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Abstract 

In recent years, the environmental variance has aroused great interest in animal genetics. 

Environmental variance has been related to the animal's capacity to adapt to new 

environmental challenges, i.e., animal welfare. Several studies have reported that 

environmental variance is under genetic control. This has implications for livestock 

production, since selection to reduce environmental variance may be a useful way to decrease 

the susceptibility to diseases and stress in animals, i.e., to improve animal welfare. 

Concerning susceptibility to diseases and stress, it is well known that gut microbiota has an 

important role in the development of the immune system and the activation of the 

hypothalamic-pituitary-adrenal (HPA) axis in the host. A divergent selection experiment for 

the environmental variance of litter size at birth was carried out in rabbits during thirteen 

generations. The aims of this study were to analyse theinflammatory response of the high and 

the low line in order to study the effect of selection for the environmental variability of litter 

size on susceptibility to diseases, and to analyse the existence of microbial genes associated 

with the environmental variability of litter size that allows us to separate the high and the low 

line. For these purposes, several inflammatory and biochemical markers were measured in 39 

females from the high and the low line, and partial least square discriminant analysis (PLS-

DA) was performed using 34 females from the high line and 36 females from the low line. All 

animals belonged to the 13th generation of selection. 

The high line showed lower white blood leukocyte count (WBC) (-0.87 x103/µl) and 

percentage of basophils (-0.11%) and higher concentration of TNF-α (+13.8 pg/ml),C-reactive 

protein (CRP) (+38.1µg/ml), bilirubin (+0.08 µmol/L), cholesterol (+0.14 µmol/L), gamma-

glutamyl transferase (GGT) (+0.35 U/L) and alkaline phosphatase (ALP) (+2.4 U/L) 

compared to the low line. Therefore, the high line showed higher inflammatory response and 

susceptibility to infectious and diseases.  

Metagenomic analysis was carried out on the animals of previous study. Bacterial genome 

sequencing was performed by paired-end (2x150) in Illumina NextSeq 550. A total of 3046 

microbial genes were identified. The PLS-DA score plot showed that the projection of data on 

the four latent variables had a good adjustment coefficient (R2=0.85) and a good cross-

validation (Q2=0.52). A good separation was observed between lines and, the loading plot 

shows how the variables relate to each line and that the two lines are negatively correlated. 
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In conclusion, our findings suggest that selection for the environmental variability of litter 

sizeis related to susceptibility to diseases in animal through modification of its gut microbiota. 

Keywords: C-reactive protein, divergent selection response, rabbits, susceptibility to 

diseases, welfare, metagenomic, PLS-DA.  
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Resumen  

En los últimos años, la varianza ambiental ha despertado un gran interés en la mejora genética 

animal. La varianza ambiental se ha relacionado con la capacidad del animal para adaptarse a 

nuevos desafíos ambientales, es decir, con el bienestar animal. Varios estudios han encontrado 

que la varianza ambiental está bajo control genético. Esto tiene implicaciones para la 

producción ganadera, ya que la selección para reducir la varianza ambiental puede ser una 

forma útil de disminuir la susceptibilidad a enfermedades y estrés en los animales, es decir, 

sería una forma útil de mejorar el bienestar animal. En cuanto a la susceptibilidad a las 

enfermedades y al estrés, la microbiota intestinal tiene un papel importante en el desarrollo 

del sistema inmunológico y la activación del eje hipotalámico-pituitario-adrenal (HPA) en el 

huésped. Se llevó a cabo un experimento de selección divergente para la varianza ambiental 

del tamaño de la camada al nacimiento en conejos durante trece generaciones. Los objetivos 

de este estudio fueron analizar la respuesta inflamatoria de la línea alta y baja con el fin de 

estudiar el efecto de la selección por variabilidad ambiental del tamaño de la camada sobre la 

susceptibilidad a enfermedades, y detectar genes microbianos asociados con la variabilidad 

ambiental del tamaño de camada que nos permitan separar la línea alta y la baja. Para ello, se 

midieron varios marcadores inflamatorios y bioquímicos en 39 hembras de la línea alta y baja, 

y se realizó un análisis discriminante de mínimos cuadrados parciales (PLS-DA) utilizando 34 

hembras de la línea alta y 36 hembras de la línea baja. Todos los animales pertenecían a la 13ª 

generación de selección. 

La línea alta mostró menor recuento de leucocitos en sangre (WBC) (-0,87 x103 / µl) y 

porcentaje de basófilos (-0,11%) y mayor concentración de TNF-α (+13,8 pg / ml), proteína C 

reactiva (PCR) (+ 38,1 µg / ml), bilirrubina (+0,08 µmol / L), colesterol (+0,14 µmol / L+0,14 

µmol / L), gamma-glutamil transferasa (GGT) (+0,35 U / L) y fosfatasa alcalina (ALP) (+2,4 

U / L) en comparación con la línea baja. Por lo que la línea alta mostró una mayor respuesta 

inflamatoria y susceptibilidad a enfermedades infecciosas. 

El análisis metagenómico se llevó a cabo en los animales del estudio anterior. La 

secuenciación del genoma bacteriano se realizó por paired-end (2x150) en Illumina NextSeq 

550. Se identificaron un total de 3046 genes microbianos. Los resultados del PLS-DA 

mostraron que la proyección de los datos sobre las cuatro variables latentes tuvieron un buen 

coeficiente de ajuste (R² = 0.85) y de validación cruzada (Q² = 0.52). Se observó una buena 
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separación entre líneas y, la gráfica mostro cómo las variables se relacionan con cada línea y 

que las dos líneas están correlacionadas negativamente. 

En conclusión, nuestros resultados sugieren que la selección por varianza ambiental del 

tamaño de camada está relacionada con la susceptibilidad a enfermedades en el animal a 

través de la modificación de su microbiota intestinal. 

Palabras clave: proteína C reactiva, respuesta de selección divergente, conejos, 

susceptibilidad a enfermedades, bienestar, metagenómica, PLS-DA. 
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Resum  

En els últims anys, la varianza ambiental ha despertat un gran interés en la millora genètica 

animal. La varianza ambiental s’ha relacionat amb la capacitat de animal per a adaptar-se a 

nous desafiaments ambientals, és a dir, amb el benestar animal. Diversos estudis han trobat 

que la varianza ambiental està baix control genètic. Açò té implicacions per a la producció 

ramadera, ja que la selecció per a reduir la varianza ambiental pot ser una forma útil de 

disminuir la susceptibilitat a malalties i estrés en els animals, és a dir, seria una forma útil de 

millorar el benestar animal. Quant a la susceptibilitat a les malalties i a l’estrés, la microbiota 

intestinal té un paper important en el desenrotllament del sistema immunològic i l’activació de 

l’eix hipotalámico-pituitario-adrenal (HPA) en l’hoste. 

Es va dur a terme un experiment de selecció divergent per a la varianza ambiental de la 

grandària de la ventrada al naixement en conills durant tretze generacions. Els objectius d’este 

estudi van ser analitzar la resposta inflamatòria de la línia altai baixa a fi d’estudiar l’efecte de 

la selecció per variabilitat ambiental de la grandària de la ventrada sobre la susceptibilitat a 

malalties, i detectar gens microbians associats amb la variabilitat ambiental de la grandària de 

ventrada que ens permeten separar la línia alta i la baixa. Per a això, es van mesurar diversos 

marcadors inflamatoris i bioquímics en 39 femelles de la línia alta i baixa, i es va realitzar una 

anàlisi discriminant de mínims quadrats parcials (PLS-DA) utilitzant 34 femelles de la línia 

alta i 36 femelles de la línia baixa. Tots els animals pertanyien a la 13a generació de selecció. 

