me-
tamodel. Some of the properties that can be customized are
the label used to represent a model element, the icon of the
element, the elements that should be considered as children
of a given model element, the properties that can be modified
in the properties view for a given element, etc.

ES.UPV.DSIC.ISSI.MULTIPLE.FEATURES.EDITOR  This plugin
implements a simple tree editor to define new feature model. The
editor is the default editor for files with the * features extension.
Moreover, the plugin provides a basic wizard to create new files of
this type. The following plugin are required:

org.eclipse.core.runtime — The Eclipse basic runtime.
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Table 8.1: Icons of the features metamodel elements

ICON MODEL ELEMENT ICON MODEL ELEMENT
&  Feature model %  Feature
4  TFeature attribute ¢ Structural relationship
g Mandatory relationship < Optional relationship
X Group "l OR group
A XOR group & Implies relationship
e Biconditional relationship Excludes relationship
X, Uses relationship 5 Constraints set
[et Constraint

org.eclipse.core.resources — The API to access workspace resources.

org.eclipse.emf.ecore.xmi — The plugin which provides support to
the XMI persistence format.

org.eclipse.emf.edit.ui — The part of the edit framework which con-
tributes to the Eclipse UL

org.eclipse.ui.ide — The UI of the Eclipse IDE, adds support for error
markers, input for file editros, etc.

es.upv.dsic.issi.multiple.features.edit — The different providers to
represent features models in a proper way.

As it occurs with the previous plugins, the contents of this plugin
are created by EMF. This plugin only contains one package:

features.presentation — This package contains the classes which im-
plement the tree editor (FeaturesEditor), the new file wizard
(FeaturesModelWizard) and the contribution to the Eclipse
toolbar (FeaturesActionBarContributor).
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ES.UPV.DSIC.ISSI.MULTIPLE.FEATURES.DIAGRAM  This plug-
in implements the graphical editor to define our variant of cardi-
nality-based feature models. The contents of this plugin have been
created automatically by the GMF runtime. The source code of this
plugin is determined by the different models that play a role in the
GMF workflow (shown in Fig. 3.2, page 39). Fig. 8.3 how this work-
flow is configured for the features metamodel example. Specifically,
this figure shows the GMF Dashboard view, which is the view used
in Eclipse to guide the generation process until the source code is
obtained. The most relevant models which determine the implemen-
tation of this plugin are the gmfgraph model, the gmftool model and
the gmfmap model.

Fig. 8.4 shows the gmftool model. This model describes the palette
of the graphical editor, i. e., which elements can be drawn, how are
these elements grouped, and which are the icons which identify each
one of these elements.

Fig. 8.5 shows what the gmfgraph model looks like. It defines the
graphic primitives that should be used to draw the model elements.
Such primitives are described in terms of basic figures (boxes, poly-
gons, text, arrows, etc.). This model also specifies which of this
graphic primitives will represent nodes, labels, links or containers.

Finally, Fig. 8.6 shows the most complex model: the gmfmap
model. This model defines how the different elements of the previous

@ GMF Dashboard & =g

a Project: es.upv.dsic.issi.multiple. features

Select / Edit/ Create
& "]

Progress: 100% done

Combine
Select / Edit / Create Select / Edit / Create

B 2 @

Select/ Edit/ Reload Select / Edit / Create Select/ Edit/ Create
Generate diagram editor

Figure 8.3: Workflow followed to obtain the features model editor
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models interrelate. This way, the gmfmap model links each one of the
elements of the feature metamodel with its corresponding graphical
representation and tool. Complex constraints can be added to tune
the graphical editor and ovoid invalid configurations.

ES.UPV.DSIC.ISSI.MULTIPLE.GMF.HELPERS This plugin im-
plements some utility classes. The behaviour and appearance of GMF
editors can not be fully customized in some cases using the source
models. However, GMF allows to include custom classes which ex-
tend or modify the standard implementation. This plugin depends
on the following plugins:

org.eclipse.draw2d — The basic drawing library.

org.eclipse.gmf.runtime.gef.ui — The GMF-GEF runtime library.

22 features.gmftool 52 =0
I Resource Set

a| 22 platform:/resource/es.upv.dsic.issi.multiple features/modelfeatures.gmftool
4 4 Tool Registry
4 Palette features_diagramPalette
4 < Tool Group features_diagram
4 4 Tool Group Features
<4 Creation Tool Feature
< Creation Tool Attribute
4 4 Tool Group Groups
- < Creation Tool Alternative Group
- 4 Creation Tool Selection Group
4 < Tool Group Relationships
- 4 Creation Tool Mandatory
- 4 Creation Tool Opticnal
- 4 Creation Tool Implies
- <4 Creation Tool Biconditional
. 4 Creation Tool Excludes
. < Creation Tool Uses
4 < Tool Group Constraints
. <4 Creation Tool Constraints Set
- 4 Creation Tool Expression
. <4 Creation Tool Constraint Link

Selection | Parent | List| Tree | Table | Tree with Columns

Figure 8.4: Gmftool model used to generate the GMF-based feature model
editor
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L&) features.gmfgraph 4 =
4|l platform:/resource/es.upv.dsic.issi.multiple features/model/features.gmfgraph
a 4 Canvas features
4 <= Figure Gallery Default

4 < Custom Decoration CircleDecoration
4 Customn Attribute radius
< Polyline Decoration ArrowDecoration
> 4 Polyline Decoration ExclusionDecoration
<= Figure Descriptor FeatureFigure
<+ Rectangle FeatureFigure
<= Child Access getFigureFeatureNameFigure
<> Child Access getFigureFeatureBodyFigure
Figure Descriptor AlternativeGroupFigure

T T s

Figure Descriptor SelectableGroupFigure
Figure Descriptor MandatoryRelationshipFigure

Figure Descriptor OptionalRelationshipFigure
Figure Descriptor ImpliesRelationshipFigure

Figure Descriptor BiconditionalRelationshipFigure

Figure Descriptor ExcludesRelationshipFigure
Figure Descriptor UsesRelationshipFigure

Figure Descriptor AttributeFigure
Figure Descriptor AttributelabelFigure

Figure Descriptor MultiplicityLabelFigure
Figure Descriptor UsesLabelFigure

Figure Descriptor ConstraintsSetFigure

Figure Descriptor ConstraintFigure
Figure Descriptor ConstraintBodylLabelFigure

Figure Descriptor ConstraintLinkFigure

<» Mode Feature (FeatureFigure)

<4+ Mode AlternativeGroup (AlternativeGroupFigure)
<+ Mode SelectableGroup (SelectableGroupFigure)
<+ Mode Constraints5et (ConstraintsSetFigure)

<= Connection MandatoryRelationship

<= Connection OptionalRelationship

<= Connection ImpliesRelationship

<+ Connection BiconditionalRelationship

<= Connection ExcludesRelationship

< Connection UsesRelationship

<+ Connection ConstraintLink

4= Compartment Attributes (FeatureFigure)

4 Compartment Constraints5etBody (ConstraintFigure)
<= Diagram Label FeatureMame

< Diagram Label AttributeName

<= Diagram Label MultiplicityLabel

< Diagram Label UsesRelationshiplLabel

<= Diagram Label UsesMultiplicityLabel

<= Diagram Label ConstraintBedy

Figure 8.5: Gmfgraph model used to generate the GMF-based feature model
editor
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I features.gmfmap &3 =g

[ Resource Set
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[ Canvas Mapping -
] e r

Selection | Parent | List Tree| Table | Tree with Columns

Figure 8.6: Gmfmap model used to generate the GMF-based feature model
editor

All the utility classes are included in a single package, features_
diagram.diagram.edit.parts.helpers. This packages includes the
following classes:

FoldedRectangle — This class implements a custom figure, used to
represent notes in the features model editor.
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CircleDecoration — This class implements a circle decoration. This
decoration is applied to arcs in the diagram to represent op-
tional and mandatory features.

CustomSlidableAnchor, MiddleSlidableAnchor and FixedConnec-
tionAnchor — These classes implement implement the logic
that determines the anchoring points for arcs between differ-
ent elements of the diagram.

8.3.1.2  User Interface

The feature modeling subsystem contributes different elements to
the Eclipse user interface. Next, these elements are briefly presented.

NEW MODEL WIZARD The feature modeling component pro-
vides a wizard to easily create new feature models. Such wizard can
be started from the standard dialog to create new elements in the
workspace (File > New — Other...; CTRL + N), as shown in Fig. 8.7a.
Next, a name must be issued for the new file that will be created in
the selected folder of a project in the workspace (Fig. 8.7b). The
new file must have the *.features extension. Finally, as EMF artifacts
have a tree structure, a root element must be selected. In the case of

AT INETUR— =y TR
Salect n wizard — Fantures Model Fenares Model
Cireate & naw Festures madel Cieate & naw Festures modal S Salect & model sbject te crs S
Wizards: Ertér or ealict the pasent feldar Model Object
L Features fescur taoce] -
- Ex cards
- 1 et
I Festures.
UTFs -
il Dcm Model
] Features Meded
& Mhsiewe Model
& Traces Model
& Transpath Model
& UML Model File nama esamnple features]
£ 050 Model
= GMF-Xgand » Advanced » >
id] e [Neta ] Cancel 7 [ <back [Hess ] Cancel ?) [Leback | vers | [ Fnish | [ Cance
(a) Step 1 (b) Step 2 (c) Step 3

Figure 8.7: New feature model wizard
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i examplefeatures i =5
L5 Resource Set

a & platformi/resource/Features/example.features
4 Q. Feature Model ExampleModel

% Fes  NewChild v| 4§ Feature %
& UndoSet Cirlez ¢ Structural Relationship
Redo Ctrle¥ ‘:3 Biconditional
‘:’3 Implies
o 4% Excludes
Copy 4E Uses
Paste ‘:Qg Constraints Set
Delete
Validate
Control...
Run As 3
Debug As r
Selection | Parent Profile As 4
— Team 3 =, > =
E= Properties n B = ]
Compare With » . =
P
roperty Replace With »
Constraints Se
Mame Load Resource... mnpleModel
Root Feature ure RootFeature
Refresh
Show Properties View

« T b

Figure 8.8: Standard tree editor for feature models

feature models the root element must be an instance of the Feature
Model class, as show in Fig. 8.7c.

BASIC TREE EDITOR  Once a new *.features file is created, it is
automatically opened with the default tree editor. Fig. 8.8 shows
this editor. It can be used to configure the feature model, adding
new features, attributes, relationships or constraints. Fig. 8.8 shows
a sample model, whose name is Example model. This model has
only a feature, Root feature. The figure also shows how a new feature
is created using the context menu, and using the “New Child —
Feature’ menu.

CREATING FEATURE MODEL DIAGRAM  As can be seen, the
tree editor is not a very user-friendly interface to deal with feature

models. That is why a GMF-based graphical editor was developed.
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Figure 8.9: Initialize features diagram file

However, GMF-based editors need two files to store the needed in-
formation. First, they need the model file (i. e., the * features file)
and the diagram file. The diagram file stores the the information
about the visualization of the model elements. For feature models,
the diagram file has the * features_diagram extension. To create a
new diagram two choices are available: (i) we can initialize a new

diagram for an existing feature model or (ii) we can create both the
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Figure 8.10: New feature diagram wizard
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[# PackageExp 2 e Hierarchy — O
==

4 [1== Features
& default.features
|d] default.features_diagram

Figure 8.11: Example model and diagram files to represent a feature model
graphically

feature model and the diagram from scratch. Fig. 8.9 shows how a
new diagram can be created for an existing file.

To create both files from scratch a wizard is available. It can be
launched from the New dialog (File > New — Other...; CTRL +
N). Fig. 8.10 shows the different screens of the wizard. First, (step 1,
Fig. 8.10a) the New Feature Diagram wizard must be select. Second,
a name for the diagram file must be issued (step 2, Fig. 8.10b). The
user can then go to step 3 (Fig. 8.10¢) to provide the name of the
model file and finish the wizard, or can finish the wizard at step two.
In this case, the file name for the model will be automatically set.

Finally, Fig. 8.11 shows the two files that are needed by the graphical
editor for feature models.

CARDINALITY-BASED FEATURE MODELING EDITOR  As
explained before, following the MDSD approach, graphical editors
can be automatically generated from an EMF metamodel. As pre-
sented in the previous section, the es.upv.dsic.issi.multiple.-
features.diagramand es.upv.dsic.issi.multiple.gmf.helpers
plugins implement the graphical editor for cardinality-based feature
models using the traditional representation. This editor allows us to
easily define new feature models.

Fig. 8.12 shows what this editor looks like. The palette is located
on the right side of the figure, and shows the tools that can be used
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Figure 8.12: Example feature model

to define the feature models. In the canvas, the example feature
model presented in Fig. 7.3 (page 90) is shown. As it was previously
explained, the model describes a simple product line for cars. A
car must have four wheels, one engine and a transmission. As an
optional equipment the car can have a TCS. The figure also shows
how constraints are represented: the arrow between the feature TCS
and Automatic states that if an automatic transmission is selected,
the TCS must be selected too; and the annotations attached to the
TCS and Wheel features describe FMCL constraints.

8.3.2 FAMA metamodel support

FAMA is a tool to analyse feature models. It provides different op-
erations that can be applied to basic or extended feature models
to guarantee if models are valid or not. These operations are im-
plemented using different formalisms. This way, FAMA can assure
that the results obtained from the application of such operations are
logically correct. FAMA models can be basic FODA feature models or
extended feature models. Extended feature models provide a limited
support for attributes and model constraints, however the operations
that are available for such kind of models are limited.
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FAMA feature models can be represented as XML files and plain
text files. To describe the structure of FAMA XML models a XSD
description is provided within the FAMA tooling. This XSD (avail-
able in appendix E) can be used to generate an Ecore metamodel
which allows to work with FAMA XML models natively in EMF. Next,
the plugins that have been obtained to deal with FAMA models are
explained.

8.3.2.1 Internal structure

The plugins that implement the FAMA metamodel are built using
EMF, as the previously presented metamodel. However, the “*.ecore”
file which represents the FAMA metamodel has been automatically
obtained from a XsD file. This file describes the structure that FAMA
models must respect. Fig. 8.13 shows the initial XSD file (8.13a), and
the automatically obtained Ecore file (8.13b). Using this Ecore file,
we are able to generate automaticalle the Java code to serialize and
deserialize native FAMA XML files using EMF.

Although the FAMA metamodel support plugins have been ob-
tained from an XSD file, in the end, the structure of the following
plugins is similar to the structure of regular EMF plugins. Next, the
plugins and summarized.

ES.UPV.DSIC.ISSI.MULTIPLE.FAMA This plugin implements
the metamodel to describe FAMA models. The core implementation
of this plugin is automatically generated by EMF, and requires the
following plugins: org.eclipse.core.runtime, org.eclipse.emf.
ecore and org.eclipse.emf. xmi.

This plugin contains three packages:

FeatureModelSchema — The interfaces package.
FeatureModelSchema.impl — The implementation package.

FeatureModelSchema.util — The utility package.
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Figure 8.13: FAMA metamodel support initial files

ES.UPV.DSIC.ISSI.MULTIPLE.FAMA.EDIT This plugin
provides the icon and label providers to customize how the model
elements are shown to the user in the different model editors. The
es.upv.dsic.issi.multiple.fama.edit plugin has the following
dependencies:

org.eclipse.core.runtime — The Eclipse basic runtime.
org.eclipse.emf.edit — The edit provider basic runtime.

es.upv.dsic.issi.multiple.fama — The FAMA metamodel.

The contents of this plugin are packaged in a single package
(FeatureModelSchema.provider), which is automatically generated.
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ES.UPV.DSIC.ISSI.MULTIPLE.FAMA.EDITOR This plugin
implements the simple tree editor and the needed wizards to build
new FAMA models. The editor is the default editor for files with the
* fama extension. The plugin has the following requirements:

org.eclipse.core.runtime — The Eclipse basic runtime.
org.eclipse.core.resources — The API to access workspace resources.
org.eclipse.emf.ecore.xmi — The plugin to support XML

org.eclipse.emf.edit.ui — The part of the edit framework which con
tributes to the Eclipse UL

org.eclipse.ui.ide — The UI of the Eclipse IDE.

es.upv.dsic.issi.multiple.fama.edit — The different providers to rep
resent FAMA models.

The contents of this plugin are created by EMF, and it only contains
the FeatureModelSchema.presentation package.

8.3.2.2 Equivalence between MULTIPLE feature models and FAMA
feature models

Cardinality-based feature models in MULTIPLE and FAMA models
are almost equivalent, and it is quite straightforward to describe a
set of equivalence relationships between the two. This way, a QvVT-
Relations transformation has been defined to stablish the relation-
ships between both domains. This transformation is detailed in its
textual representation in Appendix D. Table 8.2 summarizes the
equivalences. As can be observed, the same set of basic primitives is
shared among both domains (although using different names). Fea-
ture attributes are not considered, as analysis of attributed features
models is very limited compared to traditional FODA feature models.

Next, the different relations are shown in its graphical representa-
tion toghether with a short explanation.



142 THE MULTIPLE FRAMEWORK

Céii%ﬁgg&ﬁsfl) FAMA FEATURE MODEL
FeatureModel FeatureModelType
Feature GeneralFeature
StructuralRelationship BinaryRelationType
Group SetRelationType
Implies RequiresType
Excludes ExcludesType
BoundableElement Cardinality

Table 8.2: Correspondences between Cardinality-based feature models
and FAMA

MODEL2MODEL RELATION The Model2Model relation states
that, if a FeatureModel referencing a Feature (root) exists in the
source domain; a FeatureModelType referencing a GeneralFeature
(first) must exist in the target domain too. In this case, both features
(root and first) must have the same name.

Model2Model

«domain»

fmodel : FeatureModel «domain»

model : FeatureModelType

mdomain fdomain
PSP — D****g***} feature
c

first : GeneralFeature

rootFeature

root : Feature

name =rname
name =rname

Figure 8.14: Model2Model relation
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model : FeatureModel

«domain»

mfeature : Feature

name = fname

childs

relationship : StructuralRelationship

lowerBound = lower
upperBound = upper

cfeature : Feature

name = cname

fdomain
———————— >
E

«domain»
ffeature : GeneralFeature

name = fname

binaryRelation

binaryRelation : BinaryRelationType

name = 'Relation_to_' + cname

solitaryFeature

cardinality

generalFeature : GeneralFeature

cardinality : CardinalityType

name = cname

min = lower
max = upper

Figure 8.15: StructuralRelationship2BinaryRelation relation

Group2SetRelation

«domain»

model : FeatureModel

«domain»

mfeature : Feature

name = fname

group

group : Group

lowerBound = lower
upperBound = upper

childs

relationship : StructuralRelationship U

to

cfeature : Feature

name = cname

groupedFeature

«domain»

ffeature : GeneralFeature

name = fname

setRelation

setRelation : SetRelationType u

«domain»

cardinality : CardinalityType

min = lower
max = upper
«domain»

setRelation : SetRelationType

name = 'Grouped_Relation'

cardinality

generalFeature : GeneralFeature

cardinality : CardinalityType

name = cname

min = lower

max = upper

Figure 8.16: Group2SetRelation relation
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STRUCTURALRELATIONSHIP2BINARYRELATION RELATION
The StructuralRelationship2BinaryRelation relation describes the e-
quivalence of parent-child relationships between both domains. In
this case, if a StructuralRelationship is defined between two features
in the source domain, a BinaryRealtionType relationship must be
defined in the target domain. Parent features (mfeature and ffeature)
must share the same name; and the same applies to the child fea-
tures (cfeature and generalFeature). When the BinaryRelationType
element is created, a CardinalityType element must also be created.
This element stores the cardinality that the source StructuralRela-
tionship defines.

GROUP2SETRELATION RELATION  The Group2SetRelation re-
lationship defines how the groups of features must be treated. This
case is handled similarly to the previous one, when only parent-child
features are considered. The only difference resides in the existence
of the Group element in the source domain, which is mapped to a Se-
tRelationType element in the target domain. The rest of the elements
are mapped almost the same, i. e., parent features must share the
same name, child features must also share the same name too, and
the lower and upper bound of the source relationship are mapped
to a CardinalityType element in the target domain.

EXCLUDESRELATIONSHIP2EXCLUDESTYPE RELATION  The
ExcludesRelationship2ExcludesType relationship describes how the
excludes relationships must be transformed. In this case, given an
Excludes relationship in the source domain, an ExcludesTypeElement
must be created in the target domain. The name of the features that
the Excludes element relates (fromFeature and toFeature) are used to
fill the excludes and feature attributes of the ExcludesType element.
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ExcludesRelationship2ExcludesType

rootFeature : Feature

feature : GeneralFeature
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name =rootName

rootFeature
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name = fromName
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- where

excludesName = 'Excludes_from_' + from.name +'_to_' + to.name

Figure 8.17: ExcludesRelationship2ExcludesType relation

ImpliesRelationship2RequiresType

rootFeature : Feature

feature : GeneralFeature
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feature
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requires : RequiresType

fromFeature : Feature

name = requiresName
name = fromName excludes = fromName

feature = toName

toFeature : Feature

name = toName

{where

requiresName = from.name +'_requires_' + to.name

Figure 8.18: ImpliesRelationship2RequiresType relation
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IMPLIESRELATIONSHIP2REQUIRESTYPE RELATION  The Im-
pliesRelationship2RequiresType relationships defines how to trans-
form an Implies relationship to a Requires relationship. As the Im-
plies relationships are defined in a similar way than the Excludes
relationships, this rule is almost equal to the ExcludesRelation-
ship2ExcludesType rule. In this case, the mapping is established
between an Implies and a RequiresType element.

8.3.3 Modular metamodel support

For the specification of the modular view metamodel several propos-
als have been analyzed. MULTIPLE provides support to specify both
the modular and the component-connector view of a system as pro-
posed in (Shaw and Clements 2006). In this sense, Lim6n Cordero
(2010) proposes two metamodels to specify these views based on the
relationships defined by Bass et al. (1998).

This way, Fig. 8.19 shows an implementation of the Modular View
Metamodel (MM Modular view) as defined in (Limén Cordero
2010), using the class diagram representation of an Ecore model. The
main element considered for this view is the module itself. This fig-
ure shows that a model contains a set of modules (which can contain
different functions), which are linked to other modules by means of
relations (decomposition, uses and layer). A module can be made
up of several modules by using the decomposition relationship. This
allows us to define hierarchical structures. By means of the Another
relevant relation is the Use relation, which specifies relationships
among modules. The labels in the links are useful for indicating
how the relation is made. Finally, the Layer relationship allows to
described layered models. The complete specification of the me-
tamodel can be looked up in chapters 3 and 5 of (Limén Cordero
2010).
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8.3.3.1 Internal structure

The plugins which provide support to describe the system’s modular
view have been built using EMF and GMF. This way, the code of
these plugins has been obtained almost entirely automatically. As
a consequence, their internal structure is very similar to plugins
presented previously. For this reason, only a short summary of the
implementation details will be provided.

ES.UPV.DSIC.ISSI.MVIEW  This plugin implements the metamo-
del to describe the modular view. The core implementation of this
plugin is automatically generated by EMF, and requires the following
plugins:

org.eclipse.core.runtime — The Eclipse basic runtime.
org.eclipse.emf.ecore — The Ecore metamodel.

This plugin contains three packages as usual:
es.upv.dsic.issi.mview — The interfaces package.
es.upv.dsic.issi.mview.impl — The implementation package.

es.upv.dsic.issi.mview.util — The utility package.

ES.UPV.DSIC.ISSI.MVIEW.EDIT  This plugin provides the icon
and label providers to customize how the model elements are shown
to the user in the different model editors. The es.upv.dsic.issi.
mview.edit plugin has the following dependencies:

org.eclipse.core.runtime — The Eclipse basic runtime.
org.eclipse.emf.edit — The edit provider basic runtime.
es.upv.dsic.issi.mview — The modular view metamodel.

The contents of this plugin are also automatically generated. This
plugin only contains the es.upv.dsic.issi.mview.provider pack-
age.
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ES.UPV.DSIC.ISSI.MVIEW.EDITOR This plugin implements
the simple tree editor and the needed wizards to build modular
models. The editor is the default editor for files with the *.mview
extension. The plugin has the following requirements:

org.eclipse.core.runtime — The Eclipse basic runtime.
org.eclipse.core.resources — The API to access workspace resources.
org.eclipse.emf.ecore.xmi — The plugin to support XML

org.eclipse.emf.edit.ui — The part of the edit framework which con-
tributes to the Eclipse UL

org.eclipse.ui.ide — The UI of the Eclipse IDE.

es.upv.dsic.issi.mview.edit — The different providers to represent
modular models.

The contents of this plugin are created by EMF, and it only contains
the es.upv.dsic.issi.mview.presentation package.

ES.UPV.DSIC.ISSI.MVIEW.DIAGRAM This plugin implements
the graphical editor to define modular models. This plugin has been
automatically created by the GMF runtime using the different models
which define the editor (the gmfgraph model, the gmftool model and
the gmfmap model).

Fig. 8.21 shows the gmgraph model, which specifies how the dif-
ferent elements should be represented. As can be observed in the
figure, different graphical primitives are specified to represent mod-
ules, uses relationships, function compartments and function labels.
Fig. 8.21 shows the elements that will appear in the palette of the
canvas, and finally, Fig. 8.22 shows how the different models are
interrelated. As can be seen, the main elements that can be dropped
in the canvas are the modules, and the links that can be painted
among them are uses relationships.
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L&) mview.gmfgraph i3 =B
4|4 platform:/resource/es.upv.dsic.issi.mview/model/mview.gmfgraph
4 < Canvas mview
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4 < Label ModuleMameFigure
4 <4 Margin Border
4 Insets 2
<= Child Access getFigureModuleMameFigure
4 < Figure Descriptor FunctionFigure
<+ Rectangle FunctionFigure
4 < Figure Descriptor UsesFigure
4 < Polyline Connection UsesFigure
4 4 Label UsesMameFigure
<= Flow Layout false
4+ Polyline Decoration
<= Child Access getFigureUsesMameFigure
4 < Figure Descriptor FunctionlLabel
4 < Label FunctionMame
4 <= Margin Border
< Insets 2
<4 MNode Module (ModuleFigure)
4= Connection Uses
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4 < Diagram Label UsesMame
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Figure 8.20: Gmfgraph model used to generate the GMF-based modular
model editor

8.3.3.2  User Interface

The modular metamodel subsystem contributes different menus,
wizards and editors to the Eclipse interface. These contributions
are automatically generated by EMF or GMF, such as the new model
wizard or the tree editor.
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STANDARD CONTRIBUTIONS The modular view metamodel
provides almost the same contributions to the Eclipse UI than the fea-
tures metamodel. Some of these contributions are EMF-dependent,
such as the New modular model wizard and the Basic tree editor; and

42 mview.gmftoal 7 =0
I Resource Set

4|2 platform:/resource/es.upv.dsic.issi.mview/model/mview.gmftool
4 < Tool Registry
4 Palette mviewPalette
4 < Tool Group mview
4 < Creation Tool Module
< Default Image
< Default Image
4 < Creation Tool Function
< Default Image
< Default Image
4 < Creation Tool Uses
< Default Image
<4 Default Image

Selection | Parent | List| Tree | Table | Tree with Columns

Figure 8.21: Gmftool model used to generate the GME-based modular mo-
del editor

B mview.gmfmap &3 =08
| Resource Set
4|l platform:/resource/es.upv.dsic.issi.mview/model/mview.gmfmap
a + Mapping
4 ¥ Top Nede Reference <tmodules:Module/Medule>
a [T MNode Mapping <Module/Module=
ab Feature Label Mapping false
a K Child Reference <function:Function/FunctionMame:>
a4 [T Mode Mapping <Function/FunctionMame=
Ab Feature Label Mapping false
B Compartment Mapping <functions=
a < Link Mapping <Uses{Uses.uses:Module-» Uses.used:Module}/Uses>
b Feature Label Mapping false
Canvas Mapping
- 4| platform:/resource/es.upv.dsic.issi.mview/model/rview.ecore
» Wl platform:/resource/es.upv.dsic.issi.mview/model/mview.gmfgraph

Selection | Parent | List | Tree | Table | Tree with Columns

Figure 8.22: Gmfmap model used to generate the GMF-based modular mo-
del editor
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others are GMF-dependent, such as the New modular diagram editor
or the Modular view editor. Both the EMF and GMF-based generated
contributions are very similar among different metamodels with
only a few differences. For example, if we compare Fig. 8.23 (which
shows the New modular model wizard) with Fig. 8.7 (which shows
the New features model wizard) we observe that they look almost the
same.

For this reason and to avoid redundancy, we will not show what
the “standard UI contributions™ look like from this moment on.
We understand as “‘standard UI contributions” the following: the
new model wizard (already shown in Figs. 8.7 and 8.23), the standard
tree editor (shown in Fig. 8.8), the new diagram wizard (shown in
Fig. 8.10) and the initialize new diagram file menu (shown in Fig.
8.9).

An exception to this convention will be applied to the GMF-based
editors as they are metamodel-dependent. GMF-based editors imple-
ment a different graphical DSL for each metamodel, and although
they share the same structure (canvas, palette, menus...), they ex-
press substantial differences in their actual contents.

8 e T e (3 v T ey (3 e~ N = |
| Salect n wizard — | Muiaw Modal | Muiaw Modal

Couate & naw Faaturss model Conste & naw Miew madel 0 Salact  enodel sbject to craste 0

Enber of calect the pacent feldes Model Object
Lamgle Macdules Model
ML Encoding

3 Easenple
utEE

Filename:  esaenple ey

Advanced >

¢} e [Neta ] Cancel F) [ <back [ Nezs ] Cancel P [Leback ] ties Finish_| [ Cances

(a) Step 1 (b) Step 2 (c) Step 3

Figure 8.23: New modular model wizard
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MODULAR VIEW EDITOR The modular view editor is the com-
ponent that provides a user-friendly interface to define new modular
models. Built with the help of GMF, it implements a simple DSL that
can be used to define modules, functions and simple use relation-
ships.

Fig. 8.24 show a simple example which illustrates it. The editor is
divided in two parts: the canvas (left) and the palette (right). The
palette shows the tools that can be used to define new graphical
elements. The elements that appear in the palette are directly related
with the elements shown in the gmftool model (shown in Fig. 8.21).
The editor also provides some context-sensitive creation tools. For
example, the figure shows a small pop-up balloon which is shown
when the mouse stands still on the canvas. This balloon contains a
shortcut to the “Create new module” tool.

In the canvas a sample model which describes an electronic calcu-
lator (the system) is shown. This system is made up of three modules:
the calculator module, the display, and the keyboard. The calculator
module is in charge of performing arithmetic operations. It also
has a memory which is able to store a floating point number. This

[1] eample.mview_diagram &% =0
* | 53 Palette I
(; Calculator [%G‘ s
- J Module
functions
_ﬁ add(float, float) : float —_————— fl. Function
_g substract(float, float) : float Qf Display <‘> Uses

fundtions
J; displayistring) : void
j_; clear(]) : void

_):. multiplyifloat, float) : float
_g divideifloat, float) : float
_):. savelnMem(float) : void <‘> «uses» display
_g getFromMem() : float
_):. reset() : void

-
<, «usess  keyboard

Add Modulej

{f Keyboard controller
functions

f_; getKey() : char

Figure 8.24: GMF-based modular view editor
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memory can be accessed and cleared using the savelnMemy(...) and
getFromMem(...) functions. The calculator module makes use of
the other two modules. The keyboard is managed by a controller
module, that is used to track the keystrokes. Finally, the display
module is in charge of showing the information to the user.

8.3.4 Component-connector metamodel support

The component-connector metamodel has also been implemented
based on the proposal made in (Limén Cordero 2010). Fig. 8.25
shows the Component-Connector View Metamodel. A model is
made of a set of components and connectors, which are the main
elements. Both are derived from a more general component class
(TComponent). The components provide a set of services through
a set of ports. The connectors link the ports of the components by
means of their roles. Different types of relations can be also defined
among components and connectors. The complete specification of
the metamodel can be found in (Lim6n Cordero 2010).

8.3.4.1 Internal structure

The plugins that implement the component-connector metamodels
are built using EMF and GMF, as the previously presented metamod-
els. This way, their structure is very similar to plugins presented
previously. Next, the plugins and summarized.

ES.UPV.DSIC.ISSI.CCVIEW  This plugin implements the meta-
model to describe the component-connector view. The core im-
plementation of this plugin is automatically generated by EMF,
and requires the usual plugins (org.eclipse.core.runtime and
org.eclipse.emf.ecore).

This plugin contains three packages:

es.upv.dsic.issi.ccview — The interfaces package.

es.upv.dsic.issi.ccview.impl — The implementation package.
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es.upv.dsic.issi.ccview.util — The utility package.

ES.UPV.DSIC.ISSI.CCVIEW.EDIT  This plugin provides the icon
and label providers to customize how the model elements are shown
to the user in the different model editors. The es.upv.dsic.issi.
mview.edit plugin has the following dependencies:

org.eclipse.core.runtime — The Eclipse basic runtime.
org.eclipse.emf.edit — The edit provider basic runtime.

es.upv.dsic.issi.ccview — The modular view metamodel.

The contents of this plugin are packaged in a single package
(es.upv.dsic.issi.ccview.provider), which is automatically gen-
erated.

ES.UPV.DSIC.ISSI.CCVIEW.EDITOR This plugin implements
the simple tree editor and the needed wizards to build modular
models. The editor is the default editor for files with the *.ccview
extension. The plugin has the following requirements:

org.eclipse.core.runtime — The Eclipse basic runtime.
org.eclipse.core.resources — The API to access workspace resources.
org.eclipse.emf.ecore.xmi — The plugin to support XML

org.eclipse.emf.edit.ui — The part of the edit framework which con-
tributes to the Eclipse UL

org.eclipse.ui.ide — The UI of the Eclipse IDE.

es.upv.dsic.issi.ccview.edit — The different providers to represent
component-conector models.

The contents of this plugin are created by EMF, and it only contains
the es.upv.dsic.issi.ccview.presentation package.
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Figure 8.26: Gmfgraph model used to generate the GMF-based component-

connector model editor

ES.UPV.DSIC.ISSI.CCVIEW.DIAGRAM

This plugin implements

the graphical editor to define component-connector architectural

models. As in previous metamodels, this plugin has been automati-

cally generated using the GMF runtime. Next, the different models

which define the editor are shown.
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42 coview.gmiftool 52 =0
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4|2 platform:/resource/es.upv.dsic.issi.coview/model/ccview.gmftool
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Figure 8.27: Gmftool model used to generate the GMF-based component-
connector model editor
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Figure 8.28: Gmfmap model used to generate the GMF-based component-
connector model editor

Fig. 8.27 shows the gmgraph model. This model specifies the
graphical primitives that will represent the domain model elements
in the canvas. This way, components are drawn using a rectangle,
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connectors are drawn using a rounded rectangle, ports are drawn
using a small rectangle (the size of the rectangle is specified in the
unfolded children of the PortFigure element), roles are drawn using
an ellipse, etc.

Fig. 8.27 shows the elements that will appear in the palette of the
canvas. As can be seen, elements are grouped in three categories
Component Tools, Connector Tools and Links. The tools to create
Componentes, Ports and Services are located in the first group; the
tools to create Connectors and Roles are located in the second group;
and finally, the tool to create the Attachments among roles and ports
is located in the third group.

Finally, Fig. 8.28 shows how the different models GMF are interre-
lated with the domain model. The figure shows that the top nodes
(the elements that are directly drawn in the canvas) are the com-
ponents and the connectors. Moreover, for both elements a label is
specified (which is used to represent the name of these elements).
As can be seen, the component nodes can have both services and
ports. The connector nodes can have roles. Finally, a link mapping
is established between roles and ports.

8.3.4.2  User Interface

The component-connector metamodel contributes the same menus,
wizards and editors to the Eclipse interface than the modular me-
tamodel. These contributions are automatically generated by EMF
or GMF. These contributions are the previously presented as the
standard contributions, mainly: the New component-connector mo-
del wizard, the Basic tree editor, the New component-connector di-
agram wizard and the Component-connector view editor. As these
types of contributions were presented previously for variability mod-
els and modular models, they will not be shown again.

COMPONENT-CONNECTOR VIEW EDITOR The component-
connector view editor is the contribution which provides a user-
friendly interface to define new component-connector architectural
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Figure 8.29: Software architecture of the Agrobot (Costa-Soria 2011)
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models. As in previous metamodels, it has been built with the help
of GMF and provides the classical notation for component models
(i. e., components, connectors, roles, ports and attachments).

Fig. 8.29 shows an example architectural model. This example,
extracted from (Costa-Soria 2011), shows the architectural model for
the Agrobot. The Agrobot is an autonomous agricultural robot for
plague control. It is in charge of looking for pests or disease attacks
in a small field. If a threat is detected, the robot sprays insecticide or
fungicide to fight the disease.

8.3.5 PRISMA metamodel support

PRISMA (Pérez Benedi 2006) is an architectural model based on
aspects and components. It provides a DSL for components defini-
tion which allows to describe software architectures at a high level of
abstraction. PRISMA integrates two approaches for systems develop-
ment: the Component-Based Software Development (CBSD) (Szyper-
ski 2002) and Aspect-Oriented Software Development (AOSD) (Fil-
man et al. 2005).

PRISMA architectural models are defined in terms of the metamo-
del shown on Fig. 8.30. Next, the elements that make up the PRISMA
metamodel are explained.

PRISMA has three types of architectural elements: components,
connectors and systems.

COMPONENT A component is an element that captures the system
functionality. It consists of a set of aspects (functional, distri-
bution, etc.), and one or more input and output ports, whose
type is specified by an interface. Components interact with
other architectural elements by means of their ports.

CONNECTOR A connector is an element of the system that acts as
a coordinator between various elements. It consists of a set
of aspects and a set of input and output roles that have as an
interface type. Connectors interconnect and sync components,
other connectors or systems by means of their roles.
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SYSTEM A system is a component that encapsulates a set of connec-
tors, components and other systems properly connected. In
addition, it is characterized by the definition of links (LinkEle-
ments) between the system ports and the ports of the compo-
nents that it encapsulates.

To interconnect the architectural elements of PRISMA it provides
the following elements:

LINKELEMENT establishes a connection between two architectural
elements, specifically between the port of a component and
the port of a connector. It can be of two different types: At-
tachment and Binding.

Other elements in the metamodel used to specify the architectural
elements are:

PORT represents the interaction points among architectural ele-
ments.

INTERFACE provides a set of services. There are different types
of interfaces, one for each type of aspect. It describes the
signature of the services that can be invoked through it.

PLAYEDROLE defines the behavior of a port with a given role and
the behavior of a particular interface. Moreover, it establishes
how and when the services of an interface may be required or
provided.

ASPECT defines the structure and behavior of a component. An
aspect can be seen as the union of a set of interfaces of the
type of that aspect, plus the specification of the semantics of
its structure and behavior defined by: attributes, services, pre-
conditions, valuations, constraints, roles, protocols and roles.
There are different types of aspects: functional, distribution,
coordination, etc.
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ATTRIBUTES store the information required by aspects. Attributes
can be derived or not. The value of derived attributes is cal-
culated using a derivation rule, and this value is not stored
explicitly. Non-derived attributes can be constant or variables.
Constant attributes store a value which does not change, i. e.,
its value can not be modified at runtime. Variable attributes
store a value which can be modified at runtime.

SERVICE is a process that executes a set of actions to produce a
result.

PROTOCOL provides the services of an aspect that can be executed.
It defines a process that coordinates the services of an aspect.

VALUATION defines the change of the state of an aspect when one
of its services is executed.

PRECONDITION defines conditions to execute an action.

CONSTRAINT are conditions that must be met through whole exe-
cution of the process of an aspect.

8.3.5.1 Internal structure

The plugins that implement the PRISMA metamodel is built using
EMF as the previously presented metamodel. Next, the plugins and
summarized.

ES.UPV.DSIC.ISSI.PRISMA  This plugin implements the meta-

model to describe PRISMA models. The core implementation of this

plugin is automatically generated by EMF, and requires the usual plu-

gins (org.eclipse.core.runtime and org.eclipse.emf.ecore).
This plugin contains three packages:

es.upv.dsic.issi.prisma — The interfaces package.
es.upv.dsic.issi.prisma.impl — The implementation package.

es.upv.dsic.issi.prisma.util — The utility package.
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ES.UPV.DSIC.ISSI.PRISMA.EDIT  This plugin provides the providers
to customize how the model elements are shown. The es.upv.dsic.
issi.prisma.edit plugin has the following dependencies:

org.eclipse.core.runtime — The Eclipse basic runtime.
org.eclipse.emf.edit — The edit provider basic runtime.

es.upv.dsic.issi.prisma — The PRISMA metamodel.

The contents of this plugin are packaged in a single package
(es.upv.dsic.issi.prisma.provider), which is automatically gen-
erated.

ES.UPV.DSIC.ISSI.PRISMA.EDITOR This plugin implements
the tree editor and wizards to build PRISMA models. The editor is
the default editor for *.prisma files. The plugin has the following
requirements:

org.eclipse.core.runtime — The Eclipse basic runtime.
org.eclipse.core.resources — The API to access workspace resources.
org.eclipse.emf.ecore.xmi — The plugin to support XML

org.eclipse.emf.edit.ui — The part of the edit framework which con-
tributes to the Eclipse UL

org.eclipse.ui.ide — The UI of the Eclipse IDE.

es.upv.dsic.issi.prisma.edit — The different providers to represent
PRISMA models.

The contents of this plugin are created by EMF, and it only contains
the es.upv.dsic.issi.prisma.presentation package.
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8.3.5.2  User Interface

The PRISMA metamodel contributes the standard menus, wizards
and editors to the Eclipse interface that EMF provides. These contri-
butions are, mainly, the New prisma model wizard and the Basic tree
editor. Both types of contributions were presented previously.

8.4 TRANSFORMATIONS SUBSYSTEM

The transformations subsystem is based on the medini QVT library
(ikv++ 2011). As discussed in section 3.5, medini QV'T is open source,
but this license only applies to the transformations engine, and not to
the additional tools it provides, such as the textual editor, debugger,
etc. Therefore, it is convenient for our implementation to define a
new plugin which contains the functionality of the transformations
engine. The engine included in MULTIPLE has been built directly from
the sources available in the public repositories. The plugin which
encapsulates this functionality is es.upv.dsic.issi.qvt.engine.
To execute model transformations, the es.upv.dsic.issi.qvt.
launcher andthees.upv.dsic.issi.qvt.launcher.ui plugins have
been developed. Specifically, the first one encapsulates the logic to ex-
ecute model transformations, while the second one implements the
UL This way, they import thees.upv.dsic.issi.qvt.engine plugin,
and invoke the QvtProcessorImpl.evaluateQVT(...) method.
The launcher plugin depends on two EMF models. The first one
corresponds to the QVT transformation invocation model (see sect.
8.4.2). This model allows specifying the information needed to ex-
ecute a model transformation at a high level of abstraction. The
second model (described in sect. 8.4.3) corresponds to the MULTIPLE
traceability metamodel. This metamodel is a generic metamodel
to describe a set of named links among elements of different EMF
models. Moreover, the traceability metamodel provides a specific
editor which allows to define and navigate these links. This way,
every time a QVT transformation is executed, a traceability model is
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be created describing the mappings among the source and the target
models.

8.41 QVT engine

Thees.upv.dsic.issi.qvt.engine contains all the needed libraries
to execute model transformations defined in QvT-Relations. The
plugin has been obtained from the sources of the medini QVT engine
directly (this includes the OSLO sources too), since we have made
slight modifications on it.

This plugin depends both on Eclipse plugins and regular Java
libraries. With respect to the Eclipse plugins, dependencies are:

org.eclipse.core.runtime — The Eclipse runtime.

org.eclipse.emf.common — Common functionality to support the
EMF infrastructure on Eclipse.

org.eclipse.emf.ecore — The Ecore metamodel.
org.eclipse.emf.ecore.xmi — XMI persistence for EMF models.
org.eclipse.emf.edit — EMF edit support subsystem.

org.eclipse.emf.transaction — Support for transactions on EMF mod-
els.

org.eclipse.emf.validation — Built-in validation capabilities for EMF-
based models.

Regarding the common libraries, dependencies are:

Apache Commons Collections (Apache 2011) (commons-collections-
3.2.jar).

CUP Parser Generator for Java (Hudson 2011) (CUPRuntime.jar).

Kent Modeling Framework (KMF 2011) (KMF_Util.jar, KMF_XMI jar,
KMFpatterns.jar, Util-1.2.jar)
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8.4.2  QVT transformation invocation model support

In order to easily deal with the information needed to invoke a mo-
del transformation an Ecore model has been defined. This allows
us to easily generate the Java code to define and query this infor-
mation programmatically. Moreover, we automatically obtain the
persistence mechanisms to serialize it and deserialize it.

Thus, using the generated code, different plugins can easily ex-
change the information of an invocation. In MULTIPLE is used for:

o First, the plugin that implements the UI to configure a new
transformation (es.upv.dsic.issi.qvt.launcher.ui) uses
the MVC pattern. Using the generated code we get the model
implementation for free.

o Second, according to the Eclipse API, the class that executes an
external process (org.eclipse.debug.core.model.ILaunch-
ConfigurationDelegate) should receive the launch configu-
ration data in plain text. Using the XMI persistence mecha-
nism, the textual representation of an invocation is obtained
automatically.