La línia alta va mostrar menor recompte de leucòcits en sang (WBC) (-0,87 x103 /µl) i 

percentatge de basòfils (-0,11%) i major concentració de TNF (+13,8 pg /ml) , proteïna C 

reactiva (PCR) (+ 38,1 µg / ml) , bilirubina (+0,08 µmol / L), colesterol (+0,14 µmol / L+0,14 

µmol / L) , gamma-glutamil transferasa (GGT) (+0,35 U / L) i fosfatasa alcalina (ALP) (+2,4 

U / L) en comparació amb la línea baixa. Pel que la línia alta va mostrar una major resposta 

inflamatòria i susceptibilitat a malalties infeccioses. 

L’anàlisi metagenómico es duc a terme en els animals de l’estudi anterior. La seqüenciació 

del genoma bacterià es va realitzar per paired-end (2x150) en Illumina NextSeq 550. Es van 

identificar un total de 3046 gens microbians. Els resultats del PLS-DA van mostrar que la 

projecció de les dades sobre les quatre variables latents van tindre un bon coeficient d’ajust 

(R² = 0.85) i de validació encreuada (Q² = 0.52). Es va observar una bona separació entre 
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línies i, la gràfica va mostrar com les variables es relacionen amb cada línia i que les dos 

línies están correlacionades negativament. 

En conclusió, els nostres resultats suggerixen que la selecció per varianza ambiental de la 

grandària de ventrada està relacionada amb la susceptibilitat a malalties en l’animal a través 

de la modificació del seu microbiota intestinal.  

Paraules clau: proteïna C reactiva, resposta de selecció divergent, conills, susceptibilitat a 

malalties, benestar, metagenómica, PLS-DA. 
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1. Part 1  

1.1. Environmental variation 

1.1.1. Environmental variation in quantitative traits 

The value observed or the phenotypic value of an individual can be partitioned into two 

components, one attributable to the genotype and one attributable to the environment. 

                                                              P = G + E                                                                 (1) 

where P is the phenotypic value, G is the genotype value and E is the environmental value. 

We assume that the genotype conferring a certain value on the individual, and the 

environment causing a deviation from this value.  

Additionally, the formula (1) can include the genotype and environmental interaction (G x E); 

for example, when the best genotypes in certain environments are not necessarily the best in 

other environments. In intensive production systems as the poultry, the pigs, the rabbits and 

the dairy cattle, the facilities and the animal care are very similar regardless of the place of 

production. Therefore, the genotype-environment interaction is not considered a major 

problem and it is often ignored in these species. 

When the genotype-environment interaction is not considered,the phenotypic variation (VP) 

within a population can be divided into genetic variation (VG) and environmental variation 

(VE). This relationship can be summarized as follows (Falconer and Mackay, 1996):   

 VP = VG + VE      (2) 

The genetic variation (VG) includes the variance due to the average additive value of the 

genes and the variance due to values of the intra and inter-locus interactions among genes. 

The environmental variation (VE) can be divided into two components, the variance due to 

systematic recognisable environmental causes, as season, feed, age or sex effects, and the 

variance due to unknown or random environmental causes that therefore cannot be eliminated. 

Note that there is an important assumption behind the formula (2) as the genotype and the 

environment are not correlated. 
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A reduction in the environmental variance would lead to increase the heritability (h²) of trait, 

which can be particularly helpful for increasing the response to selection in traits with low 

heritability. 

Environmental variance can be reduced by control of systematic environmental effects, i.e., 

making them as uniform as possible, by pre-correction of the data, or by selection. The 

control of systematic environmental effects is difficult to carry out in species under extensive 

production systems as beef cattle, sheep, and goats. The pre-correction of the data can be a 

rude way for eliminating environmental variance, if effect acts over a long period as in the 

case of season effect on litter size, since the response in each animal can be wide variable. 

Finally, the response to selection is conditioned to heritability. In order to analyse the genetic 

determination of environmental variability, several studies have been performed in the last 

decade. 

 

1.1.2. Genetic control of environmental variation 

The response found in a direct selection experiment for litter size environmental variance in 

rabbits by Blasco et al. (2017) confirmed the genetic control in environmental variance, in 

agreement to heritability estimated in previous studies with pigs (Sorensen and 

Waagepetersen, 2003 for litter size; Ibañez-Escriche et al., 2008a for slaughter weight; 

Mulder et al., 2015 for birth weight and stillbirth; Sell-Kubiak et al., 2015 for birth weight), 

rabbits (Garreau et al., 2008 for birth weight; Yang et al., 2011 for litter size), mice (Gutiérrez 

et al., 2006 for litter size; Ibañez-Escriche et al., 2008b for weight gain; Formoso-Rafferty et 

al., 2015 for birth weight), poultry (Mulder et al., 2009 for body weight), beef cattle (Fina et 

al., 2013 for birth weight) and dairy cattle (Rönnegård et al., 2013 for milk yield). Note that 

all of these studies provide indirect evidence about the genetic determination of 

environmental variance, since these estimates come from analyses of databases and not from 

experiments designed to assess the genetic determination of environmental variance.  

All these studies show that there is additive variance but the heritability of environmental 

variance is low (see Table 1). All of them find the existence of a genetic correlation (rA (a,av)) 

between additive genetic effects for the trait (a) and its environmental variance (av), although 

the majority of estimates present awide confidence interval. The correlated response to 

selection for environmental variance on the mean of a trait depends on the value and the sign 

of this correlation. A negative genetic correlation means that when we select to increase the 
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environmental variability, the mean of this trait decreases and, vice versa, a positive genetic 

correlation means that when we select to increase the environmental variability, the mean of 

this trait increases. 

Table 1 shows a negative genetic correlation between litter size and its environmental 

variance (Sorensen and Waagepetersen, 2003; Gutiérrez et al., 2006). In agreement with the 

negative genetic correlation between both traits, Blasco et al. (2017) found a higher litter size 

in the selected line for decreasing litter size variability than for increasing it in rabbits. Body 

weight does not show a clear pattern (Table1), some authors have found a negative correlation 

between the trait and its environmental variability (Ibañez-Escriche et al., 2008a; Ibañez-

Escriche et al., 2008b; Mulder et al., 2009), and others have reported a positive genetic 

correlation (Fina et al., 2013; Sell-Kubiak et al., 2015). Indeed, Formoso-Rafferty et al. 

(2015) have found a higher body weight at birth in the selected line for increasing the 

environmental variance of body weight at birth in mice than in the selected line for decreasing 

it. 
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Table 1. Estimates of the heritability of environmental variance (hv²), additive variance 

( 𝛔𝐚𝐯
𝟐 )  and genetic correlation between additive genetic effects for the trait and its 

environmental variance (rA (a,av)). 

 

1.2. Selection experiments for environmental variation in animals 

In recent years, the environmental variance has aroused great interest in animal genetic 

improvement (Hill and Mulder, 2010). Reducing the environmental variance in traits with low 

heritability has the advantage of improving the response to selection since it increases the 

heritability. Moreover, as we will see later, the reduction of environmental variance is related 

to the improvement of animal welfare. Besides, reducing the environmental variance can 

increase the homogeneity of productions, which is a specificity preferred by farmerssince it 

optimizes handling and increases economic efficiency. 

Four divergent selection experiments for environmental variance have been carried out, two in 

rabbits (Blasco et al., 2017; Garreau et al., 2008), one in mice (Formoso-Rafferty et al., 2015), 

and one in pigs (Larzul et al.,2006). 

Source  Trait hv² 𝛔𝐚𝐯
𝟐  rA (a,av)  

Sorensen and Waagepetersen (2003) Litter size pigs  0.026 0.09 -0.62 

Gutiérrez et al. (2006) Litter size mice 0.048 0.18 -0.93 

Ibañez-Escriche et al. (2008a) Weight gain mice  0.018 0.20 -0.19 

Ibañez-Escriche et al. (2008b) Slaughter weight pigs 0.011 0.11 -0.07 

Garreau et al. (2008) Birth weight rabbits 0.013 0.06 _ 

Mulder et al. (2009) Body weight broiler males 0.046 0.24 -0.45 

 Body weight broiler females 0.047 0.32 -0.41 

Yang et al. (2011) Litter size rabbits 0.041 0.14 -0.73 

Fina et al. (2013) Birth weight beef cattle 0.130 0.55 0.44 

Rönnegård et al. (2013) Milk yield dairy cattle 0.003 0.05 0.60 

Sell-Kubiak et al. (2015) Birth weight pigs Landrace 0.011 0.06 0.55 

 Birth weight Large White 0.008 0.05 0.62 

Blasco et al. (2017) Litter size rabbits 0.08 0.21 -0.06 
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In rabbits, Blasco et al. (2017) reported a successful divergent selection for the environmental 

variance of litter size over ten generations. The environmental variance of litter size was 

calculated as the within-doe variance of litter size after pre-correctinglitter size for both year-

season and parity-lactation status. The high line showed a higher variability (4.4 kits²) than 

the low line (2.7 kits²). This selection also showed differences between the divergent lines for 

reproductive traits such as litter size; the low line has a higher litter size (8.3 kits) than the 

high line (7.7 kits) (Agea et al., 2019), due to more advanced embryonic development (Calle 

et al., 2017) and higher implanted rate (Argente et al., 2017). As another correlated response, 

the high line has a higher sensitivity to diseases and less tolerance to stress (Argente et al., 

2019). Another divergent selection experiment in rabbits was based on the homogeneity of 

birth weight (Garreau et al., 2008). After 10 generations of selection, the standard deviation of 

birth weight was (7.34 g) in the homogeneous line against 11.26 g in the heterogeneous line 

(Bodin et al., 2010a). Besides, the mortality of young rabbits between birth and weaning was 

lower in the homogeneous line than in the heterogeneous one (17.7% vs 32.7%). 

In mice, Formoso-Rafferty et al. (2015) performed a divergent selection experiment for birth 

weight environmental variability. After seven generations, the high line had higher variance, 

standard deviation, and coefficient of variation than the low line (differences between lines 

were 167%, 59%, and 43%, respectively). Also, the birth weight was higher in the high line 

(1.64 g) than in the low line (1.47 g). This selection criterion affected other interesting traits 

such as litter size and survival at birth and weaning. Indeed, the low line showed a higher 

litter size at birth than the high line (9.77 kits vs 7.26 kits). In addition to a better survival at 

birth (98.47% in the low line vs 88.86% in the high line) and weaning (96.37% in the low line 

vs 79.64% in the high line) in the last generation of selection (Formoso-Rafferty et al., 2020). 

In Pigs, Larzul et al. (2006) conducted a divergent selection experiment based on the 

homogeneity of ultimate pH. The standard deviation of this trait was lower in the 

homogeneous line than in the heterogeneous line for generations 2 and 3, but in the next 

generations, the experiment did not obtain good results, the authors did not considerate the 

experiment to be conclusive. 

All of these previous studies have based on an indirect selection using the VE genetic 

determination model described by SanCristobal-Gaudy et al. (1998). However, this model is 

highly complex and not robust (Yang et al., 2011). In order to avoid the use of complex 

models, Blasco et al. (2017) have made a simple and direct selection, i.e. by selecting for 
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environmental variance as an observed trait. This method seems to be more efficient, but its 

use is limited for cases of repeated measurements. 

1.3. The relation between selection for environmental variation and animal 

welfare  

According to the World Organisation from Animal Health (2014): “an animal is considered in 

a good state of welfare if it is healthy, comfortable, well-nourished, safe, able to express 

innate behaviour, and if it is not suffering from unpleasant states such as pain, fear, and 

distress”. Argente et al. (2019) have shownthat there is a close relation between 

environmental variability and animal welfare. Indeed, selection to reduce environmental 

variance would promote animal welfare by producing animals that cope better with their 

environment (Broom, 2008).  

Welfare is a broad concept that has been related to such as robustness, canalisation, plasticity, 

and resilience (Colditz and Hine, 2016). All these traits are related to environmental 

variability or sensitivity to environmental perturbances.  

Regarding robustness, there is no universally accepted definition. According to Knap (2005), 

robustness is the ability to combine some production potential with the capacity to endure 

external stressors, which allows expression in a wide variety of environmental conditions 

without compromising reproduction, health, and wellbeing. Bodin et al. (2010b) propose to 

improve robustness through increasing the tolerance to stress, and in consequence, decreasing 

sensitivity to variation in environmental factors.  

Canalisation is defined as the reduction of phenotypic variability. Bodin et al. (2010b) defined 

canalisation referring only to the environmental variance instead of the whole phenotypic 

variance. 

Phenotypic plasticity has been defined as the capacity of a genotype to produce different 

phenotypes most suitable depending on the external conditions experienced. Plasticity is 

about the environmental regulation of phenotype expression. Thus, plasticity plays a role in 

coping with environmental heterogeneity by allowing organisms to produce phenotypes 

adjusted to conditions that individuals will experience (Lafuente and Beldade, 2019). 

Resilience is a concept with great interest in the last years (Scheffer et al., 2015), due to its 

links with welfare. Colditz and Hine (2016) defined resilience as the capacity of the animal to 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Lafuente%20E%5BAuthor%5D&cauthor=true&cauthor_uid=31481970
https://www.ncbi.nlm.nih.gov/pubmed/?term=Beldade%20P%5BAuthor%5D&cauthor=true&cauthor_uid=31481970
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cope with perturbations and rapidly return to the physiological, behavioural, health, and 

production states pertained before exposure to disturbance. Resilience is genetically related to 

environmental sensitivity (Mulder and Rashidi, 2017), thus resilience may be improved by 

genetic selection (Argente et al., 2019; Berghof et al., 2019). 

 

2. Part 2  

2.1. Microbiota  

2.1.1. The gut microbiota 

The body of animals is inhabited by a large number of microorganisms, such as bacteria, 

archaea, viruses, and eukaryotes, also known as microbiota (Kostic et al., 2013). The bacteria 

represent the principal community in the microbiota, for example in adult rabbits is about 80-

90% (Carabaño et al., 2010). Due to the different physical conditions of temperature, gaseous 

condition and pH among internal cavities of the animal, we can differentiate an oral 

microbiota (Schueller et al., 2017), a stomach microbiota (Wu et al., 2014), a rumen 

microbiota for ruminants (Abecia et al., 2013), a vaginal microbiota for females (Kim et al., 

2009) and a gut microbiota (Robles Alonso and Guarner, 2013).  

The gut microbiota is considered the most important community, since it is the organ most 

strongly colonized with more than 70% of all the microbes from the mammalian body (Ley et 

al., 2006; Sekirov et al., 2010). The density and the composition of the microbiota vary 

throughout the gastrointestinal tract (Ouwehand and Vesterlund, 2003). Concerning microbial 

density, the stomachand the small intestine of rabbits show a lower quantity of 

microorganisms (104 to 106 and 105 to 108 bacteria /g of contents, receptively) than caecum 

(1011 to 1012 bacteria / g of contents), and feces (1010 to 1011 bacteria / g of contents) 

(Carabaño et al., 2006). In relation to microbial composition, the stomach and the small 

intestine of rabbits show a similar composition, being the Firmicutes the most abundant phyla 

(45.5%) followed by Bacteroidetes (20-30%), Proteobacteria (3.5%) and Actinobacteria 

(0.7%) (Crowley et al., 2017). In the distal segment of tract digestive as caecum and hard 

feces, Firmicutes increases its presence (76.54% in caecum and 76.28% in feces), followed by 

Tenericutes (7.83% in caecum and 8.17% in feces) and Verrucomicrobia (1.81% in caecum 

and 1.65% in feces), but Bacteroidetes (7.46% in caecum and 7.37% in feces) and 
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Proteobacteria (1.61% in caecum and 1.63% in feces) decrease its presence (Velasco-Galilea 

et al., 2018). 