8.4.2.1 Internal structure

We have generated the model and the edit support plugins for the
QVT transformation invocation model. In this case, the editor plugin
is not generated as it is unnecessary (the model is only for internal
use).

ES.UPV.DSIC.ISSI.QVT.LAUNCHER.MODEL  The es.upv.dsic.
issi.qvt.launcher.model plugin contains the model and the gen-
erated code for the description of QVT transformations invocations.
It is shown in Fig. 8.31.

This figure shows that the model has only two classes QvtTrans-
formationInvocation and Domain. The first one corresponds to the
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H QutTransformationInvocation
T name : EString
T path : IPath
@ toXMI() : EString throws IOException

1 | direction

invocation 1

H Domain
T name : EString
=

domains | T nsPrefix : EString
T modelPath : IPath

2. @ jsTarget() : EBoolean

<<datatype>> <<datatype>>
& IPath & IOException
< <javaclass>> org.eclipse.core.runtime.IPath <javaclass>> java.io.IOException

Figure 8.31: QVT transformation invocation model

transformation itself and, as can be seen, a transformation has several
domains involved.

The QvtTransformationInvocation class also stores all the relevant
information about the QVT transformation itself (i. e., the name of
the transformation and the path of the file with the textual descrip-
tion). The Domain class contains the information for each domain.
Specifically, the domain name, the nsPrefix of the metamodel that
the domain model conforms to, and the path of the file containing
the instance model that will match to this domain. Finally, the di-
rection role which links the QvtTransformationInvocation class with
the Domain class indicates in which direction the transformation is
executed (i. e., which is the target domain).

The plugin has the following dependencies:

org.eclipse.core.runtime — The Eclipse runtime. It is where the
IPath interface is defined.

org.eclipse.core.resources — The resources API plugin. It is required
to access the files in the workspace.

org.eclipse.emf.ecore — The Ecore metamodel.

es.upv.dsic.issi.qvt.engine — The QVT engine. It provides the mech-
anisms to parse and analyse a textual QVT transformation.
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When a transformation is parsed an Abstract Syntax Tree
(AST) is built. This tree can be queried to get the necessary
information to build a QvtTransformationInvocation with its
corresponding domains.

The generated code of this plugin has been modified by hand to
extend its basic functionality. All the details about the modifications
can be found in (Gémez 2008). Next, a short description of the
packages of this plugin is presented.

es.upv.dsic.issi.qvt.launcher.model.qvtinvocation — This is the inter-
faces package. It contains almost entirely the default generated
code as it does not contain executable code (except for some
minor changes).

es.upv.dsic.issi.qvt.launcher.model.qvtinvocation.impl — This pack-
age implements most of the functionality this plugin provides.
The following modifications to the default implementation
have been made:

1. The isTarget(...) method has been implemented in the
DomainImpl class (it is empty by default).

2. New factories have been added to the QvtinvocationFac-
toryImpl class (an empty instance, without domains, is
created by default). This way, a new instance of Qvt-
TransformationInvocation can be obtained for a textual
QVT transformation. This instance will be partially pop-
ulated with the transformation name and path. The
corresponding domains will be also contained in the
QvtTransformationInvocation instance. The value of the
modelPath attribute will remain undefined, as it is un-
known.

3. New methods have been defined to serialize and deseri-
alize user-defined datatypes (i. e., IPath): convertIPath-
ToString(...) and createlPathFromString(...)
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4. The implementation of the QvtTransformationlnvoca-
tion.toXMI() method has been provided. It returns an
string with the XMI serialization of the invocation.

es.upv.dsic.issi.qvt.launcher.model.qvtinvocation.util — This pack-
age contains the default implementation of the utility classes.

ES.UPV.DSIC.ISSI.QVT.LAUNCHER.MODEL.EDIT
provides the basic functionality to represent the model elements in

This plugin

graphical Uls. Since it contains the default implementation it will
not be described in further detail.

8.4.3 Traceability metamodel support

In medini QVT, treatment of traceability is done according to the
recommendations of the QVT standard; i. e., it generates a trace class
for each rule in the transformation. Trace classes have a property for
each one of the domains of the rule. Thus, when a transformation is
executed a set of trace instances are created, and these trace instances
are equivalent to the relation’s population of tuples.

However, medini QVT does not provide any tool for inspecting
traceability models. Furthermore, the variability introduced by the
existence of a traceability metamodel, which is dependent of the
metamodels of the domains involved, makes difficult the creation of
a generic editor for viewing and navigating such models. Therefore,
we have decided to adapt the traceability metamodel used in MO-
MENT (Boronat et al. 2005a) and its related tools and editors, which
are explained in detail in (Gémez 2005), to deal with the traceability
models generated by medini QVT.

Next, the three plugins which provide the traceability capabilities
are explained. It must be borne in mind that the plugins presented
here are a reduced and improved version of the proposal made in
(Gémez 2005). This way, the technical details of the plugins will not
be explained in this document.
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8.4.3.1 Internal structure

ES.UPV.DSIC.ISSI.TRACEABILITY.METAMODEL This plugin
contains the generated Java code for the Ecore model shown in
Fig. 8.32.

E TraceabilityModel
T name : EString E TraceabilityLink

{% domainModels : URI ol—llnks " manipulationRule : EString
% targetModels : URI model 1.*
range domain
1x 9 1x
F EObject [

from ecore

@ eClass() : EClass

® elsProxy() : EBoolean

# eResource() : EResource

@ eContainer() : EObject

@ eContainingFeature() : EStructuralFeature
# eContainmentFeature() : EReference

@ eContents() : EEList

@ eAllContents() : ETreelterator

# eCrossReferences() : EEList

# eGet(EStructuralFeature) : EJavaObject

@ eGet(EStructuralFeature,EBoolean) : EJavaObject
® eSet(EStructuralFeature,EJavaObject)

# elsSet(EStructuralFeature) : EBoolean

@ eUnset(EStructuralFeature)

<<datatype>>
&= URI
< <javaclass> > org.eclipse.emf.common.util. URI

Figure 8.32: MULTIPLE traceability metamodel

2 class of the model is

As can be observed in the figure, the “root
the TraceabilityModel class. A traceability model has a name and a
set of URIs (domainModels and targetModels) of the source and target
domains. A URI is an indentifier used in EMF to load and reference
models and metamodels (called EResources). A traceability model
can relate n source models with 1 target models.

A traceability model contains a set of mappings or Traceabil-
ityLinks. A traceability link has a name (manipulationRule, which
indicates the rule that generated the link), a set of domain elements
(which are instances of the classes of the domain models) and a set
of range elements (which are instances of the clasess of the target
models). Domain and range elements are of EObject type, which is

EMF models are typically shown as trees. This way, it is recommended to define a
class which acts as the root node of this tree.
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the generic type of EMF instances. The dependencies of this plugin
are the following as usual:

org.eclipse.core.runtime — The Eclipse basic runtime.

org.eclipse.emf.ecore — The Ecore metamodel.

ES.UPV.DSIC.ISSI.TRACEABILITY.METAMODEL.EDIT  This
plugin provides the basic functionality to show traceability models
in graphical editors. Its contents are almost the default contents.

ES.UPV.DSIC.ISSI.TRACEABILITY.METAMODEL.EDITOR This
is the latest plugin developed for the traceability management in
MULTIPLE. It includes the traceability editor as well as the wizard
to create new traceability model automatically. The editor allows
visualizing a traceability model toghether with their domain and
range models simultaneously. It also allows navigating the traceabil-
ity links, showing automatically and easily the relationships between
the domain and range elements. Traceability models can also be
edited using the editor. The only requirement of the editor to repre-
sent a traceability model that relates any set of EMF models is that
the corresponding metamodels must be previously registered in
EMF. The wizard allows to create new traceability models. Although
traceability models are usually automatically created when a QVT
transformation is executed, this feature can be useful to create new
weaving models, i. e., models which define a set of associations and
links among elements of different models. Weaving models can be
useful for metamodel comparison, model matching, model annota-
tion, interoperability, etc. (Del Fabro and Jouault 2005; Boronat et al.
2005a; Jossic et al. 2007).
The plugin has the following dependencies:

org.eclipse.core.runtime — The Eclipse basic runtime.
org.eclipse.core.resources — The API to access workspace resources.

org.eclipse.emf.ecore.xmi — The plugin which provides support to
the XMI persistence format.
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org.eclipse.emf.edit.ui — The part of the edit framework which con-
tributes to the Eclipse UL

org.eclipse.ui.ide — The UI of the Eclipse IDE, adds support for error
markers, input for file editors, etc.

es.upv.dsic.issi.traceability.metamodel — The traceability metamo-
del plugin.

es.upv.dsic.issi.traceability.metamodel.edit — A utility plugin which
implements the image and label providers for traceability mod-
els.

Furthermore, and as explained before, to be able to show the
models referenced by a traceability model it is necessary that the cor-
responding metamodels are correctly registered in the EMF registry.

8.4.3.2  User interface

The traceability metamodel contributes to the Eclipse UI the standard
elements. However, these elements have been customized to deal
with the particularities of this kind of models. The majority of the
modifications have been made in the standard tree editor. Next, this
contribution is explained.

TRACEABILITY EDITOR  The traceability editor has been imple-
mented using as the starting point the code generated automatically
by EMF. This code has been modified and cleaned up. Some super-
fluous functionaly has been removed, this way the traceability editor
is a sigle-page editor and not a multi-page editor. The single-page
editor has been modified, and two additional tree panels have been
added at both sides of the editor. This way, the editor is able to rep-
resent three model trees simultaneously. Source models are shown
in the left panel, target models are shown in the right panel, and
traceability links are shown in the middle panel.

The behaviour of the editor has been also customized. When
the selection changes in any of the three tree panels, the links of
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the traceability model are navigated. Then, all the elements which
can be reached navigating the selected elements or links are also
automatically selected.

Fig. 8.33 shows an example traceability model. This model has
been automatically obtained after the application of a QVT transfor-
mation. Specifically, the example transformation is the Features-
2Classes QVT transformation explained in Sect. 7.3. The example
source model is the feature model describing a product line for cars,
which was explained in section 7.2.3.1 (page 89). The application
of the QVT transformation generates the class diagram shown in
Fig. 7.19 placed on page 109.

This way, Fig. 8.33° shows which elements are related in one of
the applications of the Feature2Class rule. In this sense, can be ob-
served that the feature Wheel, which is contained in the FeatureCar

The contrast of the selected elements has been artificially increased to enhance
visibility in printed media.

% Domsn 4 Mappings & Range

Figure 8.33: Navigating from a source element in the traceability editor

175



176 THE MULTIPLE FRAMEWORK

poaeiencee (o,
ia Doemsin 4 Mappings i& Range
< e 3 & plstom FeatureiIClastad cartraces ) platforme /snserce FasturssICIbitat/chr 4 e
4 4 Feature Model FemueCae + Traceatsbity Medel Trasaformation 4 EPackage FeatureCar
4 Feature Car & Traceablity Link FMCLConstraint20CL Consaraint 4 LCas fiheel
4 4 Fesbors Engine + . i i +u gl S te/EL
At e Trictabity Lisk GrowpChadiCheises  EString To Steng Mg Entry redhus,_length
4 % Feature Transmasien Traceabiity Link GesupChid2C hildrentomat 4 EStning Ta Sting bap Entry same_radves
+ Group TramsmissionType + Uitiribute radase
+ Featere T3 # Efieneric Type
4 4 Feature Wheel + ECls TCS
4 Attebute radesn iy prasry
4 Fratire Aatemats + bty 4 EString To Sting Map Friry pevens
& Featre Manual Traceabiity Link GeoupChidlUppentanct 4 EClins Ausermatec
4 Structural Relationsnip 1 - Tracesbiity Link Soructuraifstatonhiplhietrence +
4 Structursl Relissnidip 1 & Trataabiity Lisk Fastumdmrbutad Clapimrit & [5tring To Stung Map [ntry Automabec_mples, TCS
4 Structuns Retamoniip 1 Tracesbity Lik Fenuemstuel Clrssanstute + Edeneric Type
4 Structursl Relationsnip 1 + Traceabiity Link FestureiCions 4 EChs TrasamissicnType
+ Structural Relsicndhip & - Tracesblity Link FasturalClses 4 [Chs Tramamissicn
4 Structurst Belamsenhip 4 Traceabity Lisk Fentured Ol 4 EAneestation Bitpewerm ocbpie sy oel amples OCL
£ i Tracesbiity Link FestuelClns # ESiring To Stng Map Entry chackChidrenTransmission
4 4 Cortranis Set & Traceabiity Link FasturedCisss 4 Uitring To Smng Map Intry lowsshuttipic fyManusl
4 Containt fius bength Traceability Lisk Festused Ol # Estring To Steng Map Entry upgeehultiphcityManusl
4 Conaint same,_sadv Triceabiity Lisk FesturedClaia 4 Eluring To Sting Map Entry lowerbhultiphcinputomatic
4 4 Comtrants Set # Witring To Reng Map Intry upgashiultiphcityutomatic
4 Conmeaint powat 4+ DRabaranca TraneemtsionF asturet
4 EGenerie Type
+ ks Maswial
4+ Eaneric Type
+ EChs Eengine
4 Eitiribute power
+ UGamaric Type
4 EDuta Type Integer

Figure 8.34: Navigating from a traceability link in the traceability editor

1 Properties 2 :=:€> it Y =0
Property Value
| From Feature Automatic |

To U= Feature TCS

Figure 8.35: Properties view of a domain element

feature model is transformed to the Wheel EClass contained in the
FeatureCar EPackage.

Fig. 8.34 shows how the links are navigated when the user se-
lects an element of the source model. In this case, when the
Implies relationship is selected, the figure shows that the Auto-
matic_implies_TCS annotation has been created in the Automatic
EClass through the ImpliesRelationship2ModelConstraint rule.
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] Properties i3 :::o@ =¥ =0
Property Value
Domain “Implies, Feature Model FeatureCar, Feature TCS, Feature Automatic %
Manipulation Rule *= ImpliesRelationship2ModelConstraint
Range < EAnnotation http://www.eclipse.org/ocl/examples/OCL, EClass Automatic, EPackag...

Figure 8.36: Properties view of a traceability link

Due to the genericity of the traceability metamodel, it is not al-
ways possible to show all the relevant information in the tree editor.
Fig. 8.34 is an example of this. It can be observed that the label of
the Implies element does not show which elements are linked by it.
However, this information can be seen in the properties view, as it is
shown in Fig. 8.35.

Fig. 8.36 shows the properties view when a traceability link is
selected. The figure shows the properties of the ImpliesRelation-
ship2ModelConstraint link, which relates the elements shown in

Demain -- Traceability Link mplesRelationshipZModeiConstimint znielED

Filter Available Choices

Chence Pattem (" or ) Feat
Choices Feature
& Feature Medel FeatureCar aga | | % imples
& Feature Car 4 Feature Model FeatureCar
4 Feature Engine Remove| | 4 Feature TCS
4+ Feature Transmission 4 Feature Automatic !:
+ Feature TCS

4 Feature Wheel
4 Feature Automatic Down
4 Feature Manual

o ) comcel

Figure 8.37: Properties view of a traceability link
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Fig. 8.34, the domain property shows the referenced elements in
the source models, and the range the referenced elements in the tar-
get models. The selected elements in the source and target domains
can be modified filtered and modified using an additional dialog.
Such dialog is opened when the [...] button is pressed. Fig. 8.37
shows the dialog for the domain elements of the ImpliesRelation-
ship2ModelConstraint link.

8.4.4 QVT Launcher

The previous sections have shown and described the plugins that are
prerequisite to implement and execute automated model transfor-
mations. This section shows how to make use of them invoking the
medini QV'T engine and getting the result models.

8.4.4.1 Internal structure

The functionality to execute model transformations is divided in two
different plugins. The first one, es.upv.dsic.issi.qvt.launcher,
is able to execute a model transformation given a specific launch
configuration, which is the generic mechanism to execute external
processes within the Eclipse platform. The second one, es.upv.dsic.
issi.qvt.launcher.ui, provides the user interface which creates
the launch configuration and invokes the launcher plugin. Next these
plugins are explained.

ES.UPV.DSIC.ISSI.QVT.LAUNCHER allows executing a model
transformation without user intervention. The model transforma-
tion invocation is specified as an instance of the es.upv.dsic.issi.
gvt.launcher.model metamodel.

This plugin makes use of the Eclipse API to execute external pro-
grams. This API specifies that a class implementing the org.eclipse.
debug.core.model.ILaunchConfigurationDelegate interface must
be declared. This class is the one in charge of executing a given launch
configuration. This code must be implemented in the launch(...)
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method. A launch configuration can be defined in different ways.
In MULTIPLE launch configurations are defined by means of the user
interface implemented in the next section, which shows up when
the “Run configurations...”” menu is selected in Eclipse.

The plugin has the following dependencies:

org.eclipse.core.runtime — The Eclipse basic runtime.
org.eclipse.debug.core — The API to deal with launch configurations.

org.eclipse.emf.ecore.xmi — The plugin which provides support to
the XMI persistence format.

es.upv.dsic.issi.qvt.engine — The MULTIPLE plugin which provides
access to the medini QVT engine.

es.upv.dsic.issi.qvt.launcher.model — The launcher model which al-
lows to defines and inspect the information to execute a model
transformation (QVT-Relations rules, source models, target
model, etc.).

es.upv.dsic.issi.traceability.metamodel — This plugin allows to cre-
ate and manipulate generic traceability models as defined in
the previous section. A traceability model is always built from
the information returned by the mediniQVT transformations
engine.

The explanation of the source code of this plugin can be looked up
in (Goémez 2008). Next, to avoid verbosity, only a short description
of the packages of this plugin is presented.

es.upv.dsic.issi.qvt.launcher — This package only contains the acti-
vator class (QvtLauncherPlugin) which controls the plugin life-
cycle. Moreover, this class contains some constant definitions
which are used to query the details of a launch configuration.

es.upv.dsic.issi.qvt.launcher.internal — This package contains three
classes: QvtLaunchConfiguration, QvtTransformationProcess
and QvtTransformationjob.
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The QvtLaunchConfiguration class is responsible for recov-
ering the configuration to execute an external process, and
launching it. All this is done by implementing the launch(...)
method defined in the ILaunchConfigurationDelegate inter-
face. The class which represents the external process is the
QvtTransformationProcess class, which is instantiated by the
launch(...) method.

The QvtTransformationProcess class inherits from the IProcess
interface, which is the type expected by Eclipse to control the
external program’s life-cycle. However, the class which finally
invokes the QVT engine is QvtTransformationjob. This class
inherits from org.eclipse.core.resources.WorkspaceJob,
which enables monitorization capabilities within the Eclipse
platform.

Finally, the QvtTransformationjob class is in charge of invok-
ing the medini QVT transformations engine. First, it navi-
gates the QvtTransformationInvocation instance and gets its
domains. For every domain, the corresponding model and
metamodel are loaded. Models are specified by the model-
Path attributes and metamodels are specified by the nsPre-
fix attribute. Once all the required resourced are prepared,
and instance of the de.ikv.emf.qvt.EMFQvtProcessorImpl-
.EMFQvtProcessor class is created, and its evaluateQuvi(...)
method is invoked. An example of this is shown in listing 8.1

It is noteworthy that a set of traces is returned. However,
these traces cannot be represented graphically in a generic
editor. Thus, these traces are next transformed to our generic
metamodel. Finally, the result model and the newly created
traces model are saved.

The complete code for this class can be found in Appendix F.

ES.UPV.DSIC.ISSI.QVT.LAUNCHER.UI  This plugin is in charge
of providing the user interface to execute model transformations.
The provided interface is integrated in the dialog window to execute
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Listing 8.1: evaluateQvt(...) method

1 Collection<Trace> traces = emfQvtProcessorImpl.evaluateQVT(
2 qvtScriptReader,

3 // Textual representation of the transformation

4 invocation.getName (),

5 // Name of the transformation to be executed

6 true,

7 // Set enforce execution mode

8 invocation.getDirection().getName(),

9 // Name of the target domain

0 models. toArray (),

1 // List of models to be matched with the transformation

domains

12 new ArraylList<Trace>(),

13 // Previous set of traces. Used if the target model is
not empty and comes from a previous execution

14 log);

15 // Log to store messages

external programs of the Eclipse Ul, as will be shown in the next
subsection.

To contribute new controls to this dialog a new class, which inher-
its from org.eclipse.debug.ui. AbstractLaunchConfigurationTabGroup
must be implemented. Such class must be associated to a given
launch configuration type in the manifest file of the plugin. In this
case, the QvtLaunchConfigurationTabGroup class has been imple-
mented. This class is related with the launch configuration type
that has been implemented in the es.upv.dsic.issi.qvt.launcher
plugin (i. e., QvtLaunchConfiguration).

The plugin has the following dependencies:

org.eclipse.core.runtime — The Eclipse basic runtime

org.eclipse.ui — The Eclipse basic Ul library. It provides construc-
tors to create new dialogs, etc.

org.eclipse.debug.ui — This plugins provides the utility classes to
deal with the graphical aspects of launch configurations.
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org.eclipse.ui.ide — This plugin provides some advanced dialog
boxes.

org.eclipse.jface.text — This plugin provides a library which uses
the MVC pattern and which is built on top of Standard Widget
Toolkit (SWT) (Eclipse 2011d). This library is specialized in
textual editors.

es.upv.dsic.issi.qvt.engine — This plugin encapsulates the medini-
QVT engine. Allows to query and analyze QvVT-Relations
transformations.

es.upv.dsic.issi.qvt.launcher — This plugin provides the environ-
ment to automatically execute model transformations config-
urations.

es.upv.dsic.issi.qvt.launcher.model — This plugin provides the mo-
del to specify model transformations configurations.

A short description of the packages of this plugin is presented
next:

es.upv.dsic.issi.qvt.launcher.ui — This package only contains the
activator class, which controls the lyfe-cycle of the plugin.

es.upv.dsic.issi.qvt.launcher.ui.internal — This package contains the
following classes: ExtensionFilter, ParamsCellModifier, Param-
sContentProvider, ParamsLabelProvider, QvtLaunchConfigu-
rationTabGroup, QvtLaunchShortcut, QvtMainTab, Resources-
TreeSelectionDialog.

The QvtLaunchConfigurationTabGroup class implements a tab
group which is associated to our launch configuration type.
The tab group contains a QvtMainTab (which implementes the
main UI contributed by this plugin), and the generic Eclipse
Common tab. The QvtMainTab implements a table which is
used to specify the different models that will match the QvT-
Relations transformation domains. The ParamsCellModifier,
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ParamsContentProvider and ParamsLabelProvider classes are
some utility classes used by the table contained in the Qvt-
MainTab class. Finally the ResourcesTreeSelectionDialog im-
plements a file selection dialog, and the ExtensionFilter class
implements a file filter based on file extensions.

8.4.4.2  User Interface

The user interface that the MULTIPLE framework provides to execute
model transformations is provided by the es.upv.dsic.issi.qvt.
launcher.ui plugin. This plugin provides an easy way to define the
models that take part in a model transformation. Such interface
is integrated in the dialog window to execute external programs
included in the Eclipse platform. This dialog is available can be
opened using the Run - Run configurations... menu. Figure 8.38
shows how to launch this dialog.

If this menu is used, the Edit configuration dialog shown in Fig.
8.39 is shown. To be able to define the models that take part in the
model transformation a *.gvt file must be selected first.

Alternatively, and as an a shortcut, this dialog can be launched
using the contextual menu which appears when right clicking over a
“*.qvt” file as shown in Fig.

When this contextual menu is used, the dialog can be opened with
some values already defined, such as the QVT transformation file, the

o~ O~ Q- EHEG- @ <
&4 Package Explorer &i (no launch history)

Run As 3
4 | Features2Classes Run Configurations...

4 car.features
|d] car.features_dia g
features2classes.qvt

Organize Faverites...

Figure 8.38: Run - Run configurations... menu
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Figure 8.39: Edit configuration dialog

launch configuration name an the domains of the transformation.
This way, the user only has to define the files that will match the
transformation domains. Fig. 8.41 shows how this dialog looks like
when it is opened using the contextual menu.
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Figure 8.40: Run as...— QVT Transformation contextual menu
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- — -
= Edit Configuration - —— [

Edit configuration and launch.

@ The required feature 'modelPath’ of 'es.upv.dsic.issi.qvt.launcher.medel qutinvocation.impl Domainlmpl@1ce2d32 |/’
{In%20memory320resource®//@domains.0} must be set

Mame: Feature2ClassDiagram

P4 Arguments . =] Common

QVT Transformation

H Feature2ClassDiagram (platform:/resource/Features2Classes/features2classes.qvt) Browse...
Input Parameters
Target Domain name Metamodel File
= feature features %
classdiagram ecore

@ Run | Close |

Figure 8.41: Edit configuration and launch dialog window

Next, the user has to define the input models that will match the
different domains. For example, Fig. 8.42a shows how the feature
model of the example (the car example) is selected. This dialog is
launched when the user clicks on the (...) button which appears on
Fig. 8.41.

When the user has defined all the input models, he/she must
define which is the file name for the output file. If this file does
not exists yet, its name can be entered manually as the Fig. 8.42b
shows. In the example, and as the target domain conforms to the
Ecore metamodel, the result file has the *.ecore extension.

When all the domains have been defined, the Run button becomes
active (Fig. 8.43). This way, it can be clicked and the model transfor-
mation begins.

Fig. 8.44 shows the progress monitor which informs the user about
the progress of the model transformation. When the process finishes
the progress monitor is closed and the result files are created in the
Eclipse workspace.
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Figure 8.42: Setting the input and output models of a model transforma-
tion

Finally, Fig. 8.45 shows the result files (which are the selected files).
As can be seen, two files are created. First, we find the car.ecore file,
which conforms to the Ecore metamodel, and which has been cre-

(S =

Edit configuration and launch. @

Mame: Feature2ClassDiagram

B A =} Common}
| QVT Transformatien I
I Feature2ClassDiagram (platform:/resource/Features2Classes/features2classes.qvt)
Input Parameters
Target Domain name Metamodel File
— feature features /Features2Classes/car.features
Y classdiagram ecore /Features2Classes/car.ecare |

I Apply ] I Revert ]

® [ Run i [ Close ]

Figure 8.43: QVT transformation ready to be executed
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= Properties |2 Progress &3 %~ — O
Running Feature2ClassDiagram transformation
—— ||
Running...

Launching Feature2 ClassDiagram
——————— [T}
Launching : Launching delegate...

Figure 8.44: Progress monitor of a model transformation

ated following the rules that the QVT transformation define. Second,
we find the car.traces file. This file, which is conformant to the meta-
model described in section 8.4.3, makes explicit the links between
the source models and the target models, which are derived from
the relationships that the QVT transformation defines. The traceabil-
ity model can be looked up in Figs. 8.33 and 8.34, which show the
traceability editor. The contents of the car.ecore file are shown in the
right panel of the traceability editor of both figures.

[ Package Explorer i3 Tg Hierarchy =0

h=

==
4 = Features2Classes
#| car.ecore
& carfeatures
|d] carfeatures_diagram
& cartraces
features2classes.qut

Figure 8.45: Result files of the example model transformation

8.4.5 QVT Command-line interface

The MULTIPLE Framework also provides support to execute model
transformations outside the Eclipse platform. For this, an standalone
Java program is provided. This program can execute a model trans-
formation without user interaction if it is invoked using the proper
parameters.
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As it can be executed in a non-interactive way, it can be used by
any other 3rd party program to integrate model transformations,
apart of the technology used to develop it. For example, the QVT
Command-line Interface can be used by a program developed using
the Microsoft NET Framework. An example of this case is shown in
Section 13.

Next, a short overview of this program is given.

8.4.5.1 Internal structure

The QvT Command-line interface is a simple program which mostly
encapsulates the functionality provided by the es.upv.dsic.issi.
gvt.launcher plugin. Although this program can be executed in-
dependently of the Eclipse workbench, some core plugins of the
Eclipse platform are required. To this set of plugins some MULTIPLE
dependencies must be added. All the required plugins are:

qvtemf.jar — The QVT engine packed as a single Java Archive (JAR)
file.

org.eclipse.equinox.common — The Equinox common runtime, i. e.,
the Eclipse implementation of the 0SGi framework.

org.eclipse.emf.common — Common functionality of the EMF.
org.eclipse.emf.ecore — The Ecore metamodel.
org.eclipse.emf.ecore.xmi — XMI support for Ecore artifacts.
org.eclipse.emf.edit — The EMF edit support plugin.

org.eclipse.emf.validation — The validation subsystem for Ecore
models and instances.

org.eclipse.emf.transaction — The plugin which provides support
for transactions when dealing with EMF artifacts.

es.upv.dsic.issi.traceability.metamodel — The MULTIPLE traceability
metamodel.
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B QutTransformationInvocation

' name : EString datatype ]

T tracesPath : EString [ 2 IOException
" path : EString |< <javaclass> > java.io.IOException
@ toXMI() : EString throws IOException
domains
FH Domain H Metamodel |
direction | = name: EString metamodel | 7 path : EString |

1 |~ modelPath : EString | 1
@ isTarget() : EBoolean

H PluginMetamodel H XMIMetamodel

"' packagelmplClass : EString

Figure 8.46: CLI invocation model

es.upv.dsic.issi.qvt.launcher.model.cli — (A customized version of)
the MULTIPLE QVT launcher model. Fig. 8.46 shows what this
modified version looks like. As it can be observed, the main
difference resides in the declaration of the metamodels that
the domains conform to. In the CLI version, the metamodels
must be declared using a path in the file system instead of by
means of their nsPrefix. This is because they are not loaded
by default in the EMF package registry, and this task must be
done explicitly.

A metamodel can be declared using two different ways. On
the one hand, an XMI representation of an Ecore model can be
used. On the second hand, an EMF model plugin can be used.
This second choice can be useful to import metamodels which
include executable code. In this case, the Fully Qualified Name
(FQN) of the Package Implementation class must be provided.

The internal code of the CLI engine is stored in a single pack-
age, es.upv.dsic.issi.qvt.cli. This package contains two classes:
QutTransformer and UnsupportedOptionException. The latter is
thrown when the user does not declare the arguments of the pro-
gram properly. The former class contains the main method which
parses the arguments of the program, loads the configuration, and
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executes the evaluateQuvt(...) method as explained in the previous
section.

All the required plugins and libraries, within the classes of the
es.upv.dsic.issi.qvt.cli package are built all together in what is
called a Fat JAR. A Fat JAR is a single and self-contained JAR which can
be easily distributed and executed without worrying about external
dependencies.

8.4.5.2  User Interface

The program does provide a fully textual user interface. All the
required information to execute a model transformation must be
defined before the execution of the program, as it provides a non-
interactive interface. This way, QVT transformations can take part in
batch processes.

When the program is not properly configured provides the fol-
lowing usage information:

Listing 8.2: Usage of the CLI of the QVT engine

1 c:\tests> java -jar qvtengine.jar

2 Usage: java -jar qvtengine.jar --config <xmi_config_filename>
[--debug on|off] [--traces on|off]

3 c:\tests>

Where the arguments are:

--config <xmi_config_filename> — Required. Defines the path
of the XMI file which contains the information about the trans-
formation invocation. It must be an instance of the metamodel
shown in Fig. 8.46.

--debug on|off — Optional, default value of f. Shows debug mes-
sages outputted by the QVT transformations engine.

--traces on|off — Optional, default value of f. Creates a trace-
ability model which contains the links that have been created
between the source models and the target model. The traceabil-
ity model produced conforms to the traceability metamodel
presented in section 8.4.3.
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Listing 8.3: Example invocation file: umlardbmsconfig.xmi

1 <?xml version="1.0" encoding="ASCII"?>
2 <gvtinvocationcli:QvtTransformationInvocation xmi:version="
2.0" xmlns:xmi="http://www.omg.org/XMI"

3 xmlns:qvtinvocationcli="http://es.upv.dsic.issi/qvt/
invocation/cli”

name="uml2rdbms”

path="uml2rdbms.qvt"”

direction="rdbms"”

tracesPath="result.traces">

<domains name="uml"” modelPath="SimpleUML.xmi">
<metamodel xsi:type="qvtinvocationcli:XMIMetamodel"” path=
"SimpleUML.ecore”/>
1 </domains>

© © ® N o v &

12

13 <domains name="rdbms" modelPath="result.xmi">

14 <metamodel xsi:type="qvtinvocationcli:XMIMetamodel"” path=
"SimpleRDBMS.ecore”/>

15 </domains>

16

17 </qvtinvocationcli:QvtTransformationInvocation>

An example transformation invocation is shown in listing 8.3. This
listing declares a transformation invocation for the transformation
uml2rdbms declared in the uml2rdbms. qvt file. This file contains the
classical example which transforms a class diagram to a relational
database schema. The transformation is executed in the direction of
the rdbms domain, and the traceability model that the transforma-
tion may generate will be saved in the result. traces file.

The transformation has two domains: uml and rdbms. The uml
domain will match with the SimpleUML.xmi model, which conforms
to the metamodel stored in the SimpleUML . ecore XMl file. The rdbms
domain will match with the result.xmi model, which conforms to
the metamodel stored in the SimpleRDBMS.ecore XMI file. As the
rdbms domain is the target domain, the result.xmi file may not
exist.

Fig. 8.47 shows an execution of the previous example. First, the
contents of the directory are shown. There we find: (i) qvtengine.
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jar, the QVT engine executable; (ii) SimpleRDBMS. ecore, the target
metamodel; (iii) SimpleUML . ecore, the source metamodel; (iv) SimpleUML .
xmi, the source instance; (v) uml2rdbms.qvt, the model transforma-

tion between the source metamodel and the target metamodel; and

(vi) uml2rdbmsconfig. xmi, the invocation configuration.

Next, the transformation is executed, with the --traces option
enabled. Finally, in the new directory listing two additional files can
be seen, result.xmi, which contains the result model, and result.
traces, which contains the traces model.

In case of executing the model transformation using the JAR file
which implements the source metamodel, the uml domain should
be declared as described in listing 8.4.

Fig. 8.48 shows the example execution of the model transforma-
tion when the compiled version of the SimpleUML metamodel is
used. In this case, the metamodel is contained in the simpleuml_

B Simbolo del sistema ‘ = | B ||

C:tests>dir
El volumen de la unidad C no tiene etigueta.
El nimero de serie del volumen es: 4463-478F

Directorio de G:Ntests

23.,08-2011 : <DIR>
23082011 H <DIR> -
22,89 2008 H 5.782. gutengine. jar
13./05-2008 H 4.@18 8impleRDBMS .ecore
13852088 H . SimpleUML.ecore
137852088 H . SimpleUHL.xmi
13./05-2008 H - unlZrdbns . qut
A2./09 /2008 H 633 uml2rdhi

6 archivos L 8.171 hytes

2 dirs 33.194_881.824 bhytes libres

C:“testerjava —jar gutengine.jar ——config uml2rdbmeconfig.xmi ——traces on
Transformation executed successfully

C:“tests>dir
El volumen de la unidad C no tiene etigueta.
El nimero de serie del volumen es: 4463-478F

Directorio de G:Ntests

23.,08,2011 H <DIR>

23082011 H <DIR>

(22,09 /2008 =21 5.782

23.,08,2011
23082011 H 2. Iy t.xmi

13705 2008 H 4. £impleRDBMS .ecore
13./85 /2088 H 3 SimpleUML.ecore
13052008 E

SimpleUML.xmi

13052008

A2/09 /2008
8 archivos 5.88%. hytes
2 dirs 33.194.868.544 hytes

Figure 8.47: Example of a model transformation using the CLI engine
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Listing 8.4: Example invocation file: umlardbmsconfigmod.xmi

1 <?xml version="1.0" encoding="ASCII"?>
2 <gvtinvocationcli:QvtTransformationInvocation xmi:version="
2.0" xmlns:xmi="http://www.omg.org/XMI"

3 xmlns:qvtinvocationcli="http://es.upv.dsic.issi/qvt/
invocation/cli”

4 name="uml2rdbms”

5 path="uml2rdbms.qvt"”

6 direction="rdbms"”

7 tracesPath="result.traces">

8

9

0

<!-- Modified code begins here -->
<domains name="uml"” modelPath="SimpleUML.xmi">
1 <metamodel xsi:type="qvtinvocationcli:PluginMetamodel”

12 path="simpleuml_1.0.0. jar"

13 packageImplClass="SimpleUML.impl.SimpleUMLPackageImpl"/
>

14 </domains>

15 <!-- Modified code ends here -->

16

17 <domains name="rdbms"” modelPath="result.xmi">

18 <metamodel xsi:type="qvtinvocationcli:XMIMetamodel"” path=
"SimpleRDBMS.ecore"/>

19 </domains>

21 </qvtinvocationcli:QvtTransformationInvocation>

1.0.0.jar file, and the results are the same than in the previous
execution.

Although in this case there is no difference between using an XMI
metamodel or a compiled metamodel, the latter is more powerful
and provides more possibilities. For example, using the compiled
version can be useful when metamodels have classes which contain
derived attributes or methods with custom code. Moreover, it also
allows including any arbitrary Java code in a model transformation,
enabling the use of black-boxes.
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Figure 8.48: Example of a model transformation using a compiled meta-
model and the CLI engine

8.5 VALIDATION SUBSYSTEM

The validation subsystem allows to check it the different models
and instances that play a role in a MMDSPL are correct or not. In
this sense, MULTIPLE is able to check software artifacts at two levels.
First, it allows to validate if models conform to their corresponding
metamodels. In this conformance checking complex restrictions
(expressed as OCL expressions) are included. Second, it allows to
verify if cardinality-based feature models are correct or not. To
guarantee that the verification process is properly done, it makes
use of the FAMA framework. This framework is able to reason about
feature models by representing them in different logical notations.
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8.5.1  OCL Support

The OCL support plugin (es.upv.dsic.issi.ocl.validator.popup)
allows to evaluate if a given instance of an Ecore model violates any
constraint defined in it or not. This plugin makes use of the built-in
OCL checker provided by EMF. The Eclipse OCL checker provides a
full implementation of the OCL language both for Ecore and UML2
models. However, it does not provide a default way to define OCL
expressions in such models nor a default UI to launch a checking
process.

The goal of the MULTIPLE OCL Support plugin is to fill this gap.
First, it defines a way to include OCL expressions within Ecore models,
and second, it provides a simple UI to start a validation process and
show the results to the user.

To integrate OCL expressions within Ecore models, we have made
use of the EAnnotation element. EAnnotations can be attached to
any EModelElement and define a source attribute which identifies
them. Moreover, EAnnotations can group any number of detail en-
tries. Each one of these entries are, in the end, a pair of key and
value attributes. This way, EAnnotations whose source attribute is
http://www.eclipse.org/ocl/examples/0CL describe a set of OCL
invariants whose context is the class containing the EAnnotation.
Each one of the entries contained in the EAnnotation describe one
invariant, where the key attribute represents the invariant name, and
the value represents the OCL expression.

Fig. 8.49 shows how the class diagram of the example car model
(shown in section 7.2.3.1) within its OCL invariants is represented in
EMF. In the figure can be observed how the conventions used by the
OCL Support plugin have been applied. This model represents the
exact same model that the class diagram shown in Fig. 7.19 plus the
OCL constraints of listing 7.4.
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Figure 8.49: Example car.ecore model with OCL constraints

Internal Structure

The OCL support is packaged in a single plugin. Basically, this plugin
provides a user-friendly interface to query Ecore models that are
defined following the patterns expressed before, and invoke the
necessary operations in the built-in OCL checker provided by EMF.
This process is done using a contextual menu, and the results are
shown to the user using a textual console. This plugin requires the
following bundles to work:
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org.eclipse.core.runtime — The Eclipse basic runtime.
org.eclipse.ui — The Eclipse UI classes.

org.eclipse.core.resources — The Eclipse API to access the resources
in the workspace.

org.eclipse.emf.ecore — The Ecore metamodel.
org.eclipse.ocl — The generic OCL runtime.

org.eclipse.emf.ecore.xmi — The plugin which provides support to
work with XMI resources.

org.eclipse.ocl.ecore — The implementation of OCL which takes into
account the peculiarities of the Ecore metamodel.

org.eclipse.ui.ide — This plugin provides some advanced controls
of the Eclipse UL

org.eclipse.ui.console — The API to work with the integrated console
view of Eclipse.

The plugin contains two packages: es.upv.dsic.issi.ocl.val-
idator.popup and es.upv.dsic.issi.ocl.validator.popup.ac-
tions. The former only contains the activator class which controls
the plugin life-cycle (OCLValidatorPopupPlugin). The latter contains
two action classes, ValidateAction and ConvertToTextAction; and
two utility classes, OclDiagnostic and OclDiagnosticChain. The Val-
idateAction launches the validation process of the selected instance
in the workspace. The ConvertToTextAction generates a textual file
containing the OCL code that contained in the EAnnotations of an
Ecore model.

8.5.1.2  User Interface and Example

In section 7.2.3.1 an example feature model was shown. Next, section
7.3 presented a model transformation which transformed the exam-
ple feature model to the class diagram shown in Fig. 7.19 and the OCL
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Figure 8.50: Generating an OCL textual file

constraints shown in listing 7.4. This transformation process was
demonstrated in practice previously in this chapter. In section 8.3.1
and specifically in Fig. 8.12, the example feature model is represented
using the MULTIPLE feture modeling editor. Section 8.4.4.2 describes
how the transformations engine is configured to perform a model
transformation, and specifically, the car example feature model is
transformed to a class diagram. Finally, the application of the Fea-
tures2Classes transformation over the example model produces the
Ecore model shown in Fig. 8.49.

GENERATION OF AN OCL FILE
matically a full textual representation of the OCL invariants that are
embedded in an Ecore file. Some modeling tools are able to import
Ecore models, and those programs usually provide support to im-

It is possible to create auto-

port textual files with OCL expressions. This way, the models that are
created in the MULTIPLE framework can be fully imported by third
party applications.

To generate the textual file with the OCL expressions, the user must
right-click over an Ecore model, as shown in Fig. 8.50. By selecting
the MULTIPLE — Convert to OCL file menu, the generation of the
OCL file begins. This process, which is almost instant, generates a
new file with the same name than the source Ecore model, but ending
with the “*.ocl’” extension.
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Fig. 8.51 shows an example workspace with the automatically gen-
erated file (car.ocl). On the left-hand side of the figure part of the
contents of the file are shown. The complete contents of the file are
shown in the listing 7.4 included previously in section 7.3.

INSTANCES VALIDATION Once we have an Ecore model (and
the needed OCL constraints embedded as EAnnotations), we can
make use of the standard EMF tools to create instances. Fig. 8.52
shows how a dynamic instance is created for the example class model.
In the case of the example model, an valid instance is equivalent to a
valid configuration of the original feature model.

Fig. 8.53 shows an example instance. It shows a car configuration
with automatic transmission, TCS, 4 wheels and engine. The radius
of three of the wheels is 16 inches, and the radius of the fourth is 15
inches. The power of the engine is 65,000 watts. This configuration

File Edit Mavigate Search Project Run Window Help
-l & H-0-Q- BEGE @S BN F e
I3 Package Explor 22 g Hierarchy| = 0| [ carocl £3

=h- backage FeatureCar

[ Features2Classes
& corccore
(& carfeatures
carfeatures_diagram
carocl

context Wheel

inv radius_length : self.radius > 15

inv same radius : Wheel.alllnstances()->forAll(wl, w2
[§) cartraces -
& Corami

featuresZclasses.qut context TCS

iny power : TCS.allInstances()->notEmpty() implies Engin

context Automatic

inv Automatic_implies_TCS : TCS.allInstances()-»notEmpty

context Transmission
iny checkChildrenTransmission : 1 <= ( (if self.Transmis
inv lowerMultiplicityManual : self.TransmissionFeatures-
inv upperMultiplicityManual : self.TransmissionFeaturss-
inv lowerMultiplicityAutomatic : self.TransmissionFeatur

Figure 8.51: Generated OCL textual file
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Figure 8.52: Creating an instance of an Ecore model dynamically

is invalid conforming to the restrictions applied to the metamodel.
We can check that by using the MULTIPLE OCL checker.

To launch a validation process, we can use the contextual menu
which appears when the user right-clicks over the file which contains
the instance as shown in Fig. 8.54.

When the validation is perform, a dialog box appears showing the
global result (i. e, if all the invariants are met) as Fig. 8.55 illustrates.
When the final global result is false, it is necessary to know which in-
variants are not validated. To look up this information, the MULTIPLE
OCL checker provides a textual console as shown in Fig. 8.56. As
can be seen, in the console a message is printed for each instance
that violates an invariant. Such message is made up of the following
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& Carxmi 25 =B
4 | platform:/resource/Features2Classes/Carxmi
a 4 Car
<+ Engine 65000
4 < Transmission
4 Automatic
4 TCS
4 Wheel15
4 Wheel16
4 Wheel16
4 Wheel16
- ] platform:/resource/Features2Classes/car.ecore

Figure 8.53: Example of a incorrectly defined instance

Figure 8.54: MULTIPLE OCL checker contextual menu

information: first, the name of the class which containts the invariant
and the invariant name; second, the identifier (if available) or the
URI of the object that triggered the message; and third, the result. By
default, only the false results are shown. If the checking process is
launched in debug mode, also valid checks (true results) are shown.