Most studies in rabbits have been focused on the microbiota of the caecum and hard feces, 

given the role of them in different metabolic and physiological processes in the host organism, 

as well as its influence on health and diseases. However, little is known about the microbial 

composition of the soft feces despite that could be similar to the caecal one. That would be an 

advantage for the study of the caecal microbiota since it would avoid the sacrifice of the 

animal. 

The composition of the gut microbiota is affected by host-related factors such as age, diet 

composition, and the genome of host, among others. 

Combes et al. (2014) found in 14-day-old lactating rabbits that Bacteroidetes are the most 

abundant phyla in the caecum with (63.3%), followed by Firmicutes (29.0%), Proteobacteria 

(6.9%) and Actinobacteria (0.7%). At weaning with the ingestion of solid food, this 

composition changes, and Firmicutes become the principal phyla (65.3%), followed by 

Bacteroidetes (32.9%), Proteobacteria (1.3%) and Actinobacteria (0.4%). 

Food is an essential factor influencing the balance of microbial populations in the digestive 

tract, since it constitutes a substrate for organisms (Combes et al., 2011). The nature and 

quantity of food ingested influence the caecal ecosystem in rabbits (Gidenne et al., 2008). For 

example, a high-fiber diet has been related to an increasing both the diversity of the caecal 

microbiota (Michelland et al., 2011) and the ratio Firmicutes/Bacteroidetes (Combes et al., 

2011), an indicator for microbiota maturity. On the other hand, it has been found that a diet 

with low energy and protein levels allows the microbial community to reach maturity faster 

(Read et al., 2019). 

Concerning the genetics of the host, recent studies show that microbiota composition may 

also be determined by the genome of the individual where the microbiota is hosted (Blekhman 

et al., 2015; Bonder et al., 2016). Several studies have been carried out on the establishment 

of bacterial communities in twins and have concluded that there is a closer proximity of the 

dominant bacterial profiles in twins (Reyes et al., 2010; Lepage et al., 2011). In addition, 

mutations and the inactivation of certain specific genes have been associated with changes in 

the composition of the microbiota, sometimes linked to metabolic diseases (Spor et al., 2011). 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Velasco-Galilea%20M%5BAuthor%5D&cauthor=true&cauthor_uid=30271392
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2.1.2. Interaction between gut microbiota and immune system  

The gut microbiota plays an important role in the development of the immune system and the 

activation of hypothalamic–pituitary–adrenal (HPA) axis, through releases a large amount of 

metabolites to the gut lumen and epithelial surface, such as short-chain fatty acids, vitamins, 

tryptophan, histamine, and polyamines (Bienenstock et al., 2015; Dodd et al., 2017; Kraimi et 

al., 2019; De Vadder et al., 2014; Masaki and Yoshimatsu, 2006; Pegg, 2013; Smith et al., 

2013). Therefore, it is considered that the gut microbiota has a central role on animal welfare. 

Concerning immunological functions on the host, it is well known that the gut microbiota is 

key in the formation of the barrier against pathogens (Collins et al., 2012). Indeed, the 

microbiota has an essential role in the development of the mucosa, which is an important 

surface of contact with external antigens (Sekirov et al., 2010). Besides, the gut microbiota is 

involved in the humoral immune response and the production of antibodies by stimulating the 

activation and the maturity of B cells (Petta et al., 2018). For instance, germ-free mice show a 

lower production of mature lymphocytes (Bouskra et al., 2008), and a significantly reduced 

immunoglobulin A (IgA) concentrations in the intestinal lumen (Macpherson and Harris, 

2004), as well as fewer regulatory T cells (Tregs), which modulate the immune system, 

maintain tolerance to self-antigens and prevent autoimmune disease (Ostman et al., 2006). 

Thus, germ-free mice are more susceptible to infections and the development of diseases 

(Round and Mazmanian, 2009). 

Besides, the metabolites produced by the gut microbiota also seem to have an important role 

in the host's immune response, through their immune-modulatory effect. For example, 

butyrate which is mainly secreted by the phyla of Firmicutes has direct effects on the immune 

system by regulating the T cells (Kunze and Hottiger, 2019). Acetate and propionate secreted 

by Bacteroidetes promote antibody production (Kim et al., 2016), production of anti-

inflammatory cytokines IL-18 (Masaki and Yoshimatsu, 2006) and stimulate the expansion of 

pre-existing colonic Treg cells (Arpaia et al., 2013). 

In addition to microbial metabolites, certain components of the bacterial cell wall, such as 

lipopolysaccharides and peptide glycans, are also acted on innate immune response through 

activation of the Toll-like receptors and macrophages (Kamada et al., 2013). Toll-like 

receptors participate in the activation of transcription factors NF-kB and AP1, which regulate 

the expression of inflammatory cytokines such as TNFα, IL1, and IL6 (Moynagh, 2005). 
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Also, macrophages activate the production of cytokines (Zhang and An, 2007). Cytokines 

play an important role in the innate immune response through direct mechanisms against the 

invading agent (inhibiting viral replication). Besides, cytokines have specific effects on 

interactions and communications between cells (Zhang and An., 2007). Table 2 illustrates 

some cytokines, their sources and their possible activities on the immune system. 
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Table 2. Cytokines and their immune activities (Zhang and An, 2007). 1 

Cytokines Sources Activities 

IL1-α and IL1-β 

 

Macrophages and other antigen presenting cells 

(APCs) 

Costimulation of APCs and T lymphocytes, 

inflammation, fever, acute phase response 

IL6 Activated Th2 cells and APCs, other stomatal 

cells 

Acute phase response, proliferation of B 

lymphocytes, in synergy with IL1and TNF on T 

lymphocytes 

IL2 Th1 activated lymphocytes Proliferation of B and T lymphocytes 

TNF-α T cells, monocytes, macrophages, mast cells, 

sensory neurons 

Chemotaxis, synthesis of IL1 and IL6, cell death, 

inflammation, pain 

IL1-α : Interleukin 1 alpha; IL1-β: Interleukin 1 beta; IL1: Interleukin 1; IL6: Interleukin 6; IL2: Interleukin 2; TNF-α: Tumor Necrosis Factor 2 

alpha; APCs: Antigen Presenting Cells; Th1: T helper1; Th2: T helper 2. 3 

4 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4532589/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4532589/
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In conclusion, the gut microbiota participates in the development and activation of the 

immune system through the release of different metabolitesas short-chain fatty acids, 

vitamins, tryptophan, histamine, and polyamines.  

2.2. Metagenomics 

Metagenomics analyses all the genomes present in an ecosystem (Streit and Schmitz, 2004; 

Langer et al., 2006), and has become a powerful tool for analysing microbial communities 

both in terms of what species are present and the activity of which they are capable to carry 

out, without the need to isolate the microorganisms. Therefore, the metagenomics approach is 

a major advance in exploring the different microbial ecosystems, such as the gastrointestinal 

flora of farm animals. 

 Using 16S RNA gene sequencing 

The 16S Ribosomal RNA gene (16S) is a marker of bacteria and archaea frequently used to 

characterize the taxonomic composition and phylogenetic diversity (Langille et al., 2013). 