This way, the console points out the following errors: First, the
wheel that sizes 15 inches does not meet the invariant expressed by
the “‘radius_lenght” restriction defined in the Wheel class. This
restriction establishes that a wheel must size more than 15 inches.
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= Validation result [
|6I Global result: false

Figure 8.55: MULTIPLE OCL checker: unsuccessful check

El Console &3 IluE‘=ﬁ ~[§~-=0
OCL Validator

[Wheel | radius_length] [Car.xmi//@Wheel.0] -
[fal=se]

[Wheel | same radius] [Car.xmi//@Wheel.0]
[fal=e]

[Wheel | same radius] [Car.xmi//@Wheel.l]
[false]

[Wheel | same radius] [Car.xmi//@Wheel.Z]
[fal=e]

[Wheel | same_radius] [Car.xmi//@Wheel.3]
[false]

[TCS | power] [Car.xmi//@TCS]

[false]

Global result: false

m

Figure 8.56: MULTIPLE OCL checker: unsuccessful check details

Second, the instance does not satisfy the ““same_radius’ restriction,
which states that all the wheels must have the same radius. And
third, it does not satisfy the “power’” invariant of the TCS class, that
states that if TCS is selected, the engine must be more powerful than
70,000 watts.

Once the errors presented by the console have been corrected,
a new validation step can be performed. Fig. 8.57 shows how the
example instance has been corrected. In this case, the power of the
engine has been increased, and the wheel whose size was different
has been changed. As can be seen in the figure, the validation process
assures that the corrections have been properly done, and the new
instance meets all the invariants that the model defines.
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Figure 8.57: Example of a correctly defined instance

8.5.2  OCL Support CLI

As in the case of the transformations engine, the MULTIPLE Frame-
work also provides a command-line version of the OCL checker that
can be executed outside the Eclipse platform. For this, an standalane
Java program is provided. This program can execute an instance
validation without user interaction.

This program can be used by any other 3rd party program apart of
the technology used to develop it. For example, the OCL Command-
line Interface can be used by a program developed using the Microsoft
.NET Framework. MORPHEUS is an example of such a case. This
case study is presented in chapter 13.

8.5.2.1 Internal structure

The 0CL Command-line interface (es.upv.dsic.issi.ocl.cli) is
a small program which mostly encapsulates the functionality pro-
vided by the es.upv.dsic.issi.ocl.validator.popup plugin. The
program is provided as a single JAR file which encapsulates some core
plugins of the Eclipse platform, within the functionality provided by
the MULTIPLE OCL Support plugin. The required plugins are:

org.eclipse.equinox.common — The Eclipse implementation of the
0SGi framework.

org.eclipse.emf.common — Basic utilities of EMF (notification frame-
work, command framework, etc.).
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org.eclipse.emf.commonj.sdo — API for Service Data Objects (SDO).
org.eclipse.emf.ecore — Ecore metamodel implementation.

org.eclipse.emf.ecore.change — API for describing and applying mo-
del changes.

org.eclipse.emf.ecore.change.edit — Editing support for the ecore.-
change APL

org.eclipse.emf.ecore.edit — Editing support for Ecore models.
org.eclipse.emf.ecore.sdo — API for supporting SDO in EMF.

org.eclipse.emf.ecore.sdo.edit — Editing support for the ecore.sdo
APIL

org.eclipse.emf.ecore.xmi — XML and XMI serialization and deseri-
alization support.

org.eclipse.emf.edit — EMF editing support.

org.eclipse.emf.mapping.ecore2xml — API for mapping from Ecore
constructs to the XML representation of those constructs.

org.eclipse.emf.ocl — EMF compatibility API for OCL implementa-
tion.

org.eclipse.ocl — OCL implementation.

org.eclipse.ocl.ecore — OCL implementation for Ecore models.
org.eclipse.ocl.uml — OCL implementation for UML2 models.
org.eclipse.xsd — API and implementation for XSD.
org.eclipse.xsd.edit — Editing support for the org.eclipse.xsd API.

net.sourceforge.lpg.lpgjavaruntime — Java runtime for the LALR
Parser Generator (LPG) tool.
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The functionality implemented by the MULTIPLE framework is
grouped in a single package, es.upv.dsic.issi.ocl.cli, which
contains the following classes: OclEvaluator (main class), OclDiag-
nostic, OclDiagnosticChain and UnsupportedOptionException.

8.5.2.2 User interface

The user interface provided by the programm is fully textual, and the
program runs in a non-interactive way. Once the required arguments
are properly defined, the program can be executed. This behaviour
enables the reuse of this program in more complex tools.

When the program is not properly configured provides the fol-
lowing usage information:

Listing 8.5: Usage of the CLI of the OCL engine

1 C:\tests>java -jar oclevaluator. jar

2 Usage: java -jar <ocl_evaluator_jar_file> arguments

3 Required arguments:

4 --metamodel "metamodel_path”

5 --model "model_path”

6 Optional arguments:

7 --verbose [SHOW_PARTIAL_RESULT, SHOW_EXPRESSION]

Where the arguments are:

--metamodel “metamodel_path” — Required. Defines the path of
the Ecore file containing the metamodel. It must be annoted
with the OCL expressions as explained in section 8.5.1.

--model “model_path” — Required. Defines the path of the XMI
file which conforms to the metamodel specified in the previous
argument.

--verbose [SHOW_PARTIAL_RESULT, SHOW_EXPRESSION] — Op-
tional. Enables the printing of extra messages about the vali-
dation process. The SHOW_PARTIAL_RESULT modifier enables
to show the result of every single check that is performed. The
SHOW_EXPRESSION modifier enables to show the textual OCL
expression together with the partial result.
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Figure 8.58: Example execution of the OCL CLI engine

Fig. 8.58 shows two example executions of the OCL CLI tool. The
example takes as argument the example model shown in Fig. 8.53.
In that figure, an incorrectly defined instance is shown. As can be
seen in Fig. 8.58, the engine is first executed without any optional
argument. In this case, only the global result is printed showing
that the model is invalid (Global result: false). Next, the engine is
executed again indicating that the partial results must be shown too.
In this case, we can observe that the constraints that are unmet are
the same as before, i. e., radius_length, same_radius and power.

8.5.3 Variability Model Checking

The variability model-checking subsystem provides validation ca-
pabilities by communicating MULTIPLE with the FAMA framework.
FAMA accepts feature models in two different formats: textual and
XML. MULTIPLE provides support to automatically analyse XML-based
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FAMA feature models (conformant to the FAMA metamodel pre-
sented in section 8.3.2) within the Eclipse platform by using the
es.upv.dsic.issi.multiple.fama.bridges plugin.

To support manual tasks involving FAMA the es.upv.dsic.issi.
multiple.fama.totext utility plugin is provided. It allows translat-
ing a MULTIPLE feature model to a FAMA textual model, which can be
manually edited and analysed using the standalone FAMA console.

8.5.3.1 Internal structure

ES.UPV.DSIC.ISSI.MULTIPLE.FAMA.BRIDGES  This plugin em-
beds theFAMA OSGi component within MULTIPLE. It provides a set
of contextual menus to analyse FAMA models with only a few mouse
clicks.

This plugin depends on the following ones:

org.eclipse.core.runtime — The Eclipse runtime.
org.eclipse.ui — The Eclipse UI APL

org.eclipse.core.resources — The Eclipse API to access the resources
in the workspace.

org.eclipse.ui.console — The console API. It allows to handle textual
consoles in the Eclipse Console view.

es.us.isa.FaMaSDK (1.1.1) — The FAMA library. It provides the
model-checking engine to represent and analyse feature mod-
els.

ES.UPV.DSIC.ISSI.MULTIPLE.FAMA.TOTEXT This plugin is in
charge of representing MULTIPLE variability models using the textual
representation accepted by FAMA. This format has the advantage of
being compact, and easily understandable and editable (ISA 2011b,
p. 12 8q.).

This plugin has the following dependencies:

org.eclipse.core.runtime — The Eclipse runtime.
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org.eclipse.ui — The Eclipse UI APL

org.eclipse.core.resources — The Eclipse API to access the resources
in the workspace.

org.eclipse.emf — The Eclipse Modeling Framework.
org.eclipse.emf.ecore — The Ecore metamodel.

org.eclipse.emf.ecore.xmi — The plugin which provides support to
the XMI persistence format.

es.upv.dsic.issi.multiple.features — The MULTIPLE features metamo-
del.

8.5.3.2  User interface

The varibility model-checking capabilities are accessed by using
contextual menus. Fig. 8.59 shows an example feature model as
represented in the MULTIPLE graphical editor. The top feature of the
model is Root, which has three children features: A, B and C. The
former is an optional feature, and the last two are mandatory. A
has an alternative child group, where only feature A1, A2 or A3 can
be selected. Finally, and to illustrate the validation capabilites, an
excludes relationship is defined between B and C. Such a relationship
makes the model invalid.

Next, how this sample feature model is processed and analysed is
shown.

THE FAMA CONTEXTUAL MENU To analyse a feature model
using the FAMA contextual menu it is necessary to transform a
MULTIPLE feature model into a FAMA feature model. This can be
achieved by executing the QVT transformation shown in section
8.3.2.2. Listing 8.6 shows the generated XML file, and Fig. 8.60 shows
it as it is represented by the MULTIPLE built-in graphical editor.
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‘* Root

Attributes

B
Attributes Attributes
[1.1]
::L//////// L1 1.1
W AL W A2 W A3
Attributes Attributes Attributes

Listing 8.6: Sample void feature model represented in FAMA-XML

Figure 8.59: Sample void feature model

Attributes

1

26

27

<?xml version="1.0"
<feature-model xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-

instance”

xsi:noNamespaceSchemaLocation="http://www.tdg-seville.info/

encoding="ASCII"?>

benavides/featuremodelling/feature-model.xsd">

<feature name="Root">

<binaryRelation name="Relation_to_A">

<cardinality max="1"

<solitaryFeature name="A">

<setRelation name="Grouped_Relation”>

<cardinality max="1" min="1"/>

min="0"/>

<groupedFeature name="A1"/>
<groupedFeature name="A2"/>
<groupedFeature name="A3"/>
</setRelation>

</solitaryFeature>

</binaryRelation>
<binaryRelation name="Relation_to_B">

<cardinality max="1"

<solitaryFeature name="B"/>

</binaryRelation>
<binaryRelation name="Relation_to_C">

<requires feature="A1"

<excludes excludes="B"

</feat

<cardinality max="1"

<solitaryFeature name="C"/>
</binaryRelation>
</feature>

>

name="A2_requires_A1"

feature="C"

Excludes_from_B_to_C"/>

ure-model>

min="1"/>

min="1"/>

name="

requires="A2"/
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Figure 8.60: Sample void feature model represented in FAMA

Once a MULTIPLE variability model is transformed into a FAMA
variability model, the FAMA contextual menu can be used to perform
the different analysis. Fig. 8.61 shows how the “Detect and explain
errors’” analysis is launched.

The result of the analysis (Fig. 8.62) shows that the sample fea-
ture model is void, i. e., there does not exist a product that fulfills
the constraints of the feature model. Specifically, it states that Ex-
cludes_from_B_to_C, Relation_to_B and Relation_to_C are contra-
dictory.

MULTIPLE FEATURE MODEL TO FAMA TEXTUAL MODEL To
transform a MULTIPLE feature model to a FAMA textual model a
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Figure 8.61: Detect and explain errors contextual menu

contextual menu is also used. Fig. 8.65 shows what this menu looks

like. The transformation is performed almost instantly, and Fig.

8.66 shows the resulting file. As it can be observed, the textual
representation is much more simple than the XML-based one.

El Console &3 = Properties EX 5E| = G20
Fama Analysis Console

WELCOME TC THE FAMA ANALYSIS CONSCLE. It might take some time to compute the resul +
D: /Eclipse/eclipse-5DK-3.5,2-win32-MULTIPLE-framework-tesis/eclipse/runtime-Eclips:
Explanations for error Feature Model is woid

Excludes_from B _to_C

Relation_to B

Relation_to_C

|T| 1

Figure 8.62: Result of detect and explain errors
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Figure 8.63: To FAMA feature model (as text) contextual menu
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8.6 MULTIPLE EMF UTILS

This section describes some utility plugins which are bundled within
the MULTIPLE framework. These plugins extend the basic EMF func-
tionality and are not required to run the MULTIPLE framework. As
such, they are only briefly described in a few words.

8.6.1 EMOF Converter utility

XMI is the canonical representation for any EMF artifact. However,
the default XMI representation used by Eclipse does not validate the
standardised specification provided by the MOF standard. Although,
Eclipse is able to deal with standard XM files, there is not a shortcut
to easily transform EMF-XMI files to MOF-XMI files and vice versa.
The es.upv.dsic.issi.emof.converter plugin provides a menu to
switch between the two representations. These options are grouped
inside an EMOF contextual menu with two sub-options: “Save as
Ecore...”” and “Save as EMOF...” .

8.6.2  Register EMF utility

EMF maintains an internal registry of the installed metamodels.
Installed metamodels can be instantiated, used, queried and ref-
erenced automatically. To install a metamodel it is necessary to
perform some complex tasks, such as generating code, export-
ing plugins, and installing plugins. This workflow is impractical
when dealing with models which are constantly changing. The
es.upv.dsic.issi.moment.registeremf plugin allows to simmu-
late that a metamodel is installed without the necessity of generating
code or installing plugins. Using this plugin a new metamodel can
be “installed” in the internal registry by selecting the “‘Register
metamodel’” option using the contextual menu over an “*.ecore”
file. Changes performed in the registry using this mechanism are
not persistent, i. e., they are lost once Eclipse is restarted.
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Figure 8.67: Metamodels view and Metamodel tree editor
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8.6.3 Registry viewer utility

As explained before, EMF has an internal registry of the registered
metamodels. However Eclipse does not provide a simple UI to look at
this registry. Thees.upv.dsic.issi.moment.ui.registeredmodels
plugin provides a simple Eclipse view which lists the contents of such
a registry. Using this view is also possible to easily open a registered
metamodel in a tree editor to look at its contents. Fig. 8.67 shows
what this view and the tree editor look like.

8.7 SUMMARY AND CONCLUSIONS

This chapter has presented the MULTIPLE framework, an Eclipse-
based generic framework to describe Multi-Model Driven Software
Product Lines (MMDSPLs). Using EMF and it related tools it provides
a set of built-in metamodels together with the corresponding tree
editors and graphical editors to specify different system views as de-
scribed in chapter 5. Thanks to the variability metamodel MULTIPLE
can not only be used to implement simple MDE processes, but to
implement and analyse complex SPLs.

The MULTIPLE framework provides: (i) a metamodel to describe
systems’ variability by using rich feature models; (ii) a metamodel to
describe functional views of software systems; (iii) a metamodel to
define architectural descriptions of software systems; (iv) a metamo-
del to describe PRISM A architectural models, which allow to define
executable architectural models; (v) a transformations subsystem
which is able to execute QVT-Relations model transformations; (vi) a
validation subsystem, which is able to perform both conformance-
checking and model-checking operations; (vii) a standardized way
to interchange data and metadata among tools thanks to XMI; and
(viii) a extensible architecture thanks to Eclipse and its OSGi subsys-
tem.

All this capabilities are demonstrated in the remaining of this
thesis. Next chapters describe all the different case studies where
the MULTIPLE framework has been used as a platform to implement
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both MMDPLE or basic MDE processes. Chapter 9 focuses in multi-
modeling, variability and configuration aspects. Specifically it de-
scribes how a traditional MDSPL is transformed into a MMDSPL, and
how the production plan is then managed by using different QvT-
Relations transformations. Chapter 10 focuses on validation and
model-checking aspects. This chapter describes how the tools that
the MULTIPLE framework provides have been used to analyse a large-
scale feature model of an industrial SPL. Chapters in part V focus on
the genericity and extensibility of the framework. This is done by
demonstrating the applicability of the MULTIPLE framework in third
party projects. These chapters show how the tool has been used as a
suitable environment to implement different MDE processes in do-
mains in domains as diverse as bioinformatics (chapter 11), software
measurement (chapter 12) and requirements elicitation and software
architectures (chapter 13).
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MULTIPLE IN PRACTICE: MULTI-MODEL DRIVEN
SOFTWARE PRODUCT LINE FOR DIAGNOSTIC
EXPERT SYSTEMS DEVELOPMENT

«ﬂ n expert is someone who has succeeded in
making decisions and judgements simpler
through knowing what to pay attention to

and what to ignore»

— Edward de Bono

Maltese physician, author, inventor, and consultant, 1933-

The development of Expert Systems (ES) (Giarratano and Riley 2005)
has become increasingly important in recent years creating a need
to properly support such applications. Since systems are more and
more relevant, the need for techniques for their development has
also become more important. Additionally, ES introduce a difference
regarding the decision making process: they store expert knowledge
in a Knowledge Base. However, these systems are complex because
their architectural elements vary.

To cope with this variability problem, SPLs emerge in an effort to
control and minimize the high costs of the software development
process and to reduce the time to market of these new products. As
has been discussed extensively in previous sections, this approach is
based on having a base design that is shared by all the product family
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members. Thus, a specific product can benefit from the common
parts of the software. The base design can be re-used in different
products by adding different features that characterize them.

Moreover, automation and the use of open and standard mecha-
nisms are desirable in software development to deal with the com-
plexity of software systems. However, the automatic generation of
such systems is only possible when there is a framework that supports
this process. In this sense, the Model Driven Architecture (MDA)
proposed by the OMG advocates the use of standards and platform
independence in the software development process as a new way of
producing applications.

In this context, the Baseline Oriented Modeling (BOM) frame-
work, a MDA approach based on SPL for applications development,
is proposed in (Cabello Espinosa 2008). This work follows the MDA
approach in order to automatically generate code from models, by
means of transformation rules and SPL techniques, to minimize the
variability impact on the cost of the software production. The PRIS-
MA framework (Pérez Benedi 2006) is the selected target platform,
and the diagnostic Expert System domain is the domain used to
validate the proposal. Therefore, BOM automatically generates Diag-
nostic Expert Systems (as PRISMA architectural models) based on
SPL by using the generative programming approach of the MDA trend.
This framework based on SPL and MDA is the case study where the
methods and techniques proposed by this thesis have been applied
to demonstrate the benefits of the proposal.

The products of the BOM SPL have been designed as PRISMA mod-
els that capture the architecture and functionality of the rule-based ES.
The process of creating a SPL uses a set of reusable resources or assets
(core assets) to create a family of software products, using two OMG
standards: the Reusable Asset Specification (RAS) (OMG 2005b) and
the Software & Systems Process Engineering Meta-Model (SPEM)
(OMG 2008¢).

As has been extensively remarked throughout this work, the key
element of a SPL is how to represent and manage variability an how it
impacts in the rest of artifacts which which participate in the SPL. The
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initial proposal of BOM, BOM-Eager, is implemented using classic
MDA and SPL techniques. However, this approach presented some
limitations when dealing with large-scale product lines. In order
to improve the BOM framework we built BOM-Lazy. This prototype
outperforms the initial proposal in some aspects by using MMDPLE
techniques.

The diagnostic ES example is used to illustrate BOM. The main
goal of this kind of systems is to capture the state of an entity from
a series of data (observation variables) and to produce a diagnosis.
The domain of expert systems for diagnosis includes systems for
medical diagnosis, educational diagnosis, and emergency diagnosis,
among others. In this thesis we present the medical diagnosis as
the application domain, using a case study of infantile infectious
diseases.

BOM has been built to achieve the following goals:

1. create new (diagnostic) systems in different domains,

2. decrease production costs by reusing software packages or
assets,

3. generate code automatically to increase the productivity and
quality of software and to decrease the time to market,

4. construct systems in a simpler way by using diagnosis and
application domain models closer that are to the problem
domain and facilitating user interaction,

5. develop platform-independent systems from the problem per-
spective and not from the solution perspective, which will
provide generality in the development approach and applica-
bility in different domains and platforms.

9.1 TECHNOLOGICAL SPACES

In order to deal with the complexity of the problem, this work inte-
grates various technological spaces (Kurtev et al. 2002). In this sense,
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a technological space is a working context with a set of associated
concepts, body of knowledge, tools, required skills, and possibilities.
These are described in turn:

 The MDA as an approach to the MDE trend which is promoted
by theOMG for software system development.

o The SPL approach, which, from a practical point of view is
one of the most successful ones since it combines systematic
development and reuse of assets; i. e., the products are different
in some features but share a basic architecture.

o The PRISMA framework (Pérez Benedi 2006), which defines
the architectural elements (components, connectors, and sys-
tems) through their aspects.

o The Expert Systems (Giarratano and Riley 2005), which cap-
ture the knowledge of experts and try to imitate their reason-
ing processes when solving problems in a specific domain.

9.2 FIELD STUDY: DIAGNOSTIC EXPERT SYSTEMS

Cabello Espinosa (2008) presents a field study to learn about variabil-
ity in Diagnostic Expert Systems. A subset of the Expert Systems do-
main has been chosen to describe our approach: the ES that are used
in diagnostic tasks, the so-called Diagnostic Expert Systems (DES).
The diagnosis of an entity lies on the evaluation of its state by in-
terpreting its properties. The cited study allows us to know the DES
behaviour and structure in several specific domains. The following
examples were considered in the study: medical diagnosis, diagnosis
of victims in disasters, television diagnosis, educational program
diagnosis, and scholarship candidate diagnosis. The remainder of
this chapter will refer to two paradigmatic cases: systems for medical
diagnosis and systems for educational diagnosis.

In the medical diagnosis example, the entity to be diagnosed is
the patient and the result of the process is the disease he/she suffers.
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First, a clinical diagnosis is performed, which must be validated
then by a laboratory-based diagnosis. In the end, both diagnosis
are merged in a final diagnosis where the previous ones are taken
into account. Thus, we can identify three basic functionalities: get
laboratory diagnosis, get clinical diagnosis, and get diagnosis. The
first one is used by the laboratory assistant and the last ones are used
by the doctor. In this case, the properties of the entities considered
in the process vary during the whole process, which implies the
existence of several hypotheses that must be evaluated to determine
the valid one using differential reasoning.

In the educations reasoning example the entity to be diagnosed
is a post-graduate educational program where several quality crite-
ria are evaluated, and the result of the diagnosis is the advance of
the given program. The properties of the entities remain the same
throughout the diagnostic process, therefore only one hypothesis
is created applying deductive reasoning. In this case the DES only
performs one task: get program advance, which is invoked by the
user of the tool.

9.2.1 Diagnostic Expert Systems Reference Architecture

In SPL, there are parts that are shared among all the products, but
some other parts vary from one product to another. In BOM the
common parts are represented by the reference architecture, which
captures the shared functionality. The variable part shows additional
features that are specific for some products, and such parts are rep-
resented by the base architecture. The reference architecture of DES is
expressed in our approach by a modular model made up of three
basic modules (see Fig. 9.1):

«Module»
Knowledge
Base

«Module» «Module»
User Inference
Interface Engine

Figure 9.1: Reference Architecture of Expert Systems
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o Inference Engine module. This module contains the inference
process that solves a problem in a specific domain.

o Knowledge Base module. The Knowledge Base module con-
tains the knowledge about the domain

o User Interface module. This module allows the communica-
tion between the user(s) and the system.

The reference architecture is used as the shared structure of an
application that is member of the product line, but, there also exist
additional features that are particular to a specific application. This
implies the creation of a specific base architecture when a product
of the SPL is obtained from the reference architecture. However, the
base architecture that is generated from the reference architecture
is not unique, because systems vary not only in their structure but
also in their behaviour as explained in the following subsection.

9.2.2 Diagnostic Expert Systems Structural Variability

To illustrate how the architectural elements of a DES vary in their
structure, we have modeled the functional requirements that the
final product must satisfy using UML Case Diagrams. These diagrams
show the different functionality that the user expects from the system
and how the system interacts with its environment. In particular, the
structure of the architectural elements vary according to the number
of use cases, the number of actors and the number of use cases that
are accessed by each actor.

Fig. 9.2 shows the use case diagram for the medical diagnosis
domain together with its corresponding base architecture. As Fig.
9.2a shows, the ES for medical diagnosis of our case study has two
actors: doctor and lab. assistant. The first one uses the system to get
clinical diagnosis and the final diagnosis; and the second one uses
the system to get the laboratory diagnosis. These use cases affect
the final base architecture of the system. Since we implement the
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Deductive
Inference Engine

Diagnostic
Connector

Doctor
User Interface

% <
Doctor Get Clinical Diagnosis

. ) Lab. Assistant L. Diagnostic
% Get Laboratory Diagnosis User Interface Connector

Lab. Assistant

C. Diagnostic
Connector

Deductive
Knowledge Base

(a) (b)

Figure 9.2: Medical diagnosis use case diagram (a) and its corresponding
base architecture (b)

SPLs assets using PRISMA software architectures, i. e., PSM, the mod-
ules of the Expert System generic architecture must be mapped into
the following architectural elements: the Inference Engine Compo-
nent(s), which establishes system control and provides the general
resolution strategy for taking a decision; the Knowledge Base Com-
ponent(s), which contains the domain knowledge of the case study
using application domain rules (Horn clauses) and facts (constant
information); and the User Interface Component(s), which estab-
lish(es) the human-computer interaction. For example, Fig. 9.2b
shows that a user interface module is used for each one of the actors
shown in the diagram. Therefore, there is a correspondence among
the modules and their respective components. However, to be consis-
tent with the PRISMA metamodel, it is necessary to incorporate a new
architectural element (connector) to establish the communication
among components.

9.2.3 Diagnostic Expert Systems Behavioral Variability

Behavioral variability of the architectural elements of an ES depends
on the type of diagnosis, and therefore the reasoning to be used. As
presented in the previous section, the inference process to apply is

225



226

MMDSPL FOR DIAGNOSTIC EXPERT SYSTEMS DEVELOPMENT

. e
O

-0 [ J

° gl o

/NT00-—_ 00 SN0 /7%\0

do\o AT NP | 080 o ¢ .
R ANER AR AR
[ o boo®

O/f\o O/g\o O O OOOOOOO

Medical diagnosis Educational diagnosis

O Level 0 properties O Level 1 properties @ Hypotheses
t Deductive reasoning | Differential Reasoning N AND

Figure 9.3: Graph describing the inference processes for medical diagnosis
and educational diagnosis

defined according to the reasoning (it can be deductive or differen-
tial). Moreover, we say that the inference process is static if there is
only one hypothesis to evaluate and the entities involved keep the
same properties throughout the whole diagnostic process. However,
if the properties of the entities change during the process and there
is more than one hypothesis, we say that it is a dynamic process. This
way, medical diagnosis is a dynamic process that requires differen-
tial reasoning (Fig. 9.3-left); but educational diagnosis is an static
process which requires to apply deductive reasoning (Fig. 9.3-right)
(Cabello and Ramos 2009). Thus, the base architecture for ESs in the
medical diagnosis domain will have a Differential Inference Engine
component. The behaviour of this component will differ from the
behaviour of the inference engine of the ES in the educative diagnosis
domain, which will have a Deductive Inference Engine component.
Fig. 9.3 represents the medical and educative diagnosis processes as
inference graphs.

9.2.4 Diagnostic Expert Systems Application Domain Variability

Variability management can not be completely achieved by using
the domain feature model and the functional feature model. Some
variability arises from the application domain: i. e., some products
will share the same features and PRISMA software architecture. How-
ever, the PRISMA software architecture should be decorated with
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different element according to the application domain, as the entities
to diagnose will be different, and the rules and the hypothesis will
vary too.

9.2.5 Conclusions

Based on the analysis of the diagnostic process carried out, we can
conclude that:

« Diagnosis consists of an interpretation of the states of the
involved entities (viewed as a set of properties), followed by
the identification and specification of domain properties using
rules.

o There is variability in the diagnostic process (system behavior)
and this variability can be described in terms of its features
as follows: (i) Entity views: an entity can be considered to
participate with the same properties (the same view) or have
different properties (different views) during the diagnostic
process. (ii) Property levels: the properties of the entities can
have n different abstraction levels. (iii) Number of hypothe-
ses: the goal of the diagnosis is a single validated hypothesis,
but there can be one or several candidate diagnostic hypothe-
ses that must be evaluated in order to select the valid one.
(iv) Reasoning types: these show the ways in which the rules
are applied by the inference engine in order to infer a final
diagnosis.

o There is also variability in the user requirements. We have
elicited and modeled as UML Use Case diagrams (OMG 2010b)
the user interaction requirements since they impact on the
software architecture structure. We can describe this variabil-
ity in terms of its features as follows: (i) Number of use cases of
the system and how the system interacts with the environment
(final users). (ii) Number of actors: number of final users of the

227



228

The initial BOM
proposal is called
BOM-Eager.

MMDSPL FOR DIAGNOSTIC EXPERT SYSTEMS DEVELOPMENT

system. (iii) Use cases per actor: an actor can access different
use cases.

« However, the features of the application domain must also be
considered. Therefore, another variability emerges: the appli-
cation domain variability. The features that correspond to a
specific application domain are: (i) Name and type of the enti-
ties” properties by abstraction level. (ii) Rules by abstraction
levels (the rules describe how the entity properties are related
inter-levels). (iii) Level, name and type of the hypotheses used
in the diagnostic process.

9.3 BOM INITIAL PROPOSAL: BOM—-EAGER

BOM is a framework for variability elicitation, specification, and
management in the Domain Engineering phase of a SPL. It is used
for the enactment of the software production plan during the Product
Engineering phase of the SPL.

9.3.1 Variability management in BOM

Given the classification of variability identified in the field studiy, the
specification of the variability and system functionality is modeled
in separate conceptual models in BOM. The user introduces the
instances of these conceptual models in order to define the domain
features used to produce the corresponding assets, or introduces
to BOM the application domain features used to configure the final
application, respectively.

The process of developing a specific application (member of the
product line) begins with a domain-dependent generic architecture,
which is unique. This implies that domain variability is captured in
additional features that are represented as variants of the variability
points. This variability is initially reflected in several base architec-
tures (which are derived from the generic architecture). We also
considered application domain variability to be necessary, and as a
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result, we found that there are two types of orthogonal variability:
the first one comes from the particular domain (diagnostic ES in our
case study), and the second one comes from the application domain
(for example, diagnostic medical ES).

For this reason, and based on the field analysis carried out, we con-
clude that the variants in ES are captured in two types of orthogonal
variability which should be managed separately:

1. Variants of the domain, for example, the diagnosis, (i. e., the
features of the domain associated with the behavior of the
architectural elements), and the end-user requirements (i. e.,
features related to the structure of the architectural elements
and the system itself)

2. Variants of the application domain. These variants are the
features of the final products.

Fig. 9.4 presents a schema with features (variants) of these two
variabilities. These two variabilities (domain variability and applica-
tion variability) are managed in two stages. These stages correspond
to the development of the SPL in two steps: the base architecture
(SPL1), where a generic architecture is shared and the application in
a specific domain (SPL2), which shares a base architecture.

BOM captures both variabilities in two models: the Domain Con-
ceptual Model (DCM) and the ADCM, respectively.

9.3.1.1  First variability management

The V1 variability (related to the features of the domain) is repre-
sented and managed through two models: the first model corre-
sponds to the functional model of the domain, represented by the
generic architecture of our SPL. This architecture is shared by several
base architectures (or templates of base architectures), which repre-
sent the first SPL: SPL1. The second model is the model of the domain
variability. Fig. 9.5 shows the original model used to describe the
domain variability. As described in (Cabello Espinosa 2008), it uses
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Figure 9.4: Features of the first variability (V1) and the second variability
(V2) of our SPL
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Figure 9.5: Original Feature Model of the first variability in BoM

an alternative notation to the traditional one, as it serves better for
its purposes.

Based on the previous feature model a DCM was manually built
as shown in Fig. 9.6. In this way, the features selected in the feature
model are instances of the DCM. For example, the domain features
in the medical diagnosis can be summarized as text as:
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entity views = same

property levels = 2

hypotheses = 14

reasoning = differential

use cases = 3

actors = 2

use cases by actor = { actor_a = 2, actor_b = 1}

N~ o o »& w N o=

The instances of this model are created by the domain engineer
capturing the first variability during the application engineering
phase. These instances are used to produce the skeleton base archi-
tecture that corresponds to the choice made (see Fig. 9.8).

9.3.1.2 Second variability in the BOM framework

The second variability (V2 variability) is also represented and man-
aged using two models. The first model corresponds to the functional
conceptual model of the application domain, which is captured by
the skeleton base architecture of the SPL1. The second model cor-
responds to the feature model of the variability of the application
domain, which is translated to the ADCM. The features of the applica-
tion domain are used to instantiate the skeletons in order to obtain
the PRISMA types (see Fig. 9.8).

It is important to mention that a skeleton base architecture can be
instantiated into one or more PRISMA architectures. An example of

Entity View belongs has Property relates is_related Reasoning
view : String 1 LA level : Integer Lx 1 type : String
is_resulted | 1
1| results
Use Cases Actor is_obtained  obtains Hypothesis
number : Integer number : Integer 1 1 number : Integer
uses | 1.* has |1
Use Cases
is_used per Actor get

1 *
number : Integer L

Figure 9.6: The domain conceptual model
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levelN | 1.*

Property Hypothesis
level : Integer level : Integer
levelelusl 1 name : String name : String
type : String type : String
has | 1.* infers | 1.*
Rule
belongs clause: String is_infered
L level : Integer !

Figure 9.7: The application domain conceptual model

this situation appears in the two case studies: educative diagnosis and
television diagnosis. These two cases share the same skeleton base
architectures because they have the same variants of the first vari-
ability however they have different PRISMA architectures, because
different properties of the two application domains are inserted in
each skeleton base architecture.

The second type of variability involves the features of the appli-
cation domain in a specific field, i. e., the SPL: SPL2. This variability
allows the base architectures to be enriched or decorated with the
application domain features.

In the application variability management process, the variations
of the specific requirements of the application domain should be
selected. This selection is reified as an ADCM instance given by the
user. The features are inserted in the base skeletons in order to
generate the types of the PRISMA software artifacts. These PRIS-
MA architectural elements will be used to configure the PRISMA
architectural model of the application.

The ADCM, which is shown in Fig. 9.7, captures the application
domain variability. The instances of this model are created by the ap-
plication engineer, and they capture the specific application domain
variants. Some instances of this model for the diagnosis of infantile
infectious diseases are shown in Listing 9.1.
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Listing 9.1: Sample instances of the ADCM

properties of level
properties of level
hypotheses of level
hypotheses of level

0: cough, fever

1: dry_cough, constant_fever
1: warmth, parotiditis

2: pneumonia, bronchitis

o o A~ w N =

rules: IF (cough=true and fever=true and
respiretory_dificulty=tue) THEN syndrome=warth

9.3.2  Software system views in BOM-Eager

In BOM, two kinds of views for expert systems are considered: the
System Variability View and the System Functional View.

The System Variability View is described using the two variability
conceptual models: the DCM, which captures the domain and user
variabilities (V1), and the ADCM capturing the application domain
variability (V2). The DCM conforms to the Vi Metamodel (MM V1),
and the ADCM conforms to the V2 Metamodel (MM V2). Both meta-
models are the UML: class diagram metamodel, but other domain
specific metamodels can be used, producing other domain-specific
models to capture the System Variability View.

The System Functional View is given during the production pro-
cess by means of two views, which are described using three archi-
tectural models:

THE MODULAR VIEW for the Generic Architecture Model which
conforms to the Modular Metamodel (MM Modular),

THE COMPONENT-CONNECTOR VIEW forthe Base Architecture
Models which conform to the Skeleton Metamodel (MM
Skeleton) and the PRISMA Architecture Models, which con-
form to the PRISMA Metamodel (MM PRISMA) for the final
product. The Skeleton Metamodel is similar to the PRISMA
Metamodel, but it allows feature holders (holes).
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9.3.3 Relationships among system views

As expressed previously, the variability is managed in two different
phases in BOM. Such phases, identified as SPL1 and SPL2 involve
different models and relationships among them.

Specifically, two types of relationships have been identified: (i) the
relationships between the Modular view and the Skeleton view, (ii) the
relations between the Skeleton view and the PRISMA view together
with the views that define the SPL variability. Their respective profiles
are:

R1: Modularpmm X Vimm X Skeletonpmm
R2: Skeletonpm X V2mm X PRISMA MM

Fig. 9.8 shows the process followed in BOM-Eager in the construc-
tion of a SPL architecture. This figure illustrates how the two types of
varibility are considered in order to obtain the final product of the
SPL.

Management Management
of V1 of V2

ADCM Instance

Base Architectures
(skeleton)

PRISMA Architectures
(PRISMA models)

DCM L

Instance T
ron -
&
FOM technique i

'r FOM technique

1ton Z
Generic U2 m
Architecture w g_i'_m

ADCM Instance

Figure 9.8: Variability management and system views in BOM-Eager



9.3 BOM INITIAL PROPOSAL: BOM—-EAGER

sa:]/\‘ingc
deductive i i differential

Entity views

Reasoning

Hypotheses
b

Property Levels

Use Cases

-
!
IRINE

Figure 9.9: Binary Decision Tree to select a skeleton architecture for a DES

Use Cases by Actor

|
|
|

In the BOM-Eager approach, the different assets that participate
in the SPL are developed at once and stored in the Baseline for each
input in the domain engineering phase (see section 9.3.4.1).

In this way, given all the variants, the first variability is managed by
an access to the repository that implements the Baseline. By means
of decision tree techniques, we can select the base architecture of
the specific case, given the variants of the variability points (features
of the domain) as instances of the DCM. The variability points of the
first variability are represented in the nodes of this decision tree, and
its leaves represent the asset families of the SPL.

Fig. 9.9 shows the decision tree for the DES domain. This Binary
Decision Tree (BDT) is constructed using the information of the
feature model shown in Fig. 9.13. Given a configuration of the feature
model, the decision tree selects the correct skeleton architecture from
the baseline.

The second variability V2 is managed using Feature Oriented
Modeling (FOM) techniques. A decoration process of the base archi-
tectures is implemented employing the application domain features
given as instances of the ADCM.

235

In BOM-Eager,
skeleton
architectures are
retrieved from a
repository by using
decision tree
techniques.



236

In BOM-Eager, all
the core-assets are
built and stored at
the domain
engineering stage in
a repository called
baseline.

MMDSPL FOR DIAGNOSTIC EXPERT SYSTEMS DEVELOPMENT

9.3.4 Modeling the BOM approach

BOM-Eager is based on two OMG standards: RAS, which identifies,
describes, and packs assets in a standard way; and SPEM, which de-
fines the standard language for modeling the software process. In
BOM, a clear separation between the domain engineering and ap-
plication engineering phases is made. This partition is the basis for
reuse and automation of the software process. In the domain en-
gineering phase, a set of assets/transformation rules and processes
are created. In the application engineering phase, by executing the
production plan, these assets are used/created to produce software
products of high quality with a minimal cost and time.

In BOM, the domain engineer creates the production plan and all
the software artifacts that are necessary to carry out the various tasks.
The application engineer provides information of the application
domain to the production plan process during its enactment, thus
obtaining the final product.

9.3.4.1 Domain engineering: building assets

In the domain engineering phase as Computational Independent
Model (CIM) and PIM all the software artifacts are built.

The domain engineer creates the baseline as the repository of all
the assets necessary to obtain a SPL product as Fig. 9.10 represents.
The baseline is structured as a set of Kit-Boxes and the production
plan (asset) of the SPL, where we store the assets and the know-how
of how to use them in order to produce the SPL. The baseline and its
assets are modeled at a high abstraction level.

The Kit-Boxes are packaged as a new composite asset, and they
contain all assets and know-how for building a specific application
and are the recovery units. A kit-box contains XML documents,
processes, models, information, and configurations.

The Production Plan describes the process by means of tasks or
activities to obtain a final product of the SPL. This process shows the
production life cycle of our SPL. In the domain engineering phase,
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Figure 9.10: The baseline

this process is specified in SPEM, and it is inserted in the Baseline
as an asset. In the application engineering phase, the Production
Plan is recovered and enacted to generate an application as one SPL
product.

9.3.4.2 Application engineering: executing the Production Plan

In the BOM-Eager approach, the user (application engineer) builds
an application (a product of the SPL), by just giving as input the
features of the variabilities V1 and V2 by means of instances of the
DCM and ADCM conceptual models, respectively.

The Production Plan of our SPL in the BOM-Eager approach is
shown in Figure 9.11 by using SPEM notation.

The Production Plan starts when BOM obtains (from the appli-
cation engineer) the features expressed as DCM’s instances of the
variability points of the first variability. Next, BOM selects the assets
from the Baseline, i. e., one Kit-Box asset that corresponds to the
specific product. The Kit-Box that is selected by the engineer using
BOM must be unpackaged in order for each asset to be used.

One of the assets recovered from the Kit-Box is the ADCM, which
is used by BOM in order to obtain (from the application engineer)
the features of the application domain considered as variants of the
second variability.

Other assets recovered from the Kit-Box are the Packaged Hy-
brids. These assets are in turn unpacked to produce the PRISMA type
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Figure 9.11: Production plan through BoM-Eager approach

aspects. BOM applies the Main Feature Insertion Process (which in-
vokes the individual features insertion processes) to fill the selected
skeletons (aspects) with the specific features of the case study defined
by the engineer, thereby creating the PRISMA type aspects.

BOM uses the aspect PRISMA types and the other PRISMA type
artifacts (interfaces architectural elements, and architectural model)
to create the PRISMA configuration. These artifacts are input to
the PRISMA-MODEL-COMPILER tool (Pérez et al. 2008) to auto-
matically generate the code (in C# .NET). At the end, BOM creates
the final system as an executable application, i. e., a final product
of the SPL. This application is executed on top of the PRISMA-NET
MIDDLEWARE (Pérez et al. 2008).



9.3 BOM INITIAL PROPOSAL: BOM—-EAGER

9.3.5 BOM-Eager implementation

The prototype for the BOM-Eager approach is called ProtoBOM. The
Production Plan process diagram is used as a graphical metaphor
for the user interface—GUI—in SPEM notation.

ProtoBOM can be used by the application engineer to generate
a product of the SPL. ProtoBOM integrates the use of several tools,
offering an approach to build applications, in a simple way. Some of
the tools have been developed on purpose in ProtoBOM and others
had already been created for other domains. The application engineer
only introduces the variability features to the system in order to
build an application (product of SPL). The rest of the activities will
be carried out automatically by ProtoBOM.

In ProtoBOM, the V1 variability is solved by means of our tool
using decision tree techniques in order to select a Base Architecture.
The T2 transformation is executed by means of our tool using FOM
techniques, in order to decorate this architecture. The baseline has
been implemented as a repository accessed by a web service. In
this way, the software product lines that are developed can be eas-
ily shared and distributed, which promotes the reuse of the assets
contained in the baseline.

The Asset Selection Process computes paths in the decision tree
which are used to select the assets in the baseline. This process is
created by the domain engineer and uses the decision tree and the
assets of the baseline. This process is executed by ProtoBOM in
the application engineering phase, when the application domain
engineer instantiates the DCM (i. e., inserting the specific domain
information into the system as variants of the domain variability
points). This process uses the decision tree techniques in order to
carry out the Vi1 resolution.

The Feature Insertion Process is used to insert the application do-
main features in their specific skeleton aspect. This process uses the
FOM technique in order to carry out the V2 resolution.

We explain how to insert the application domain features in a skele-
ton aspect in order to obtain the corresponding PRISMA type aspect.
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The features are modeled as functions, representing refinements of
the input model. In the educational program diagnosis, we have:
Fx.i-S-KB-EDj, which means “add feature F,.i to the S-KB-ED;
model”’, where S-KB-EDy is the Skeleton-Knowledge Base Educa-

tional Domain, 0 < j < n, and - denotes the application of the
function. The gluing process is iterated step by step:

S-KB-EDj 1 = Fx.1- S-KB-ED;

In Table 9.1, an example of the functional aspect skeleton and its
respective aspect type for the Knowledge Base component of the
educational program diagnosis is presented.

These software artifacts are XML documents that are specified
using the PRISMA-Architecture Description Language (ADL). In
order to simplify this example, we have omitted the XML syntax. In
this Table, (Fx.1) are the features place holders. These features are
the following: Fp.i = Features of the properties of level i, Fjy =
Features of the hypothesis, Fgr.i = Features of the rules of level i.

We have used the PRISMA-MODEL-COMPILER to automatically
generate C# code from the system architectural models and to create
the application (an instance of the SPL), which is executable over the
PRISMA-NET-MIDDLEWARE.

An example of (part of) the generated C# code (by the PRISMA-
MODEL-COMPILER) that corresponds to the Knowledge Base com-

Listing 9.2: Example code generated by the PRISMA-MODEL-COMPILER

1 namespace KBMD {

2 [Serializable]
3 public class KnowledgeBaseEducational : ComponentBase {
4 public class KnowledgeBaseEducationalDiag string name :

base (name) {
AddAspect (new FBaseED());
InPorts.Add("KnowPort"”, "IDomainED", "KNOW");
OutPorts.Add("KnowPort”, "IDomainED", "KNOW");

© ® N o o
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ponent of the educational program diagnosis case study is shown in
the Listing 9.2.