The 16S sequences are grouped into operational taxonomic units (OTUs). An OTU is 

therefore a group of bacteria belonging to the same species whose 16S sequences have a 

similarity of more than 97.5%. This approach consists in cloning the genes coding for the 16S 

rRNA, which were then sequenced by the Sanger method (Martin, 1989) with a cost 

significantly less expensive than the next-generation technique. The 16S makes possible to 

identify the most organisms within a community, but the analysis of less abundant organisms 

is limited or in the case of virus, fungi, and protozoa cannot be detected. Moreover, this 

technique does not provide any other information about the genomes of its members or their 

function. 

 Next-generation sequencing (Shotgun Metagenomics) 

In recent years, the rapid development of next-generation sequencing techniques has allowed 

a large number of taxa to be sequenced much more efficiently than with Sanger-type 

sequencing. Moreover, this technique avoids the previous step of cloning, which is necessary 

for the 16S rRNA technique, with its associated bias, allowing microbial communities to be 

investigated with higher resolution and identifying less abundant taxa (Maccaferri et al., 

2011). Besides, metagenomics provides access to the functional gene composition of 
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microbial communities and thus gives a much broader description than phylogenetic surveys 

(Thomas et al., 2012). 

 

Figure 1. Schematic comparison of the two most widely used approaches: 16S rRNA and 

Shotgun Metagenomics (from Wilson, 2018). 

The development of bioinformatic methods for metagenomics has focused on two questions, 

which are the taxonomic and functional characterization of microbial communities (Figure 1).  

 Taxonomic characterisation 

The taxonomic characterisationis traditionally used. It consists of comparing the metagenomic 

sequences to sequences representative of each taxon, like their reference genome. Taxonomic 

characterization mainly tends to classify the different microorganisms inhabiting a given 
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environment (Awasthi et al., 2020). The classification is from higher taxonomic levels (e.g. 

superkingdom or phylum) until lower taxonomic levels (e.g. genus or species). 

 Functional metagenomics 

If the microbiota constitutes half of a holobiont in mammals in the number of cells (that is 

approximately 3.9 x 1013 bacteria), the number of microbial genes compared to the number of 

human genes is 100 times greater (Sender et al., 2016). Gene prediction identifies the coding 

sequences for a protein in the contigs. Functional annotation is the process that collects 

information about gene's biological identity and associates each gene with a function 

(Berardini et al., 2004). Finally, all functions detected in a metagenome can be linked to 

reconstruct metabolic pathways (Guyomar, 2018). Functional annotation is done using 

databases such as KEGG. 

The KEGG database is a set of databases grouping together different types of biological data 

and provides annotation at different levels (Kanehisa et al., 2004). It provides four main 

databases: GENES for genomic information, PATHWAY for pathways of biological 

processes, LIGAND for chemical compounds and reactions, and BRITE for ortholog/paralog 

information as well as other classification systems (Aoki-Kinoshita and Kanehisa, 2007). 
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The main objectives of this study were: 

  To analyse the inflammatory response in the high and the low line in order to 

study the effect of selection for the environmental variability of litter size on 

susceptibility to diseases. 

  To analyse the existence of microbial genes associated with the environmental 

variability of litter size that allows us to separate the high and the low line. 
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ABSTRACT  

A divergent selection experiment for environmental variance of litter size variance was 

carried out in rabbits during thirteen generations. The aim of this study was to analyse the 

inflammatory response in the high and the low line in order to study the effect of selection on 

susceptibility to diseases. A total of 78 females were used in this study, 39 from each line. 

The line selected for litter size heterogeneity (the high line) showed lower white blood 

leukocyte count (WBC) (-0.87 x103/µl), lower percentage of basophils (-0.11%), higher 

concentration of TNF-α (+13.8 pg/ml) and greater concentration of CRP (+38.1µg/ml) than 

the line selected for litter size homogeneity (the low line). The high line had also higher 

concentrations of bilirubin, cholesterol, gamma-glutamyl transferase (GGT) and alkaline 

phosphatase (ALP) compared to the low line (difference between lines +0.08 µmol/L, +0.14 

µmol/L, +0.35 U/L and +2.4 U/L and, respectively). The high line showed higher 

inflammatory response and susceptibility to infectious disorders. In conclusion, the line 

selected to increase litter size environmental variability seems to have a poor capacity to cope 

with environmental stressors. 

Keywords: C-reactive protein, divergent selection response, rabbits, susceptibility to 

diseases, welfare. 

 

INTRODUCTION 

In the last few decades, animal welfare has become a priority objective for farmers and the 

livestock industry (Bodin et al., 2010b). Animal welfare is defined as the capacity of animals 

to cope with their environment (Broom, 2008). Susceptibility to stress and diseases are 

closely related to this adaptation (Mormede et al., 2018), playing an important role for the 

immune system in this process (Scrivo et al., 2011). Inflammation is the immune system's 

response that is triggered to microbial invasion or tissue damage in order to maintain the 

body's homeostasis (Liu et al., 2017). Inflammation is a complex process which involves a 

high number of molecules (Del Giudice and Gangestad, 2018). The cytokines interleukin-6 

(IL-6) and tumor necrosis factor alpha (TNF-α) together the acute-phase protein C-reactive 

protein (CRP) are main used inflammatory biomarkers. Levels of these biomarkers help to 

detect the presence and severity of inflammation (Lockwood et al., 2017).  

In prolific species such as pigs, rabbits and mice, environmental variability in body weight 

and in litter size has been related to immune response and resistance to diseases (see review 
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by Lung et al., 2020). A divergent selection experiment for environmental variance of litter 

size at birth was performed in rabbits. After ten generations of selection, the lines showed a 

remarkable divergent response (2.7 kits² in the low line vs. 4.4 kits² in the high one) (Blasco 

et al., 2017). Besides, females selected for litter size homogeneity (the low line) showed lower 

levels of cortisol and CRP than those selected for litter size heterogeneity (the high line) 

(Argente et al., 2019). This would agree with a better cope to environmental stressors, 

including chronic stressors, inflammation, and diseases in the homogenous line. Liver has an 

important role in the synthesis of acute-phase proteins, as CRP, in response to cytokines such 

as IL-6, TNF-α and IL-1β (Stoner et al., 2013). Moreover, liver metabolism has been related 

to reduce the inflammatory process (Otero et al., 2009). 

The objective of this study was to analyse the inflammatory response in the two lines of the 

divergent selection experiment for litter size environmental variability, in order to analyse the 

effect of selection on susceptibility to diseases. For this purpose, additional inflammatory and 

biochemical markers to the ones studied by Argente et al. (2019) were measured in the 13th 

generation of the experiment. 

MATERIAL AND METHODS 

Ethics statement 

All experimental procedures were approved by the Miguel Hernández University of Elche 

Research Ethics Committee, according to Council Directives 98/58/EC and 2010/63/EU 

(reference number 2017/VSC/PEA/00212). 

Experiment animals 

A divergent selection experiment on environmental variability of litter size was carried out 

during thirteen generations. Selection was based on the phenotypic variance of litter size of 

each doe, after correcting litter size for both year-season and parity-lactation status (first 

parity, and lactating or not at mating in other parities) (Blasco et al., 2017). A total of seventy-

eight primiparous female rabbits from the 13th generation, 39 from the line selected for litter 

size heterogeneity (the high line) and 39 from the line selected for litter size homogeneity (the 

low line) were used in this experiment. All the animals were reared in the farm of the Miguel 

Hernández University of Elche (Spain). The rabbits were fed a standard commercial diet 

(17% crude protein, 16% fiber, 3.5% fat, NutricunElite Gra®, De HeusNutrición Animal, La 

Coruña, Spain). Food and water were provided ad libitum. Does were housed in individual 
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cages (37.5 cm x 33 cm x 90 cm) under a constant photoperiod of 16 h continuous light: 8 h 

continuous darkness, and with controlled ventilation. The experimenttook place from March 

to July. The temperature ranged from 15.2ºC to 32.1ºC. Reproduction was organized in 

discrete generations. All does were mated at the same age, i.e. at 18 weeks of age.  

Table 3. Distribution of number of does (n) and live weight per month. 

 n Live weight (g) 

March 17 3395 

April 16 3480 

May 16 3290 

June 19 3440 

July 10 3475 

 

Blood collection   

Following the blood-sampling procedure described in Lidforsand Edström (2013), two blood 

samples of 3 ml were drawn from the central artery of each doe’s ear 24 hours after the first 

delivery at twenty-two weeks of age. Delivery is a stressful event to does which may have an 

influence bearing on haematological and biochemical parameters. The first blood sample was 

collected into a tube with tripotassium ethylenediaminetetraacetic acid (K3-EDTA). This 

sample was divided into two aliquots. One aliquot was used for haematology, and the other 

one was centrifuged (at 4000 rpm for 15 min) in order to determine concentrations of C-

reactive protein (CRP), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), and 

cortisol. The plasma samples obtained by centrifugation were stored at -80ºC until further 

analysis. The second blood sample was collected into a lithium heparin tube, after 

centrifugation the concentrations of bilirubin, cholesterol, alkaline phosphatase (ALP), 

gamma glutamyl transpeptidase (GGT), albumin (ALB), bile acid (BA), and blood urea 

nitrogen (BUN) were assessed.  

Haemogram 

Haematological parameters such as white blood leukocyte count (WBC) and the percentage of 

lymphocytes, neutrophils, monocytes, basophils and eosinophils were done by the 

haematology analyser Abacus Junior Vet (Diatron, Austria). 

https://labtestsonline.org/tests/blood-urea-nitrogen-bun
https://labtestsonline.org/tests/blood-urea-nitrogen-bun
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Assessment of C-reactive protein, cytokines (interleukin 6 and tumor necrosis factor 

alpha) and cortisol 

C-reactive protein (CRP) concentration was quantified using a commercially available ELISA 

kit for rabbits (catalogue number 2210-5; Life Diagnostics Inc., West Chester, PA, USA). 

Interleukine 6 (IL-6) concentration was analysed using a commercially available ELISA kit 

for rabbits (catalogue number CSB E06903Rb; Cusabio, USA). The concentration of tumor 

necrosis factor alpha (TNF-α) was quantified using a commercially available ELISA kit for 

rabbits (catalogue number EL RB0011; Elabscience, USA). Cortisol plasma concentration 

was performed using available ELISA kit for rabbits (catalogue number CSB E06956Rb; 

Cusabio, USA).  

Assessment of biochemical parameters 

Plasma concentrations of bilirubin, cholesterol, alkaline phosphatase, gamma glutamyl 

transferase, albumin, bile acid and blood urea nitrogen were evaluated using the VetScan® 

Mammalian Liver Profile Rotor from Abaxis Company. 

Statistical Analysis 

Data were analysed using the following model: 

                yijk= µ + MSi +Lj+ b xijk+ eijk 

where MSi is the month of blood sampling effect with five levels, Lj the line effect with two 

levels (high and low line), b is the regression coefficient, xijk is the covariate weight and eijk is 

the residual term. Residuals were assumed to be independently normally distributed with the 

same variance. A Bayesian analysis was used, with bounded flat priors for all unknown 

parameters. Marginal posterior distributions were estimated for all unknowns using Gibbs 

sampling. Marginal posterior distributions of the differences between lines were computed 

with the program Rabbit developed by the Institute for Animal Science and Technology 

(Valencia, Spain). Monte Carlo Markov chains of 60000 iterations, with a burn-in period of 

10000, and only one out of every 10 samples was saved for inferences. Convergence was 

tested using the Z criterion of Geweke and Monte Carlo sampling errors were computed using 

time-series procedures. Bayesian statistic gives a new approach to the description of the 

uncertainly against classical statistics. For example, we can provide the difference between 

lines (DH-L) and the precision of our estimation, finding the shortest interval with 95% 

probability of containing the true value that can be asymmetric around the estimation (this is 

called the highest posterior density interval at 95% probability). Notice that in Bayesian 
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context there is nothing like `significance’ (Blasco, 2017), but we can calculate the actual 

probability of the difference between the high and low line |DH-L| being higher than zero; this 

is much more informative than P-values and significance, see Blasco. (2017) for details. We 

consider that there is enough evidence about the high and the low line being different, when 

the probability of this difference in absolute value |DH-L|is more than 90%, however this is not 

a significance test, but is a way to help the discussion, since we have all actual probabilities of 

the differences between lines and the reader can consider other probability as being relevant 

enough to differentiate both lines.  

 

RESULTS 

Immune parameters  

Table 4 shows the features of the estimated marginal posterior distributions of the differences 

between lines (DH-L) for the haematological parameters. The high line had lower white blood 

leukocyte count (WBC) (-0.87 x103/µl, P = 0.95) and lower percentage of basophils than the 

low line (-0.11%, P = 0.93). We did not observe differences between lines for the percentages 

of lymphocytes, neutrophils, monocytes, and eosinophils. 

Table 4. Immune parameters in female rabbits from the high and the low line. 

 H L DH-L HPD95% P 

WBC (x103/µl) 7.48 8.35 -0.87 -1.8, 0.15 0.95 

Lymphocytes (%)  60.2 61.9 -1.7 -10.4, 6.73 0.66 

Neutrophils (%) 33.6 31.9 1.7 -6.52, 9.94 0.66 

Monocytes (%) 3.5 3.16 0.34 -0.5, 1.2 0.77 

Eosinophils (%) 2.28 2.41 -0.13 -0.67, 0.45 0.69 

Basophils (%) 0.42 0.53 -0.11 -0.26, 0.03 0.93 

H: median of the line selected for litter size heterogeneity (the high line); L: median of the 

line selected for litter size homogeneity (the low line); DH-L: differences between the high line 

and the low line; HPD95%: highest posterior density region at 95%; P: probability of the 

difference being > 0 when DH-L > 0 or being < 0 when DH-L < 0; WBC: white blood cells.  

Cytokines, C-reactive protein (CRP) and cortisol  

According to Table 5, the high line showed higher concentration of TNF-α (+13.8 pg/ml, P = 

0.90) and greater concentration of CRP in comparison with the low line (+38.1µg/ml, P = 
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1.00). Concentrations of Interleukin 6 (IL-6) and cortisol were similar in both lines (P = 0.55 

and P = 0.60 respectively).  

Table 5. Cytokines, C-reactive protein (CRP), and cortisol concentrations in female 

rabbits from the high and the low line. 

 H L DH-L HPD95% P 

IL-6 (pg/ml) 84.8 85.2 -0.6 -8.6, 7.2 0.55 

TNF-α (pg/ml) 50.1 36.3 13.8 -9.2, 36.6 0.90 

CRP (µg/ml) 85.5 47.4 38.1 15.8, 60.8 1.00 

Cortisol (ng/ml) 24.5 25.1 -0.6 -4.7, 3.5 0.60 

H: median of the line selectedfor litter size heterogeneity (the high line); L: median of the line 

selected for litter size homogeneity (the low line); DH-L: differences between the high line and 

the low line; HPD95%: highest posterior density region at 95%; P: probability of the difference 

being>0 when DH-L>0 or being<0 when DH-L <0; IL-6:interleukin 6; TNF-α: tumor necrosis 

factor-alpha. 