9.4 TURNING BOM INTO A MMDSPLE PROCESS: THE BOM-—
LAZY PROPOSAL

The initial proposal of BOM, BOM-Eager, proposes a simple but pow-
erful framework for the development of Software Product Line (SPL).
In BOM, variability is managed in two different stages, first, the vari-
ability of the domain is taken into account; and second, the variability
of the application domain is considered. The BOM-Eager proposal
is adequate ghen the baseline size is small, as all the assets are built
and stored extensively during the domain engineering phase. More-
over, decision tree techniques drive the V1 management and Feature
Oriented Programming (FOP) techniques are used to manage the V2
variability.

However, when the size of the baseline is huge this proposal be-
comes inefficient. The BOM-Lazy approach arises as the solution to
this problem. The BOM framework deals with several models (V1
and V2 variability models, modular model, skeleton models and
architectural models). This way, a multi-model driven approach
can ease the use of different models and systems views, and can
provide the tools to implement a production plan driven by model
transformations.

This section describes how the different BOM models have been
adapted to the MOF architecture, and how the production plan has
been adapted to use multi-models. This way, the relationships among
system views (which in BOM where managed using BDT and FOM
techniques) are now expressed using declarative QVT-Relations rules.

9.4.1 Representing the first variability in BOM-Lazy

In BOM-Lazy, the V1 variability is also represented and managed
through two models: the functional model and the domain variabil-
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Figure 9.12: Feature Model of the first variability in BOM

ity model. This model is represented by a feature model as shown in
Fig. 9.12.

This feature model is an adaptation of the original feature model
to the cardinality-based feature modeling notation. As can be seen,
it makes use of feature multiplicities and feature attributes. To make
possible the use of such feature model in a complex MDE process,
this feature model is automatically translated to the equivalent DvM
as explained in section 7.3.

In the context of BOM, the DVM of the first variability corresponds
to the DCM following the naming conventions used in BOM-Eager.
The automatically obtained DCM is shown in Fig. 9.13. This way, the
features selected in the feature model are instances of the DCM as in
the BOM-Eager approach happens. However, in BOM-Lazy we avoid
the manual creation of the DCM as it is automatically obtained.

As in the initial proposal, the instances of the DCM are used to
produce the skeleton base architecture.
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Figure 9.13: The domain conceptual model
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Figure 9.14: The application domain conceptual model

9.4.1.1 Representing the second variability in BOM-Lazy

The second variability (V2) is represented using two models as in the
BOM-Eager approach. The first model corresponds to the skeleton
architecture obtained from the first variability management phase
(SPL1). The second model corresponds to the application domain
variability model. This model is used to obtain the ADCM. However,
the ADCM is automatically obtained in BOM-Lazy; as it occurs in
the case of the DCM. The instances of the ADCM are used to deco-
rate the skeleton architectures with the application domain features.
Nevertheless, in the BOM-Lazy approach the process to enrich the
skeleton architectures is performed by using model transformations
instead of FOM techniques as we will describe un section 9.4.3.

The automatically obtained ADCM is shown in Fig. 9.14. It captures
the application domain variability. The instances of this model are
created by the application engineer, and they capture the specific
application domain variants as in the case of BOM-Eager.

9.4.2  Software system views in BOM-Lazy

In BOM two kinds of views are considered for expert systems: the
System Variability View and the System Functional View.

On the one hand, the System Variability View is described using
the two variability conceptual models (DCM and ADCM) which con-
form to the UML2 class diagram metamodel.
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On the other hand, the System Functional View is described using
three architectural models:

o The Generic Architecture Model, which conforms to the Mod-
ular Metamodel (MM Modular).

o The Base Architecture Model which conform to the Skeleton
Metamodel (MM Skeleton).

o The PRISMA Architecture Model, which conform to the PRIS-
MA Metamodel (MM PRISMA).

We have used the MULTIPLE built-in metamodels based on the
Modular and Component-Connector view types proposed by Shaw
and Clements (2006) and Limén Cordero (2010).

Fig. 8.19 (see page 147) shows the Modular View Metamodel (MM
Modular view). The main element considered for this view is the
module itself. This figure shows that a model contains a set of mod-
ules (which can contain different functions), which are linked to
other modules by means of relations (decomposition, uses and layer).
The more relevant relation is the Use relation, although other types
have been considered. The labels in the links are useful for indicating
how the relation is made.

Fig. 8.25 (page 155) shows the Component-Connector View Me-
tamodel (MM Component-Connector view). The component class
and connector class are the main elements. Both are derived from
a more general component class (T Component). The components
provide a set of services through a set of ports. The connectors link
the ports of components by means of their roles. Different types of
relations can be also defined between components and connectors.

9.4.3 Relationships among metamodels

We used QVT to define relationships among metamodels in MOF.

Specifically, the QVT-Relations language is used to describe them.
The source and target metamodels are identified first. The corre-

spondence among each element of the metamodels must be defined
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taking into account the way in which their rules are represented
through QVT. In this case, the source metamodels are the Modular
metamodel and the V1 variability metamodel. The target metamodel
is the Skeleton metamodel. The rules considered in the relationships
for the elements of the modular and V1 variability metamodels are
checkonly type (to verify the elements) in the left part and enforce
type in the right part to create the elements of the skeleton metamo-
del.

Fig. 9.15 shows the transformations involved in the construction of
our SPL architecture. This figure is an adaptation of the process shown
in Fig. 9.8 to the MMDPLE approach. It illustrates how the model
transformations performed at the model level (M1) are applied to
refine the SPL assets until the final PSM is obtained.

The modular model is made up of three modules: InferenceEngine,
KnowledgeBase, and UserInterface. These are all linked with each
other through dependence relationships. Next, the transformation
task for producing the skeleton model (target) is performed. To

~
M3 MOF meta-metamodel

M2 UML Class Diagrams metamodel ~ : Modular metamodel :  Skeleton metamodel : PRISMA metamodel
(Variability view) : (modular view) ! (Component-connector view): (Component-connector view)

| Generic Architecture | Base Architectures | PRISMA Architectures
(modular model) (skeleton models) (PRISMA models)

: &8l
: : V| m
Domain Conceptual Model : : :
(Variability 1 Model) : :

Application Domain Conceptual Model 3
M1 (Variability 2 Model) :

L4
[

Figure 9.15: The T1 and T2 model transformations in BOM (located in the
MOF levels)
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do this, an instance of the DCM is used. A skeleton component
is produced for each module, and each dependence relationship
generates a skeleton connector.

The MOF level M1 is where the T1 and T2 transformations are
carried out. A first model (skeleton model) is obtained by the T1
transformation, using the modular model and a DCM instance as
sources. This skeleton model is completed by means of the T2 trans-
formation by using an ADCM instance which allows the PRISMA
model to be obtained as a refinement. The T1 and T2 model trans-
formations are PIM to PIM transformations.

In the T1 transformation, QVT-Relations takes into account the
generic architecture, the instance of conceptual model of the domain
variability, and the skeleton base architecture configuration. The T1
transformation profile is:

T1(GenArchmodel, Vimodelinstance) = BaseArchmodet

In T2 transformation, QVT-Relations consider the base architec-
tures, the instance of the application domain variability, and the
PRISMA architecture configuration. The T2 transformation profile
is:

Tz(BaseArChmodel) Vszde]vinstance) = PRISMAmodel

9.4.3.1 BOM-Lazy production plan

In the BOM-Lazy approach, the application engineer builds a product
of the SPL, by just giving as input the features of the variabilities V1
and V2 by means of instances of the DCM and ADCM conceptual
models, respectively.

The Production Plan of the SPL taking the BOM-Lazy approach
is shown in Fig. 9.16 by using SPEM notation. The Production Plan
starts (1) when BOM obtains (from the application engineer) the
features expressed as DCM’s instances of the first variability. Next,
(2) BOM executes the QVT-Relations transformation T1 and obtains
the base architecture that corresponds to the specific product. Then,
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Figure 9.16: Production plan through BOM-Lazy approach

(3) ADCM is used by BOM in order to obtain (from the application en-
gineer) the features of the application domain considered as variants
of the second variability. Next, (4) BOM executes the QVT-Relations
transformation T2 and produces the PRISMA architectural model.
This PRISMA type artifact is sent to the PRISMA-MODEL-COMPILER
tool (5) , and the process continues as the BOM-Eager approach does.

9.5 BOM-LAZY IMPLEMENTATION

The BOM-Lazy architecture is shown in Fig. 9.17. In this approach,
the model transformations 71 and T2 are executed by means of our
tool using the QvT-Relations language.

The tool is built on top of the Eclipse platform. It uses EMF as the
reference implementation of the MOF standard. The tool is made up
by a set of graphical editors (used to define the models that are part
of the SPL) and a QVT-Relations transformations engine.
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Next, the transformations which specify the correspondences
among the different models of the SPL are described. These transfor-
mations are the core implementation of the production plan.

9.5.1 T1 transformation

As presented in section 9.4.3, the transformation in charge of creating
the base architectures of the SPL is called T1. This transformation is
determined by the first variability V1. Thus, this transformation takes
as inputs the model of the generic architecture, which describes the
common parts of the ES (i. e., the Modular Model), and an instance
of the variability model that captures the variability of the specific
domain (i. e., instance of the DCM).

In order to increase the quality of the architectural design obtained,
we will follow good software design practices as defined by Pressman
(2001). Such good design practices are encoded as a set of patterns
in the definition of the QVT rules, and will be applied to calculate
the base architectures. As expressed before, the signature of the
transformation is:

T1(GenArchmodel, Vimodelinstance) = BaseArchimodel

As opposed to the BOM-Eager approach, where the baseline stores
all the knowledge about the base architectures in an explicit way,
in BOM-Lazy all the knowledge is stored implicitly. Such knowl-
edge is encoded by using a set of rules which describe how both

Tracef'ibilityl Modular l Variqbility
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Figure 9.17: The BOM-Lazy architecture
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system requirements (system variability view) and design patterns
(good practices) are interrelated. This way, the creation of the base
architectures is moved from the domain engineering to the applica-
tion engineering phase. Each architecture is calculated just in the
moment when it is needed, and not before.

Next, the QVT-Relations rules of the T1 transformation together
with the good design pattern they satisty are specified.

9.5.1.1 Design patterns and quality guidelines

A pattern, is a three-part rule, which expresses a relation between a
certain context, a problem, and a solution (Alexander 1977). In this
section we detail the patterns and guidelines that will drive the T1
transformation. Pressman (2001) enumerates the following quality
guidelines to achieve a good design:

1. ‘A design should exhibit an architecture that (a)
has been created using recognizable architectural
styles or patterns, (b) is composed of components
that exhibit good design characteristics [...], and
(c) can be implemented in an evolutionary fashion,
thereby facilitating implementation and testing.

2. ‘A design should be modular; that is, the software
should be logically partitioned into elements or sub-
systems

3. “Adesign should contain distinct representations of
data, architecture, interfaces, and components.

4. “A design should lead to data structures that are
appropiate for the classes to be implemented and
are drawn from recognizable data patterns.

5. ‘A design should lead to components that exhibit
independent functional characteristics.

6. ‘A design should lead to interfaces that reduce the
complexity of connections between components and
with the external environment.
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7. ‘A design should be derived using a repeatable
method that is driven by information obtained dur-
ing software requirements analysis.

8. “A design should be represented using a notation
that effectively communicates its meaning.”

Moreover, Pressman (op cit.) suggests to classify the design ele-
ments (specifically design classes in the literature) in five different

groups:

1.

User interface classes — define the abstractions that are neces-
sary for Human-Computer Interaction (HCI) interaction.

Business domain classes — identify the attributes and methods
that are required to implement some elements of the business
domain.

Process classes — implement lower-level business abstractions
required to fully manage the business domain classes.

Persistent classes — represent data stores.

System classes — implement software management and con-
trol functions.

Given this classification of software artifacts and quality guidelines,
the following design decisions were made. These design decisions
will be later encoded as QvT-Relations object templates, which, in
turn, specify a set of transformation patterns.

1.

Hierarcical organization. As specified before, a design must
define a hierarchical organization that controls software com-
ponents in a smart way. In order to satisfy this criterion, the
modular metamodel contains the ModulesModel element,
which contains an organizes the rest of the elements which
take part on it. In a similar way, the Component-Conector
Metamodel contains the CCModel element which plays the
same role.
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This way, there is a one-to-one relationship between both
ModulesModel and CCModel elements.

. Connectors. Use cases constitute a partition of the system

based on functionality. Thus, taking into account that a de-
sign should be modular and that software should be logically
partitioned; for each use case we will create a connector in
charge of coordinating the different components of the use
case. This way, there is a one-to-one relationship between use
cases and connectors.

The number of connectors in the skeleton architecture will
be equals to the number of use cases found defined in the V1
instance model.

. User interfaces. The reference architecture of ES is usually con-

formed by three modules: Knowledge Base, Inference Engine
and User Interface. The Knowledge Base and Inference Engine
modules lead to the Knowledge Base and Inference Engine com-
ponents respectively. However, with the aim of reducing the
complexity of connections between modules and with the ex-
ternal environment, the User Interface module is transformed
into as many components as actors appear in the domain
variability model (V1).

This way, a one-to—one mapping is defined between the actors
of the V1 instance model and the user interfaces in the target
model. As a result, the number of User Interface components
will be equals to the number of actors which interact with the
system.

. Uniqueness of the Knowledge Base. Each use case generates an

architectural model composed of three components: Knowl-
edge Base, Inference Engine and User Interface, coordinated
by a coordinator connector. We define as a design criteria
the uniqueness of the Knowledge Base component, because
knowledge must be unique for the entire system. For each
use case there is a different view of the Knowledge Base. This
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is accomplished by adding a port to the Knowledge Base that
binds each connector with a different role. The Knowledge
Base will have as many ports as views, i. e., it will have as many
ports as use cases. A many-to—one relationship between use
cases and the Knowledge Base. The number of ports in the
Knowledge Base shall be equal to the number of existing use
cases in the instance of the V1 domain variability model.

. Uniqueness of the Inference Engine. The type of reasoning in
the diagnostic process is given by the Reasoning variant in
the V1 domain variability model. Reasoning can be defined
as Deductive or Differential and will determine the type infer-
ence engine to use. The inference process can be deductive
or differential but not both simultaneously. For each use case
there will be a different view of the Inference Engine. This will
be achieved by adding the needed ports to the Inference En-
gine. Such ports will be linked to roles of the corresponding
connectors.

The Inference Engine will have as many ports as views, i. e. it,
will have as many ports as use cases we find in the DCM. A
many-to-one relationship is defined between use cases and
the Inference Engine. The number of ports of the Inference
Engine will be equal to the number of existing use cases in the
instance of the V1 domain variability model.

. Interaction pattern. Previously we specified that for each actor
a User Interface component will be used. However, an actor
can access several use cases. Thus, as the functionality of
accessed by an actor can be partitioned, the same division
will be done in the UI component. The different functionality
of the User Interface component will be accessed by different
ports. Thus, the number of ports of each Ul component is
equal to the number of use cases that the user can access.

. Connectors merge This pattern extends the semantics defined
by the pattern number 2. The existence of an includes relation-
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ship between two use cases implies the merger of connectors.
An included use case describes a subprocess of its parent. The
number of connectors is equal to the number of top-level use
cases in the instance of the V1 domain variability model.

9.5..2 QVT Rules

The design decisions and guidelines described in the previous sec-
tion are encoded using QVT. This allows us to specify them in an
unambiguous way. They are visually described using the graphical
notation of the QvT-Relations language. The metamodels involved
in the transformation process are the ones described in section 9.4.2.
The whole code of the transformation can be found in the Appendix
B.

MODULESMODEL2COMPONENTSMODEL RELATION  Fig. 9.8
shows the ModulesModel2ComponentsModel relation. This relation-
ship is top-level, and transforms the ModulesModel element of the
modular metamodel to the CCModel in the Component-Connector
metamodel. The rules assigns to the new element the name of the
source element. The where clause invokes the UseCaseToConnector
relation. This rule codifies the pattern number 1.

ModulesModel2ComponentsModel

«domain»
modulesModel : ModulesModel

S g,

name = modelName RN «domain»
[

ccdomain . componentsModel : CCModel
& £ Name = modelName
&7
&L
P

e

«domain»
varModel: DomainConceptualModel

~where

UseCase2Connector (modulesModel, varModel, componentsModel)

Figure 9.18: ModulesModel2ComponentsModel relation
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UseCase2Connector

«domain»

modulesModel : ModulesModel

«domain»

D cedomain componentsModel : CCModel
-------- >

<:> £ name = modelName

«domain» e tcomponents

L
varModel: DomainConceptualModel

useCase
PR

useCase : UseCase
name = ucname

Module2Component(modulesModel, varModel, componentsModel, connector, useCase)

name = modelName

connector : Connector

name = ucname + 'Connector’

where

Figure 9.19: UseCase2Connector relation

USECASE2CONNECTOR RELATION  Fig. 9.19 shows the Use-
Case2Connector rule using the graphical notation of the QVT lan-
guage. This rule creates, for each one of the use cases of the source
variability model one connector of the component-connector model.
The name of such connector stands for the concatenation of the use
case name and the suffix “Connector”. Finally, the where clause
states that the Module2Component relation must be considered as
the post-condition of the current rule (UseCase2Connector). Thus,
this rule should be properly applied after the UseCase2Connector
relation is checked. This rule describes the pattern number 2.

MODULE2COMPONENT RELATION This rule (Fig. 9.20) cre-
ates, for each module of the modular model, a component in the
component-connector model. The name of the new component is
calculated using the getComponentName OCL query (see listing 9.3).
If the module to transform is the User Interface module, the compo-
nent name is formed by the module name and the name of the actor
that accesses the use case related with the module. If the module is
the Inference Engine or the Knowledge Base, the component name
also reflects the type of reasoning (deductive or differential) specified
by Reasoning variant selected in the V1 variability model. Finally the
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Module2Component
«domain»

‘ modulesModel : ModulesModel ‘

tmodules ® «domain»
‘ module : Module H : R connector : Connector
NS 7
N e
. N e
«domain» demdomain
useCase : UseCase é"'"c """
@ - N
& L7 N oy,
. & L. 7, «domain»
«domain» 1:’/ ¢ LN componentsModel : CCModel
‘ varModel: DomainConceptualModel ‘ A P .
[ name = modelName
actor
‘ actor : Actor U
tcomponents

uses_UseCase

‘ useCase Actor : UseCase u component : Component

name = cname

~where

cname = getComponentName(varModel, actor, module)
if module.name = 'User Interface' then
Module2RolePort(module, useCaseActor, connector, component)
else
Module2RolePort(module, useCase, connector, component)
endif;
Function2Relation(module, componentsModel, connector, component);

Figure 9.20: Module2Component relation

where clause states that the Module2RolePort rule should be invoked
if the rule is applied over the User Interface module. In such case,
the rule takes as arguments the module and the use cases accesses by
the actor related with it (as the pattern number 6 describes). In any
other case, the Module2RolePort rule is invoked with the use case
related with the module as the patterns 3, 4 and 5 specify. Finally,
the Funtionz2Relation rule is invoked.

MODULE2ROLEPORT RELATION  The criterion Uniqueness of
the knowledge base indicates that knowledge must be unique for the
entire system. In order to meet this requirement, there is only one
Knowledge Base component in our base architecture. Given that
for each use case exists a different view of the Knowledge Base, we
must merge each one of these views. The Module2RolePort (see Fig.
9.21) relation is in charge of creating the necessary roles and ports
in the components and connectors of the target metamodel (as the
should not be duplicated if it is not necessary). This is represented
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Listing 9.3: getComponentName(...) OCL query

1 query getComponentName(varModel : dcm::DomainConceptualModel,
actor : dcm::Actor, module : mview::Module) : String {
2
3 if module.name = ’User Interface’ then
4 module.name + ’ - ’ + actor.name
5 else
6 if module.name = ’Inference Motor’ or module.name = ’
Knowledge Base’ then
7 if varModel.Reasoning.ReasoningFeatures.oclIsTypeOf (dcm
::deductive) then
8 ’Deductive ’ + module.name
9 else
10 if varModel.Reasoning.ReasoningFeatures.oclIsTypeOf(
dcm::differential) then
1 ’Differential ’ + module.name
12 else
13 Error ' + module.name
14 endif
15 endif
16 else
17 module.name
18 endif
19 endif
20 3}

in the Knowledge Base component by adding a port that allows the
communication of such views with the rest of the components. To
achieve this, the name of the port is composed by the use case name
and the “Port” suffix.

To allow the communication among views, it is also necessary to
add the corresponding roles to the adequate connectors. The name
of the roles is composed by the name of the module plus the “Role”
suffix. This way, a one-to-one relationship is defined between use
cases and the Knowledge Base ports, which also implies a one-to-one
relationship between use cases and the roles of the different connec-
tors. This rule also creates the corresponding ports in the Inference
Engine and User Interfaces components, and their corresponding
roles in the involved connectors. The where clause indicates that the
ConnectRoleAndPort and Function2Service relations should be con-
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Module2RolePort

«domain»

. component : Component
«domain» P P

‘ module : Module

port

‘ name = mname w ,
%, .7 .
i ort : Port
% o p
R T name = ucname + 'Port’
o N <:>
«domain» <L o
o & <,
useCase : UseCase °’,—’L ‘\’b%
=’ AN «domain»
name = ucname
connector : Connector

crole

role : Role

name = mname + 'Role’

~where

ConnectRoleAndPort(role, port);

if (connector.name.ocllsUndefined() or connector.name = useCase.name + 'Connector') then
Function2Service(module, port, component)

else
true

endif;

Figure 9.21: Module2RolePort relation

ConnectRoleAndPort

«domain»
. ort : Port
«domain» P
role : Role ccdomain ccdomain
P G S, > prole
name = rname c E
role : Role

name =rname

- when

role.rport.oclisUndefined() and port.prole.oclisUndefined();

Figure 9.22: ConnectRoleAndPort relation

sidered as post-conditions. The Module2RolePort relation represents
the patterns 4, 5 and 6.

CONNECTROLEANDPORT RELATION This rule can be consid-
ered an utility rule. ConnectRoleAndPort (Fig. 9.22) relates elements
of the Component-connector metamodel. Specifically, it establishes
the link between the given Role and the given Port.
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Function2Service

«domain»

«domain»
module : Module component : Component
function w 0 cservice
function : Functi % ‘
unction : Function S service : Service
_ ccdomain
:ame —ftfname <:>-—-E ----- > name = fname
ype = ftype &N«\ - type = ftype
&
«domain» & port
port : Port

port : Port

Figure 9.23: Function2Service relation

Function2Relation

«domain»
module : Module

name = mname

«domain»
& componentsModel : CCModel

function : Function
LN )
name = fname N relations
type = ftype %,
AN :

relat : PeerToPeer
«domain»

* = 0 1
M cedomain cedomain name = mname + :Mtachment
D N s > type = ‘attachment’
e service = fname
&5 type = ftype

ol connector
. component
«domain» P

component : Component
connector : Connector component : Component

Figure 9.24: Functionz2Relation relation

FUNCTION2SERVICE RELATION  Fig. 9.23 describes the Func-
tion2Service relation. This rule creates a new service on the corre-
sponding component of the Component-Connector model. This
service is generated from a given function of a module of the modu-
lar model. The new service is created with the same name and type
of the source function.
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CCModel2PRISMAArchitecture

«domain»

adcm : AppDomainConceptualModel

%%,

S8 g .
>, «domain»
[SRENG -

arch : PRISMAArchitecture
< R EEEE >
. 3 _
«domain» PR name = modelName
model : CCModel e
P
name = modelName Vo

~where

Component2Component(adcm, model, arch);

Figure 9.25: CCModel2PRISMA Architecture relation

FUNCTION2RELATION RELATION The rule represented in
Fig. 9.24 states that a function of a module of the source model
(ModuleModel) will generate a Relation element in the target model
(CCModel). This Relation will link a connector with its correspond-
ing component in the Component-Connector model.

9.52 T2 transformation

The T2 transformation is the last step before obtaining the exe-
cutable application. Three domains participate in the transformation:
the ccview domain (the skeleton Component-Connector metamo-
del), the adcmdomain (the V2 application domain variability mo-
del) and the prismadomain (the PRISMA architectural model). The
CCModel2PRISMA Architecture rule is top-level and will be the first
relation to be invoked. The other rules are non-top-level and will be
invoked as post-conditions of other rules.

Next, all the rules of the T2 transformation are shown and de-
scribed in detail. The code of the transformation can be found in
the Appendix C.

9.5.2.1 QVT Rules

CCMODEL2PRISMAARCHITECTURE RELATION The CCMo-
del2PRISMA Architecture rule shown in Fig. 9.25 transform a CC-
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Component2Component

«domain»

adcm : AppDomainConceptualModel .
«domain»
c
Dp,;smadomam arch : PRISMAArchitecture
———————— >
«domain» o E

. oL includes
model : CCModel & .

o0,
e,
7,

tcomponents & pcomponent : System

ccomponent : Component

J name = cname

name = chame

t-where

Port2PortInterface(arch,adcm,ccomponent,pcomponent);

Figure 9.26: Component2Component relation

Model element to a PRISMAArchitecture element, and assigns to it
the same name. The CCModel element is the one that contains the
rest of the Component-Conector model elements. The PRISMAAr-
chitecture element will play the same role, but in the prismadomain
domain.

COMPONENT2COMPONENT RELATION  The relation shown
in Fig. 9.26 describes the Component2Component relation. It trans-
forms each component in the source domain to a component in the
target domain, and assigns to it the same name.

PORT2PORTINTERFACE RELATION  The Port2PortInterface rule
(see Fig. 9.27) transforms each port of a component in the Component-
Connector metamodel to the corresponding port in a component of
the PRISMA domain. The type of the new port es defined by creating
the corresponding interface in it.

COMPONENT2FUNCTIONALASPECT RELATION Fig. 9.28 shows
the Component2FunctionalAspect rule. It creates a functional aspect
in each PRISMA component. It also transforms each component
service in a PRISMA service with the same name and type; and
assigns it to the new aspect of the PRISMA component. It also as-
signs the set of interfaces that the aspect implements. The where
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Port2PortInterface

«domain»
‘ arch : PRISMAArchitecture ‘ «domain»
‘\\A’»% pcomponent : System
i,
«domain» RN
S has
‘ adcm : AppDomainConceptualModel ‘ i i i
R s G SEEE L >
c 3
«domain» é\o,/ pport : Port
e
ccomponent : Component & name = pname
name = cname 4
cport : Port interface : Interface
name = pname name ="' + cname
[oe
prole : Role

I-where

Component2FunctionalAspect(adcm, ccomponent, pport, interface, pcomponent);
Connector2ConnectorPortInterface(pport, pcomponent, prole, adcm, ccomponent, arch);

Figure 9.27: Port2PortInterface relation
Component2FunctionalAspect

«domain»
adcm : AppDomainConceptualModel ‘ «domain»
. o pcomponent : Component
«domain» \\fy%%
ccomponent : Component (‘\\7’%

imports
name = cname

cservice aspect : Aspect

<1
w1
cservice : Service H E . name = 'F' + cname
£
name = sname 24
5
type = stype ¢ using
. . o
« n» « main» .
domain - doma interface : Interface
pport : Port interface : Interface
isininterface pservice : Service
name = sname
servType = stype
I-where

Propery2Parameter(adcm, service);
Hypotheses2Parameter(adcm, service);
AddServices2Interface(service, interface);
AddPlayedRole2Aspect(pport, interface, aspect);
Property2ConstantAttribute(adcm, aspect);
Hypotheses2VariableAttribute(adcm, aspect);
Rule2DerivedAttribute(adcm, aspect);

Figure 9.28: Component2FunctionalAspect relation
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Property2ConstantAttribute

. «domain»
«domain»

) aspect : Aspect
adcm : AppDomainConceptualModel ‘

propertis < ademdomaln <:> ........ X deserbed._by
c E

PR

property : Property

attribute : ConstantAttribute

name = pname
value = pvalue
type = ptype

name = pname
value = pvalue
type = ptype

Figure 9.29: Property2ConstantAttribute relation

clause invokes the following rules: AddServices2Interface to assign
the public services to the port interfaces; AddPlayedRole2Aspect to
create the played role in the aspect of its corresponding interface
(the one which defines its behavior). This rule in turn invokes the
AddPlayedRole2Port rule, which assigns the played _role to the ap-
propriate port. The Property2ConstantAttribute, Hypotheses2Varia-
bleAttribute, Rule2DerivedAttribute rules are also invoked to create
the attributes of the PRISMA aspect. Such rules are explained next.

PROPERTY2CONSTANTATTRIBUTE RELATION  Fig.9.29 shows
the Property2ConstantAttribute relation. It transforms each property
of the ADCM in a constant attribute of a PRISMA aspect. The rule
assigns to the attribute the same name and type.

HYPOTHESES2VARIABLEATTRIBUTE RELATION Fig. 9.30 shows
the Hypotheses2VariableAttribute relation. It transforms each hy-
pothesis of the ADCM in a variable attribute of a PRISMA aspect.
The rule assigns to it the same name and type.

RULE2DERIVEDATTRIBUTE RELATION The Rule2DerivedAt-
tribute relation (see Fig. 9.31) transforms each rule of the ADCM in a
derived attribute of a PRISMA aspect. The relation assigns the clause
of the rule as its term.

263



264 MMDSPL FOR DIAGNOSTIC EXPERT SYSTEMS DEVELOPMENT

Hypotheses2VariableAttribute

«domain»

«domain»
adcm : AppDomainConceptualModel ‘

aspect : Aspect

hypotheses

‘ e |
hyp : Hypotheses c E

name = hname
value = hvalue
type = htype

described_by

attribute : VariableAttribute

name = hname
value = hvalue
type = htype

Figure 9.30: Hypotheses2 VariableAttribute relation
Rule2DerivedAttribute

«domain»

«domain»

adcm : AppDomainConceptualModel ‘ aspect : Aspect

rules

sz s
rule : Rule ¢ €

name = rname
clause = rclause

described_by

attribute : DerivedAttribute

name = rname
complexTerm = rclause

Figure 9.31: Rule2DerivedAttribute relation

Property2Parameter

. «domain»
«domain»

. service: Service
adcm : AppDomainConceptualModel ‘
adcmdomain prismadomain

property : Property

parameter : Parameter

name = pname
name = pname

type = ptype paramKind = ptype
Figure 9.32: Property2Parameter relation
Hypotheses2Parameter
d . «domain»
«aomain»
ice: Servi
adcm : AppDomainConceptualModel ‘ @ ervice

adcmdomain prismadomain

hyp : Hypotheses

parameter : Parameter

name = hname

name = hname
type = htype

paramKind = htype

Figure 9.33: Hypotheses2Parameter relation
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PROPERTY2PARAMETER RELATION  Fig. 9.32 shows the Pro-
perty2Parameter relation. It transforms the properties of the ADCM
in the parameters of the services of a PRISMA aspect. The rule assigns
the same names and types.

HYPOTHESES2PARAMETER RELATION  The Hypotheses2Para-
meter relation (see Fig. 9.33) transforms the hypothesis of the ADCM
in parameters of the services of an aspect. The relation assigns to
them the same names and types.

CONNECTOR2CONNECTORPORTINTERFACE RELATION  The
Connector2ConnectorPortInterface relation (sowhn in Fig. 9.34) trans-
forms each connector in the source domain to a PRISMA connector,
and assigns to it the same name. The roles of the source connector
are transformed to PRISMA ports (with their corresponding names)
in the new connector. Moreover, the type of the port is also defined
by creating the corresponding interface.

Connector2ConnectorPortiInterface

«domain»

‘ adcm : AppDomainConceptualModel ‘

«domain»

«domain» ‘ arch : PRISMAArchitecture ‘
ccomponent : Component ‘

sychronizes

«domain» o]

Seea oo

urewopwope

pconnector : Connector J

prole : Role N ) )
cdomain prismadomain name = cname
name = pname s>

cowner

has

c

role : Port

cconector : Connector

prismadomain

name = pname

name =cname

<

. . typed
«domain» «domain» YP

pport : Port pcomponent : System interface : Interface

{where

iname ="l' + cname + '-' + pname
ConnectRolePort(arch, pport, ccomponent, role, pcomponent);
Connector2CoordinatorAspect(adcm, role, interface, cconnector, pconnector);

Figure 9.34: Connector2ConnectorPortInterface relation
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ConnectRolePort

«domain»
ccomponent : Component ‘
«domain»
clink | pcomponent : System
clink : Relation
w® hasLinks
name = cname
N link : LinkElement
«domain» rismadomain prismadomain__ | name = cname
arch : PRISMAArchitecture STTTe E
5, ‘ ]
&5 sl sourceport targetport
& £l
&le 8
«domain» P £l
5} ‘ pport : Port ‘ ‘ role : Port
pport : Port v
«domain»
role : Port

t~where

AddAttachmentsBindingsToPortAndArc(link, pport, arch);

Figure 9.35: ConnectRolePort relation
Connector2CoordinatorAspect

«domain»

«domain»

adcm : AppDomainConceptualModel ‘ w .
\fzy% pconnector : Connector

AN %,,)

RN

«domain»

d
cconnector : Connector - Sdomain <:>"_"sz? N
¢

imports

name = cname é H aspect : Aspect
|
s
g; o name ='C' + cname
21
ay
M using

«domain»

«domain»

role : Port
interface : Interface interface : Interface

AddPlayedRole2Aspect(role, interface, aspect);
Property2ConstantAttribute(adcm, aspect);
Hypotheses2VariableAttribute(adcm, aspect);
Rule2DerivedAttribute(adcm, aspect);

t~where

Figure 9.36: Connector2CoordinatorAspect relation

CONNECTROLEPORT RELATION  Fig. 9.35 shows the Connec-
tRolePort relation. This rule transforms each relation which con-
nects a role and a port in the component—connector metamodel to
a LinkElement in the PRISMA metamodel. The created LinkElement
attaches the corresponding ports between a PRISMA component
and a PRISMA connector. The where clause invokes the AddAttach-
mentsBindingsToPortAndArc rule which adds the links that have
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AddServices2Interface

«domain»
interface : Interface
«domain»

service: Service < E’lsl“_a_d?’ﬂé‘@%'ﬁ'ﬂéd_"l"ﬂ& publish
c E

‘ service : Service u

Figure 9.37: AddServicesz2Interface relation

been created to the root element of the architectural model (PRIS-
MAArchitecture).

CONNECTOR2COORDINATORASPECT RELATION  This rule,
shown in Fig. 9.36, creates a coordinator aspect in every PRISMA
component, and assigns to it the interfaces that it uses. The where
clause invokes the AddPlayedRole2Aspect, AddPlayedRole2Port, Pro-
perty2ConstantAttribute, Hypotheses2VariableAttribute, Rule2Deri-
vedAttribute rules which have been explained before.

ADDSERVICES2INTERFACE RELATION  As show in Fig. 9.37,
the AddServices2Interface rule adds the services that have been cre-
ated in the PRISMA domain to the interface that publishes them.

ADDPLAYEDROLE2ASPECT RELATION  The AddPlayedRolez2-
Aspect is shown in Fig. 9.38. This rule adds the PlayedRole element
to the corresponding PRISMA aspects, specifying the behaviour of
an interface.

ADDPLAYEDROLE2PORT RELATION  Thissimple rule, as shown
in Fig. 9.39 assigns the PlayedRole to its corresponding port.

ADDATACHMENTSBINDINGSTOPORTANDARC RELATION
The AddAtachmentsBindingsToPortAndArc rule (Fig. 9.40) adds the
newly created attachments to the root element of the architectural
model (the PRISMAArchitecture element). It also adds them to the
related ports.
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AddPlayedRole2Aspect

«domain»
pport : Port

name = pname

«domain»

aspect : Aspect

plays

plays : PlayedRole

name = 'Played_role_' + pname

for

«domain» L

interface : Interface interface : Interface

t~where

AddPlayedRole2Port(plays, pport);

Figure 9.38: AddPlayedRole2Aspect relation

AddPlayedRole2Port
«domain»
pport : Port
«domain»
behaves

rismadomain rismadomain
compn e
E

plays : PlayedRole

plays : PlayedRole

Figure 9.39: AddPlayedRole2Port relation
AddAttachmentsBindingsToPortAndArc

«domain»
pport : Port

attachmentBindings

e o IJ:—:I-|
N ) S I
link : LinkElement Q‘\s“‘f/‘ fink : LinkElement
- e <
name = Iname prismadomain .
<--oe- «domain»
P ]
sourcePort targetPort ~ o, o arch : PRISMAArchitecture
\;\o,h%
sport : Port ‘ ‘ tport : Port B connects
:

attachment : Attachment

name = Iname

sourcePort, targetPort

‘ sport : Port ‘ ‘ tport : Port ‘

Figure 9.40: AddAttachmentsBindingsToPortAndArc relation

9.6 SUMMARY AND CONCLUSIONS

This chapter describes how to develop a SPL in a specific domain
(Diagnostic Expert Systems in this thesis, but not limited to them)
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by using Multi-Model Driven techniques. The development of such
a kind of systems is a complex process because of elements that com-
pose their architecture vary not only in their behaviour but also in
their structure. This situation implies that several base architectures
are obtained on the same reference architecture. Our approach uses
QVT-Relations as the model transformations language to manage
the variability along the whole process. Our approach also enhances
the development of DES by applying SPL techniques, as they are useful
when the members of a family of programs share a common design.
This way, a specific design can be used in different products, reducing
costs, time to market, effort and complexity. By applying MDA tech-
niques, we are able to build systems that are platform-independent,
and we can think about them from the problem perspective and
not the solution perspective. This makes possible to apply such so-
lutions to different domains. Moreover, we provide a framework
with several technical spaces where modern software development
languages and techniques coexist in a coordinated way (i. e., they
conform a multi-model).

It is noteworthy to point out that the proposal covers the whole
SPL life-cycle. First, we manage the variability for the first stage of the
development process of DES. Such process continues until the base
architecture is obtained. The second stage has been also implemented
and the base architecture is then decorated with the application
domain features. The result of the second stage produces a final and
specific architecture. In our SPL the final architectural model is a
PRISMA (Pérez Benedi 2006) model. As explained before, PRISMA
is a framework to describe architectural models that provides the
PRISMA-MODEL-COMPILER tool (Pérez et al. 2008). This tool is
able to automatically generate executable C#.NET code, covering
the whole development process.

Furthermore, in traditional approaches such as the BOoM-Eager
proposal, the group of base architectures is defined and implemented
at design time of the SPL (domain engineering) and it remains un-
changed throughout the whole life-cycle of the SPL (application do-
main). In the BOM-Lazy approach, the use of the T1 transformation
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allows us to move the creation of the base architectures to the appli-
cation domain phase. This allows us to define the base architectures
by using a set of rules that encode patterns of good design practices
(as well as other design decisions), in a generic way. This avoids
the need to define all of them explicitly. As the SPL grows in size,
BOM-Lazy becomes an adequate approach to manage variability, as
it supposes a great work to build a priori the base architectures for
all the possible products of the SPL. Thus, the main effort is done in
the domain engineering stage, where the acquired knowledge is for-
malized and encoded in a set of declarative rules (the knowledge is
stored explicitly). So, it is not necessary to develop extensively all the
possible combinations of base architectures (the knowledge is stored
implicitly). That will increase the efficiency on the application engi-
neering phase, where each base architecture is obtained only when
it is needed by using the explicitly stored knowledge. Regarding to
the T2 transformation, the use of QvT-Relations raises the abstrac-
tion level in comparison with traditional FOP techniques, as we are
dealing with high level concepts directly. In this sense, our proposal
do not need to deal with XML documents o Extensible Stylesheet
Language Transformations (XSLT) transformations, but it deals with
equivalence patterns with describe the transformation step in a very
natural way. Table 9.2 summarizes the domains, transformation
rules and involved elements. In summary, we can conclude that the
main characteristics of BOM-Lazy are:

1. Variability is managed at a high abstraction level (i. e. at the
model level rather than at the program level).

2. The system variability is modeled using models that are sepa-
rate from their functional models. The DSL for expressing the
variability are suited for the domain, instead of adding tangled
variability annotations directly to the functional models (UML
or ADL) as other approaches have proposed.



9.6 SUMMARY AND CONCLUSIONS

. Variability is operated by two orthogonal ways: one provided
by the features of the domain, and another one provided by
the features of the application domain.

. 'The variability is given by instances of the conceptual models
(DCM and ADCM).

. Model generation and transformation are implemented using
QVT-Relations in the Production Plan. In BOM-Lazy, the
model transformations are resolved in an effective, scalable
and user friendly way. Its expressiveness is also richer and
clearer in comparison with traditional approaches which use
Decision Tree and FOM/FOP techniques.

. Various technological spaces are integrated, conforming a
multimodel, to deal with the complexity of the problem. They
are current trends in Software Engineering.

. BOM-Lazy uses OMG standards and implements a generic ap-
proach to SPL development that can be applied to different
domains, application domains, systems, and platforms.

. BOM-Lazy offers an approach to build software applications in
a simple way: the user only inputs the features of the domain
and the application domain.

271



MMDSPL FOR DIAGNOSTIC EXPERT SYSTEMS DEVELOPMENT

272

RELATION NAME

V1 VARIABILITY MODEL

MODULAR MM

SKELETON MM

ModulesModel2ComponentsModel — ModulesModel CCModel
= UseCase2Connector UseCase — Connector
z Module2Component Actor, UseCase, EntityViews/Reasoning Module Component
m Module2RolePort UseCase Module Role, Port
8 Functionz2Service — Function Service
Functionz2Relation — Function Relation
RELATION NAME V2 VARIABILITY MODEL SKELETON MM PRISMA MM
CCModel2PRISMA Architecture — CCModel PRISMA Architecture
Component2Component — Component Component
Port2PortInterface — Port Port, Interface
Component2Functional Aspect — Service Aspect, Service
= Property2Parameter Property — Parameter
M Hypotheses2Parameter Hypotheses — Parameter
m Property2ConstantAttribute Property — ConstantAttribute
= Hypothesesz2VariableAttribute Hypotheses — VariableAttribute
Rule2DerivedAttribute Rule — DerivedAttribute

Connector2ConnectorPortInterface

Connector, Role

Connector, Port, Interface

ConnectRolePort

Relation

LinkElement

Connector2CoordinatorAspect

Connector

Aspect

Table 9.2: Rules and involved elements in the T1 and T2 transformations



AUTOMATED ANALYSIS OF FEATURE MODELS IN
MULTIPLE: AN INDUSTRIAL EXPERIENCE

« get the habit of analysis
—analysis will, in time,
enable synthesis to become your habit of mind»

— Frank Lloyd Wright

American architect, writer and educator, 1867-1959

Feature models are a suitable artifact to describe variability in prod-
uct families. As such, the use of feature models to describe product
lines is an increasing practice in industry today. To get the bigger
profits, we have to deal with consistent and well-formed feature
models.

However, as these models become larger, inconsistencies increase
in number and complexity. It is essential to discover these errors
and correct them in an easy and incremental way in order to avoid
incorrect product designs and extra costs derived from a late detec-
tion.

Feature models must be reliable, since they are used as the input
in many other SPLE processes such as code generation (Czarnecki
and Eisenecker 2000; Czarnecki and Antkiewicz 2005) or feature
oriented MDD (Batory 2003; Trujillo 2007; Cabello and Ramos 2009;
Cabello et al. 2009). The analysis of feature models is an important
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task, and it must be done before starting any other activity to avoid
the propagation of errors. If we are dealing with large-scale feature
models it is almost impossible to perform the analysis manually and
we need a tool allowing us to do it in an automated way. Nowa-
days, there are different proposals to automate the analysis of feature
models (Benavides et al. 2010). One of the most interesting tools
is FeAture Model Analyser (FAMA) (ISA 2011a). This framework,
developed by researchers of the Universidad de Sevilla, provides a
way to perform analysis operation over feature models. Its main ad-
vantage lies in its formal semantics, which avoids misinterpretation.
As it can use either constraint programming (Tsang 1995), boolean
satisfiability techniques (Cook and Mitchell 1997) or binary decision
diagrams (Bryant 1986) to represent feature models rigorously, it
becomes a reliable tool to automate feature model analysis.

The Ingenieria del Software y Sistemas de Informacién (ISSI) Re-
search Group, where this thesis has been developed, has started a
collaboration with Rolls-Royce plc in the context of the “MULTIPLE:
Multimodeling Approach For Quality-Aware Software Product Lines”™
project, funded by the Spanish Ministry of Science and Innovation
(ref. TIN2009-13838). Thanks to this collaboration, we have been
able to study the variability which arises when developing software
for embedded systems in the aero-engine industry.

The main purpose of this chapter is to provide a discussion about
feature modeling in industry by means of performing automated
analysis over a real industrial feature model and to show the results
obtained after its complete analysis. The analysis is done using the
MULTIPLE framework, presented in chapter 8, which relies on the
FAMA analysis tool.

10.1 CONTEXT AND MOTIVATION

Nowadays, performing a complete analysis of a large-scale feature
model represents a big challenge. In this context, having a set of
tools to ease this task is a must. It is also a must to keep on feeding
the discussion about what kind of errors are more common in large-



10.1 CONTEXT AND MOTIVATION

scale industrial feature models, and how to correct them. We need,
then, to get relevant results obtained from the analysis over real
large-scale industrial feature models.

There exist different automated analysis tools which are based
on a specific representation (model) of a feature model. This way,
our model must be adapted to fit a specific notation in order to be
analysed. To analyse our feature model by means of an automated
analysis tool is not an immediate task. Probably our model wouldn’t
adapt totally to the representation accepted by the tool. In addition,
if our model is too large, it is possible that it contains syntactical
errors. These errors are hard to detect manually and can that make
the model not analysable.

Thus, to analyse our model, we need one or more intermediate
steps in which:

1. 'The syntactic correctness of the model is checked.

2. The model is adapted to the notation used by the automated
analysis tool.

In chapter 8 we presented the MULTIPLE framework. This tool
incorporates feature modelling capabilities in a MDA environment,
implementing a set of components to manage extended feature mod-
els. Next, we present a case study and we present how we have used
MULTIPLE to represent and analyse a feature model:

1. A parser processes data from the source model and creates
XMI instances that satisfies the MULTIPLE feature metamodel.
Moreover, the syntactic analysis and correction of the model
is automated.

2. A model transformation (MultipleFeatures2FamaFeatures, see
Appendix D) is used to generate a feature model understand-
able by FAMA.

3. The integrated component to validate FAMA feature models is
used to analyse the large-scale feature model providing:
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To illustrate the
capabilities of the
MULTIPLE
framework we have
analysed an
industrial and
large-scale feature
model from an
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manufacturer.
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a) Error detection.
b) Error classification.
¢) Solutions to the errors.

d) Model correction rates.

10.2 CASE STUDY

Aircraft engines are big and complex systems which are made up by
several components. For example, a jet engine must have specific
subsystems to guide the air and fuel flow, lubrication, water injection,
noise levels, etc. To control these elements several devices (such as
turbines, compressors, valves, actuators, gearboxes...) must be con-
trolled. To keep these elements in working order different electronic
controllers are used. Such controllers must be programmed and
coordinated, which is a quite complex task.

Three are the most important aircraft engine companies world-
wide: GE Aviation (GE 2011), subsidiary of General Electric); Rolls-
Royce plc (Rolls-Royce 2011); and Pratt & Whitney (Pratt & Whitney
2011), subsidiary of United Technologies Corporation (UTC). Such
companies build different engine models, which are installed in dif-
ferent aircrafts. In this situation it is very important to cope with the
variability problem to ease the development of new engine variants

INTAKE COMPRESSION COMBUSTION EXHAUST

Air Inlet Combustion Chambers

L T J

Cold Section Hot Section

Figure 10.1: Basic components of a gas turbine engine (FAA 2007)
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which can be sold to different aircraft manufacturers, such as Boeing
(Boeing 2011) or Airbus (Airbus 2011).

10.2.1  Feature modeling in Rolls-Royce plc

An aero-engine (Fig. 10.1) can be seen as a complex operating unit
that works thanks to the interaction of different mechanisms (turbine,
compressor, combustion chamber...). These mechanisms can be of
very different types and can be configured in different ways. There
are lots of details to take into account in the development of those
artifacts, as well as a high degree of variability. As a consequence,
Rolls-Royce has characterized the variability of aircraft engine by
using feature models. But, developing feature models is a hard task
as they are very complex and contain much variability. Moreover,
the analysis of these models (which is necessary to assure that they
are correct) is mandatory.

The feature model developed by Rolls-Royce plc uses the PLUSS
approach, which is, basically, the original FODA proposal adding
the OR group. PLUSS provides mandatory or common features, op-
tional features, single adaptor features and multiple adaptor features
that may have cross-tree requires and excludes relationships with
other features. Since PLUSS is almost equivalent to FODA, it can

Figure 10.2: Cardinality-based feature model equivalent to the one shown
in Fig. 4.6
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PLUSS CARDINALITY-BASED
Common Mandatory ([1..1])
Optional Optional ([o..1])

Single adaptor XOR (<(1-1))
Multiple adaptor OR ({1-k})
Requires Implies
Prohibits Excludes

Table 10.1: Correspondences between Cardinality-based feature models
and PLUSS

be implemented in a subset of the cardinality-based proposal of
MULTIPLE. That way; it is possible to transform a PLUSS feature mo-
del to a cardinality-based one. Fig. 10.2 shows a cardinality-based
feature model which is equivalent to the feature model shown in
Fig. 4.6 (page 55). Notice that the mappings between both models
are straightforward. Table 10.1 summarizes the correspondences
between the PLUSS models and cardinality-based feature models’.

10.2.2  Analysis process overview

We have shown that transforming a PLUSS feature to a cardinality-
based one is straightforward. This allowed us to import the feature
model developed by Rolls-Royce plc into the MULTIPLE framework,
with the aim of analysing its correctness. This way, we can test the

Some relationships that appear in our cardinality-based proposal are not shown
for the sake of clarity. The biconditional relationship can be expressed by using two
different requires relationships in the PLUSS proposal. However, the use relation-
ship that we propose does not have a correspondence, as PLUSS does not support
cloning of features.
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scalability of the MULTIPLE framework when dealing with real and
large-scale feature models provided by the industry. We used FAMA
to implement a method that allows us to perform a complete analysis
(syntactic and semantic) of the Rollws-Royce feature model. Our
proposal is outlined in Fig. 10.3. As our metamodel is a superset of
the PLUSS metamodel, we can represent any PLUSS feature model an
get the benefits that the MULTIPLE framework provides. This way,
the imported feature model can be enriched with complex model
constraints written in FMCL; it can be edited using the MULTIPLE
feature modeling editor; or we can use MULTIPLE to create model
configurations and check whether they are valid or not.

10.2.2.1 Process details

The tool support for the PLUSS approach is built on top of the
Dynamic Object-Oriented Requirements System (DOORS) tool (IBM
2011). To work with the feature model in MULTIPLE, we must first
export the feature model as a Comma-Separated Values (CSV) file.
The analysis process is divided in two parts. First (1), an analyzable

PLUSS Modeler
(DOORS)

-
EMF-MULTIPLE Analysis
Feature Modeling Support Subsystem
B
AN (A) Q(V)T ©
Feature Modellng Edltor . el= Analysis
Parser XMmi Transformation :
CSV | —— > Engine
Conﬁguratlon Edltor]
MULTIPLE FMCL
ﬁ.SIV Feature Model
e File
AN AN
Syntactical Semantical
Errors Report Errors Report
(1) Building an analyzable feature model (2) Perform automated analysis

MULTIPLE 1

(Eclipse platform) !

Figure 10.3: Schema of the proposal
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MODULE MODULE  ABSOLUTE PARENT OBJECT OBJECT FEATURE
NAME NUMBER NUMBER NUMBER NUMBER HEADING NODE

VARIATION REQUIRES PROHIBITS

Anon. Anon.
EOMM“ L 0000706b 178 166 117 mmmﬂﬂw . Feature Optional
Anon. Anon.
1 F ional 1280
Module 1 0000706b 188 166 1.1.8 Feature 2 eature Optional 233,128
Anon. Anon.
ZOMM“ L 0000706b 183 166 119 mg””“ 3 Feature Common 500°
Anon. 0000706b 1 6 12 Anon. Feature Common
Module 1 7 i 304 ’ Feature 4 Group
Anon. 0000706b 2 1 1.2.1 Anon. Feature Common
Module 1 7 39 i - Feature 5 Group
Anon. Anon.
2.1, F
Module 1 0000706b 393 392 1.2.1.1 Feature 6 eature Common
Anon. 0000706b 2 1.2.1.2 Anon. Feature Optional
Module 1 7 394 39 o Feature 7 Group P

? Module and feature names have been anonymized.

b Actual contents of this field refer to the fully qualified name of the referenced features, i. e.: “Anon. Feature

8,0000706b,233,5.2.2.2| Anonymized Feature 9,0000706b,128,2.1.3”.

¢ Actual contents of this field are ‘““Anon. Feature 10,0000706b,500,3.2”.

Table 10.2: Source model extract
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feature model must be built. For that purpose, the Parser component
(Fig. 10.3, element A) maps the source feature model (contained
in the CsvV file) that uses PLUSS notation into a XMI instance of our
metamodel.

Building an analyzable feature model also implies that a syntac-
tic analysis is performed to detect and fix possible errors in the
source model. The syntactic errors are here introduced by the users
who created the feature model manually. These errors are produced
because DOORS is a requirements management tool, and it is not
specially designed for feature modeling, so no checking capabilities
are provided.

Once the source feature model has been translated to an equivalent
feature model in MULTIPLE, we can use any of the framework tools,
including model transformations. This way, it is very simple to
transform a feature model to any other model type. Using a QvT
model transformation—Fig. 10.3, (B)—the feature model is projected
to the FAMA representation.

The second part of the process (2) comprises the analysis using
FAMA—semantic analysis, element (C) in Fig. 10.3. Both parts of the
process are performed by the prototype in a way transparent to the
user.

10.2.3 Source Model structure

The source 10.2 feature model contains 1195 features, so we consider
it a large-scale feature model. Table 10.2 shows an small fragment of
the model that illustrates its actual structure as a CSV file. Module
and feature names have been removed. We must remark that the
data used in this case study are protected by the non-disclosure
agreement signed between Roll-Royce plc and the ISSI research group.
As a consequence, tables, figures and examples in the remaining of
this chapter will be anonymized to obey this agreement.

As table shows, the model is codified as a plain text in a tabular
structure, in which features are defined as table rows. An screenshot
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which shows the actual contents of the file is shown in Fig. 10.4. The
meaning of each columns of the table is detailed below:

Module Name — Contains the name of the SPL module to which
the feature belongs to.

Module Number — Contains the number of the SPL module to
which feature belongs to.

Absolute Number — Contains the number that identifies the feature
in the module.

Parent Number — Contains the number of the parent feature.

Object Number — Contains the number that represents the feature
in the feature hierarchy.

Object Heading — Contains the feature name.

Feature Node — It may contain two different values: “‘Feature’ or
“Feature Group’’, that indicate if the feature has children or
not (leaf).

Variation — Contains the type of variation that represents the fea-
ture. It can have four different values: “Common’’, ’Optional”,
’Single”” or ’Multiple’’, according to the PLUSS notation.

Requires — Contains the feature or features that this feature requires
when it is selected (should be also selected).

Prohibits — Contains the feature or features that can not be selected

when this feature is selected.

10.2.4 A step by step description of the process

This subsection shows visually the steps that have been described
before, and shows how they have been put in practice using the
MULTIPLE framework.
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Figure 10.4: Rolls-Royce PLUSS feature model

10.2.4.1 Step 1: the initial model file

First, we need to include in the workspace the feature model that
we want to analyze (i. e., the Rolls-Royce feature model). This file is
called RollsRoyceSample.csv (Fig. 10.4).

10.2.4.2  Step 2: Parser execution and syntactical analysis

Second, we execute the parser, which will create a new instance of the
pivot model (i. e., a MULTIPLE cardinality-based feature model). To
execute the parser, the user must use the contextual menu as shown
in Fig. 10.5. The result model, called RollsRoyceSample.features, is
equivalent to the original model. In Fig. 10.6 a simplified version of
this file is shown (to see different relationship types) in the MULTIPLE
feature modeling tree editor.

Additionally, a console with the results of the syntactical analysis
is shown (see Fig. 10.7). There, the model errors found and the
solutions applied to solve them are listed. When an error is detected,
the parser displays the following information: line number were the
error was found, the cause of the error and the solution adopted.
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Figure 10.5: Running the PLUSS parser

It is worth mentioning that the produced feture model can be
opened using the graphical feature model editor (shown in Fig. 8.12,
page 138). However, due to the enormous size of the Rolls-Royce
feature model this graphical representation it is not the best option
to visualize and navigate the model.
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Figure 10.6: The Rolls-Royce feature model shown in the MULTIPLE fea-

ture modeling tree editor
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Figure 10.7: Console showing the syntactical analysis results
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10.2.4.3 Step 3: Model transformation execution

Third, we must execute the MultipleFeatures2FamaFeatures QV'T
transformation. which will generate an XML file taht can be loaded
into the FAMA framework. The transformation is executed in the
usual way as Fig. 10.8 shows.

As a result, a file called result.fama is generated. This file can be
open by using a tree editor (see Fig. 10.9) to easily explore its contents.
This is possible thanks to the FAMA metamodel support provided
by MULTIPLE. It must be pointed out that the persistence format that
this editor uses is not the standard XMI serialization used by EMF,
rather it is the native XML format supported by the FAMA framework
as Fig. 10.10 shows.

A traces model is also obtained. This model stores the mappings
between the source model and the target model, which are useful to
trace errors back when they are found by the FAMA framework.

= Edit Configuration @

Edit configuration and launch. —
>

Mame: Features2Features

(-7} Arguments . [ Commaon

QVT Transformation

Features2Features (platform:/resource/FM2:20Analysis/Features2Fama.qvt)

Input Parameters

Target Domain name Metamodel File
— mdemain features JFM Analysis/RollsRoyceSample.csv
A fdomain FeatureModelSchera  /FM Analysis/result.fama
P
@ [ R J[ Gl |

Figure 10.8: Dialog box showing the the MultipleFeatures2FamaFeatures
transformation is ready to be executed
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Figure 10.9: Rolls-Royce model represented as a FAMA model in the FAMA
tree editor
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Figure 10.10: Rolls-Royce model represented using the FAMA XML serial-
ization format
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10.2.4.4 Step 4: Running the FAMA analysis engine

MULTIPLE provides a contextual menu to perform the FAMA analysis
operations. Fig. 10.11 shows the operations which are available: De-
tect and explain errors, Number of products, Products and Variability
degree. The results will by displayed in the Fama Analysis Console
as shown in Figs. 10.12, 10.14 and 10.13 respectively. Only a small

2 o Elpse SOK s e i W

File Edit Source Refactor Mavigate Search Project Run  Window Help

£~ HBrO- Q- EEG @P PG m G
[% Package Explorer i1 )] Hierarchﬂ =0
2%
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@ result.fam
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2 F3
(& RollsRoyce pen )
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¥ Delete Delete
Build Path N
Refactor Alt+Shift+T »
f2y Import...
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Debug As 3

Team 4

Compare With 4
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MULTIPLE 2
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Properties Alt+Enter Bumbegofifroducts

1

Figure 10.11: Running FAMA analysis from the MULTIPLE user interface
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number of operations have been finally included, as the others did
not provide results in time (see section 10.3.4). This way, only the
working operations have been included in the prototype.

] Console &2 % | =2 ~f> =0
Fama Analysis Console
WELCOME TO THE FAMA ANALYSIS CCONSOLE. It might take some time to compute the result... -

File result.fama loaded succesfully

The number of products is: 3073

Figure 10.12: Calculating the number of products using FAMA

) Consale 52 whi| fB~r5~-78
Fama Analysis Console
WELCCME TC THE FAMA ANALYSIS CONSCLE. It might take some time to compute the result... -

File result.fama loaded succesfully

5 error(s) found:

1l: False-mandatory Feature: F T > P L]

2: False-mandatory Feature:
ouTd ER. 5

m

3: False-mandatory Feature: ElewssrwmiFeseslaeply
4: Dead Feature: =

5: Dead Feature:

Timeout looking for explanations!

Figure 10.13: Detecting errors using FAMA
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Figure 10.14: Calculating products using FAMA
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10.3 INTERPRETING THE OBTAINED RESULTS

This section contains the explanation of the errors found during the
analysis process. We also classify and provide solutions to those
errors.

10.3.1 Syntactic analysis

During the process to adapt the PLUSS model to our notation, we have
found some errors that make the source feature model inconsistent.
These errors can be classified as follows:

EMPTY FEATURES We identified that the model contains un-
named features (Fig. 10.15a). These empty features are defined as
mandatory, so they must be present in every product of the Software
Product Line.

Every feature in the model has to define a functionality, and these
empty features do not contribute in any way to the SPL.

Solution — We ignore empty features, since they are not significant.
Moreover, the console displays the line of the model in which
the feature is placed and the solution taken (Fig. 10.15b).

Domain

F1 F2 F3

* o ¢o

F31  F32
() (b)

Figure 10.15: Empty features in the original feature model 10.15a and a
possible solution 10.15b
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Domain

¢ o

F3
F1  F32

F311 F312
() 3 3

(b)

Figure 10.16: Duplicated features in the original feature model 10.16a and
a possible solution 10.16b

DUPLICATED FEATURES The feature model contains duplicated
features. This means that we have two or more features placed in
different hierarchical positions due to the kind of feature model that
we are working with.

One of the main goals of defining a feature model is to capture
variabilities and commonalities between the different products. This
way, the feature model reflects every possible feature combination
of the products of an SPL.

Every feature has to be unique. In cardinality-based feature mod-
els we can have cloned features, but we can not have duplicate features
inside the same model in different hierarchy locations.

Solution — By default, we leave just the first appearance of the
feature. If a feature to be removed contains children, they
will be removed too (Fig 10.16b). The removed features could
represent different product characteristics that have been in-
correctly defined using the same name. These errors also lead
us to the problem of removing some valid features obtaining
less potential products. Thus, the user is warned about the
error and its location to be revised.
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MEANINGFUL USE OF FIELDS  As we commented at the begin-
ning of this chapter, the source feature model is coded in plain text.
In the source model we find the Feature Node field, which informs
whether the feature belongs to a group (Single or Multiple) or not.
This field can contain two values: Feature Group and Feature. We
can find features defined as groups that sometimes have children and
sometimes are leaf features. The same happens when they are de-
fined as Features. Moreover, this field is often undefined and even it
occasionally seems dependent on the variability. There is no pattern
in the use of this value.

Solution — We did not rely on this Feature Node field to identify
the parent-child relationships between features. We deduce
them from other fields, such as the variability and the parent
number.

The main problem arises while defining features in the model.
There is no pattern followed to set a feature to be a Feature
Group or a Feature. We take as correct practice to define a
feature as a Feature Group if it has children and as a single
Feature otherwise.

Table 10.3 represents a fragment of the PLUSS feature model.
Declared Feature Node column contains the original values
of this field in the source model and Expected Feature Node
column contains the correct values expected given the tree
structure. Features with the Feature Node field value in red are
some examples of the errors found. As we can observe, feature
F2 is defined as a Feature, but it has two children. However,
F21 is defined as a group and it does not have children. The
same happens with feature Fi2, it has children but it is not
defined as a group.

Fig. 10.17 shows the correct representation in Cardinality-
based notation.
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D DECLARED FEATURE EXPECTED FEATURE
NODE VALUE NODE VALUE
Domain Feature Group Feature Group
F1 Feature Group Feature Group
Fn Feature Feature
F12 Feature Feature Group
F121 Empty Feature
F122 Empty Feature
F123 Empty Feature
F2 Feature Feature Group
F21 Feature Group Feature
F22 Feature Feature

Table 10.3: Example of features incorrectly defined in the source CsV file

F122

Figure 10.17: Correct representation using cardinality-based notation
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™

F1 F2 F3 F4
() (b)

Figure 10.18: Example of ambiguous use of feature groups 10.18a and a
possible solution 10.18b

AMBIGUOUS USE OF VARIABILITY  Multiple Adaptor features
represent an at-least-one-out-of-many selection that has to be made
among a set of features.

In the model we can find the use of this Multiple variability having
a set of just one feature (Fig. 10.18a), so there is no real option. You
cannot choose between more than one option because you have a
multiple Group with just one child. So we have an incorrect use of
the Multiple variability.

Solution — In the cases where a feature valued as Multiple is part
of a group of just one child, we replace this relationship with
a mandatory relationship (Fig. 10.18b). Since the meaning of
the Multiple Adaptor is at-least-one-out-of-many, mandatory
is the most accurate relationship to represent it.

10.3.2  Semantic Analysis

As we have a large-scale feature model, we need an automated way
to analyse the information inside. In MULTIPLE we use FAMA to do
this.

In order to obtain significant results, we have selected only those
operations which apply to feature models (i. e. model-checking oper-
ations), and not feature model configurations since our framework
already provides this functionality.
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Domain

Domain

(a) (b)

Figure 10.19: Invalid relationship 10.19a and a possible solution 10.19b

VALIDATION  The result of the validation is that the model is
unsatisfiable. The PLUSS Feature model is invalid because it contains
two cross-tree relationships of type Excludes that are not well defined
since they exclude mandatory features (Fig. 10.19a).

When we define mandatory features, they cannot be excluded by
another mandatory feature (if all the parents of both features are also
mandatory) because that fact contradicts their mandatory definition.

Solution — When this kind of contradictions arise, there are two
ways to proceed:

1. To remove the troubled relationship (Fig. 10.19b).

2. To check the definition of features in the model to
identify if those features should be optional instead of
mandatory.

We took the first solution (remove troubled relationships)
because it is less intrusive with the structure of the SPL. The
tool also warns the expert user to allow him/her to check the
model and fix whatever is needed.

PRODUCTS & NUMBER OF PRODUCTS This operation calcu-
lates all the possible configurations that the feature model represents.
The analysis of the feature model detected 3073 different potential
products in the product line. It is a high number because we are
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Domain

Figure 10.20: Example of a false-mandatory feature

dealing with a large-scale feature model. The products operation also
provides the features combination for every product in the console.

ERROR DETECTION Besides validation errors, error detection
results revealed five additional errors in the model:

1. Three false-mandatory features

False-mandatory features are those features that behave as
mandatory but they are not defined as mandatory.

For instence, feature F21 in Fig. 10.20 is a false-mandatory
feature because it is defined as optional but it is going to be
present in every product of the SPL. This is because of the
Requires relationship between the mandatory Fi1 feature and
F21.

Solution — To change the type of the feature to mandatory.

2. Two dead-features

The most frequent reason for having dead features (features
that are present in no products) is the existence of contra-
dictory relationships. Fig 10.21a shows an example of dead
features. Features under the Domain feature are part of a XOR
group (or Single Adaptor, i. e., exactly-one-out-of-many). Fea-
ture F1 requires feature F2 and vice versa. In a XOR group
we can have just one feature selected, so this two Requires
relationships contradict the group definition.
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‘ -

«requires»

«requires»

(b) (c)

Figure 10.21: Example of dead features (features F1 and F2 in 10.21a) and
two possible solutions (10.21b and 10.21¢)

Solution — In this case, the problem can be at the Group
definition. An OR Group or Multiple Adaptor (at least-
one-out-of-many) would solve the problem (Fig. 10.21b),
because it allows us to select more than one feature.

Another solution is to remove the Requires relationships
(Fig. 10.21¢).

The solution would vary depending on what the model
aims to represent.

10.3.3 Conclusions about the analysis results

Table 10.4 shows the results of the analysis performed that give us the
necessary data to determine the correction of the feature model. This
table reflects the feature model percentage of correction grouped by
element type.

The Source Model column refers to the elements of the original
feature model, and the Target Model column refers to the elements
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SOURCE TARGET %
MODEL MODEL CORRECT
NUMBER OF FEATURES 1195 1016 85.02
OprTIONAL FEATURES 295 263° 89.15
MANDATORY FEATURES 833 692 83.07
SINGLE FEATURES 53 53 100
MULTIPLE FEATURES 14 5 35.71
NUMBER OF GROUPS 258 19 7.36
[MPLIES 70 63" 90
ExcLUDES 6 4° 66.67
TOTAL ELEMENTS 1529 1099 71.88

# 266-3 false mandatory
b 65-2 relationships which cause dead features

¢ 6-2 relationships that make the model void

Table 10.4: Percentages of correction grouped by element type

of the corrected model obtained after the syntactic and semantic
analyses. The percentage of correction has been calculated as follows:

Correction (%) — Correct model elements 100
”" Total (original) model elements

According to the results obtained, we can order the number of
errors as follows:

Groups defined > Multiple features >
Excludes relationships > Mandatory features >
Optional features > Implies relationships >
Single features
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10.3.4 Efficiency and limitations of the automated analysis tool

This section describes the limitations found while performing some
of the operations that the FAMA Framework provides. Most of these
limitations are derived from the scale of the feature model we were
working with (1016 features). We used the FAMA 1.1.1b version re-
leased on April 14th, 2011, and a standard desktop computer?.

The efficiency and problems found while performing each analysis
operation are listed below:

10.3.4.1 Validation

This operation works well with our model, providing a quick result
in about 3 sec. However, problems arise when the model is void and
the tool tries to look for error explanations. The tool is unable to
give a response in an acceptable time.

10.3.4.2  Products and Number of Products

These operations also work reasonably well with the model of the
case study. It takes some time for the tool to provide an answer
(about 30 minutes) but finally it is able to generate a report with all
the potential products of the SPL.

10.3.4.3 Variability

The FAMA tool was unable to provide an answer in 3 days, and the
execution was aborted. As a consequence, we were unable to get the
variability degree of the source model.

10.3.4.4 Error detection

This operation works well with the model of the case study. Answers
were provided almost immediately providing the different model
errors and their location. However, if it occurs in the variability

2. Windows 7 (x86). Pentium IV, 3.2GHz. 3GB RAM.
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calculation, the tool is unable to retrieve the explanations of the
errors.

10.3.4.5 Core Features and Variant Features

This kind of operation was not available for the model of the case
study. The FAMA tool provided the following information message:
Current model does not accept this operation.

10.4 SUMMARY AND CONCLUSIONS

In this chapter we have detailed the analysis process of an indus-
trial feature model provided by Rolls-Royce using the validation
capabilities provided by MULTIPLE.

First of all, we show step-by-step how to execute the tool to obtain
the results. Furthermore, we have described and classified the errors
found during the semantic and syntactical analysis of the model
providing solutions.

The results provided the company a mechanism to enhance their
large-scale feature model with the aim of integrating it in automated
processes. Being conscious of the inconsistencies contained in the
feature model, and having the analysis conclusions, they will be able
to take the necessary steps to correct the feature model. With all
that background, they will even be able to elaborate a set of good
practices to follow when modifying the product line, reducing the
number of errors incrementally.

On the other hand, the automated analysis allowed us to extract
some important information of the model that we would have been
unable to extract manually.

FAMA provides us with the mechanisms to keep track of errors in
feature models. It is a powerful and useful framework that integrates
the most important operations you need to analyse a feature model
saving time in performing these tasks. Nevertheless, the use of FAMA
with large-scale models reveals some tool limitations derived from
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the presence of cross-tree relationships (Requires and Excludes) in
such a big model.

The tool presents scalability problems in providing answers about
some aspects of the input model, such as core and variant features,
and error explanation. We have not been able to calculate the degree
of variability of the model.

The analysis also revealed a model with many errors in its elabo-
ration. The use of error checking mechanisms becomes essential in
an industrial environment, where this model is being used as input
to many other processes. Our work has revealed that it is possible to
have a framework with enough power to perform a complete anal-
ysis (syntactic and semantic) of a large-scale feature model fitting
different technologies together.



PartV

THE MULTIPLE FRAMEWORK IN 3RD PARTY
PROJECTS AND TOOLS






SUMMARY

In this part we present some case studies in which the MULTIPLE
framework has been used as a generic set of tools to support MDE pro-
cesses. These case studies have been developed in collaboration with
researchers of other universities and research groups. First, in chap-
ter 11 we present the INTERGENOMICS case study, a work done in
conjunction with the Institut fiir Informationssysteme at the Technis-
che Universitdit Braunschweig. In this work the MULTIPLE framework
is extended with additional metamodels and tools allowing to deal
with biological models. Such models can be transformed to a formal
specification, such as petri nets. This specification can be executed,
and this way biological models can be validated. Second, chapter 12
presents a work done in the software measurement field. This work,
has been done in collaboration with the Alarcos research group, Uni-
versidad de Castilla-La Mancha. In this work, the QvT-Relations
transformations engine that the MULTIPLE framework provides is
used to measure different software artifacts. Finally, in chapter 13
the MORPHEUS tool is presented. This tool aims to provide a tool to
support the Architecture generaTed from Requlrements applying a
Unified Methodology (ATRIUM) methodology. This work has been
done in collaboration with E. Navarro, tenured assistant professor
of the Universidad de Castilla-La Mancha, and the main researcher
behind the ATRIUM methodology (Navarro 2007). In this work, the
QVT-CLI transformations engine provided by MULTIPLE is used to
generate software architectures.
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INTERGENOMICS: BIOLOGICAL DATA MIGRATION
USING THE MULTIPLE FRAMEWORK

« othing can be more incorrect than

the assumption one sometimes meets with,

that physics has one method, chemistry another,
and biology a third»

— Thomas Henry Huxley
English biologist, 1825-1895

The traditional sequence of “‘experiment — analysis - publication”
is changing to “‘experiment — data organization — analysis - pub-
lication” (Emmett et al. 2006). This is because, nowadays, data is
not only obtained from experiments, but also from simulations. The
great amount of new data that can be generated from these exper-
iments is not always homogeneous and may be stored in different
databases. Moreover, the quantity of data requires the development
of new computer tools that allow us to represent, analyze, and make
new simulations with them.

These problems are also found in the bioinformatics field, espe-
cially when analyzing and simulating cell-signaling mechanisms
(Signal Transduction Pathways). A signal transduction pathway is a
set of chemical reactions that occur inside the cell when it receives
a stimulus. In studies of this type, it is very common to find both
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independent databases and modeling tools. Thus, the data of the
databases must be converted manually from the source databases
to the simulation tools in order to be used. For this scenario, it is
desirable to make interoperable tools available. It would certainly
be beneficial to develop different models for a signal transduction
pathway using different specification languages to be able to ap-
ply different simulation tools. However, this is only possible if the
models do not have to be developed by hand but can be generated
automatically from the source databases.

Model Driven Software Development (MDSD) is an approach that
attempts to solve problems of this kind. A model defines the func-
tionality, structure or behaviour of systems (OMG 2003) depending
on the metamodel used. As it has been largely discussed throughout
this thesis, using models in a MDSD process allows the automation of
the development and evolution of the software applications thanks
to generative programming techniques (Czarnecki and Eisenecker
2000) such as model transformations and code generation.

This chapter shows how the MDSD philosophy can solve the prob-
lems that arise in the study of signal transduction pathways in the
bioinformatics field. Problems like interoperability between applica-
tions can be addressed in a systematic way, where the data structure
can be defined by using models and data is defined as a set of objects
that are instances of the classes of these models. Dealing with data
from the MDSD perspective helps to develop tools where the data pro-
cessing mechanisms are independent of the final persistence format,
obtaining more modular tools. This also helps to automate the data
migration process by means of model transformation techniques. All
these factors reduce the costs of the software development process,
directly increasing the productivity of the users/biologists.

This chapter is organized as follows: section 11.1 explains the bio-
logical context, introducing the reason for studying the signal trans-
duction pathways and describes the current approach, which is a
very inefficient process. Section 11.2 describes the solution proposed
to cover the shortcomings of the current approach. Section 11.3
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Figure 11.1: Signal Transduction, cf. (Alberts et al. 2005)

shows a running example of the solution proposed. Finally, section
11.4 presents the conclusions and future works.

11.1 CASE STUDY

In organisms, proteins have a wide variety of functions and they inter-
act with each other in similar multifaceted ways. These interactions
of proteins are described by means of signal transduction pathways
or networks, which are typically represented as certain kinds of maps.
A distinction is drawn between metabolic and regulatory pathways.
Metabolic pathways describe the conversion of classes of substances
into other classes of substances, whereas regulatory pathways de-
scribe how the function of something is regulated. In this case study,
the conversion of classes of substances into other classes is not sig-
nificant, but the transduction of signals is (cf. Fig. 11.1). That is why
they are also called signal transduction pathways.

A signal transduction pathway describes how a cell responds to
an extracellular signal, e. g. a signaling molecule excreted by a bac-
terium. The signaling molecule is received at a receptor protein and
then transferred via biochemical reactions into the nucleus, where
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it changes the behaviour that is currently active. Signal transduc-
tion pathways comprise different kinds of molecules: proteins and
enzymes with different kinds of functions interact with the help of
cofactors, second messengers, phosphatases and small effectors to
transmit the signal. The mechanism of transmitting the signal is me-
diated through state changes of molecules like conformity changes
and the building of molecule complexes on the basis of biochem-
ical reactions. These molecule interactions cause the signal flow
through the cell and the amplification of the signal in order to reach
the nucleus. Figure 11.2 shows an example of a signal transduction
pathway, where the gray area represents the inside of a cell and the
light-colored area represents the outside. The nucleus is represented
as a gray ellipse. In this map, molecules are represented with differ-
ent shapes and colors, which encode the role that a certain molecule
plays in the signal transduction pathway under consideration. Ex-
amples for such roles are extracellular signals, which are represented
as stars; receptors, which are represented as rectangles across the
cell membrane; and adapter proteins, which are represented as blue
ellipses. Interactions of the molecules appear as lines and arrows,
whereas their different shapes stand for different kinds of interac-
tions, e.g. direct or indirect activation or inhibition. Molecules
also interact by building molecule complexes, which are represented
through narrow cumulations of molecules.

These signal transduction pathways are composed by experts,
who study the relevant literature that is produced by various groups
worldwide doing research on very small parts of signal transduction
pathways in different kind of organisms, e. g. research about short
sequences of chemical reactions. This information is then composed
bottom-up to a signal transduction pathway and introduced into
databases to provide an integrated view on the entire, pathway.

Examples for such signal transduction pathway databases are
TRANSPATH® (Krull et al. 2006), Kyoto Encyclopedia of Genes
and Genomes (KEGG) (Kanehisa et al. 2006), Reactome (Joshi-Tope
et al. 2005) and BioCyc (Karp et al. 2005). They usually provide a web
interface for interactive searches and also make their data available
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Figure 11.2: TLR4 signal transduction pathway in the TRANSPATH®
database

as text files in flat file or XML format. Some of the databases already
use a more or less standardized exchange format on XML basis, e. g.
Systems Biology Markup Language (SBML) (Hucka et al. 2004).

11.1.1  Toll-like receptors and the TLR4 signal transduction pathway

In order to give the reader a better understanding of what signal  In this case study we
transduction pathways are about, we take the TLR4 signal transduc- ~ focus on the TLR4

. . . - signal transduction
tion pathway as an example: Sepsis is the systemic immune response pathway, which is
to severe bacterial infection (Motta and Brusic 2004). We are born ;... "ith the
with a functional, innate immune system that recognizes bacterial  immune system in
and viral products. In sepsis, when a bacterium attacks an endothe- ~ mammalians. The
lial cell, different kinds of mechanisms are activated. Receptors of ~ [LR4 isone of the

. . . . . best known signal

the innate immune system are activated by microbial components . .
such as the Lipopolysaccaride (LPS), an endotoxin which is a sig-  pathways.
naling molecule involved in the initiation of the sepsis syndrome.
Receptors, which recognize such LPS molecules, are a family of trans-
membrane receptors known as Toll-Like Receptors (TLRs). To date,
there are 12 TLRs identified in mice and 10 TLRs identified in humans.
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TLR4 is one of these and is identified as a significant receptor in mice
strain experiments. TLR4 is also annotated in TRANSPATH® and is
our example for the explanation of signal transduction pathway (see
Fig. 11.2). The TLR4 signal transduction pathway is subdivided into
the MyDss-dependent and MyD8s-independent pathway and consist
of four chains. The whole pathway is specified in (Dauphinee and
Karsan 2006). To give an overview over the general flow of informa-
tion, it is sufficient to explain one part in detail.

One chain of the MyD8s-dependent pathway in endothelial cells
starts with the LPS binding to the TLR4 receptor complex consisting
of CD14 and MD2. This molecule complex is leading to the recruit-
ment of the adaptor molecules MyDss and TIRAP. Following, IRAK
and IRAK4 are recruited to the receptor complex via interaction of
special parts of their spatial arrangements. IRAK recruits and acti-
vates TRAF6 which is one part of a molecule complex in addition
consisting of ECSIT and MEKK1. This recruitment is leading to the
activation of IKKoc and IKK[3 which are molecules of a complex with
two IKKy molecules. The activation of the IKK-complex leads to the
degradation of Ikb. This inhibition of Ikb facilitates the transloca-
tion of NF-kB in the nucleus. NE-KkB is a transcription factor which
connects with its special promoter region. This results in the ex-
pression of proinflammatory molecules and furthermore normal
physiological functions of the endothelial cells are perturbed. This
bacterial sepsis and its associated expression of proinflammatory
molecules causes death with the utmost probability.

In order to exemplify the transformation of signal transduction
pathway data to Petri nets, we must first take a closer look at the
biochemical reactions below that occur at the beginning of the sig-
nal transduction pathway: a signal molecule LPS arrives at the cell
membrane and binds to the adaptor protein LBP (reaction 11.1) and
is delivered to the receptor CD14 (reaction 11.2). This is the beginning
of the signaling by TLR4 as mentioned above. The recruitment of the
adaptor molecules MyD8s and TIRAP by the TLR4 receptor complex
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can be inhibited by the sequestering of these critical adaptors during
LPS signaling by ST2 (reactions 11.3 and 11.4, respectively).

LPS+ LBP = LPS: LBP (11.1)
LPS:LBP+ CD14 = LPS:LBP:CD14 (11.2)
ST2 4+ TIRAP = ST2: TIRAP (11.3)

ST2 + MyD88 = ST2: MyD88 (11.4)

11.1.2  An approach to the study of the TLR4 signal transduction
pathway

Understanding the flow of information inside a cell is fundamen-
tal for an in-depth understanding of the functioning of a cell as a
whole. Therefore, modeling and simulating this information flow
is beneficial because it helps to understand the flow of signals in a
complex network, to test hypotheses in silico before validating them
with experiments, and to validate the data collected about a certain
signal transduction pathway. The fact that a flow of information
in a complex network must be described has led to the idea of ap-
plying languages for the description of concurrent reactive systems
in this area, even if these were originally developed to assist the
construction or engineering of systems and not the description of
already existing systems (Fisher et al. 2004). A couple of specifica-
tion languages, such as Petri Nets, Life Sequence Charts, etc., qualify
for this task. All of them have different advantages and drawbacks.
In the same way, the corresponding simulation tools have different
strengths and weaknesses.

We are currently working on one of the major signal transduc-
tion pathways databases, TRANSPATH® (Krull et al. 2006), and we
are using Colored Petri Nets (Jensen 1997) among others (e. g. Life
Sequence Charts (LSCs) (Damm and Harel 2001), UML-Statecharts,
etc.) as the specification language. The corresponding simulation
tool is CPN Tools (Jensen et al. 2007). TRANSPATH® is a database
that is accessible by means of the usual methods, i. e., web interface,
text files, XML (using its own XML format), etc. In January 2007,
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TRANSPATH® contained entries about 60,000 molecules, 100,000
chemical reactions, 20,000 genes and 57 signal transduction path-
ways. The information was based on 30,000 publications. The web
interface provides access to all these entries and also contains inter-
active maps, which give an overview of a certain signal transduction
pathway (cf. Fig. 11.2). The XML version of the database is divided into
six files containing data about molecules, genes, reactions, pathways,
annotations and references, respectively. They are accompanied by
Document Type Definition (DTD) describing the structure of the
files.

Coloured Petri nets are a formal representation for distributed
discrete systems that allow concurrent events to be represented. A
Petri net consists of two types of nodes (places and transitions, respec-
tively) and directed arcs. Arcs are always placed between transitions
and places (or places and transitions). Places may contain any num-
ber of tokens. These tokens can be moved from one place to another
when a transition is fired (the transitions are enabled if there are
tokens in all their input places). Figure 11.3 shows an example of a
Petri net. White circles represent the places, black rectangles repre-
sent the transitions, arrows represent the arcs, and large black dots
represent the tokens. Coloured Petri nets are an enhancement of
Petri nets and can contain different kinds of tokens identified by
colors. Now it is possible to represent different dynamic behaviors
modeled by different token colors in the same model. CPN Tools is
a tool for constructing and analyzing coloured Petri nets.

In (Taubner et al. 2006), data is extracted from the TRANSPATH®
database and introduced in the CPN Tools application manually. This

(a) Initial state (b) Final state

Figure 11.3: Petri net example
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implies that the user/biologist who is going to perform the simulation
must manually query the database to extract the list of reactions
involved in the signal transduction pathway to be studied. With
the extracted data the corresponding Petri net must be built in the
simulation tool manually (creating each one of the places, transitions,
arcs, tokens, etc. individually). In (Taubner et al. 2006), this means
to manually defining approximately 75 places, 50 transitions, and
100 colours.

11.2 A MDSD APPROACH IN BIOLOGICAL DATA MIGRATION

In the initial work on the study of the TLR4 signal transduction
pathway, data migration from the source database to the simulation
tool (to represent this information as a coloured Petri net) was done
manually.

The solution to the data migration problem is described as fol-
lows by means of model transformation techniques using the model-
driven software development guides. This implies the following tasks:
(i) development of the source domain data model (TRANSPATH®);
(ii) development of the target domain data model (CPN Tools);
(iii) definition of the transformation rules between the source do-
main and the target domain by means of the transformations lan-
guage; (iv) implementation of the pre-processing mechanism to
obtain the instances of the source model from the original data;
and finally, (v) definition of the post-processing tasks that persist
the transformed data in the final file format. The next subsections
describe the designed solution. First, the transformation process
and the different stages are described; second, the source and the
target models are presented, and last, the transformation process is
explained in more detail.
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Figure 11.4: Architecture of the tool

11.2.1  Architecture and overview of the tool

The data migration process is performed in three steps: @ recovering
and pre-processing of the input data, @ execution of the transforma-
tion by means of the transformations engine and @ post-processing
and persistence of the result data. In a MDSD approach, using a trans-
formation engine implies that the source and the target models of
the transformation must be developed in the first place to be able to
establish the mappings between the two domains.

The solution presented in this case study uses the MULTIPLE frame-
work, which is integrated within the Eclipse platform and provides
support for model transformations. This tool uses the Eclipse Model-
ing Framework (EMF), which provides Ecore as a modeling language.
Moreover, it uses XMI as the persistence format and allows the cre-
ation of Ecore models from, among others, XSD.

Nevertheless, the Ecore models obtained from XSD schemas are
complex and do not always clearly represent the real structure of the
data. Therefore, the source and the target models have been defined
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manually, taking into account only the information that is useful in
the case study. Figure 11.4 shows the architecture of the tool. It repre-
sents the three steps that are needed to perform the data migration.
First, the data is extracted from the TRANSPATH® database ®),
and the corresponding XMI instance (B) of the TRANSPATH® Ecore
model © is built. This first step @ is easily done in Java since the
mappings between the elements of the source data and the elements
of the EMF model can be established directly. The implementation
of this pre-processing step has been adapted from the work done in
(Ziegler 2007).

The second step @ is the most important and complex one of the
transformation process. It is performed by means of the MULTIPLE
tool and its transformation engine. It executes the transformation
from the TRANSPATH® domain (reactions, molecules, etc.) to the
CPN Tools domain (places, transitions, arcs, etc.). After the defini-
tion of the transformation rules ©) between the source domain (©
and the target domain (E), the transformation is executed over the
data recovered from the database (B) obtaining the needed informa-
tion in the CPN Tools domain (F). Finally, the third step ®© in the
data migration process is again a trivial process in which the EMF
data is stored in an XML file readable from the CPN Tools application
@. Other tasks can be performed in this stage; for example, the
execution of some layout algorithms over the elements of the Petri
net to represent the graphical elements properly in the drawing space
of the CPN Tools GUL.

11.2.2  Development of the source and the target models

First, a model that contains the most interesting elements to simu-
late a signal transduction pathway in the CPN Tools application has
been defined (removing unnecessary concepts from the complex
TRANSPATH® database).

Using a visual metaphor similar to the UML class diagram, Fig-
ure 11.5 shows the Ecore model that has been developed. The Net-
work class is the main element in this model. A Network contains
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a set of Pathways, Reactions and Molecules. Moreover, a Pathway is
composed of several Chains of Reactions, and one Reaction can be
involved in several Chains. Finally, the reactions are related to the
molecules. One molecule can be a reactant or a product in a reac-
tion. It can also take part in a reaction as an inhibitor or a catalyst (if
the molecule is an enzyme). The classes ReactantsCoefficient, Prod-
uctsCoefficient, EnzymesCoefficient and InhibitorsCoefficient inherit
from the Coefficient class (omitted for reasons of clarity). This class
contains an integer attribute (coefficient').

Figure 11.6 shows the model that has been created for the CPN
Tools application. In this case, the design of the model is closer
to the application specific concepts than to the conceptual Petri
net concepts. This design allows us to deal with all the interesting
concepts of the CPN Tools platform (e. g., position and color of the
graphical elements). Furthermore, this kind of design makes the
persistence process from EMF to the final XML file easier.

Cpnet is the main class of the mode (see Figure 11.6). It is divided,
by using a dashed line, into two groups: the classes that are under the
Globbox element and the classes under the Page element. The first
group (the Globbox group) allows the declarations of CPNs such as
colorsets (enumerated, complex), variables, blocks, etc. The second
group of classes (those contained in the Page element) represents
all the visual elements of the coloured Petri net. All the graphical
elements inherit from the DiagramElement class, and can be con-
tained in different groups (Group class). Thus, a Page can hold Places,
Trans (transition), Arcs, Annot (annotations), etc. When a Place is
defined in the Petri net, it has an associated color set. This color set
must be defined previously in the declarations part. The relationship
between the Place and its color set is represented by means of the
type role from the class Place to the class ColorSet. The classes Init-
Mark and Mark are intended to represent the actual state of a given

The coeflicient value represents the number of molecules that appear in the
equation of one reaction. For example, in the reaction 2H, + O, = 2H,0,
the coefficients are the numbers that appear on the left of the molecules, i.e.,
2H; +10; = 2H,0
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Place, indicating which tokens are in the Place. The kind of tokens
is defined by the role colorSetElement between the classes Mark and
ColorSetElement.