Biochemical parameters  

Features of the marginal posterior distributions of the differences between the high and the 

low lines for biochemical parameters are given in Table 6. The concentrations of bilirubin and 

GGT were higher in the high line than the low line P = 0.88, P = 0.89, respectively, 

cholesterol and ALP levels were also higher in the high line than in the low one (+0.14 

µmol/L and +2.4 U/L, P > 0.90). There is some evidence of having differences between lines 

in BA (P = 0.84). No differences between the high and low lines were found for ALB and 

BUN (P = 0.61 and P = 0.54). 

Table 6. Biochemical parameters concentrations in female rabbits from the high and the 

low line. 

 H L DH-L HPD95% P 

Bilirubin (µmol/L) 4.74 4.66 0.08 -0.05, 0.2 0.88 

Cholesterol (µmol/L) 1.24 1.1 0.14 -0.07, 0.34 0.91 

ALP (U/L) 21.1 18.7 2.4 -0.92, 5.62 0.93 

GGT (U/L) 5.98 5.63 0.35 -0.20, 0.92 0.89 

BA (µmol/L) 3.15 2.59 0.56 -0.54, 1.68 0.84 

ALB (g/L) 13.6 13.5 0.1 -0.77, 1.07 0.61 

BUN (µmol/L) 7.56 7.62 -0.06 -1.06, 0.97 0.54 
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H: median of the line selected for litter size heterogeneity (the high line); L: median of the 

line selected for litter size homogeneity (the low line); DH-L: differences between the high line 

and the low line; HPD95%: highest posterior density region at 95%; P: probability of the 

difference being > 0 when DH-L > 0 or being < 0 when DH-L < 0; ALP: alkaline phosphatase; 

GGT: gamma-glutamyl transferase; BA: bile acid; ALB: albumin; BUN: blood urea nitrogen. 

 

DISCUSSION 

Immune parameters  

Haematological parameters provide valuable information on the health status of the animal. In 

the present study, we evaluated the haematological profile in the two lines at 24 hours after 

the first delivery. We found that there was no difference between lines, except for WBC and 

the percentage of basophils. The WBC values obtained were within the normal range for 

rabbits (2.71 -12.23 x109/L) reported by (Leineweber et al., 2018). Total leucocyte counts are 

involved in immunity reaction and defence of the organism (Mbanasor et al., 2003; Ihedioha 

et al., 2008). Susceptible rabbits to acute infections may have a decrease in WBC count 

(Moore et al., 2015). On the other hand, basophils are essential for linking innate and adaptive 

immunity (Ma and Gao, 2020). Therefore, a higher basal concentration of WBC and basophils 

in the low line would be related to a better disease resistance and a good immunity. 

Lymphocytes and neutrophils are important for the immune system. Neutrophils provide the 

first line defence against infection in innate immune response (Furze and Rankin, 2008). 

Lymphocytes are involved in humoral and cell-mediated immunity response (Mahgoub et al., 

2008). In a previous study, Argente et al. (2019) found a higher basal concentration of 

neutrophils and lower concentration of lymphocytes in the low line. However, no differences 

between lines found in this study. We would like to note that sample collection was carried 

out at different environmental stress condition, i.e., at first mating in the previous study and at 

24 hours after the first delivery in the current study, and that could affect to the values of 

immunological parameters. 

Cytokines, C-reactive protein (CRP) and Cortisol  

Cortisol concentration is used as a biochemical indicator of stress and pain (Stilwell et al., 

2009). In the present study, the cortisol concentrations in the high and the low lines were 

higher than the normal range of cortisol concentration (2.6 – 3.8 μg/dL) for rabbits reported 

by (Washington and Van Hoosier, 2012). This may be due to the moment of recording. 

https://labtestsonline.org/tests/alkaline-phosphatase-alp
https://labtestsonline.org/tests/alkaline-phosphatase-alp
https://labtestsonline.org/tests/alkaline-phosphatase-alp
https://labtestsonline.org/tests/blood-urea-nitrogen-bun
https://labtestsonline.org/tests/blood-urea-nitrogen-bun
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Indeed, the samples were collected 24 hours after parturition. It is known that parturition is 

considered as one of the most stressful and painful events for the dam (Mainau and Manteca, 

2011). Such a stressful event could increase the cortisol concentration up to several hours 

postpartum (Gladden et al., 2018). This finding implies that both lines were under similar 

level of stress.  

It is well known that a high level of stress leads to dysregulation of the immune system 

(Webster et al. 2002), increasing predisposition to disease (Glaser and Kiecolt-Glaser, 2005). 

Inflammation is a biological response of the immune system that can be triggered by variety 

of factors, including pathogens and damaged cells (Liu et al., 2017). In order to evaluate the 

inflammatory process in both divergent lines, i.e. their susceptibility to diseases, we assessed 

the plasma levels of two cytokines as, interleukin-6 and tumor necrosis factor alpha, and C-

reactive protein. Interleukin-6 (IL-6) is a pro-inflammatory cytokine, partly produced by the 

combined action of IL-1β and TNF-α, has effect on inflammation and immune response 

(Tanaka et al., 2014). TNF-α is a cytokine with pro-inflammatory activities produced by 

macrophages and have an important role in the innate defence mechanism (Amanda et al., 

2009). A higher susceptibility to diseases is related with a higher concentration of TFN-α 

(Bruunsgaard et al., 1999). Both divergent lines were exposed to the same environment. 

However, the high line showed higher concentration of TNF-α than the low line. A high level 

of TFN-α agrees with higher inflammatory response in the high line, and therefore a higher 

susceptibility to diseases in this line.  

C-reactive protein (CRP) is an acute-phase protein and an important etiological factor in 

inflammation (Jialal et al., 2004). Its production is mainly hepatic, by hepatocytes as a 

response on stimulation with IL-6, TNF-α and IL-1β (Reviewed by Stoner et al., 2013). Thus, 

CRP level in blood is considered as an inflammatory biomarker (Baumeister et al., 2016). 

Female rabbits of the high line showed greater CRP concentration. A higher basal CRP 

concentration in this line would confirm a higher sensitivity to disease, to the presence of 

chronic inflammation, and to a lesser tolerance to usual microorganisms in the farm 

microenvironment (Rauw, 2012; Markanday, 2015; Del Giudice and Gangestad, 2018). We 

note that selection for litter size environmental variability increased the difference in CPR 

between lines from 8th generation (5.6 µg/ml, Argente et al., 2019) to 13th generation (38.1 

µg/ml), in agreement with a correlated response to selection for litter size environmental 

variability on animal's susceptibility to diseases.  
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Biochemical parameters 

Infection and inflammation seem to have consequences on liver metabolism in order to reduce 

this inflammation (Sharma et al., 2018). We assessed biochemical indicators relationship 

between liver health and inflammation in both lines.Notice that delivery is a stressful event to 

does which could affect to biochemical parameters concentrations. However, the levels of 

bilirubin, cholesterol, ALP, GCT, BA, ALB and BUN in our lines were within the wide range 

of values reported in rabbits by Washington and Van Hoosier (2012) and Leineweber et al. 

(2018) (3.4 - 8.5 µmol/L, 0.3 - 3.0 µmol/L, 9.1 – 94.6 IU/L, 2.5 – 14.5 IU/L, 0.7 – 19.6 

µmol/L, 25 - 50 g/L and 6.14 -8.38 µmol/L, respectively). When we compared both lines, the 

concentrations of bilirubin and cholesterol were higher in the high line. According to Fan et 

al. (2015), an increase in the concentration of cholesterol in rodents is a response to the 

production of inflammatory cytokines (mainly TNF-α and IL-1). Bilirubin is an endogenous 

antioxidant which promotes the lipid peroxidation prevention (Zhao et al., 2019). Inoguchi et 

al. (2016) reported that bilirubin plays a protective role against chronic inflammation. Taking 

together, it seems that high basal concentrations of cholesterol and bilirubin are related to a 

higher sensitivity to inflammation and susceptibility to diseases in the high line. Gamma 

glutamyl transferase (GGT) is an inflammation regulator which increases first in the case of a 

hepatic disorder (Elitok, 2012). Females from the high line showed higher GGT concentration 

than those from the low line; this would suggest a liver dysfunction and high susceptibility to 

diseases (Koenig and Seneff, 2015). The high line has a higher alkaline phosphatase (ALP) 

than the low line. ALP is a good indicator of liver diseases and general health (Kim et al., 

2008). An increased concentration of ALP is an indication of liver dysfunction and a 

disruption in the inflammatory system (Dirksen et al., 2016). These results agree with the 

greater susceptibility to diseases of this line.  