11.2.3  Transformation process

Finally, the transformation rules that can convert data from the
source domain to the target domain have been defined. These rules
express the mappings established by biologists between the data ex-
tracted from the TRANSPATH® database and the concepts available
in the CPN Tools application. Table 11.1 shows the simplified map-
pings between both the source and the target domain. The rules that
define the direct relationships between the two domains have been
expressed in QVT-Relations.

The transformation is executed as a top-down process. The navi-
gation is performed through the containment relationships (defined
in Ecore by means of containment references), i. e., it begins from the
root element of the source model (Network) and goes down (Network

TRANSPATH CPN TOOLS

Network Cpnet

Pathway Globbox, Page
Molecule (complex) Product

Molecule (simple) Enumerated

Reaction Trans
Molecule (reactant) Place, Arc (from Place to Trans)
Molecule (product) Place, Arc (from Trans to Place)

Table 11.1: Mappings between the source and the target domain
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—> Pathways — Chains — Reactions — Coefficients — Molecules) cre-
ating the corresponding elements in the target domain as Table 11.1
defines. In the declarations group, the transformation will create
an Enumerated ColorSet from each simple molecule. In the case of
the complex molecules, the ColorSet created will be a Product. This
Product will be be a compound of the Enumerated ColorSets corre-
sponding to the simple molecules which are part of the complex
molecule.

In the graphical elements group, the transformation process be-
gins from a Reaction element. An object of the class Trans is created
for each reaction. We obtain the reactant molecules through the
reactantsCoefficient association in the class Reaction. A place is cre-
ated for each one of these molecules. Finally, each new place can
be linked with its corresponding Trans element by means of an Arc.
These arcs will be of type PtoT (Place to Trans, according to the CPN
Tools terminology). The procedure is similar for the products of
the reactions; however in this case, the transformation navigates
through the productsCoefficient association.

Figure 11.7 represents the result of the transformation process (in
the CPN Tools metaphor) for the reactions presented in the case
study. The figure shows four numbered triangles, each of which
corresponds to one of the reactions of the example. Thus, for reac-
tion number 11.1 (LPS + LBP = LPS : LBP) the transformation
generates the elements inside the left triangle (1). The other three
triangles (2, 3, and 4) indicate the corresponding reactions (11.2, 11.3
and 11.4).

Appendix G lists the textual representation of the Transpath2CPN
transformation.

11.3 RUNNING EXAMPLE

This section shows a running example using the example data pre-
sented before. This way, the demonstration will use two initial files:
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example.xml — An XML file containing the data extracted from the
TRANSPATH® database. This file contains information about
a single pathway (the TLR4 pathway).

transpathacpn.qvt — This file contains the Transpath2CPN trans-
formation.

Fig. 11.8 shows the example workspace with these two files. The
example. xml file is shown in its default editor, i. e., the TRANSPATH®
model editor.This editor is able to represent the information ex-
tracted from TRANSPATH® as an instance of the transpath meta-
model. Fig. 11.9 shows the actual contents of the example.xml file. As
can be observed, example.xml is an XML file which has been directly
extracted from the TRANSPATH® database.

,

File Edit Navigate Search Project Run Transpath Editor Window Help

[ S 5 0-Q-ifif-feworoe s )
[ Project Explorer 52 B %5 T © 0|4 eemplexml i3 =8
1= Transpath2Cpn [ Resource Set

[ eamplexm

4 [2] platform:/resource/Transpath2Cpn/examplexml
|| transpath2cpn.quvt

4 4 Network

[MO000016882] Molecule LPS
[M0000019420] Malecule LBP
[M0000021928] Malecule LPS:LBP
[MO000018132] Molecule CD14 il
[MO000021929] Molecule LPS:LBP:CD14

[M0000022528] Malecule TIRAP

[MO000044786] Molecule ST2

[MO000044801] Melecule STZTIRAP

[M0000016573] Melecule MyD28

[M0000044800] Malecule ST2:MyD8S

> 4 [XN000023302] Reaction LPS + LBP <=» LPSILBP

. 4 [XN000023303] Reaction LPS:LBP + CD14 <=> LPS:LBP:CD14
> < [XN000032621] Reaction T2 + TIRAP <=> STZTIRAP

%

$e+ede+e e+

8 Outline 52 =0 -y
> 4 [XN000032619] Reaction ST2 + MyD88 <=> ST2:MyDE8
[5) platform/resource/Transpath2Cpn/exan > 4 [CHOD0000755] Pathway TLR4 pathway
% Network Selection | Parent| List| Tree | Table | Tree with Columns
¥ Tasks € Progress | = Properties 33 g Y=08
Property Value
Catalyzes Coefficient
Id I= MO000016382
Inhibits Coefficient
Klass = i
Molecule Type  '= other :
| Name =1ps |
Rkins Coefficient I
Rkouts Coefficient % Reactants Coefficient 1 LPS
States OF
) F—— v Synonyms I= endotoxin
[ Selected Object: [MO000016882] Molecule LPS

Figure 11.8: Workspace with the example files
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-] examplexml £3 =0
<?xml version="1.0" encoding="UTF-8"?2> B
<network extent="pathway" source="bbdbl01" version="7.1" xmlns:xlink="http://www.w3.org/1¢ |

<Pathway id="CH000000755">

<1-- Copyright (c) Bicbase GmbH -->

<creator>mkl</creator>

<updator>mkl</updator>

<name>TLR4 pathway</name>

<synonyms>LPS pathway: lipopolysaccharide/endotoxin pathway: .

</synonyms>

<type>pathway</type>

<chains>
<PathwayReference 1id-
<PathwayReference
<PathwayReference
<PathwayReference id=

</chains>

<pathways>

E000000562" />

Figure 11.9: Actual contents of the example.xml file

To execute the model transformation the user can use the Run as

— 1 QVT Transformation menu, as it was shown in section 8.4.4.2.

To execute a model transformation, the different domains of the
transformation must be set, as shown in Fig. 11.10.

11.3.1  Result files

Once the transformation has been executed, two new files appear
in the workspace. The former corresponds with the result model

ﬂ TranspathToCP! I |

Edit configuration and launch. ;i

Name: TranspathToCPN

() Arguments . [ Common
QUT Transformation

TranspathToCPN (platform:/resource/Transpath2Cpny/transpath2cpn.qvt)

Input Parameters

Target Domain name Metamodel File
— tpDomain transpath (ranspath2Cpn/exampleml
v cpnDomain cpn [Transpath2Cpn/result.cpn

Appl Revert

Figure 11.10: Transpath2CPN transformation ready to be executed
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(result.cpn in this example), and the latter corresponds with the
traces model (result.traces). Fig. 11.11 shows the Explorer view
with the result files highlighted.

The result file is an XMI document, which is instance of the CPN
Tools metamodel. Fig. 11.12 shows the result.cpn file in the Cpn
model editor. The traces model can also be opened in the default
traces editor, which was shown in section 8.4.3.

To be able to open the result model in CPN Tools, it is necessary to
convert the result file to a new XML document first. This new XML file
adheres to the XSD defined by CPN Tools. This projectio step can be
done using the contextual menu shown in Fig. 11.13. Moreover, at this
point it is possible to execute a layout algorithm (if this step has not
been previously executed within the QVT model transformation).

Fig. 11.14 shows the contents of the final XML in the Eclipse default
textual editor. As it can be observed, this is a valid document that
can be opened by CPN Tools directly.

11.3.2  Result file in CPN Tools

Finally, Fig. 11.15 shows what the petri net looks like in the CPN
Tools interface. The position of the transitions and places can vary
depending on the result of the layout algorithm because it is non-
deterministic. It is not necessary to modify the petri net in any way
in order to perform simulations using the Simulation toolbox.

L2 Project Explorer &3 ===
4 1=+ Transpath2Cpn

4! result.cpn

i resulttraces

=] examplexml

|| transpath2cpn.qvt

Figure 11.11: Result files
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Figure 11.12: Editor for cpn models

11.4 CONCLUSIONS

This chapter has presented a case study where the interoperability
problem between bioinformatic applications is addressed using a
model-driven approach. The situation where several data sources
and simulation tools co-exist and must share heterogeneous data
is very common in the bioinformatics field. In this situation, the
easy representation of biological data using models allows us to
deal with these problems more efficiently and more elegantly than
the traditional (manual) approaches. It is more efficient because
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Figure 11.13: Export to CPN Tools

the software development process is shorter. It is more elegant be-
cause the operations are done at a higher level of abstraction and
the language used is more expressive due to its declarative nature.
In (Garwood et al. 2006; Bhattacharya et al. 2005; Komatsoulis et al.
2007; Li et al. 2006; Song et al. 2007) also model-driven approaches
are applied in the life sciences but not in the field of signal transduc-
tion pathways. This work presents the following advantages over the
traditional approaches: (i) It allows some tasks that were previously
done by hand to be automated. (ii) This approach produces more
modular tools, making the transformation mechanism independent
from the data persistence format, improving the extensibility and
maintainability of these tools. (iii) Biologists do not need to know
technical details about the migration process, which increases their
productivity. (iv) It also takes advantage of model transformation
technologies. Using models to represent the data to be transformed
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K?xml version="1.0" encoding="iso-8859-1"72>
<workspaceElements>
<generator format="5" tool="CPFN Tools" version="2.0.0"/>
<cpnet
<globbox>
<block id="ID18027118">
<id>Resources</id>
<color id="ID1881l2666">
<id>C</id>
<enum>
<id>LP5</id>
</ enum>
<layout>colset O = with LP5;</layout>
</color>
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Figure 11.14: Content of the final XML file
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Figure 11.15: Final result shown in CPN Tools
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permits the data structure to be more clearly represented making its
manipulation more intuitive since it deals with high-level concepts.
(v) Traceability capabilities are provided implicitly. These capabili-
ties help to locate invalid information in the data sources. Finally,
(vi) using languages such as QvT-Relations offers the advantage of
expressing the mappings between the source and the target domains
in a declarative way. This way of representing the relationships be-
tween the two domains is more expressive than the traditional and
imperative approaches. With this case-study we have presented the
first steps in using model-driven techniques in the live science, which
in the future can lead us to automatically generate more efficient and
attractive visual metaphors and tools.



INGENIO: SOFTWARE MEASUREMENT BY USING
QVT TRANSFORMATIONS IN AN MDA CONTEXT

<< ne accurate measurement
is worth a thousand expert opinions»

— Grace Murray Hopper

American computer scientist and United States Navy officer, 1906-1992

The current necessity of the software industry to improve its com-
petitiveness forces continuous process improvement. This must
be obtained through successful process management (Florac et al.
2000). Measurement is an important factor in the process life cy-
cle due to the fact that it controls issues and lacks during software
maintenance and development. In fact, measurement has become a
fundamental aspect of Software Engineering (Fenton and Pfleeger
1998).

Software Processes constitute the work base in a software orga-
nization. Companies therefore wish to carry out an effective and
consistent software measurement to facilitate and promote continu-
ous process improvement. To do this, a discipline for data analysis
and measurement (Dennis and Goldenson 2004), and measure defi-
nition, compilation and analysis in the process, projects and software
products, is needed.
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SOFTWARE MEASUREMENT BY USING QVT TRANSFORMATIONS

The great diversity in the kinds of entities which are candidates
for measurement in the context of the software processes points to
the importance of providing the means through which to define
measurement models in companies in an integrated and consistent
way. This involves providing companies with a suitable and con-
sistent reference for the definition of their software measurement
models along with the necessary technological support to integrate
the measurement of the different kinds of entities.

With the objective of satisfying the exposed necessities, it is highly
interesting to consider the MDE paradigm (Bézivin et al. 2005) in
which Software Measurement Models (SMM) are the principal ele-
ments of the measurement process, so that designs are expressed
and managed a much higher level of abstraction.

Software measurement can benefit from the MDE paradigm, pro-
viding integration and support to carry out an automatic software
measurement of any software type. This implies that: (i) the defini-
tion of measurement models conform to a Software Measurement
metamodel; (ii) the definition of generic measurement methods are
applicable to any model-based software artifact; and (iii) support for
computing measures, for storing results and for enhancing decision
making.

These aspects constitute the main interest of the work presented
in this chapter, in which the application of MDA principles, stan-
dards and tools are used in software measurement. The goal of this
proposal is to develop a generic framework to define measurement
models which conform to a common measurement metamodel, and
to measure any software entity with regard to a domain metamodel.
In order to develop this proposal, the MULTIPLE framework which
has been presented in chapter 8 has been used.

Some publications (Garcia et al. 2006; Garcia et al. 2005; Garcia
et al. 2007) are used as a starting point for this work. These works
present Framework for the Modeling and Evaluation of Software
Processes (FMESP), which consists of a framework based on MOF
and MDA. This includes a software measurement ontology and meta-
model, and the GenMETRIC tool which is used to define software
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measurement models, and to calculate defined measures for these
models. The ontology permits the identification of all the concepts,
proportions exact definitions for all the terms and clarifies the re-
lationship between them. This chapter presents an adaptation of
FMESP to MDA, which is described in detail in following sections.

The remainder of the chapter is organized as follows. Section 12.1
provides an overview of related works and Section 12.2 describes the
SMF, including conceptual architecture, technological aspects, and
method. In Section 12.3 the use of the framework is illustrated with
an example. Finally, conclusions are outlined in Section 12.4.

121 RELATED WORKS

We have found numerous publications which deal with tools that
have important success factors in software measurement efforts
(Komi-Sirvi6 et al. 2001), which supply work environments and
general approximations (Kempkens et al. 2000), or which give ar-
chitectures more specific solutions (Jokikyyny and Lassenius 1999).
Dennis and Goldenson (2004) give a list of tools which support the
creation, control and analysis of software measurements. (Auer et al.
2003) furthermore examines various software measurement tools,
such as MetricFlame, MetricCenter, Estimate Professional, CostXPert
and ProjectConsole, in heterogenic environments.

It is also possible to find certain proposals through which to tackle
software measurement which are more integrated and less specific
than in the aforementioned cases. Palza et al. (2003) propose the
Multidimensional Measurement Repository (MMR) tool which is
based on the Capability Maturity Model Integration (CMMI) model
for the evolution of software processes, and it is possible to consult
similar tools in (Harrison 2004; Lavazza and Agostini 2005; Scotto
et al. 2004). These proposals are, however, restricted to concrete
domains or to evaluation models of specific quality.

Vépa et al. (2006) present a metamodel which allows the storage
of measurement data, and a set of transformations through which
to carry out the measurement of models based on a metamodel.
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This work focuses upon the technological aspects needed to imple-
ment the software measurement with ATL technology, by offering
the user a variety of graphic representations of the measurement
results obtained.

This final proposal and the one presented here are complemen-
tary as they both focus upon two key support elements of generic
measurement: the conceptual base, which is the main contribution
of FMESP, and technological implementation. Some differences from
technological point of view exist.

The measurements which are applied by Vépa et al. (2006) are pre-
viously defined in the ATL transformation archives. The measurable
entities are typical of the metamodels presented in this work (Kernel
Meta Meta Model (KM3) and UML2). For example, the measurable
entities for a model which is expressed in KM3 might be package,
class, attribute, reference etc.

The measurements in the proposal presented here are defined
by the user, i. e. the model transformation needed to carry out the
measurement it is not a model previously defined, but this model is
defined according to the users needs. The measurement definition is
possible thanks to the software measurement model, which contains
all that is relative to the measurement to be carried out in each case.
Moreover, the measurable entities are those which are defined in their
corresponding domain and measurement metamodel (expressed in
Ecore). A further difference is that SMF uses QVT.

12.2 SOFTWARE MEASUREMENT FRAMEWORK

In order to carry out this proposal it was considered of interest to
adapt FMESP to the MDE paradigm. The objective of this was to ex-
ploit the benefits that the paradigm could contribute to software
measurement by, on one hand adopting the software measurement
metamodel defined in FMESP, and on the other by evolving Gen-
METRIC to an environment which would allow the definition of
software measurement models and the computation of the models
defined. All this would take place within the context of models and
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model transformations of the MDA architecture. The SMF is the evo-
lution of the FMESP, but is adapted to the MDE paradigm and uses
MDA technology.

The following subsections explain the conceptual, technological
and methodological elements which are part of SMF.

12.2.1  Conceptual architecture

Due to the necessity of having a generic and homogeneous envi-
ronment for software measurement (Garcia et al. 2006; Garcia et al.
2005; Garcia et al. 2007), a conceptual architecture and a tool with
which to integrate the software measurement are proposed. In the
following section, the main characteristics of this proposal are de-
scribed. A more detailed description can be found in (Garcia et al.
2007).

The proposed software measurement described in this chapter
is part of the FMESP framework (Garcia et al. 2006). The FMESP
framework permits representing and managing software processes
from the perspectives of modeling and measurement. We focus on
the measurement support of the framework whose elements are
detailed according to the three layers of abstraction of metadata
that they belong to, according to the MOF standard. In Fig. 12.1, the
conceptual architecture for integrated measurement is represented.

As can be observed in Fig. 12.1, the architecture has been organized
into the following conceptual levels of metadata:

Meta-metamodel Level (M3) — At this level, an abstract language
for the definition of metamodels, is found. This is the MOF
language.

Metamodel Level (M2) — In the M2 level, two generic metamodels
which conform with this framework are required. These are:
the Measurement Metamodel, to define specific measurement
models; and Domain Metamodels, to represent the kinds of
entities which are candidates for measurement in the context
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Integrated Measurement: Conceptual Framework

M3
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M2 Software Domain
Mesaurement, Metamodels
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[ [ [ I
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Data Data M Data M Data H

Figure 12.1: Conceptual framework with which to manage software mea-
surement

of the evaluation of the software processes, such as, UML and
Process metamodels.

Model Level (M1) — Specific models are included at this level.
These models may be of two types: Measurement Models,
which are examples of the measurement metamodel in the M2
level and which are defined in such a way as to satisfy some
of the company’s information needs; and Domain Models,
which are defined according to their corresponding domain
metamodels.

In order to establish and clarify the concepts and relationships that
are involved in the software measurement domain before designing
the metamodel, an ontology for software measurement was devel-
oped (Garcia et al. 2005). The measurement metamodel was derived
by using the concepts and relationships stated in the ontology as a
base. The Software Measurement metamodel (which is integrated in
SMF) is organized around four main packages—for greater detail see
(Garcia et al. 2005):
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Software Measurement Characterization and Objectives — which
includes the constructors required to establish the scope and
objectives of the software measurement process.

Software Measures — which aim at establishing and clarifying the
key elements in the definition of a software measure.

Measurement Approaches — This package introduces the measure-
ment approach element which is used to generalize the differ-
ent approaches used by the three kinds of measures to obtain
their respective measurement results. A base measure applies
a measurement method. A derived measure uses a measure-
ment function. Finally, an indicator uses an analysis model
to obtain a measurement result that satisfies an information
need.

Measurement Action — This establishes the constructs related to
the act of measuring software. A measurement (which is an
action) is a set of measurement results, for a given attribute
of an entity, using a measurement approach. Measurement
results are obtained as the result of performing measurements
(actions).

12.2.2  Technological aspects

In this section the technological aspects of SMF are explained.

12.2.2.1  Adaptation to MDA

In Fig. 12.2 the necessary elements for the FMESP adaptation to MDA
are presented according to MOF levels.

As can be observed in Fig. 12.2, two new elements, namely the
QvT-Relations Model and metamodel, have been added to adapt

the conceptual architecture illustrated in Fig. 12.1 to MDA. The QVT-

Relations Model (which is described in greater detail in Section
12.2.2.2) is obtained automatically through a transformation from
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Figure 12.2: Elements of the FMESP adaptation in a MDA context

a Measurement model. It contains all the information necessary to
carry out the transformation of the SMF proposal. Ecore language
has been selected because it is a common and widely used modeling
language based on EMOF as it has been demonstrated throughout
this thesis.

12.2.2.2  QVT-Relations transformation

The QvT-Relations model is the transformation needed to perform
the measurement. In this transformation two source models are
involved: a Software Measurement model and a domain model; the
target model is the Software Measurement Model with the measure-
ment results (see Fig. 12.2). Due to the fact that the proposal is about
generic measurement, it is very important that the QVT model is
obtained in a generic way. The MDE paradigm and MDA technology
are applied for this reason.

This transformation is obtained automatically from the previous
QVT transformation shown in Fig. 12.3. The QvT-Relations model,
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(.qvt) (source)
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[ Software Measurement Model ]

(target)

Figure 12.3: QvT-Relations transformation model

called the extended or final QvT-Relations model, is obtained from a
QVT transformation, where there are two source models: the basic or
initial QvT-Relations model (which conforms to the QvT-Relations
metamodel) and the SMM previously defined.

The extended QvT-Relations model extends the basic QvT-Rela-
tions model with the following aspects:

o Transformation Model. To obtain the extended QVT-Relations
model, the source model specification is needed. In this case,
there are two source models: the SMM and the domain model.
Due to the fact that the SMM is always the same, this model is
already defined in the basic QvT-Relations model. Therefore,
only the domain model needs to be defined. This informa-
tion is taken from the Software Measurement model which
contains all the measurement information.

o Relation Domain. In order to perform the transformation, it is
necessary to define the checkonly domain object templates. In
this case there are two, one for each source model: the domain
model and the SMM.

o Function. This element contains the necessary OCL queries
to carry out the measurement. These OCL queries are the
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Figure 12.4: Software Measurement Process

implementations of the Measurement Action package defined
in the Software Measurement Metamodel.

These elements are empty in the basic QvT-Relations model, and
they are extended to obtain the extended QvVT-Relations model, the
transformation model necessary to carry out the measurement. In
the Fig. 12.4 all the software measurement process is shown.

12.2.3 Method

The necessary steps to carry out the software measurement by using
the SMF are explained below (see Fig. 12.2):

1. Incorporation of domain metamodel. The measurement is
made in a specific domain. This domain must be defined
according to its metamodel (it is situated in the M2 level and
it conforms to the Ecore meta-metamodel).

2. Creation of measurement model. The measurement model is
created according to the Software Measurement metamodel
which is integrated in SMF. This first model is the source
model, so the results are therefore still not defined, i. e., the
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Measurement Action package from the Software Measurement
metamodel is still not instantiated.

3. Creation of domain model, which is defined according to its
corresponding domain metamodel (created in the first step).
The domain models are the entities whose attributes are mea-
sured by calculating the measurements defined in the corre-
sponding measurement models. Examples of domain models
are: the UML models (use cases, class diagrams, etc.), or the
E/R models.

4. Measurement execution. the measurement execution is car-
ried out through QVT transformation, in which, the measure-
ment model is obtained by starting from the two source mod-
els (the measurement model and the domain model) where
the results are defined, i. e., the Measurement Action package
is instantiated. The target measurement model is the extension
of the source measurement model. The measurement results
are calculated by running OCL queries on the domain model.

An example of the method application is shown in the following
section.

12.3 EXAMPLE

To illustrate the benefits of the proposal, consider the example of
relational database measurement. For greater simplicity, only the fol-
lowing elements are shown in Fig. 12.5: Measurement Method, Entity
(to which the measurement method is applied) and Measurement
result (the result is obtained by executing the measurement method
on the entity).

Furthermore, it is necessary for the domain metamodel, in this
case Relational Databases domain, to have been previously chosen.
Both metamodels are independent (Fig. 12.5), although they are logi-
cally related. In Fig. 12.5 the measurement and domain metamodels
have been represented in different colours.
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Figure 12.5: Relationship between Relational Database (domain) Metamo-
del and sMMm

In this example, the chosen measurement method has been
COUNT elements of type TABLE, which is an instantiation of the
abstract method COUNT elements of type X.

In order to carry out the measurement, the following four steps
must take place:

1. Incorporation of Relational Databases metamodel (repre-
sented in a dark colour in Fig. 12.6).

2. Creation of measurement model conforms to Software Mea-
surement metamodel. For the measurement method COUNT
elements of type TABLE, the values of Entity and Measure-
ment Method are Table and Count, respectively. The Measure-
ment Result is not still defined.
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Teacher Student Department School
id id key id
name name name name
office degree URL URL
course course course

Course
course
name
key

Figure 12.6: Relational Database model (relational schema)

. Creation of model conforms to the Relation Database metamo-
del. In this case, the model (relational schema) is a university
domain composed of five tables with their corresponding pri-
mary keys (bold), foreign keys (underlined and italic), and
attributes (see Fig. 12.6).

The extended QVT-Relations model is needed to carry out the
fourth step. This transformation is obtained automatically (see
section 12.2.2.2). The extended elements are detailed below:

Transformation Model — The target model is the relational
databases domain model.

Relation Domain — The checkonly domain of the relational
schema domain is indicated (see Listing 12.1).

Function — this contains the OCL queries with which to per-
form the measurement, in this case, the queries neces-
sary to implement the COUNT element of type X mea-
surement method where X is Table (see Listing 12.2).

. The source models used to carry out the measurement are:
the measurement model (second step), the domain model
(third step) and the extended QvT-Relations model. The tar-
get model obtained is the measurement model with defined
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Listing 12.1: Relation domain elements from extended QvT-Relations mo-

del
1 checkonly domain relationDomain srcRelationalSchema
RelationalSchema {
2 name = myRelationalSchema
3 b8
4 checkonly domain measurementDomainSrc srcMeasurementModel
MeasurementModel {
5 modelName = myModelName,
6 measurements = dstMeasurementl : Measurement {
7 name = myMeasurementName,
8 method = dstMethod : MeasurementMethod {
9 nameMethod = myMethod
10 3,
1 entity = dstEntity : Entity {
12 nameEntity = myEntity
13 3,
14 result = dstResult : MeasurementResult {3}
15 } // Result not defined yet
16 b8

Listing 12.2: Function elements from extended QvT-Relations model

1/ [...]
2 enforce domain measurementDomainDst dstMeasurementModel
MeasurementModel {

3 modelName = myModelName,

4 measurements = dstMeasurementl : Measurement {

5 name = myMeasurementName ,

6 method = dstMethod : MeasurementMethod {

7 nameMethod = myMethod

8 },

9 entity = dstEntity : Entity {

10 nameEntity = myEntity

1 Do

12 result = measurementAction(srcRelationalSchema,
myMethod, myEntity)

13 }

14 };

15 } // End of relation
16 function measurementAction(relationalSchema
RelationalSchema, method : String, entity : String)

Integer {
17 relationalSchema.modelElements->select(
18 m : ModelElement | m.oclIsTypeOf(Table))-> size()

19 3}
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Listing 12.3: Measurement result

1 <?xml version="1.0" encoding="ASCII"?>

2 <measurement:MeasurementModel xmi:version="2.0"

3 xmlns:xmi="http://www.omg.org/XMI"

4 xmlns:measurement="http://bmora/metamodels/measurement”
5 modelName="ER_MEASUREMENT ">

6 <measurements name="RELATIONAL SCHEMA MEASUREMENT">

7 <method nameMethod="COUNT"/>

8 <entity nameEntity="TABLE"/>

9 <result result="5">

0 </measurements>

1

1
11 </measurement:MeasurementModel>

Measurement Result (see Listing 12.3). In this example the
value of Measurement Result is 5 (number of tables).

In the same way as is illustrated with Relational Databases, the
method can be applied to any other domains, such as for example,
UML models, Project Management or Business Processes, etc.

12.4 CONCLUSIONS

In this chapter a generic framework for the definition of measure-
ment models based on a common metamodel has been presented.
The framework allows the integrated management and measurement
of a great diversity of entities.

Following the MDA approach and starting from a (universal) mea-
surement metamodel, it is possible to carry out the measurement
of any domain by means of QVT transformation, and this process is
completely transparent to the user.

With SMF, it is possible to measure any software entity. The user
task consists in selecting the domain metamodel (the domain to be
measured) and defining the source models. The software metamodel
is integrated in the framework.
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MORPHEUS: A SUPPORTING TOOL FOR THE
ATRIUM METHODOLOGY

« erfection of means and confusion of goals seem,
in my opinion, to characterize our age.»

— Albert Einstein
German physicist and Nobel prize in Physics in 1921, 1879-1955

Software development process is always a challenging activity, espe-
cially because systems are becoming more and more complex. In this
context, the MDD (Selic 2003) approach is gaining more and more
attention from practitioners and academics. MDD has demonstrated
positive influences for reliability and productivity of the software
development process due to several reasons (Selic 2003): it allows
one to focus on the ideas and not on the supporting technologys; it
facilitates not only the analysts get an improved comprehension of
the problem to be solved but also the stakeholders obtain a better
cooperation during the software development; etc. With those aims,
MDD exploits models both to properly document the system and
automatically or semi-automatically generate the final system. This
is why the software development is shifting its attention (Bézivin
2004) from “‘everything is an object”, so trendy in the eighties and
nineties, to “‘everything is a model”.
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MORPHEUS: A TOOL FOR THE ATRIUM METHODOLOGY

ATRIUM (Navarro 2007; Montero and Navarro 2009) has been de-
fined following the MDD principles, as models drive its application,
and the tool MORPHEUS—see (Navarro 2011) for demos—has been
built to support its models and activities. This methodology has
been defined to guide the concurrent definition of requirements and
software architecture, paying special attention to the traceability be-
tween them. In this context, the support of MORPHEUS is a valuable
asset allowing the definition of the different models; maintaining
traceability among them; supporting the necessary transformation,
etc. This chapter focuses on MORPHEUS, its support to a MDD pro-
cess, and how the MULTIPLE framework plays an important role on
this tool. MORPHEUS was developed and funded in the context of
the META' and MDDREHnAB? projects.

This chapter is structured as follows. After this introduction, a
brief description of ATRIUM is presented in section 13.1. Section 13.2
describes the supporting tool of ATRIUM, MORPHEUS. Related works
are described in section 13.3. Finally, section 13.4 ends this paper by
presenting the conclusions and further works.

13.1 ATRIUM AT A GLANCE

ATRIUM provides the analyst with guidance, along an iterative pro-
cess, from an initial set of user/system needs until the instantiation
of the proto-architecture. ATRIUM entails three activities to be iter-
ated over in order to define and refine different models and allow
the analyst to reason about partial views of both requirements and
architecture. Fig. 13.1 shows, using SPEM (OMG 2008c¢), the ATRIUM
activities that are described as follows:

Modelling Requirements — This activity allows the analyst to iden-
tify and specify the requirements of the system-to-be by using
the ATRIUM Goal Model (Navarro et al. 2006), which is based

META: Models, Environments, Transformations and Applications, ref. TIN2006-
15175-Cos. Department of Science and Technology (Spain) I+D+1.

2 MDDRehab project, ref. TC20091111. Universidad de Castilla-La Mancha.
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Figure 13.1: An outline of ATRIUM

on Knowledge Acquisition in autOmated Specification (KAOS)
(Dardenne et al. 1993) and the Non-Functional Requirements
(NFR) Framework (Chung et al. 2000). This activity uses as
input both an informal description of the requirements stated
by the stakeholders, and the CD 25010.2 Software product
Quality Requirements and Evaluation (SQuaRE) quality model
(ISO 2008). The latter is used as framework of concerns for
the system-to-be. In addition, the architectural style to be
applied is selected during this activity (Navarro 2007).

Modelling Scenarios — This activity focuses on the specification
of the ATRIUM Scenario Model, that is, the set of Architec-
tural Scenarios that describe the system’s behaviour under
certain operationalization decisions (Navarro et al. 2007b).
Each ATRIUM Scenario identifies the architectural and environ-
mental elements that interact to satisfy specific requirements
and their level of responsibility.
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Synthesize and Transform — This activity has been defined to gen-
erate the proto-architecture of the specific system (Navarro
and Cuesta 2008). It synthesizes the architectural elements
from the ATRIUM scenario model that build up the system-
to-be, along with its structure. This proto-architecture is a
first draft of the final description of the system that can be
refined in a later stage of the software development process.
This activity has been defined by applying M2M transformation
techniques (Czarnecki and Helsen 2006), specifically, using
the QvT-Relations language (OMG 2008a) to define the nec-
essary transformations. It must be pointed out that ATRIUM
is independent of the architectural metamodel used to de-
scribe the proto-architecture, because the analyst only has to
describe the needed transformations to instantiate the archi-
tectural metamodel he/she deems appropriate. Currently, the
transformations to generate the proto-architecture instantiat-
ing the PRISMA architectural model (Pérez et al. 2006) have
been defined. PRISMA was selected because a code compiler
exists for this model.

ATRIUM has been validated in the context of the tele-operated
systems. Specifically, the Environmental Friendly and Cost-Effective
Technology for Coating Removal (EFTCoR) (EFTCoR 2002-2005)
project has been used for validation purposes. The main concern of
this project was the development of a tele-operated platform for non-
pollutant hull ship maintenance. In this chapter, we are going to use
the specification made of the Robotic Device Control Unit (RDCU) to
briefly illustrate how MORPHEUS provides support to each activity
of ATRIUM. The RDCU is in charge of commanding and controlling
in a coordinated way the positioning of devices along with the tools
attached to them, however, it is not worth describing this case study
in too much detail.
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The main idea behind MORPHEUS is to facilitate a graphical environ-
ment for the description of the three models used by ATRIUM (Goal
Model, Scenarios Model, and PRISMA Model) in order to provide the
analysts with an improved legibility and comprehension. Several
alternatives were evaluated such as the definition of profiles, or the
use of meta-modelling tools. Eventually, we developed our own tool
in order to provide the proper integration and traceability between
the models.

Fig. 13.2 shows the main elements of MORPHEUS. The Back-End
layer allows the analyst to access to the different environments, and
to manage the projects he/she creates. Beneath this layer, the dif-
ferent environments of MORPHEUS are shown, providing each one
of them support to a different activity of ATRIUM. The Repository-
Manager layer is in charge of providing the different environments
with access to the repository where the different models and meta-
models are stored. In addition, each one of the graphical environ-
ments (Requirements Model Editor, Scenario Editor, and Architec-
ture Model Editor) exploits Microsoft Office Visio Drawing Control
2003 (Microsoft 2003)— VisioOCX in Figs. 13.3, 13.8 and 13.12—for
graphical support. This control was selected to support the graphical
modelling needs of MORPHEUS because it allows a straightforward
management, both for using and modifying shapes. This feature is
highly relevant for our purposes because all the kinds of concepts
that are included in our metamodels can easily have different shapes,
facilitating the legibility of the models. In addition, the user is pro-
vided with all the functionalities that Visio has, that is, she/he can
manage different diagrams to properly organize the specification,
make zoom to see more clearly details, print the active diagram, etc.
In the following sections, each one of the identified environments is
described.
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Figure 13.2: Main architecture of MORPHEUS

13.2.1  Requirements Environment

As described in section 13.1, Modelling Requirements is the first ac-
tivity of ATRIUM. In order to support this activity, the Requirements
Environment was developed. From the very beginning of the EFTCoR
project, one of the main problem we faced was how the requirements
metamodel had to change to be adapted to the specific needs of the
project. With this aim, this environment was developed with two
different work contexts. The first context is the Requirements Meta-
Model Editor (RMME) in Fig. 13.3, which provides users with facilities
for describing requirement meta-models customized according to
project’s semantic needs (see Fig. 13.4). The second context is the
Requirements Model Editor (RME), also shown in Fig. 13.3, which
automatically offers the user facilities to graphically specify models
according to the active metamodel (see Fig. 13.7). These facilities are
very useful to exploit MORPHEUS to support other proposals.

It can be observed in Fig. 13.4 that the RMME allows the user to
describe new meta-elements by extending the core metamodel de-
scribed in Fig. 13.5, that is, new types of artifacts, dependencies, and
refinements. The applicability of this metamodel was was evaluated
by analysing the existing proposals in requirements engineering
(Navarro et al. 2006). For instance, Fig. 13.4 shows that the two
meta-artifacts (goal and requirement) of the ATRIUM Goal Model
were defined using the RMME. In order to fully describe the new
meta-elements, the user can describe their meta-attributes and the
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OCL constraints he/she needs to check any property he/she deems
appropriate. Fig. 13.6 shows how the meta-artifact goal was defined
by extending artifact; describing its meta-attributes priority, author,
stakeholder, etc; and specifying two constraints (Fig. 13.6) to deter-
mine that the meta-attributes stakeholder and author cannot be null.

It is worth noting that automatic support is provided by the envi-
ronment for the evolution of the model, that is, as the metamodel is
modified, the model is updated in an automatic way to support those
changes, asking the user to confirm the necessary actions whenever
a delete operation is performed on meta-elements or meta-atributes.
This characteristic is quite helpful because the requirement model
can be evolved as the expressiveness needs of the project do.

Once the metamodel has been defined the user can exploit it in
the modelling context, RME, shown in Fig. 13.7. It uses VisioOCX to
provide graphical support, as Fig. 13.2 shows, and has been struc-
tured in three main areas. On the right side, the stencils allow the
user to gain access to the active metamodel. Only by dragging and
dropping these meta-elements on the drawing surface in the centre
of the environment, the user can specify the requirements model.
He/she can modify or delete these elements by clicking just as usual
in other graphical environments. For instance, some of the identified
goals and requirements of the EFTCoR are described in the centre of
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Figure 13.3: Main elements of the requirements environment
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Figure 13.4: Meta-Modeling work context of the MORPHEUS Require-
ments Environment

the Fig. 13.7. On the left side of the RME, a browser allows the analyst
to navigate throughout the model and modify it. As Fig. 13.2 illus-
trates, the EventHandler is in charge of manipulating the different
events that arise when the user is working on the RME.

In addition, as Fig. 13.2 illustrates, the RME uses two components
to provide support to OCL: MULTIPLE OCL-CLI and MOFManager.
The former is an engine to check OCL constraints that was integrated
in MORPHEUS. This OCL engine is provided by the MULTIPLE frame-
work and corresponds with the OCL Support CLI component of the
Validation subsystem (see section 8.5.2, page 203). The later was
developed to allow us to manipulate metamodels and models in
MOF (OMG 2006) format. This component behaves as a bridge be-
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Figure 13.5: Core-metamodel for the requirements environment
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tween EMF and MORPHEUS. By exploiting these components the
constraints defined at the metamodel can be automatically checked.
For instance, when the active diagram was checked, two inconsis-
tencies were found that are shown at the bottom of the Fig. 13.7.
However, the support of the tool would be quite limited if it only
provides graphical notation. For this reason, the Analysis Manager,
shown in Fig. 13.2, has been developed to allow the user to describe
and apply those rules necessary to analyse its models. These rules are
defined by describing how the meta-attributes of the meta-artifacts
are going to be valuated depending on the meta-atributes of the meta-
artifacts they are related to by means of which meta-relationships.
Once these rules are defined, the Analysis Manager exploits them
by propagating the values from the leaves to the roots of the model
(Navarro et al. 2007a). This feature can be used for several issues
such as, satisfaction propagation (Navarro et al. 2007a), change prop-
agation, or analysis of architectural alternatives (Navarro 2007).

13.2.2 Scenario Environment

As presented in section 13.1, Modelling Scenarios is the next activity
of ATRIUM. This activity is in charge of describing the scenario mo-
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Figure 13.6: Describing a new meta-artifact in MORPHEUS
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vironment

del. This model is exploited to realize the established requirements in
the goal model by describing partial views of the architecture, where
only shallow-components, shallow-connectors and shallow-systems
are described. In order to describe these scenarios, an extension
of the UML2 Sequence Diagram has been carried out to provide
the necessary expressiveness for modelling these architectural ele-
ments (Navarro 2007). In order to provide support to this activity the
Scenario Model Editor (SME), shown in Fig. 13.8, was developed. The
Scenarios Editor uses the VisioOCX to provide the user with graphi-
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Figure 13.9: What the Scenario Model Editor looks like

cal support for modelling the Scenario Model. The EventHandler is
in charge of managing all the events trigged by user actions. Fig. 13.9
illustrates how the SME has been designed. In a similar way to the
RMME described in the previous section, it has been structured in
three main areas. The Model Explorer, on the left, facilitates the
navigation through the Scenario Model being defined in an easy an
intuitive way and manages (creation, modification and deletion) the
defined scenarios. It is pre-loaded with part of the information of
the requirements model being defined. It facilitates to maintain the
traceability between the Goal Model and the Scenario Model. In the
middle of the environment is situated the Graphical View where the
elements of the scenarios can be graphically specified. In this case,
Fig. 13.9 depicts the scenario “OpenTool” that is realizing one of
the operationalizations of the goal model. It can be observed how
several architectural and environmental elements are collaborating
by means of a sequence of messages. On the right side it can be seen
the Stencil that makes available the different shapes to graphically
describe the ATRIUM scenarios.

Another component of the Scenario Environment is the Synthesis
processor (see Fig. 13.10). It provides support to the third activity of
ATRIUM Synthesis and Transform which is in charge of the genera-
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tion of the proto-architecture. For its development, the alternative
selected was the integration an existing M2M transformation tool.
The features that the candidates tools had to provide were, first, to
support the QVT-Relations language and second, to be easily inte-
grable with the existing work. Specifically, the MULTIPLE QVT-CLI
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Figure 13.11: Generate architecture dialog
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Figure 13.12: Main elements of the Software Architecture Environment

tool was chosen as Fig. 13.12 illustrates. It accepts as inputs the meta-
models and their corresponding models in XMI format to perform
the transformation. This engine is invoked by the Synthesis processor
which proceeds in several steps. First, it stores the Scenario Model
being defined in XMI. Second, it provides the user with a graphical
control to select the destination target architectural model, the QvT
transformation to be used and the name of the proto-architecture to
be generated. By default, PRISMA is the selected target architectural
model because the QVT rules (Navarro 2007) for its generation have
been defined. However, the user can define its own rules and archi-
tectural metamodels to synthesize the Scenario Model. Finally, the
Synthesis processor performs the transformation by invoking the Qv T
engine. The result is an XMI file describing the proto-architecture.
Fig. 13.11 shows the dialog which provides the UI to invoke the syn-
thesis processor with the corresponding fields to select each one of
the source and target files.

13.2.3  Software Architecture Environment

As can be observed, both the Requirements Environment and the
Scenario Environment provide support to the three activities of
ATRIUM. However, as specified in section 13.1, a proto-architecture is
obtained at the end of its application. This proto-architecture should
be refined in a latter stage of development to provide a whole descrip-
tion of the system-to-be. With this aim the Software Architecture
Environment (Perez et al. 2006) was developed. It makes available
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Figure 13.13: What the Architectural Editor looks like

a whole graphical environment for the PRISMA-ADL (Pérez et al.
2006) so that the proto-architecture obtained from the scenarios
model can be refined.

As Fig. 13.13 depicts, this environment integrates VisioOCX for
graphical support in a similar way to the previous ones. The Archi-
tectural Model Editor is the component that provides the graphical
support, whose appearance can be seen in Fig. 13.12. It has three
main areas: the stencil on the right where the PRISMA concepts are
available to the user, the graphical view in the centre where the dif-
ferent architectural elements are described; and the model explorer
on the right. It is worthy of note that this browser is structured in
two levels following the recommendation of the ADL (Perez et al.
2006): definition level, where the PRISMA types are defined; and
configuration level where the software architecture is configured.

As this environment should allow the user to refine the proto-
architecture obtained from the synthesis of the scenario model, it pro-
vides her/him with facilities to load the generated proto-architecture
if PRISMA was the selected target architectural model. In addition,
it also provides an add-in that facilitates the generation of a textual
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PRISMA specification, which can be used to generate C# code by
using the PRISMA framework.

13.3 RELATED WORKS

Nowadays, MDD is an approach that is gaining more and more follow-
ers in the software development area, and lots of tools that support
this trend have arisen. Nevertheless, none of the existing solutions
can completely cover the capabilities of the MORPHEUS tool.

The Eclipse Modeling Framework (EMF) has become one of the
most used frameworks to develop model-based applications. EMF
provides a metamodelling language, called Ecore, that can be seen as
an implementation of the EMOF language. Around EMF lots of related
projects have grown that complement its modelling and metamod-
elling capabilities, such as OCL interpreters, model transformation
engines, or even tools able to automatically generate graphical edi-
tors, such as GMF (Eclipse 2011e). The advantages are twofold: first
they are usually quite mature tools, and second it is easy to inter-
operate with them by means of the XMI format. That is why the
MORPHEUS tool has the MOFManager component: it allows us to
reuse these tools as is the case of the MULTIPLE OCL checker and the
MULTIPLE model transformations engine. Nevertheless, a solution
completely based in EMF has also some important drawbacks. The
main one is that, although it is not mandatory, this framework and its
associated tools are fundamentally designed to deal with static mod-
els that do not change at run time. This factor makes frameworks like
GMF completely useless for our purposes, because in MORPHEUS
the requirements metamodel is populated with instances during its
evolution and it is necessary to be able to synchronize them.

Other analyzed alternatives are the MS DSL Tools (Cook et al.
2007). MS DSL Tools are a powerful workbench that also provides
modelling and metamodelling capabilities to automatically gener-
ate both code and graphical editors in Visual Studio. However, it
exhibits the same weakness than the previous solution: it is basically
designed to deal with models that do not evolve during time, so that,
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these models can only be modified during design time and not at run
time. Moreover, it lacks of the wide community that provides com-
plementary tools to deal, check and analyze models, in comparison
with the solution that is completely based on EMF. This disadvantage
is also present in other tools, like the ones associated to meta-CASE
(Gong et al. 1997) and domain specific modelling techniques, such
as MetaEdit+ (Metacase 2007; Kelly et al. 1996).

13.4 CONCLUSIONS AND FURTHER WORKS

In this chapter a tool called MORPHEUS has been presented pay-
ing special attention to how it provides support to a MDD process,
ATRIUM, and how this tool makes use of the functionality provided
by MULTIPLE to enrich this MDD process. It has been shown how
each model can be described by using this tool and, specially, how
traceability throughout its application is properly maintained. It is
also worth noting the meta-modelling capabilities it has, providing
automatic support to evolve the model as the metamodel is changed.
The integration of an OCL checker is interesting as it allows the user
to evaluate the model using the properties he/she deems appropriate.
The use of QVT-Relations to generate the architectural models is
another key point. This declarative language enables the use of any
architectural model that fits the user’s needs.
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CLOSURE






SUMMARY

This part closes this thesis. Chapter 14 describes some relevant works
which are closely related to the MULTIPLE framework and proposal.
Specifically, this chapter focuses in related works in the areas of
feature modeling and SPLs. Next, chapter 15 summarizes the con-
tents of this thesis and presents the conclusions of the work. Finally,
16 describes the most relevant works, which have been produced
throughout the development of this thesis, that have been published
in different journals and conferences, both national and interna-
tional.
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RELATED WORKS

« ompetition is not only
the basis of protection to the consumet,
but is the incentive to progress.»

— Herbert Clark Hoover
315t (1929-1933) President of the United States, 1874-1964

Model Driven Engineering, Feature Modeling and Software Product
Lines have been an important discussion topic in the Software Engi-
neering community. There are many studies on these subjects and a
great amount of proposals have arisen.

This chapter summarizes other works that are closely related with
the MULTIPLE framework and the proposal described in this thesis.
Since our work covers several paradigms and stages of the devel-
opment of a SPL, related works can be grouped in the following
topics: MULTIPLE and other feature modeling proposals (including
the upcoming variability management proposal from the OMG); fea-
ture models and class diagrams; constraints in feature modeling
and; MULTIPLE and other SPLE approaches (both classical and model-
based). Next, they are presented.
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RELATED WORKS

14.1 MULTIPLE FEATURE MODELS AND OTHER FEATURE
MODELING PROPOSALS

Most of the proposals for feature modeling are based in the original
FODA notation. Such proposals have contributed several extensions
to it (Chen et al. 2009). Our work is closely related with previous
research in feature modeling, however, there are several distinctive
aspects:

Czarnecki and Kim (2005) propose a notation for cardinality-
based feature modeling. In this sense, our tool shares most of this
notation as it is widely known and used, but we have included some
variants. First, in our approach features can not have an attribute
type, but rather, they can have typed feature attributes which can
be used to describe parameterized features. Second, according to
Czarnecki and Kim op. cit. both feature groups and grouped features
can have cardinalities. However, the possible values for grouped
features cardinalities are restricted. In our proposal, these values are
not restricted and have different meanings: cardinality of feature
groups specify the number of features that can be instantiated, and
cardinality of grouped features specify the number of instances that
each feature can have.

Our work describes a prototype to define configurations of feature
models. Previous work has been also done in this area, such as the
Feature Modeling Plugin (FMP) (Antkiewicz and Czarnecki 2004).
This tool allows the user to define and refine a feature model and
configurations by means of specializations. The advantage of this
approach is that it is possible to guide the configuration process by
means of constraint propagation techniques. The main difference
with our work is that in FMP configurations are defined in terms of
the feature metamodel and both models and configurations coexist at
the same layer. Thus, in order to be able to deal both with models and
configurations it is necessary to build complex editors (as they must
guarantee that the specialization process—as explained in chapter 6—
is properly done).
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Besides the difference stated before (configuration by specializa-
tion vs. configuration by instantiation), our tool also provide a more
intuitive graphical metaphor. We state that because feature models
in MULTIPLE are represented using the traditional notation (i. e., trees
of boxed features linked with decorated lines). This advantage of
MULTIPLE with regard to other tools not only applies for FMP, but also
for other feature modeling tools such as pure::varianTs (Beuche
2007) or FEatureMarrinG (Heidenreich et al. 2008). An example
of such advantage is that MULTIPLE is used by external researchers
which are not related with this thesis and its case studies, such as
Duran-Limon et al. (2011);

14.2 MULTIPLE AND THE OMG COMMON VARIABILITY LAN-
GUAGE

Common Variability Language (CVL)—(OMG 2009)—is the OMG’s
upcoming standard for variability management. At this moment,
CVL is still under development and only the Request for proposal
(RFP) document is publicly available. However, with respect to the
REP, we can state that MULTIPLE is strongly aligned with the upcom-
ing CVL standard, since: (i) MULTIPLE uses other MOF standards (MOF,
UML, OCL, QVT, XMI); (ii) MULTIPLE is a functional tool based on EMF,
which guarantees interoperability; (iii) MULTIPLE can express vari-
ability on models using the most common variability mechanisms;
(iv) MULTIPLE provides support for defining and checking complex
constraints; (v) in MULTIPLE, variability is defined as a separate mo-
del and semantics of the variability language are defined by using
QVT; etc. Specifically, MULTIPLE complies with sections 5.1.x, 5.2.5,
6.1, 6.4.1, 6.5.1.x and 6.5.2.x of the CVL RFP (op. cit.).

14.3 FEATURE MODELS AND CLASS DIAGRAMS

Some previous works have already represented feature models as
class diagrams. In Czarnecki and Kim (2005) the translation from
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feature models to class models is performed manually, and no set
of transformation rules are described. In this work, OCL is also
presented as a suitable approach to define model constraints, but
as the correspondences between feature models and class diagrams
are not precisely defined, there is no automatic generation of OCL
invariants.

Laguna et al. (2008) do present a set of QVT rules to automatically
generate class diagrams from feature models. However, in this case,
neither model constraints nor configuration definitions support is
presented.

14.4 FEATURE MODEL CONSTRAINTS

Batory (2005) present a proposal for feature constraints definition
and checking. Specifically, this work proposes to represent features as
propositions and restrictions among them are represented as propo-
sitional formulas. However, in propositional formulas only true and
false values are allowed. This approach is not suitable to our work,
as we can have typed attributes which can not be expressed by this
kind of formulas. Thus, we state that more expressive languages are
needed. In this case, we propose OCL as our constraint definition
language.

To use DVMs allows us to address some satisfiability problems from
new points of view. The introduction of cardinalities and unbounded
attribute types makes harder to reason about feature models (for
example, satisfiability of feature models). Thus, richer formalisms
(compared with the traditional ones) are needed.

The FAMA framework, which was presented in previous chapters,
has advanced in this are, and not only propositional formulas are
used to reason about feature models and their configurations, but
more powerful formalisms are integrated in this framework. The
versatility of the FAMA framework has been a key point to choose
such a framework to perform model-checking tasks in MULTIPLE.
However, FAMA is still unable to deal with every constraint that can
be defined in MULTIPLE, since out tool provides FMCL an OCL-based
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language to define model constraints which is can not be translated
to FAMA specifications.

Fortunately, class diagrams and OCL are widely used and known,
and several formalisms to reason about them have been proposed.
In this sense, some interesting works have been published in this
are, and we have already done some preliminary works in model
consistency checking by using third party formal tools. Specifically,
we have reused UML2CSP (Cabot et al. 2007; Cabot et al. 2008) a
formal framework which is able to transform class diagrams, plus
the OCL constraints that they contain, to ECL'PS¢ (Apt and Wallace
2007), a variant of Prolog (Sterling and Shapiro 1986) for constraint
programming.

14.5 FEATURE MODELS AND OTHER SPL APPROACHES

Batory et al. (2006) capture the domain features in a feature mo-
del. In BOM, the case study where MULTIPLE is demonstrated, we
capture features in two kinds of feature models. In our research, we
observed that the variability problem is not solved by means of a
unique feature model and the monotonic gluing of these features.
We have taken a new approach, which manages the variability in
two phases (one by building a base architecture using the domain
features, and another one by decorating these base architectures with
the application domain features) in order to obtain the final product.

Trujillo (2007) uses Feature Oriented Programming (FOP) as a
technique for inserting features into XML documents by means of
XSLT templates. In BOM-Lazy we use this technique but at the model
level—i. e. we use Feature Oriented Modeling (FOM)—by means of
QvT-Relations Transformations. The features are inserted on the
skeleton model in order to obtain the PRISMA architecture model.

Clements and Northrop (2001) use the SPL development approach
considering a clear division between domain engineering and appli-
cation engineering phases for the reuse and the automation of the
software process. In BOM-Lazy, we have already used this approach
to develop our SPL.
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Avila-Garcia et al. (2006) use process modeling in SPEM to pack
reusable assets. In our approach we use this OMG standard, in con-
junction with some other standards, when we model the production
plan.

Bachmann et al. (2004) propose to separate the variability declara-
tion of the affected assets in separate artifacts. In BOM, the specifica-
tion of the variability and the functionality are captured in different
feature models. The use of instances of such feature models allows
the user to input the information of the domain features. Those fea-
tures allow to build the associated assets, or to define the application
domain features in order to configure the final application.

Regarding Model Driven Software Product Line Engineering
(MDSPLE) approaches, the AMPLE project (AMPLE 2011) emerges
as a reference initiative in the Aspect-Oriented Model-Driven Soft-
ware Product Lines (AO-MD-SPL) field. This project was developed
by a consortium of six research centres in the areas of SPLs, AOSDs
and MDE and three industrial organisations working with or seeking
to deploy product line solutions (Rashid et al. 2011). Although the
AMPLE project is focused in AOSD it is strongly rooted in MDE, and
thus, it is comparable in some aspects with MULTIPLE.

The AMPLE project covers all the development stages of a SPL,
from the requirements elicitation (Sardinha et al. 2009; Weston et al.
2009; Shakil Khan et al. 2008) to the code generation stage (Fuentes
et al. 2009; Groher and Voelter 2009), where the final product is
obtained.

Groher and Voelter (2009) present a summary of the AMPLE
proposal where pure::varianTs is used to define feature models,
which are then transformed to an equivalent EMF-based custom me-
tamodel. According to this work, an AO-MD-SPL process must be
structured in 3 stages: problem space modeling (domain model), so-
lution space modeling (PIM) and solution space implementation (PSM,
code). Models are transformed from a stage to the next one using
model transformations. This staged process resembles the staged
production plan proposed in the application of MULTIPLE to the
BOM-Lazy case study. However, some differences arise:
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First, variability is managed in a different way. In BOM-Lazy
there is not a separation between problem space modeling and solu-
tion space modeling. In BOM we always deal with domain concepts
(whether they are domain features or application domain features).
In BOM, solution space concepts are represented by using modular
models, component-connector models or PRISMA models. More-
over, the third stage (the implementation stage) is fully automatic in
BOM, thanks to the PRISMA-MODEL-COMPILER.

Second, variability is managed in AMPLE by using aspects. Fea-
tures usually impact in the functionality of different modules or
components, in the same way than cross-cutting concerns impact in
different artifact in Aspect-Oriented Programming (AOP) (Filman
et al. 2005). This way, using aspects to describe features is a effec-
tive and straightforward approach. In MULTIPLE, and specifically in
the BOM case study, we have modeled such impact from a generic
point of view by using a set of QVT rules which describe architectural
patterns. Using such patterns in a transformations engine we can
transform the affected artifacts (for example, by adding services,
roles, ports, etc.). Nevertheless, an AOSD approach can also be im-
plemented in MULTIPLE by using the PRISMA metamodel, which is a
language to describe aspect-oriented software architectures.

Third, although AMPLE is a model-based approach, feature model
configurations are not expressed as instances of their corresponding
feature models. This issue has a big impact in the AMPLE philosophy,
leading to the definition of several variability management languages
which provide support for model transformations in different stages
of a SPL process. Such variability management languages, which
usually are textual languages, are in charge of relating feature mo-
del configurations and different structural models (problem space
models, solution space models, aspect models, etc.).

Specifically, Groher and Voelter (2009) use a family of different
languages to adapt the different models based on the feature selection,
i. e. XWeave, XVar, Xtend and Xpand. Each one of these languages
are designed with a specific purpose, which has the advantage of
being compact, and easy to learn and understand. However, they
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also have their own syntax and limitations: some can only deal with
models conforming to the same metamodel (e. g. XWeave) while
others can only be used to define mappings to filter structural models
(e.g., XVar). InMULTIPLE only one language is required (QVT), which
is able to deal with models conforming any metamodel, and can be
used to define any kind of pattern, filter or expression. Moreover,
QVT is a high level declarative language which can be graphically
represented and easily understood. For example, Groher and Voelter
(2009) use Xpand to define aspect templates. In BOM a similar task
is performed by using the T2 transformation (see section 9.5.2, page
260), which populates a skeleton architecture using the application
domain features.

In contrast to the MULTIPLE approach, where only one language to
define the mappings between models and configurations is needed,
Zschaler et al. (2010) propose VML?, a product line to generate vari-
ability management languages. Such a proposal aims to help SPL
designers to define the mappings between configurations and struc-
tural models (since the lack of a proper representation for feature mo-
del configurations can be problematic, avoiding the use of high level
declarative languages). This proposal is based on the premise that
general-purpose model transformation languages place too heavy a
burden on SPL engineers. VML* provides the methods and tools to
define DSLs for variability management. Specifications in such DSLs
are in the end translated to a general purpose model transformation
language, hiding the intricacies of MDE to SPL designers.
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« L nature there are no rewards or punishments,
there are only consequences.»

— Horace Annesley Vachell
English writer, 1861-1955

In this thesis we have presented MULTI@PLE, an approach to effec-
tively represent and manage variability in complex MDE processes.
This work starts from the current feature-based approaches to vari-
ability management and tries to solve some of their drawbacks. Large
software systems like the Linux kernel feature model—s400 features
approx. (She et al. 2010)—or the Rolls-Royce feature model—1200
features approx. as shown in chapter 10—serve as an example about
how feature models are not fully exploited, i. e., it is uncommon the
use of cardinality-based feature models; and feature models hardly
contain typed feature attributes. Such poorly-defined models lead
us to forget that feature models configurations are, in fact, instances
of feature models. Such idea takes us to avoiding the use of feature
models as active parts in MDE processes.

The production plan of a SPL is the set of steps that must be done
to obtain a product given a specific configuration and a set of core
assets. However, in traditional SPLs this process is reduced to a gluing
of code snippets because MDE techniques are not used. However,
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these techniques raise the level of abstraction and provide more
expressiveness to describe software artifacts. This provides indepen-
dence from the implementation platform, and allows to automate
several tasks. Moreover, MDE is becoming a mature discipline which
provides a wide range of standards and tools which support this
trend.

MDPLE emerges as a first approach to integrate both MDE and SPLs.
This proposal raises the level of abstraction, as the main assets of a SPL
are models, instead of code fragments. However, the same limitations
about variability management still remain. This is because variability
is not considered as an active model which describes a new view of
the systems to be.

The use of multi-models allows describing a system using the DSL
that the developer deems appropriate. The use of different modeling
languages reduces the learning curve and allows to integrate differ-
ent technical spaces. It also eases the decomposition of a system
in different views which simplify the development process. More-
over, the use of multi-models allow to integrate modern software
development paradigms.

Given this situation, we have shown how the multi-modeling tech-
niques can ease the development of SPLs, designing what we describe
as Multi-Model Driven Software Product Lines (MMDSPLs). In a
MMDSPL the system’s variability view is managed in an explicit way,
using a dedicated model and specific notation. This way a variability
model is an active asset in the software development process. More-
over, in a MMDSPL model transformations can (and should) be used
in any part of the development process. The key elements which
enable the use of variability models using current modeling tools are
the DVMs. A DVM is an equivalent and intermediate artifact which
allows the definition of feature model configurations.

This thesis provides the following contributions:

FIRST, it extends previous works about software system views.
We have adapted the concept of system view to the multi-modeling
approach and techniques. Moreover, we provide an operational-
ization of Limén Cordero’s proposal providing an implementation
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its metamodels (specifically, modular and component-connector
metamodels), and the corresponding graphical DSLs.

SECOND, this thesis introduces variability modeling as an addi-
tional view of the system. Specifically, this work puts feature models
and feature model configurations in the context of MOF. This implies
that each software artifact is precisely defined at its corresponding
level of abstraction.

THIRD, we propose a MOF-compliant metamodel to describe
system’s variability. This metamodel is very expressive, as it can be
considered as a superset of the most important contributions in the
variability management field over the last 20 years. Furthermore,
the proposal allows to overcome the main issues which arise when
trying to use feature models and feature model configurations in
recent metamodeling tools. The use of the so called DVMs allows
maintaining the instance-of relationship between feature models
and configurations. This relationship guarantees the consistency
between feature models and configurations for free, which turns out
to be more simple. Moreover, we provide a constraint description
language (FMCL) to describe complex model constraints; and the
semantics of our metamodel and the constraint description language
are clearly defined by a set of equivalence relationships among them
and MOF and OCL.

Thanks to the equivalence relationships, feature models can be
instantiated by using the DVMs; and such models and instances can
be validated using common tools such as OCL checkers. Furthermore,
the use of class diagrams to describe variability models enables new
paradigms for variability model checking, using for example the
tools to check UML: class diagrams.

FoURTH, we provide an implementation of our proposal as an
integrated framework for MMDPLE. The framework, called MULTIPLE,
is a tool which stands out for its genericity, interoperability, exten-
sibility and ease of use. Fig. 15.1 shows the full architecture of the
MULTIPLE framework including all the additions that have been con-
tributed to the initial framework throughout the development of the
different case studies. MULTIPLE provides support for describing the
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variability view, the modular view and the component-connector
view using the corresponding graphical notations. Additionally, it
provides support to deal with FAMA feature models and PRISMA
architectural models. The tool integrates a model transformations
engine, which can be accessed using the graphical Ul or using the
command-line; and the same applies for the integrated OCL engine.
The tool also integrates the FAMA model-checker which allows to
analyse feature models. Finally, a set of model transformations are
provided within the framework (e. g., Feature2ClassDiagram or Mul-
tipleFeatures2FamaFeatures among others, see appendixes A and D).

F1rTH, proof of these features of the MULTIPLE framework is that
it has been successfully applied in five different case studies of the
most diverse nature.

The MULTIPLE framework and the proposed methodology has
been used to modernize the BOM-Eager SPL. As a result the BOM—
Lazy proposal has been designed. From this case study we can
conclude that an explicit variability management allows to concen-
trate all the efforts in early stages of a SPL development. This way,
all the work is done in the domain engineering phase; and it is in
this phase when the domain engineer captures all the knowledge
required to generate the final product. Moreover, the use of feature
models and other system’s views allows capturing such knowledge
in an explicit way using QVT to describe the relationships among
the different views (i. e., a model transformation). In this case it is
noteworthy that a feature model is an active asset that can be used
and reused directly by means of MDE techniques. Besides, to define
a model transformation to generate the final products allows us to
include additional information in such transformations, such as well
design patterns. This opens new paths to analyse quality aspects in
SPLs, as in the case of a SPL the quality of the final product is not only
related with the quality of the core-assets but also with the quality of
the production plan—the transformation—itself (Gonzalez-Huerta
2010; Gonzalez-Huerta 2011).

Furthermore, the use of explicit and instantiable feature models
and the use of model transformations provide more flexibility, as the
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software architectures are defined by means of patterns at model level.
Moreover, the use of software patterns provide greater scalability, as
the relationships among the system’s views are defined regardless of
the number of products of the SPL. In this case, the different products
of the SPL are defined in an implicit way by the QVT transformation.
Finally, in the case of BOM-Lazy the implementation efforts are
reduced drastically thanks to PRISMA and the PRISMA-MODEL-
COMPILER.

We can also conclude that it is required to provide the necessary
mechanisms to validate, check and analyse feature models and their
constraints. In the study of the industrial feature model we found that
the majority of the errors were introduced by abusing the notation.
This abuse is produced by a poorly implemented feature modeling
tool. A feature modeling tool must provide the necessary mecha-
nisms to ensure that the feature models are not invalid. Having an
invalid feature model in a context where it is used for documenta-
tion purposes is just problematic; but to have such a model in a MDE
process can not be admitted, as the feature model is a fundamental
asset on top of which the process is built. However, it is not only
necessary to ensure that the notation is properly used, but also the
model checking mechanisms are fundamental. Proof of this is that
in the industrial case study we found that the feature model was
void, and it did not represent any product at all. Nevertheless, more
research in such issues is still required, as some scalability problems
arise when using current tools. In this sense, the relationships which
add more complexity are the cross-tree ones.

We can confirm the benefits of applying the MULTIPLE framework
to different case studies. Such case studies can be, in the end, consid-
ered as simple MMDPLE processes where the system variability view
is trivial (i. e., only a single product). We can verify that the solutions
based on MDE and MULTIPLE are more interoperable and allow us
to deal with heterogeneous data sources (such as in the case of the
INTERGENOMICS case study). The solutions based on MULTIPLE
are more efficient (the development time is reduced) and are more
elegant (the level of abstraction is raised). The use of model transfor-
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mations eases the automation of manual tasks, such as the generation
of petri nets, or the definition of the final software architecture in the
case of MORPHEUS. Moreover, model transformations are more pre-
cise, concise ans easy to understand than traditional and imperative
approaches. Serve as an example the INTERGENOMICS case study,
where the same transformation is implemented both in QvT and
Java (Gomez 2008). In this case, the Java code is ~ 4.5 times larger
than the QVT transformation (407 vs. 1810 lines of code). Besides,
declarative model transformations provide traceability capabilities
which are fundamental in complex processes.

Finally, the use of standards increases the interoperability and the
efficiency, as the most adequate tool can be selected for a precise
task. For example, in the case of MORPHEUS the best tool for the
pursued purpose is selected. In this case the tool integrates different
technologies in a transparent way: .NET, Java, EMF, MS Office Visio,
etc. The use of standards in this merger of technologies eases the
development and allows obtaining a powerful tool with the best of
each one.
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« S earch for the truth is the noblest occupation of man,
its publication is a duty.»

— Anne Louise Germaine de Staél-Holstein
French-speaking Swiss writer, 17661817

This chapter summarizes the publications which have been pro-
duced throughout the realization of this thesis, many of which have
already been introduced and referenced in previous chapters.

Prior to the development of this thesis, some fundamental re-
search was done in the context of MDE and formal methods. These
works motivate the interest of this thesis in providing model check-
ing capabilities when managing feature models in MMDSPLs:

« A. Boronat, J. Iborra, J. A. Carsi, I. Ramos and A. Gémez
(2005¢). Del método formal a la aplicacion industrial en
Gestion de Modelos: Maude aplicado a Eclipse Modeling
Framework. In: Actas X Jornadas sobre Ingenieria del Soft-
ware y Bases de Datos. [ISBD’05. Granada, Spain. eprint: http:
//moment.dsic.upv.es/index.php?option=com_docman&ta
sk=doc_download&gid=26&Itemid=28

« A. Boronat, J. Iborra, J. A. Carsi, I. Ramos and A. Gémez
(2005d). Utilizacion de Maude desde Eclipse Modeling Frame-
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work para la Gestion de Modelos. In: Desarrollo de Software
Dirigido por Modelos - DSDM’o5 (Junto a JISBD’05). Granada,
Spain. eprint: http://moment.dsic.upv.es/index.php?opt
ion=com_docman&task=doc_download&gid=32

o A. Gomez, A. Boronat, J. A. Carsi and I. Ramos (2005).
Integracion de un sistema de reescritura de términos en
una herramienta de desarrollo software industrial. In: IV
Jornadas de trabajo DYNAMICA. Archena (Murcia). eprint:
http://moment.dsic.upv.es/index.php?option=com_docm
an&task=doc_download&gid=31

o A. Gomez, A. Boronat, J. A. Carsi and I. Ramos (2007b).
MOMENT-CASE: Un prototipo de herramineta CASE. In: XII
Jornadas de Ingenieria del Software y Bases de Datos. JISBDoy.
Zaragoza. Spain. Edited by X. Franch. eprint: http://moment.
dsic.upv.es/index.php?option=com_docman&task=doc_do
wnload&gid=40&Itemid=28

Query and constraint languages are also an important topic in
this thesis. Previous works on constraint languages, and specifi-
cally related with OCL were published in the following international
conferences:

« A. Boronat, J. Oriente, A. Gémez, I. Ramos and J. A. Carsi
(2006b). MOMENT-OCL: Algebraic Specifications of OCL
2.0 within the Eclipse Modeling Framework. In: ENTCS.
Demo. 6th International Workshop on Rewriting Logic and its
Applications. Vienna, Austria. eprint: http://moment.dsic.u
pv.es/index.php?option=com_docman&task=doc_downloa
d&gid=42

o A. Boronat, J. Oriente, A. Gémez, I. Ramos and J. A. Carsi
(2006a). An Algebraic Specification of Generic OCL Queries.
In: Model Driven Architecture - Foundations and Applica-
tions, Second European Conference, ECMDA-FA 2006, Bilbao,
Spain, ]uly 10-13, 2006. Lecture Notes in Computer Science



PUBLICATIONS

4066, pages 316—330. eprint: http://moment.dsic.upv.es/
index.php?option=com_docman&task=doc_download&gid=2
2&Itemid=28. URL: http://dx.doi.org/10.1007/11787044_
24

DSLs are also a key issue in this thesis. A previous work was done
in the development of DSLs and published in the Spanish reference
conference on Software Engineering:

« A. Gémez, A. Boronat, L. Hoyos, J. . Carsi and I. Ramos
(2006). Definicién de operaciones complejas con un lenguaje
especifico de dominio en Gestiéon de Modelos. In: XTI Jor-
nadas de Ingenieria del Software y Bases de Datos. JISBD06.
Sitges, Barcelona. Spain. Edited by J. C. Riquelme and P. Botella.
eprint: http://moment.dsic.upv.es/index.php?option=co
m_docman&task=doc_download&gid=30

The main contribution of this thesis resides in the development
of MMDSPLs. In this topic different works have been published in
both national and international conferences. Among them we find
for example the Fourth International Workshop on Variability Mod-
elling of Sofware-Intensive Systems, the most important conference
in variability management world-wide. Serve as an example the
2010 edition, which was attended by the most relevant researchers
on the area: e.g. K. Kang, K. Czarnecki, D. Batory or D. Bena-
vides among others. It is also noteworthy the publication in the
Information Systems Development conference evaluated as an A con-
ference in the Computing Research and Education Association of
Australasia (CORE) ranking. Works have been also published in the
SPL conference and international journals.

« M. E. Cabello, I. Ramos, A. Gémez and R. Limoén (2009).
Baseline-Oriented Modeling: An MDA Approach Based on
Software Product Lines for the Expert Systems Development.
In: Intelligent Information and Database Systems, Asian Con-
ference on o, pages 208-213. DOI: http://doi.ieeecomputer
society.org/10.1109/ACIIDS.2009.15

387



388

PUBLICATIONS

o A. Gémez Llana and I. Ramos Salavert (2010). Cardinality-
based feature models and Model-Driven Engineering: fit-
ting them together. In: Proceedings of the Fourth International
Workshop on Variability Modelling of Software-Intensive Sys-
tems. ICB-research report No. 37. Pages 61-68. ISSN 1860 - 2770
(Print), ISSN 1866 - 5101 (Online). eprint: http://issi.d
sic.upv.es/publications/archives/f -126357053889
0/document . pdf. URL: http://www . vamos - workshop . ne
t/proceedings/VaMoS_2010_Proceedings.pdf

o A. Gémez and I. Ramos (2010). Automatic Tool Support
for Cardinality-Based Feature Modeling with Model Con-
straints for Information Systems Development. In: 19th In-
ternational Conference on Information Systems Development,
Prague, Czech Republic, August 25 - 27 2010. eprint: http :
//issi.dsic.upv.es/publications/archives/f-12850
82432517 /document . pdf

o A. Gémez, M. E. Cabello and I. Ramos (2010). BOM-Lazy:
A Variability-Driven Framework for Software Applications
Production Using Model Transformation Techniques. In: 2nd
International Workshop on Model-driven Approaches in Soft-
ware Product Line Engineering (MAPLE 2010), collocated with
the 14th International Software Product Line Conference (SPLC
2010). South Korea, September 2010. eprint: http: //issi .
dsic.upv.es/publications/archives/f-128620870224
4/document(final).pdf

o M. Gémez Lacruz, A. Gémez Llana, M. E. Cabello Espinosa
and I. Ramos Salavert (2009). BOM-Lazy: gestion de la vari-
abilidad en el desarrollo de Sistemas Expertos mediante téc-
nicas de MDA. In: VI Taller sobre Desarrollo de Software Di-
rigido por Modelos (DSDM’09). Junto a XIV Jornadas de In-
genieria del Software y Bases de Datos. 8 de Septiembre de
2009, San Sebastidn, Espafia. eprint: http : / / issi . dsi



PUBLICATIONS

Cc.upv . es/publications / archives / f - 124904081354
4/dsdm_camera_ready.pdf

o M. E. Cabello, I. Ramos, J. R. Gutiérrez, A. Gomez and r.
Limon (2011). SPL variability management, cardinality and
types: an MDA approach. In: International Journal of Intelli-
gent Information and Database Systems. Unpublished yet, in
press

Diverse works have been published with regard to the different
case studies provided of the thesis. Works in the bioinformatics
field together with MDE have been published both in national and
international conferences, besides of international journals such as
the IEEE Latin America Transactions:

o A.GOmez, J. A. Carsi, A. Boronat, I. Ramos, C. Taubner and
S. Eckstein (2007a). Biological Data Migration Using a Mo-
del Driven Approach. In: 4th International Workshop on Soft-
ware Language Engineering (ateM 2007). Within ACM/IEEE
10th International Conference on Model Driven Engineering
Languages and Systems (MODELS 2007). Nashville, TN, USA.
Edited by J.-M. Favre, D. Gasevic, R. Limmel and A. Winter.
ISSN: 0931-9972. eprint: http://moment .dsic.upv.es/ind
ex . php?option=com_docman&task=doc_download&gid=3
9&Itemid=28

o A. GOmez, A. Boronat, J. A. Carsi, I. Ramos, C. Taubner and
S. Eckstein (2007c). Recuperacion y procesado de datos bi-
ologicos mediante Ingenieria Dirigida por Modelos. In: XII
Jornadas de Ingenieria del Software y Bases de Datos. JISBDG7.
Zaragoza. Spain. Edited by X. Franch. eprint: http: / /m
oment . dsic . upv . es / index . php ? option = com _ docma
n& task =doc _download & gid=41& Itemid=28. URL: http:
/ / www . sistedes . es / sistedes / pdf / 2007 / JISBD - 0
7-gomez-biologicos.pdf

389



390 PUBLICATIONS

« A.Gdmez, A. Boronat, J. Carsi and I. Ramos (2008). Biological
Data Migration in Pathway Simulation. In: Actas de las VIII
Jornadas Nacionales de Bioinformdtica (JNB’08), Valencia.

o A. Gomez, A. Boronat, J. A. Carsi, I. Ramos, C. Taubner and
S. Eckstein (2008). JISBD2007-03: Biological Data Processing
using Model Driven Engineering. In: Latin America Transac-
tions, IEEE (Revista IEEE America Latina) 6.4, pages 324-331.
ISSN: 1548-0992. DOI: 10.1109/TLA.2008.4815285

With respect to the case study related with software measurement
some relevant works have been also published, specially in interna-
tional conferences (ranked as B in by the CORE) and journals.

e B. Mora, E Garcia, FE. Ruiz, M. Piattini, A. Boronat, A. Gémez,
J. A. Carsi and 1. Ramos (2007). Marco de Trabajo basado
en MDA para la Medicién Genérica del Software. In: XII Jor-
nadas de Ingenieria del Software y Bases de Datos. JISBD’o;.
Zaragoza. Spain. Edited by X. Franch. URL: http://www.sist
edes.es/sistedes/pdf/2007/JI1SBD-07-mora-mda.pdf

« B. Mora, F Garcia, FE Ruiz, M. Piattini, A. Boronat, A. Gomez,
J. A. Carsiand I. Ramos (2008b). Software Measurement by Us-
ing QVT Transformations in an MDA Context. In: ICEIS 2008
- Proceedings of the Tenth International Conference on En-
terprise Information Systems, Volume DISI, Barcelona, Spain,
June 12-16, 2008. Edited by J. Cordeiro and J. Filipe, pages 117-
124

« B. Mora, E Garcia, E Ruiz, M. Piattini, A. Boronat, A. Gémez,
J. A. Carsi and I. Ramos (2008a). JISBD2007-08: Software
generic measurement framework based on MDA. In: Latin
America Transactions, IEEE (Revista IEEE America Latina)
6.4, pages 363—370. ISSN: 1548-0992. DOI: 10.1109/TLA.2008.
4815290

o B. Mora, E Garcia, F. Ruiz, M. Piattini, A. Boronat, A. Gémez,
J. Carsi and I. Ramos (2010). Software Generic Measurement



PUBLICATIONS 391

Framework Based on MDA. In: Latin America Transactions,
IEEE (Revista IEEE America Latina) 8.5, pages 605 —613. ISSN:
1548-0992. DOL: 10.1109/TLA.2010.5623515

e B. Mora, E. Garcia, F. Ruiz, M. Piattini, A. Boronat, A. Gomez,
J. Carsi and I. Ramos (2011). Software Generic Measurement
Framework Based on MDA. In: Latin America Transactions,
IEEE (Revista IEEE America Latina) 9.1, pages 864 —871. ISSN:
1548-0992. DOL: 10.1109/TLA.2011.5876432

Finally, works also in international conferences (CORE A) have
been published describing the works on model transformations and
software architectures:

» E. Navarro Martinez, A. Gomez Llana, P. Letelier Torres and
I. Ramos Salavert (2009). MORPHEUS: a supporting tool
for MDD. In: 18th International Conference on Information
Systems Development (ISD2009). Nanchang, China. Septem-
ber 16-19, 2009. eprint: http : / / issi . dsic . upv.es/p
ublications /archives/f -1249040391367 / MORPHEUS _1IS
D_camera_ready.pdf






APPENDICES






TRANSFORMATION FEATURES2CLASSDIAGRAM

Listing A.1: Full Features2ClassDiagram transformation

1

S © ® N o O A~ W N

12
13
14
15
16
17

transformation Feature2ClassDiagram(feature : features,

classdiagram : \emph{Ecore}) {

key \emph{Ecore}::EPackage{nsURI};

key \emph{Ecore}::EClass{name};

key \emph{Ecore}::EReference{name};

key \emph{Ecore}::EAnnotation{source, eModelElement};
key \emph{Ecore}::EDataType{name};

top relation Feature2Class {

checkonly domain feature feature : features::Feature {

3

checkonly domain feature model : features::FeatureModel {

D8

enforce domain classdiagram pkg : \emph{Ecore}::EPackage
{
name = model.name,
nsPrefix = model.name,
nsURI = ’http://’ + model.name,
eClassifiers = class : \emph{Ecore}::EClass {
name = feature.name

top relation FeatureAttribute2ClassAttribute {

checkonly domain feature feature : features::Feature {
attributes = featureAttribute : features::Attribute {}
B

checkonly domain feature model : features::FeatureModel {

D8

enforce domain classdiagram pkg : \emph{Ecore}::EPackage

{
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43
44
45
46

47
48

49
50
51
52
53
54
55

name = model.name,

nsPrefix = model.name,

nsURI = ’http://’ + model.name,

eClassifiers = type : \emph{Ecore}::EDataType {
name = featureAttribute.type,

instanceTypeName = ’java.lang.’ + featureAttribute.
type
}
B
enforce domain classdiagram class : \emph{Ecore}::EClass
{
name = feature.name,

eStructuralFeatures = eattribute : \emph{Ecore}::
EAttribute {
name = featureAttribute.name,
eType = type

top relation StructuralRelationship2Reference{

checkonly domain feature model : features::FeatureModel {

3

checkonly domain feature feature : features::Feature {
childs = relationship : features::
StructuralRelationship {3}
3

enforce domain classdiagram pkg : \emph{Ecore}::EPackage
{
nsURI = ’http://’ + model.name,
eClassifiers = childclass : \emph{Ecore}::EClass {
name = relationship.to.name
}
BE:

enforce domain classdiagram class : \emph{Ecore}::EClass

{

name = feature.name,

eStructuralFeatures = reference : \emph{Ecore}:

EReference {

name = relationship.to.name,
eType = childclass,
upperBound = relationship.upperBound,
lowerBound = relationship.lowerBound,
containment = true




104
105
106

107
108
109
110
m
12
13
114
115
116
17
18
19
120

121
122
123
124
125

TRANSFORMATION FEATURES2CLASSDIAGRAM

top relation Group2Reference {

checkonly domain feature model : features::FeatureModel {
B
checkonly domain feature feature : features::Feature {

group = group : features::Group {
childs = childRelationship : features::
StructuralRelationship {

to = childFeature : features::Feature {}
}
}
3
enforce domain classdiagram pkg : \emph{Ecore}::EPackage
{
nsURI = ’http://’ + model.name,
eClassifiers = typeClass : \emph{Ecore}::EClass {
name = group.name,
abstract = true
o
eClassifiers = parentClass : \emph{Ecore}::EClass {
name = feature.name,
eStructuralFeatures = reference : \emph{Ecore}:
EReference {
name = feature.name + ’Features’,
eType = typeClass,
upperBound = -1,
lowerBound = 0,
containment = true
}
},
eClassifiers = childClass : \emph{Ecore}::EClass {
name = childFeature.name
}
3
where {
GroupChild2Classes(childFeature, typeClass, childClass)
GroupChild2ChildrenAnnot (feature, parentClass);
GroupChild2LowerAnnot (childRelationship, parentClass);
GroupChild2UpperAnnot (childRelationship, parentClass);
}
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126
127
128
129
130
131

132
133

134
135
136
137
138
139
140
141
142
143
144
145

146

147
148

149
150

151

152
153
154
155
156
157

158

159
160
161
162

163

relation GroupChild2Classes {

checkonly domain feature feature : features::Feature {};

checkonly domain classdiagram typeClass : \emph{Ecore}:
EClass {
3
enforce domain classdiagram parentclass : \emph{Ecore}:
EClass {
name = feature.name,
eSuperTypes = eSuperTypes->including(typeClass)
3

relation GroupChild2ChildrenAnnot {

checkonly domain feature feature : features::Feature {

3

enforce domain classdiagram parentClass : \emph{Ecore}:
EClass {
eAnnotations = oclAnnotLower : \emph{Ecore}::
EAnnotation {
source = ’'http://www.eclipse.org/ocl/examples/OCL’,
details = oclEntryLower : \emph{Ecore}:
EStringToStringMapEntry {
_key = ’checkChildren’ + feature.name,
value = toString(feature.group.lowerBound) + ’ <=
( 7 + buildGroupConstraint(feature) + ’ )
and ( ’ +
buildGroupConstraint(feature) + ’ ) <= ’ +
toString(feature.group.upperBound)

}
}
3
when {
parentClass.eAnnotations->select(
annot : \emph{Ecore}::EAnnotation | not annot.
details->select (
entry : \emph{Ecore}::EStringToStringMapEntry |
entry._key = ’checkChildren’ + feature.name)
->isEmpty ())->isEmpty();
}

relation GroupChild2LowerAnnot {
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165
166
167
168
169

170

m
172

173
174

175

176
177
178
179
180
181

182

183
184
185
186
187
188

189
190
191
192
193

194

195
196
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checkonly domain feature relationship : features::
StructuralRelationship {
from = group : features::Group {3},
to = feature : features::Feature {3}

3

enforce domain classdiagram parentClass : \emph{Ecore}:
EClass {
eAnnotations = oclAnnotLower : \emph{Ecore}::
EAnnotation {
source = ’http://www.eclipse.org/ocl/examples/0OCL’,
details = oclEntryLower : \emph{Ecore}:
EStringToStringMapEntry {
_key = ’lowerMultiplicity’ + feature.name,
value = ’self.’ + group.parentFeature.name + ’
Features->select (f >’ + group.name + ’ | f.
oclIsKindOf (’ + feature.name + ’))->notEmpty()
implies ’ +
’self.’ + group.parentFeature.name + ’Features->
select(f : ’ + group.name + ’ | f.oclIsKindOf(’
+ feature.name + ’))->size() >=’ + toString(
relationship.lowerBound)

}
}
3
when {
parentClass.eAnnotations->select(
annot : \emph{Ecore}::EAnnotation | not annot.
details->select (
entry : \emph{Ecore}::EStringToStringMapEntry |
entry._key = ’lowerMultiplicity’ + feature.
name)->isEmpty ())->isEmpty () ;
}

relation GroupChild2UpperAnnot {

checkonly domain feature relationship : features::
StructuralRelationship {
from = group : features::Group {3},
to = feature : features::Feature {}

3

enforce domain classdiagram parentClass : \emph{Ecore}:
EClass {
eAnnotations = oclAnnotUpper : \emph{Ecore}::
EAnnotation {
source = ’'http://www.eclipse.org/ocl/examples/OCL’,
details = oclEntryUpper : \emph{Ecore}:
EStringToStringMapEntry {
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197
198

199

200
201
202
203
204

205

206
207
208
209

210

21
212
213
214
215
216
217
218
219
220
221
222
223

224
225
226
227
228
229
230

231
232
233

_key = ’upperMultiplicity’ + feature.name,
value = ’self.’ + group.parentFeature.name + ’
Features->select(f : ’ + group.name + ’ | f.

oclIsKindOf (’ + feature.name + ’))->notEmpty()
implies ’ +

’self.’ + group.parentFeature.name + ’Features->
select(f : > + group.name + ’ | f.oclIsKindOf(’
+ feature.name + ’))->size() <=’ + toString(
relationship.upperBound)

}
}
3
when {
-- The rule is only executed when upperBound is > 0, i.
e.,
-- we only must create the restriction when there is an
upper bound
relationship.upperBound > 0
and
parentClass.eAnnotations->select(
annot : \emph{Ecore}::EAnnotation | not annot.
details->select(
entry : \emph{Ecore}::EStringToStringMapEntry |
entry._key = ’upperMultiplicity’ + feature.
name)->isEmpty ())->isEmpty () ;
}

top relation UsesRelationship2Reference{

checkonly domain feature model : features::FeatureModel {
relationships = usesRelationship : features::Uses {
from = fromFeature : features::Feature {},
to = toFeature : features::Feature {}
}
B
enforce domain classdiagram pkg : \emph{Ecore}::EPackage
{
nsURI = ’http://’ + model.name,
eClassifiers = toClass : \emph{Ecore}::EClass {
name = toFeature.name
}
3
enforce domain classdiagram pkg : \emph{Ecore}::EPackage
{
nsURI = ’http://’ + model.name,
eClassifiers = fromClass : \emph{Ecore}::EClass {

name = fromFeature.name,
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240
241
242
243
244
245

246

247
248
249
250
251
252
253
254
255
256
257
258

259

260
261
262
263
264
265
266
267
268

269
270
27
272
273
274
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eStructuralFeatures = reference : \emph{Ecore}:
EReference {
name = usesRelationship.name,
eType = toClass,
upperBound = usesRelationship.upperBound,
lowerBound = usesRelationship.lowerBound,
containment = false

3
3

where {
if (not usesRelationship.opposite.oclIsUndefined())
then
UsesRelationship2EOppositeReference(usesRelationship.
opposite, reference)

else
true

endif;

relation UsesRelationship2EOppositeReference {

checkonly domain feature opposite : features::Uses {

BE

enforce domain classdiagram reference : \emph{Ecore}:
EReference {
eOpposite = oppositeReference : \emph{Ecore}:
EReference {
name = opposite.name

top relation ExcludesRelationship2ModelConstraint{

checkonly domain feature model : features::FeatureModel {
relationships = excludesRelationship : features::
Excludes {
from = fromFeature : features::Feature {3},
to = toFeature : features::Feature {}
}
3

enforce domain classdiagram pkg : \emph{Ecore}::EPackage

{
nsURI = ’http://’ + model.name,

401



402

TRANSFORMATION FEATURES2CLASSDIAGRAM

276

277
278

279

280

281

282
283
284
285
286
287
288
289
290

291
292
293
294
295
296

297
298
299
300

301
302

303

304

305
306
307
308
309
310

3m

eAnnotations = oclAnnotExcludes: \emph{Ecore}::
EAnnotation {
source = ’http://www.eclipse.org/ocl/examples/0OCL’,
details = detailExcludes: \emph{Ecore}:
EStringToStringMapEntry {
_key = fromFeature.name + ’_exclusion_

)

+ toFeature
.name,

value = ’(’ + fromFeature.name + ’.alllInstances()->

notEmpty () implies ’ + toFeature.name + ’.

allInstances()->isEmpty()) and ’ +

>(’ + toFeature.name + ’.alllnstances()->
notEmpty () implies ’ + fromFeature.name +
.allInstances()->isEmpty ())’

top relation BiconditionalRelationship2ModelConstraint{

checkonly domain feature model : features::FeatureModel {
relationships = biconditionalRelationship : features::
Biconditional {

from = fromFeature : features::Feature {3},
to = toFeature : features::Feature {}
}
3
enforce domain classdiagram pkg : \emph{Ecore}::EPackage
{
nsURI = ’http://’ + model.name,
eClassifiers = fromClass : \emph{Ecore}::EClass {
name = fromFeature.name,

eAnnotations = oclAnnotFrom: \emph{Ecore}::
EAnnotation {
source = ’'http://www.eclipse.org/ocl/examples/OCL’,
details = detailFrom : \emph{Ecore}::
EStringToStringMapEntry {
_key = fromFeature.name + ’_biconditional_’ +
toFeature.name,
value = toFeature.name + ’.alllnstances()->
notEmpty ()’

3
},
eClassifiers = toClass : \emph{Ecore}::EClass {
name = toFeature.name,
eAnnotations = oclAnnotTo : \emph{Ecore}::EAnnotation
{

source = ’http://www.eclipse.org/ocl/examples/0CL’,

)
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317
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320
321
322
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329
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341
342
343
344
345
346
347
348

349
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details = detailTo : \emph{Ecore}::
EStringToStringMapEntry {
_key = toFeature.name + ’_biconditional_’ +
fromFeature.name,
value = fromFeature.name + ’.alllInstances()->
notEmpty ()’

top relation ImpliesRelationship2ModelConstraint{

checkonly domain feature model : features::FeatureModel {
relationships = impliesRelationship : features::Implies
{
from = fromFeature : features::Feature {3},
to = toFeature : features::Feature {}
}
BE
enforce domain classdiagram pkg : \emph{Ecore}::EPackage
{
nsURI = ’http://’ + model.name,
eClassifiers = fromClass : \emph{Ecore}::EClass {
name = fromFeature.name,

eAnnotations = oclAnnotFrom: \emph{Ecore}::
EAnnotation {
source = ’http://www.eclipse.org/ocl/examples/0OCL’,
details = detailFrom : \emph{Ecore}::
EStringToStringMapEntry {

_key = fromFeature.name + ’_implies_’ + toFeature
.name,
value = toFeature.name + ’.alllInstances()->

notEmpty ()’

top relation FMCLConstraint20CLConstraint{

checkonly domain feature model : features::FeatureModel {
modelConstraints = modelConstraints : features::
ConstraintsSet {
_context = _context : features::ConstrainableElement
{1,
constraints = constraint : features::Constraint {}
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351
352
353
354

355
356
357
358

359
360

361
362
363
364
365
366
367
368
369
370
371
372

373

374
375
376
377
378

379
380
381

382
383
384
385
386
387
388
389
390
391
392
393

}
3
enforce domain classdiagram pkg : \emph{Ecore}::EPackage
{
nsURI = ’http://’ + model.name,
eClassifiers = fromClass : \emph{Ecore}::EClass {
name = _context.oclAsType(Feature).name,

eAnnotations = oclAnnotFrom: \emph{Ecore}::
EAnnotation {
source = ’http://www.eclipse.org/ocl/examples/0OCL’,
details = detailFrom : \emph{Ecore}::
EStringToStringMapEntry {
_key = constraint.name,
value = translateFMCLtoOCL (constraint._body)

query toString(number : Integer) : String {
-- We define the following expression to translate an
Integer to String.
-- In this way, we avoid to include any external library/
method to perform
-- the conversion.
if number >= 0 then
OrderedSet{1000000, 10000, 1000, 100, 10, 1}->iterate(
-- We will supports numbers <= 999.999
-- If greater numbers are needed, more powers of ten
can be added
denominator : Integer;
s : String = |
let numberAsString : String = OrderedSet{’0’,’1’,’2",
737,747,757 767,777 ,78’,79}
->at (((number div denominator) mod 10) + 1)
in
if s=’’ and numberAsString = ’0’ then
s
else
s.concat (numberAsString)
endif
)
else
’-’.concat(toString (-number))
endif
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424
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query buildGroupConstraint (parentFeature : Feature)
String {
parentFeature.group.childs->iterate(

-- We iterate for each relationship contained in the
group

relationship : StructuralRelationship;

-- The text of the OCL expression is stored in the
result” var

result : String = 7’

| -- Starting from here, the body of the loop

result.concat (
’(if self.’ + parentFeature.name + ’Features->

n

select(f : ’ + parentFeature.group.name + ’ | f

.0clIsKindOf(’ + relationship.to.name + ’))->

notEmpty () then 1 else 0 endif) + ’)
).concat(’0’)

query translateFMCLtoOCL (expression : String) : String {

ConstrainableElement.allInstances()->iterate(

elt : ConstrainableElement;

s : String = expression |

-- The order when applying the substitutions is
important

-- We must go from the most specific case to the most
general one

if (elt.oclIsTypeOf(features::Feature)) then

s.replace(’(’ + elt.name + ’\b)\.childs\(\)’, ’$1Type
.alllnstances()’)

else
s
endif
.replace(’(’ + elt.name + ’\b)\.(\w+\s+\S+\s+.+)’ ’$1.
allInstances()->forAll($2)’)
.replace(’(’ + elt.name + ’\b)\.selected\(\)’, ’$1.

allInstances()->notEmpty ()’)
.replace(’(’ + elt.name + ’\b)(?:\.allInstances\(\))?’,
’$1.allInstances()’)
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Listing B.1: Full Modules2Components transformation

1

S © ® N o O A~ W N

12

13
14

8
16

17
18
19
20
21

22
23
24

26
27
28

transformation modules2components(mdomain : mview, dcmdomain

dcm, ccdomain : ccview) {

key ccview::Component{name};

key ccview::Connector{name};

key ccview::Port{name, powner};

key ccview::Role{name, cowner};

key ccview::Service{name, sowner};

key ccview::PeerToPeer{name, service};

top relation ModulesModel2ComponentsModel {

checkonly domain mdomain modulesModel : mview::
ModulesModel {};

checkonly domain dcmdomain varModel : dcm::
DomainConceptualModel {3};

enforce domain ccdomain componentsModel : ccview::CCModel
{

name = modulesModel.name

3

where {
UseCase2Connector (modulesModel ,varModel , componentsModel

)5
}

relation UseCase2Connector {

checkonly domain mdomain modulesModel : mview::
ModulesModel {3};

checkonly domain dcmdomain varModel : dcm::
DomainConceptualModel {

3

useCase

= useCase : dcm::UseCase {}
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33

34 enforce domain ccdomain componentsModel : ccview::CCModel
{

35 tcomponents = connector : ccview::Connector {

36 name = useCase.name + ’ Connector’

37 3

38 1

39

40 where {

M Module2Component (modulesModel , varModel,

componentsModel , connector, useCase);

42 }

43 }

44

45

46 relation Module2Component {

47

48 checkonly domain mdomain modulesModel : mview::
ModulesModel {

49 tmodules = module : mview::Module {}

50 b8

51

52 checkonly domain dcmdomain varModel : dcm::
DomainConceptualModel {

53 Actor = actor : dcm::Actor {

54 uses_UseCase = useCaseActor : dcm::UseCase {}

55 }

56 b8

57

58 enforce domain ccdomain componentsModel : ccview::CCModel
{

59 tcomponents = component : ccview::Component {

60 name = getComponentName (varModel, actor, module)

61 3

62 D8

63

64 enforce domain ccdomain connector : ccview::Connector {};

65

66 checkonly domain dcmdomain useCase : dcm::UseCase {};

67

68

69 where {

70 if module.name = ’User Interface’ then

71 Module2RolePort (module, useCaseActor, connector,

component)
72 else
73 Module2RolePort (module, useCase, connector, component
)
74 endif;
75
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TRANSFORMATION MODULES2COMPONENTS

Function2Relation(module, componentsModel, connector,
component);

relation Module2RolePort {

checkonly domain mdomain module : mview::Module {3};

checkonly domain dcmdomain useCase : dcm::UseCase {3};

enforce domain ccdomain connector : ccview::Connector {
crole = role : ccview::Role {
name = module.name + ’ Role’
}
BE

enforce domain ccdomain component : ccview::Component {
port = port : ccview::Port {
name = useCase.name + ' Port’
}
3

where {
ConnectRoleAndPort(role, port);
if (connector.name.oclIsUndefined() or connector.name =
useCase.name + ’ Connector’) then
Function2Service (module, port, component)
else
true
endif;

relation ConnectRoleAndPort {

checkonly domain ccdomain role : ccview::Role {3};

enforce domain ccdomain port : ccview::Port {
prole = role
3

when {

role.rport.oclIsUndefined() and port.prole.
oclIsUndefined();

relation Function2Service {
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123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

146
147
148
149
150
151
152
153
154
155
156

157
158

159
160
161
162

163
164
165
166

checkonly domain mdomain module : mview::Module {
function = function : mview::Function {}
3
checkonly domain ccdomain port : ccview::Port {3};
enforce domain ccdomain component: ccview::Component {
cservice = service : ccview::Service {
name = function.name,

type = function.type,
port = port

relation Function2Relation {

checkonly domain mdomain module : mview::Module {

function = function : mview::Function {}
Bk
enforce domain ccdomain componentsModel : ccview::CCModel
{
relations = relat : ccview::PeerToPeer {
name = module.name + ’ Attachment’,
type = ’attachment’,
service = function.name,
constraints = function.type,
component = component,
connector = connector
}
B

checkonly domain ccdomain connector : ccview::Connector

{}

checkonly domain ccdomain component: ccview::Component

{};

query getComponentName (varModel : dcm::
DomainConceptualModel, actor : dcm::Actor, module
mview::Module) : String {

if module.name = ’User Interface’ then
module.name + ’ - ’ + actor.name
else




167

168

169
170
1

172
173
174
175
176
177
178
179
180
181
182 }

TRANSFORMATION MODULES2COMPONENTS

if module.name = ’Inference Motor’ or module.name = ’
Knowledge Base’ then
if varModel.Reasoning.ReasoningFeatures.oclIsTypeOf(
dcm::deductive) then
’Deductive ’ + module.name
else
if varModel.Reasoning.ReasoningFeatures.oclIsTypeOf
(dcm::differential) then
’Differential ’ + module.name
else

> + module.name

"Error
endif
endif
else
module.name
endif

endif
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Listing C.1: Full Components2Prisma transformation

1 transformation Components2Prisma(adcmdomain : adcm, cdomain

ccview, prismadomain: prisma) {

2

3

4 key prisma::PRISMAArchitecture{name};

5 key prisma::Component{name};

6 key prisma::Connector{name};

7 key prisma::Aspect{name};

8

9

10 top relation CCModel2PRISMAArchitecture {

1

12 checkonly domain adcmdomain adcm: adcm::
AppDomainConceptualModel {3};

13

14 checkonly domain cdomain model : ccview::CCModel {};

15

16 enforce domain prismadomain arch : prisma::
PRISMAArchitecture {

17 name = model.name

18 D8

19

20 where {

21 Component2Component (adcm, model, arch);

22 3

23 }

24

25 relation Component2Component {

26

27 checkonly domain adcmdomain adcm: adcm::
AppDomainConceptualModel {3};

28

29 checkonly domain cdomain model : ccview::CCModel {

30 tcomponents = ccomponent : ccview::Component {}

31 b8

32

33 enforce domain prismadomain arch: prisma::
PRISMAArchitecture {

34 includes = pcomponent : prisma::System {

413




414 TRANSFORMATION COMPONENTS2PRISMA

35 name = ccomponent.name

36 3

37 D8

38

39 where {

40 Port2PortInterface(arch, adcm, ccomponent, pcomponent);

41 3

42 }

43

44

45 relation Port2PortInterface {

46

47 checkonly domain prismadomain arch: prisma::
PRISMAArchitecture {3};

48

49 checkonly domain adcmdomain adcm: adcm::
AppDomainConceptualModel {3};

50

51 checkonly domain cdomain ccomponent : ccview::Component {

52 port = cport : ccview::Port {

53 prole = prole : ccview::Role {}

54 3

55 b8

56

57 enforce domain prismadomain pcomponent : prisma::System {

58 has = pport : prisma::Port {

59 name = cport.name,

60 typed = interface :prisma::Interface {

61 name = ’I’ + ccomponent.name

62 }

63 }

64 Y

65

66 where {

67 Component2FunctionalAspect (adcm, ccomponent, pport,

interface, pcomponent);
68 Connector2ConnectorPortInterface (pport, pcomponent,
prole, adcm, ccomponent, arch);

69 3

70 3}

71

72 relation Component2FunctionalAspect {

73

74 checkonly domain adcmdomain adcm : adcm::
AppDomainConceptualModel {3};

75

76 checkonly domain cdomain ccomponent : ccview::Component {

77 cservice = cservice : ccview::Service {}

78 3

79
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checkonly domain prismadomain pport : prisma::Port {};

checkonly domain prismadomain interface : prisma::
Interface {3};

enforce domain prismadomain pcomponent : prisma::
Component {
imports = aspect : prisma::Aspect {
name = ’'F’ + ccomponent.name,
using = using->including(interface),
providesRequires = service :prisma::Service {
name = cservice.name,
servType = cservice.type,
isInInterface = isInInterface->including(interface)

}
D8

where {
Propery2Parameter (adcm, service);
Hypotheses2Parameter (adcm, service);
AddServices2Interface(service, interface);
AddPlayedRole2Aspect (pport, interface, aspect);
Property2ConstantAttribute (adcm, aspect);
Hypotheses2VariableAttribute (adcm, aspect);
Rule2DerivedAttribute (adcm, aspect);

relation Propery2Parameter {

checkonly domain adcmdomain adcm: adcm::
AppDomainConceptualModel {
properties = property : adcm::Property {3}

3
enforce domain prismadomain service : prisma::Service {
has = parameter : prisma::Parameter {
name = property.name,
paramKind = property.type
3
3

relation Hypotheses2Parameter {

checkonly domain adcmdomain adcm: adcm::
AppDomainConceptualModel {
hypotheses = hyp : adcm::Hypotheses {}
3
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126

127 enforce domain prismadomain service : prisma::Service {

128 has = parameter : prisma::Parameter {

129 name = hyp.name,

130 paramKind = hyp.type

131 3

132 };

133 3}

134

135 relation AddServices2Interface {

136

137 checkonly domain prismadomain service : prisma::Service
{};

138

139 enforce domain prismadomain interface : prisma::Interface
{

140 publish = publish->including(service)

141 Bs

142 3}

143

144

145 relation AddPlayedRole2Aspect {

146

147 checkonly domain prismadomain pport : prisma::Port {3};

148

149 checkonly domain prismadomain interface : prisma::
Interface {};

150

151 enforce domain prismadomain aspect: prisma::Aspect {

152 plays = plays : prisma::PlayedRole {

153 name = ’'Played_role_’ + pport.name,

154 for = interface

155 3

156 };

157

158 where {

159 AddPlayedRole2Port (plays, pport);

160 3

161 3}

162

163 relation AddPlayedRole2Port {

164

165 checkonly domain prismadomain plays : prisma::PlayedRole
{}

166

167 enforce domain prismadomain pport : prisma::Port {

168 behaves = plays

169 Ps

170

171 }
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relation Property2ConstantAttribute {

checkonly domain adcmdomain adcm: adcm::
AppDomainConceptualModel {
properties = property : adcm::Property {3}
3

enforce domain prismadomain aspect : prisma::Aspect {
described_by = attribute : prisma::ConstantAttribute {
name = property.name,
value = property.value,
type = property.type

relation Hypotheses2VariableAttribute {

checkonly domain adcmdomain adcm: adcm::
AppDomainConceptualModel {
hypotheses = hyp : adcm::Hypotheses {}
3

enforce domain prismadomain aspect : prisma::Aspect {
described_by = attribute : prisma::VariableAttribute {
name = hyp.name,
value = hyp.value,
type = hyp.value

relation Rule2DerivedAttribute {

checkonly domain adcmdomain adcm: adcm::
AppDomainConceptualModel {

rules = rule : adcm::Rule {3}
3
enforce domain prismadomain aspect : prisma::Aspect {
described_by = attribute : prisma::DerivedAttribute {
name = rule.name,
complexTerm = rule.clause
}
B
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219

220 relation Connector2ConnectorPortInterface {

221

222 checkonly domain prismadomain pport : prisma::Port {};

223

224 checkonly domain prismadomain pcomponent : prisma::System

{3

225

226 checkonly domain cdomain prole : ccview::Role {

227 cowner = cconnector : ccview::Connector {}

228 Bs

229

230 checkonly domain adcmdomain adcm: adcm::
AppDomainConceptualModel {};

231

232 checkonly domain cdomain ccomponent : ccview::Component
{};

233

234 enforce domain prismadomain arch: prisma::
PRISMAArchitecture {

235 synchronizes = pconnector : prisma::Connector {

236 name = cconnector.name,

237 has = role : prisma::Port {

238 name = prole.name,

239 typed = interface :prisma::Interface {

240 name = ’I’ + pconnector.name + ’-’ + role.name

241 }

242 3

243 }

244 };

245 where {

246 ConnectRolePort (arch, pport, ccomponent, role,

pcomponent);
247 Connector2CoordinatorAspect (adcm, role, interface,
cconnector, pconnector);

248 }

249 3}

250

251 relation ConnectRolePort {

252

253 checkonly domain prismadomain arch: prisma::
PRISMAArchitecture {3};

254

255 checkonly domain prismadomain pport : prisma::Port {3};

256

257 checkonly domain cdomain ccomponent : ccview::Component {

258 clink = clink : ccview::Relation {}

259 Ps

260

261 checkonly domain prismadomain role : prisma::Port {};




262
263
264
265
266
267
268
269
270
27
272
273
274
275
276
277
278

279
280
281

282
283
284

285
286
287
288
289
290
291
292
293
294
295
296

297
298
299
300

301
302

303
304

TRANSFORMATION COMPONENTS2PRISMA

enforce domain prismadomain pcomponent : prisma::System {
hasLinks = link : prisma::LinkElement {
name = clink.name,
sourcePort = pport,
targetPort = role
}
3

where {
AddAttachmentsBindingsToPortAndArc(link, pport, arch);

relation AddAttachmentsBindingsToPortAndArc {

checkonly domain prismadomain link : prisma::LinkElement

{};
enforce domain prismadomain pport : prisma::Port {
attachmentsBindings = attachmentsBindings->including(
link)

U8

enforce domain prismadomain arch: prisma::
PRISMAArchitecture {
connects = attachment : prisma::Attachment {

name = link.name,
sourcePort = link.sourcePort,
targetPort = link.targetPort

relation Connector2CoordinatorAspect {

checkonly domain adcmdomain adcm : adcm::
AppDomainConceptualModel {3};

checkonly domain prismadomain role : prisma::Port {3};

checkonly domain prismadomain interface : prisma::
Interface {};

checkonly domain cdomain cconnector : ccview::Connector

{}

enforce domain prismadomain pconnector : prisma::
Connector {
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305
306
307
308
309
310
31
312
313
314
315
316
317
318
319
320

imports = aspect : prisma::Aspect {
name = 'C’ + cconnector.name,
using = using->including(interface)
}
iy

where {
AddPlayedRole2Aspect(role, interface, aspect);
Property2ConstantAttribute (adcm, aspect);
Hypotheses2VariableAttribute (adcm, aspect);
Rule2DerivedAttribute (adcm, aspect);




TRANSFORMATION
MULTIPLEFEATURES2FAMAFEATURES

Listing D.1: MULTIPLE Features to FAMA features transformation

1
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transformation MultipleFeatures2FamaFeatures(mdomain

features, fdomain : FeatureModelSchema){

key BinaryRelationType {name};

key SetRelationType {name,cardinality};
key GeneralFeature {name};

key FeatureModelType {feature};

top relation Model2Model {

checkonly domain mdomain fmodel : features::FeatureModel
{
rootFeature = root : features::Feature {3}
B
enforce domain fdomain model : FeatureModelSchema::
FeatureModelType {
feature = first : FeatureModelSchema::GeneralFeature {
name = root.name
}
3

top relation StructuralRelationship2BinaryRelation {

checkonly domain mdomain model : features::FeatureModel {

i

checkonly domain mdomain mfeature : features::Feature {
childs = relationship : features::
StructuralRelationship {3}
BE

enforce domain fdomain ffeature : FeatureModelSchema::
GeneralFeature {
name = mfeature.name,

binaryRelation = binaryRelation : FeatureModelSchema::
BinaryRelationType {
name = ’'Relation_to_’ + relationship.to.name,
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51
52
53
54

55
56

57
58

cardinality = cardinality : FeatureModelSchema::
CardinalityType {

max = relationship.upperBound,
min = relationship.lowerBound
},
solitaryFeature = generalfeature : FeatureModelSchema
::GeneralFeature {
name = relationship.to.name
}
}
BE:
T
top relation Group2SetRelation {
checkonly domain mdomain model : features::FeatureModel {
BE:

checkonly domain mdomain feature : features::Feature {
group = group : features::Group {
childs = childRelationship : features::
StructuralRelationship {

}
3
enforce domain fdomain feature2 : FeatureModelSchema::
GeneralFeature {
name = feature.name,
setRelation = setRelation : FeatureModelSchema::
SetRelationType {3}
3
enforce domain fdomain setRelation : FeatureModelSchema::
SetRelationType {
name = ’Grouped_Relation’,
cardinality= cardinality : FeatureModelSchema::
CardinalityType{
o
groupedFeature = generalfeatures : FeatureModelSchema
::GeneralFeature {
name = childRelationship.to.name

3
enforce domain fdomain cardinality : FeatureModelSchema::
CardinalityType{
max = group.upperBound,
min = group.lowerBound

top relation ExcludesRelationship2ExcludesType{
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14 3}
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checkonly domain mdomain model : features::FeatureModel {
relationships = excludesRelationship : features::
Excludes {
from = fromFeature : features::Feature {},
to = toFeature : features::Feature {3}
}
3
enforce domain fdomain featureModel : FeatureModelSchema
::FeatureModelType {
feature = feature : FeatureModelSchema::GeneralFeature
{
name = model.rootFeature.name
Bo
excludes= exclude : FeatureModelSchema::ExcludesType {
name= ’Excludes_from_’ + from.name + ’_to_’ + to.name

)
excludes=from.name,
feature=to.name

}
3
3
top relation ImpliesRelationship2RequiresType{
checkonly domain mdomain model : features::FeatureModel {
relationships = requiresRelationship :features::Implies
{
from = fromFeature : features::Feature {},
to = toFeature : features::Feature {}
}
3
enforce domain fdomain featureModel : FeatureModelSchema

::FeatureModelType {

feature = feature :FeatureModelSchema::GeneralFeature {
name = model.rootFeature.name

},

requires= require:FeatureModelSchema::RequiresType {
name = from.name + ’_requires_’ + to.name,
requires = from.name,
feature = to.name
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Listing E.1: FAMA XML Schema Definition

2
3 <?xml version="1.0" encoding="UTF-8"7>
4 <xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema”
elementFormDefault="qualified">
5 <!-- a feature model coprises a root and 0..x constraints
-->
6 <xs:element name="feature-model">
7 <xs:complexType>
8 <xs:sequence>
9 <xs:element ref="feature”"/>
10 <xs:element ref="requires” minOccurs="0" maxOccurs="
unbounded”/>
11 <xs:element ref="excludes” minOccurs="0" maxOccurs="
unbounded”/>
12 </xs:sequence>
13 </xs:complexType>
14 </xs:element>
15 <!-- a root is comprises with 0..x relations that can be
either binary or set relations-->
16 <!-- a general relation has an atribute name to indentify
i ==
17 <xs:complexType name="generalRelation">
18 <xs:attribute name="name” use="required”/>
19 </xs:complexType>
20 <!-- a relation is of the type generalRelation -->
21 <xs:element name="relation” type="generalRelation”"/>
22 <!-- a binary relation is of an extended type of
generalRelation and comprises only one solitaryFeature
-->
23 <xs:element name="binaryRelation">
24 <xs:complexType>
25 <xs:complexContent>
26 <xs:extension base="generalRelation">
27 <xs:sequence>
28 <xs:element ref="cardinality" />
29 <xs:element ref="solitaryFeature”" />
30 </xs:sequence>
31 </xs:extension>
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42

43
44
45
46
47
48

49
50
51

52

</xs:complexContent>
</xs:complexType>
</xs:element>
<!-- a set relation is of an extended type of
generalRelation and comprises 0..* cadninalities and
2..%x groupedFeature -->
<xs:element name="setRelation”">
<xs:complexType>
<xs:complexContent>
<xs:extension base="generalRelation”">
<xs:sequence>
<xs:element ref="cardinality” maxOccurs="
unbounded” />
<xs:element ref="groupedFeature” minOccurs="2"
maxOccurs="unbounded" />
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<!-- a generalFeature is a type that has an attribute
called name to identified it and comprises 0..x*
relations, it also has an element called attribute -->
<xs:complexType name="generalFeature">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="binaryRelation” minOccurs="0"
maxOccurs="unbounded” />
<xs:element ref="setRelation” minOccurs="0" maxOccurs
="unbounded”/>
</xs:sequence>
<xs:attribute name="name” use="required”/>
</xs:complexType>

<!-- a feature is of the type generalFeature -->
<xs:element name="feature” type="generalFeature"/>

<!-- solitaryFeature is of an extended type of
generalFeature and comprises of 1..%* cardinalities -->
<xs:element name="solitaryFeature” type="generalFeature”/>

<!-- groupedFeature is of an extended type of
generalFeature and has implicitly the cardinality
[1..1]-->

<xs:element name="groupedFeature” type="generalFeature"/>

<!-- a cardinality comprises two attributes called min and

max indicating the boundaries of the cardinalities-->
<xs:element name="cardinality">
<xs:complexType>
<xs:attribute name="min" use="required”/>
<xs:attribute name="max" use="required"/>




88
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</xs:complexType>
</xs:element>
<!-- requires and excludes constraints an attribute
called name to identify it-->
<xs:element name="requires">
<xs:complexType>
<xs:attribute name="name" use="required"/>
<xs:attribute name="feature” use="required"/>
<xs:attribute name="requires"” use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="excludes">
<xs:complexType>
<xs:attribute name="name" use="required"/>
<xs:attribute name="feature” use="required"/>
<xs:attribute name="excludes" use="required"/>
</xs:complexType>
</xs:element>

</xs:schema>

427






RUNNING A QVT TRANSFORMATION
PROGRAMMATICALLY USING MEDINI QVT

Listing F.1: Running a QVT transformation programmatically using me-

dini QVT:QvtTransformation]ob class

o © ® N o g & W N

package es.upv.dsic.issi.qvt.launcher.internal;

import java.io.IOException;
import java.io.InputStreamReader;
import java.io.Reader;

import java.util.ArraylList;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;

import org.eclipse.core.resources.ResourcesPlugin;

import org.eclipse.core.resources.WorkspaceJob;

import org.eclipse.core.runtime.CoreException;

import org.eclipse.core.runtime.IProgressMonitor;

import org.eclipse.core.runtime.IStatus;

import org.eclipse.core.runtime.Status;

import org.eclipse.emf.common.util.Monitor;

import org.eclipse.emf.common.util.URI;

import org.eclipse.emf.ecore.EObject;

import org.eclipse.emf.ecore.EPackage;

import org.eclipse.emf.ecore.resource.Resource;

import org.eclipse.emf.ecore.resource.ResourceSet;

import org.eclipse.emf.ecore.resource.impl.ResourceSetImpl;
import org.eclipse.emf.ecore.xmi.PackageNotFoundException;
import org.oslo.ocl20.standard.lib.OclAnyModelElement;

import traces.TraceabilitylLink;

import traces.TraceabilityModel;

import traces.TracesFactory;

import uk.ac.kent.cs.kmf.util.ILog;

import uk.ac.kent.cs.kmf.util.OutputStreamlLog;

import de.ikv.emf.qvt.EMFQvtProcessorImpl;

import de.ikv.medini.qvt.QVTProcessorConsts;

import de.ikv.medini.qvt.Trace;

import es.upv.dsic.issi.qvt.launcher.QvtLauncherPlugin;
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36

37

39
40
41
42
43
44
45

46

import es.upv.dsic.issi.qvt.launcher.model.qvtinvocation.
Domain;

import es.upv.dsic.issi.qvt.launcher.model.qvtinvocation.
QvtTransformationInvocation;

public class QvtTransformationJob extends WorkspaceJob {
QvtTransformationInvocation invocation;
ResourceSet resourceSet = new ResourceSetImpl();
public QvtTransformationJob(QvtTransformationInvocation
invocation) {
super ("Running + invocation.getName() +

transformation”);
this.invocation = invocation;

" n

@Override
public IStatus runInWorkspace(IProgressMonitor monitor)
throws CoreException {
monitor.beginTask ("Running...", Monitor.UNKNOWN);
Resource targetResource = null;

ILog log = new OutputStreamLog(System.err);

EMFQvtProcessorImpl emfQvtProcessorImpl = new
EMFQvtProcessorImpl (log);

Reader qvtScriptReader = new InputStreamReader (

ResourcesPlugin.getWorkspace().getRoot().getFile(

invocation.getPath()).getContents());

Collection<Resource> models = (new ArraylList<Resource
>());
for (Domain domain : invocation.getDomains()) {
Resource resource = null;

if (ResourcesPlugin.getWorkspace().getRoot().getFile

(domain.getModelPath()).exists()) {
try {
resource = resourceSet.getResource(
URI.createPlatformResourceURI (domain.
getModelPath().toString(),false),
true);
resource.load(Collections.EMPTY_MAP);
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77 if (!resource.getContents().isEmpty()) {

78 emfQvtProcessorImpl.addMetaModel (resource.
getContents () .get(0).eClass().
getEPackage ());

79 } else {

80 resource = resourceSet.createResource(

81 URI.createPlatformResourceURI (domain.
getModelPath().toString(),false))
5

82 }

83 } catch (IOException e) {

84 return new Status(IStatus.ERROR,

QvtLauncherPlugin.PLUGIN_ID,e.
getlLocalizedMessage(),e);

85 } catch (Exception e) {

86 if (e.getCause() instanceof
PackageNotFoundException) {

87 return new Status(IStatus.ERROR,

QvtLauncherPlugin.PLUGIN_ID,e.getCause
().getLocalizedMessage () ,e.getCause());

88 3}

89 return new Status(IStatus.ERROR,
QvtLauncherPlugin.PLUGIN_ID,e.
getlLocalizedMessage(),e);

90 }

91 } else {

92 resource = resourceSet.createResource(

93 URI.createPlatformResourceURI (domain.

getModelPath().toString(),false));

94

95 resource.getContents().clear();

9%

97 Object[] keys = EPackage.Registry.INSTANCE.keySet

().toArray();

98

99

100 for (Object key : keys) {

101 EPackage pkg = EPackage.Registry.INSTANCE.
getEPackage (key.toString());

102 if (pkg.getNsPrefix().equals(domain.
getNsPrefix())) {

103 emfQvtProcessorImpl.addMetaModel (pkg);

104 3}

105 }

106

107 }

108 models.add(resource);

109 3
110
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m
112

13
114
115
116
17
18
19
120

121
122

123
124
125

126
127
128
129
130
131
132
133

134
135

136

137

138
139
140
141
142
143
144
145
146

147
148

149

targetResource = resourceSet.getResource (
URI.createPlatformResourceURI (invocation.
getDirection().getModelPath().toString(),
false),true);

targetResource.getContents().clear();

emfQvtProcessorImpl.setModels (models);
emfQvtProcessorImpl.setDebug(true);

emfQvtProcessorImpl.setProperty (QVTProcessorConsts.
PROP_DISABLE_TRACES, "true”);

//emfQvtProcessorImpl.setProperty(QVTProcessorConsts.
PROP_DISABLE_TRANSACTIONAL_MODE, "true");

try {
Collection<Trace> traces = emfQvtProcessorImpl.
evaluateQVT(
qvtScriptReader,
invocation.getName (),
true,
invocation.getDirection().getName (),
models. toArray (),
new ArraylList<Trace>(),
log);
TraceabilityModel traceabilityModel =
createTraceabilityModel (traces);

Resource tracesResource = resourceSet.createResource
(
URI.createPlatformResourceURI (invocation.
getDirection().getModelPath ().
removeFileExtension().addFileExtension ("
traces”).toString(),false));

tracesResource.getContents().add(traceabilityModel);

targetResource.save(Collections.EMPTY_MAP);

tracesResource.save(Collections.EMPTY_MAP);

} catch (IOException e) {
return new Status(IStatus.ERROR,QvtLauncherPlugin.
PLUGIN_ID,e.getLocalizedMessage(),e);
} catch (Exception e) {
return new Status(IStatus.ERROR,QvtLauncherPlugin.
PLUGIN_ID,e.getLocalizedMessage(),e);
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return Status.OK_STATUS;

private TraceabilityModel createTraceabilityModel (

Collection<Trace> traces) {
TraceabilityModel traceabilityModel = TracesFactory.
eINSTANCE . createTraceabilityModel ();

traceabilityModel.setName("Transformation”);

for (Domain domain : invocation.getDomains()) {
if (domain != invocation.getDirection()) {
traceabilityModel.getDomainModels () .add(URI.
createPlatformResourceURI (domain.getModelPath
().toString(),false));
} else {
traceabilityModel.getTargetModels () .add(URI.
createPlatformResourceURI (domain.getModelPath
().toString(),false));

for (Trace t : traces) {
TraceabilitylLink traceabilitylLink = TracesFactory.
eINSTANCE.createTraceabilityLink();

traceabilityModel.getlLinks().add(traceabilitylLink);

traceabilitylLink.setManipulationRule(t.getRelation()
.getName ());

for (Object objl : t.getBindings()) {
for (Object obj2 : ((HashMap)objl).values())
if (obj2 instanceof OclAnyModelElement) {
OclAnyModelElement elt = (OclAnyModelElement)
obj2;
if (!((EObject) elt.asJavaObject()).eClass().
eResource () .equals(
resourceSet.getResource(
URI.createPlatformResourceURI (
invocation.getDirection().
getModelPath().toString(),
false), true)
.getContents().get(0).eClass().
eResource())) {
traceabilitylLink.getDomain().add((EObject)
elt.asJavaObject());
} else {
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185 traceabilitylLink.getRange () .add((EObject)
elt.asJavaObject());

186 }

187 3

188 }

189 3

190

191 return traceabilityModel;

192 3

193 }
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Listing G.1: Full Transpath2CPN transformation

1 transformation TranspathToCPN(tpDomain:transpath, cpnDomain:
cpn)

2 {

3

4 // Key declaration

5

6 key Page {name};

7 key Globbox {id};

8 key Cpnet {page,globbox};

9 key Block {idname};

10 key Enumerated {idname};

M key Product {idname};

12 key ColorSetElement {name};

13 key Place {id};

14 key Trans {id};

15 key Initmark {id};

16 key Mark {initmark,colorSetElement};

17 key Fusion {name};

18 key Arc {trans,place};

19

20

21 /*****K*‘k*‘k*‘k*********K**k*‘k*‘k*‘k**********‘k*‘k*‘k******

22 **x Root elements

23 *********‘k************‘k*k************************/

24

25 top relation NetworkToCpnet {

26

27 checkonly domain tpDomain network : transpath::Network {

28 molecules = molecule : transpath::Molecule {3},

29 reactions = reaction : transpath::Reaction {}

30 };

31

32 enforce domain cpnDomain cpnet : cpn::Cpnet{

33 page = page : Page {

34 id = network.pathway.id.first(),

35 name = network.pathway.name.first(),

36 posx = 200,

37 posy = 100,

38 width = 1000,
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40
M
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

height = 800

Bo
globbox = globbox : cpn::Globbox {
id = ’Declarations’
}
BE
where {

ComplexMoleculeToProduct (molecule, globbox);
ReactionToGUIElements(reaction, page);
//page.performLayout (600, 400, 1000);

/************9<*9<**********************************

**% Declarations
*************************************************/

relation ComplexMoleculeToProduct {
checkonly domain tpDomain molecule : transpath::Molecule
{
statesOf = simpleMolecule : transpath::Molecule {3}

U8

enforce domain cpnDomain globbox : cpn::Globbox {

declarations = resourcesBlock : cpn::Block {
id = ’Resources’,
idname = ’Resources’
Bo
declarations = complexesBlock : cpn::Block {
id = ’Complexes’,
idname = ’Complexes’,
declarations = product : cpn::Product {
idname = GetMoleculeType(molecule)
}
}
3
when {
IsComplexMolecule(molecule);
}
where {

SimpleMoleculeToEnumerated(simpleMolecule,
resourcesBlock, product);

relation SimpleMoleculeToEnumerated {

checkonly domain tpDomain molecule : transpath::Molecule

{
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103
104
105
106
107
108
109
110
m
12
13
114
15
116
17

118

119

120
121
122
123
124
125
126
127
128
129
130
131
132
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D3

enforce domain cpnDomain resourcesBlock : cpn::Block {
declarations = enumerated : cpn::Enumerated {
idname = GetMoleculeType(molecule),
id = GetMoleculeType(molecule),
//usedIn = usedIn->including(product),
colorElements = element : cpn::ColorSetElement {
name = molecule.name

}
3
enforce domain cpnDomain product : cpn::Product {
simpleColors =
simpleColors
->including(enumerated)
->sortedBy(colorSet : ColorSet | colorSet.idname)

5

when {
IsSimpleMolecule(molecule);

/**“X**X*k*)(************“X*“X**************“X************
** Graphical elements

R R R R R

relation ReactionToGUIElements {

checkonly domain tpDomain reaction : transpath::Reaction
{
reactantsCoefficient = reactantsCoefficients
transpath::ReactantsCoefficient {3},
producesCoefficient = productsCoefficients : transpath
::ProductsCoefficient {}
BE
enforce domain cpnDomain page : cpn::Page {
transs = transition : cpn::Trans {
id = reaction.name,
text = ’bind ’ + BuildTransitionText(reaction),
width = 60,
hight = 40,
fillColour = ’White’,
fillPattern = ’Solid’,

fillFilled = false,
lineThick = 1,
lineType = ’Solid’,
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133
134
135
136
137
138

139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

156
157
158
159
160
161
162

163
164
165
166
167
168
169
170
m
172
173
174
175
176
177
178

lineColour = ’Black’
}
3

where {
ReactantToPlaceArc(reactantsCoefficients.reactants,
transition, reaction.name, page);
ProductToPlaceArc(productsCoefficients.produces,
transition, reaction.name, page);

relation ReactantToPlaceArc {

checkonly domain tpDomain reactant : Molecule {3};

checkonly domain cpnDomain trans : cpn::Trans {};

primitive domain reactionName : String;

enforce domain cpnDomain page : cpn::Page {
places = place : cpn::Place {
id = GetMoleculeType(reactant),
lineColour =
if Reaction.alllnstances().producesCoefficient.
produces->includes(reactant) then
’Black’
else
’Lime’
endif
}
arcs = arc : cpn::Arc {
id = ’{’ + reactant.name + '} => {’ + reactionName
o
orientation = ’'PtoT’,
trans = trans,
place = place
}
3
where {
FillCommonAttributesInPlaces(place);
MoleculeToArcAnnot (reactant,arc);
SimpleMoleculeToPlaceType(reactant, place);
ComplexMoleculeToPlaceType(reactant, place);
SimpleReactantToInitMark (reactant,place);

relation ProductToPlaceArc {

an
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201
202
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204
205
206
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208
209
210
21
212
213
214
215
216
217
218
219
220
221
222
223
224
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checkonly domain tpDomain product : Molecule {};

checkonly domain cpnDomain trans : cpn::Trans {};

primitive domain reactionName : String;

enforce domain cpnDomain page : cpn::Page {
places = place : cpn::Place {
lineColour =
if not(Reaction.alllnstances().reactantsCoefficient
.reactants->includes(product)) then
’Maroon’
else
’Black’
endif,
id =
if Reaction.alllnstances().reactantsCoefficient.
reactants->includes(product) then
GetMoleculeType (product)
else
product.name
endif,
text =
if not(Reaction.alllnstances().reactantsCoefficient
.reactants->includes(product)) then

’Dead end’
else
endif
},
arcs = arc : cpn::Arc {
id = ’{’ + reactionName + ’} => {’ + product.name + ’
575
orientation = 'TtoP’,

trans = trans,
place = place
}
BE

where {
FillCommonAttributesInPlaces(place);
MoleculeToArcAnnot (product,arc);
SimpleMoleculeToPlaceType (product, place);
ComplexMoleculeToPlaceType (product, place);

relation FillCommonAttributesInPlaces {

enforce domain cpnDomain place : cpn::Place {
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225 width = 60,

226 hight = 40,

227 fillColour = ’White’,

228 fillPattern = ’Solid’,

229 fillFilled = false,

230 lineThick = 1,

231 lineType = ’Solid’

232 Bs

233

234 }

235

236 relation SimpleReactantToInitMark {

237

238 checkonly domain tpDomain reactant : transpath::Molecule
{

239 Bs

240

24 enforce domain cpnDomain place : cpn::Place ({

242 initmark = imark : cpn::Initmark {

243 fillColour = ’White’,

244 fillPattern = ’Solid’,

245 fillFilled = false,

246 lineThick = 1,

247 lineType = ’Solid’,

248 lineColour = ’Lime’,

249

250 id = GetMoleculeType(reactant),

251 marks = mark : cpn::Mark {

252 value =

253 --- This value is not a valid value, it is set in

this way in order to

254 --- obtain a valid CPNet. This marking must be
corrected by biologists.

255 --- Now, we initialize this value to the number
of molecules of each kind

256 --- that are involved in the reactions of the
pathway

257 reactant.rkoutsCoefficient.coefficient->sum(),

258 colorSetElement = colorSetElement : cpn::

ColorSetElement {

259 name = reactant.name

260 }

261 3

262 }

263 Bs

264

265 when {

266 IsSimpleMolecule(reactant);

267 3

268 }
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relation SimpleMoleculeToPlaceType {

checkonly domain tpDomain molecule

Molecule {};

enforce domain cpnDomain place : Place {

type = enumerated

cpn::Enumerated {

idname = GetMoleculeType(molecule)

}

}

when {
IsSimpleMolecule(molecule);

relation ComplexMoleculeToPlaceType {

checkonly domain tpDomain molecule

Molecule {3};

enforce domain cpnDomain place : Place {

type = product cpn::Product {

idname = GetMoleculeType(molecule)

}

3

when {
IsComplexMolecule(molecule);

relation MoleculeToArcAnnot {

checkonly domain tpDomain molecule

enforce domain cpnDomain arc
headsize = 1,

currentcyckle = 2,
fillColour = ’White’,
fillPattern = ’Solid’,

fillFilled = false,
lineThick = 1,
lineType = ’Solid’,
lineColour =

Molecule {3};

cpn::Arc {

if IsSimpleMolecule(molecule) then

’Lime’
else
’Black’
endif,
annot = annot cpn::Annot {
fillColour = ’White’,
fillPattern = ’Solid’,
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319 fillFilled = false,

320 lineThick = 1,

321 lineType = ’Solid’,

322 lineColour =

323 if IsSimpleMolecule(molecule) then

324 "Lime”’

325 else

326 ’Black’

327 endif,

328 text =

329 if IsSimpleMolecule(molecule) then

330 ’1¢7 + molecule.name

331 else

332 ’(’ + BuildMoleculeComponentsList(molecule) +

333 endif

334 3

335 };

336

337 3}

338

339 /*************************************************

340 *%x Helper functions

341 KA KKK KA AR KA A KA A AR KA AR KR A A AR A A AR KRR A AR AR AR AR AR Ak kK */

342

343

344 query IsSimpleMolecule(molec:Molecule):Boolean

345 {

346 (molec.statesOf -> isEmpty())

347 3}

348

349 query IsComplexMolecule(molec:Molecule):Boolean

350 {

351 (not(molec.statesOf -> isEmpty()))

352 3

353

354 query GetMoleculeType(molecule : transpath::Molecule)
String

355 {

356 if IsSimpleMolecule(molecule) then

357 GetSimpleMoleculeType(molecule)

358 else

359 GetComplexMoleculeType(molecule)

360 endif

361 }

362

363 query GetSimpleMoleculeType(molec : Molecule) : String

364 {

365 if (molec.klass -> includes(’adaptor proteins’))

366 then A’

367 else

'y




368
369
370
37
372
373
374
375

376
377
378
379
380
381

382
383
384
385
386
387
388
389
390
391

392
393
394

395
396
397
398
399
400

401
402
403
404

405
406
407}
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if (molec.klass -> includes(’receptors’))
then 'R’
else ’0’
endif
endif

query GetComplexMoleculeType(complexMolecule : Molecule)
String

complexMolecule.statesOf

->collect(m : Molecule | GetSimpleMoleculeType(m))

->asSet ()

->sortedBy(type : String | type )

->iterate(type : String; complexBlockID : String = '’
complexBlockID.concat(type))

3
query BuildTransitionText(reaction : Reaction) : String
{
let moleculeNames : Sequence(String) =
reaction.reactantsCoefficient.reactants.name
in
moleculeNames
->excluding(moleculeNames.last())
->iterate(moleculeName : String; text : String = ’’
text.concat(moleculeName).concat(’,’))
.concat(moleculeNames.last())
i
query BuildMoleculeComponentsList(molecule : Molecule)
String
{

let moleculesSet : OrderedSet(Molecule) =
molecule.statesOf
->asSet ()
->sortedBy(molecule : Molecule | GetMoleculeType(
molecule))

in
moleculesSet
->excluding(moleculesSet.last())
->iterate(molecule : Molecule; text : String = ’’
text.concat(molecule.name).concat(’,’))

.concat(moleculesSet.last().name)
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