Recently a genome-wide association study has been performed on our lines, identifying 

several genes with functionality in the immune system and stress (Casto-Rebello et al., 2020). 

This finding corroborates the decisive role of the immune system in the environmental 

variation of litter size.  

 

CONCLUSIONS 

Our study shows the highline having higher inflammatory responseunder stressful situation as 

24 hours after delivery, and consequently this line displays a greater susceptibility to diseases 
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and stress. Therefore, selection for litter size environmental variability can be a useful way to 

improve animal welfare. 
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ABSTRACT  

A divergent selection experiment for the environmental variance of litter size variance was 

carried out in rabbits during thirteen generations. The aim of study was to analyse the 

microbial genes related to the environmental variability of litter size, in order to separate the 

high and the low line. At 22 weeks of age, samples were taken from the cecum content of 34 

females of the high line and 36 females of the low line to extract bacterial DNA. Bacterial 

genome sequencing was performed by paired-end (2x150) in Illumina NextSeq 550. A total of 

3046 microbial genes were identified. The filtering of variables according to their prevalence 

across samples was performed using the R package PIME. Subsequently, the zeros were 

imputed, and the weighted centered log-ratio (wCLR) normalisation was applied to treat the 

compositional data. Finally, the multivariate analysis using partial least square discriminant 

analysis (PLS-DA) was performed to assess the relationships microbial genes between the 

high and the low line. The PLS-DA score plot showed that the projection of data on the four 

latent variables had a good adjustment coefficient (R2=0.85) and a good cross-validation 

(Q2=0.52). The loading plot shows how the variables relate to each line and that the two lines 

are negatively correlated. In conclusion, multivariate analysis using PLS-DA allowed 

separating the two lines according to the microbial genes associated with the environmental 

variability of litter size. These findings provide support for the effect of host genotype on 

microbiome modification. 

Keywords: Metagenome,environmental variability, rabbits, multivariate analysis, PLS-DA. 

 

INTRODUCTION 

The microbiota may play a crucial role in the stress level and health condition of the host 

(Sekirov et al., 2010). Metagenomics allows analysing all genomes from a community, being 

a useful tool for identifying the microbial diversity and its functions. In recent years, the rapid 

development of next-generation sequencing (NGS) techniques has allowed the reduction of 

the economic cost and sequencing time, helping to perform the studies of the gut microbiota 

in livestock animals (Thomas et al., 2012). NGS generates large volumes of sequence data 

containing genetic information (Metzker, 2010), and this requires the development of 

complex bioinformatics and statistical methods (Dhariwal et al., 2017). Metagenomic data is 

considered as compositional data for proceeding to its analysis. The compositional nature of 
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the data comes from the fact that they arenon-negative data that have been expressed relative 

to a fixed total (usually as proportions summing to 1 or percentages summing to 100%) 

(Greenacre, 2018). 

The statistical analysis of metagenomic relative abundance data usually starts with the 

imputation of zeros (if it is necessary), followed by the normalisation of the data. The most 

appropriate way to analyse metagenomic data is to use the relative abundance of taxa or 

genes. This makes it easier to interpret the bioinformatics tools used. Taking into account the 

compositional data, several data transformation approaches have been proposed such as the 

centered log-ratio transformation (CLR) (Gloor and Reid, 2016). The last step is a 

multivariate analysis using the partial least square discriminant analysis (PLS-DA) that can 

visualize diversity measures through ordination plots (Calle, 2019). The PLS method tries to 

find the maximum correlation between the response variables and the predictors. PLS 

performs particularly well when the predictors are correlated and makes it possible to simplify 

the interpretation between the variables and the predictors, this is the reason why this method 

can be envisaged for metagenomic data.  

A divergent selection experiment for the environmental variance of litter size at birth was 

performed in rabbits, after ten generations of selection the lines showed a remarkable 

divergent response (2.7 kits² in the low line vs. 4.4 kits² in the high one) (Blasco et al., 2017). 

Besides, the high line showed higher inflammatory response and susceptibility to infectious 

and diseases (Argente et al., 2019; Beloumi et al., 2020). This difference in susceptibility to 

diseases may be related to the microbiome.  

The aim of this study was to analyse the existence of microbial genes associated withthe 

environmental variability of litter size that allows us to separate the high and the low line, 

using the partial least square discriminant analysis (PLS-DA).  

 

MATERIAL AND METHODS  

Ethics statement 

All experimental procedures were approved by the Miguel Hernández University of Elche 

Research Ethics Committee, according to Council Directives 98/58/EC and 2010/63/EU 

(reference number 2017/VSC/PEA/00212). 
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Animals 

A divergent selection experiment for environmental variance of litter size was performed in 

rabbits during 13 generations at the Universidad Miguel Hernández of Elche. Each divergent 

line had approximately 125 females and 25 males per generation. Selection was based on the 

phenotypic variance of litter size of each doe, after correcting litter size for both year-season 

and parity-lactation status (first parity, andlactating or not at mating in other parities). The 

details of the experiment are in Blasco et al. (2017). A total of seventy 22-week-old female 

rabbits from the 13th generation of selection were used for this experiment, 34 from the high 

line and 36 from the low line. Rabbits were fed with a standard commercial diet (17% crude 

protein, 16% fiber, 3.5% fat, Nutricun Elite Gra®, De HeusNutrición Animal, La Coruña, 

Spain). Food and water were provided ad libitum. They were under a constant photoperiod of 

16:8 h and controlled ventilation. Does were housed in individual cages (37.5 cm x 33 cm x 

90 cm). The experiment took place from March to July.  

Sample collection  

Animals were slaughtered, after 6 hours of feed deprivation.After slaughter and bleeding, 

caecum content samples were collected into tubes, homogenized, and divided into aliquots. 

The aliquots were immediately frozen using liquid nitrogen and then stored at -80ºC until 

posterior analysis.  

DNA extraction and sequencing 

The extraction of bacterial DNA from caecum samples was performed by mechanical 

homogenization with silica balls to release the genetic material, and with the DNeasy 

powerSoil kit N. 12888-100 to isolate the DNA. The massive sequencing of the samples was 

done by the company FISABIO (Valencia, Spain). DNA libraries were generated following 

the Nextera XT Illumina protocol using Nextera XT Library Prep kit (Illumina, Inc., San 

Diego, CA, USA). To initiate the protocol, 0.2 ng/µl of purified gDNA was taken from each 

sample. The mutiplexing step was performed using Nextera XT Index Kit. The libraries were 

sequenced using a 2x150pb paired-end run NextSeq high output reagent kit v2.5 on a 

NextSeq500 Sequencer according to manufacturer’s instruction. 

Bioinformatics analysis  
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The fastq files obtained after sequencing were filtered for quality check control in order to 

remove low- quality nucleotides prinseq-lite program (Schmieder and Edwards, 2011). 

Sequences were joined using FLASH program (Magoč  and  Salzberg, 2011). Reads from the 

host have been eliminated by mapping the reads with high quality against the reference rabbit 

genome database using the software Bowtie2 v2.3.4.3 (Langmead and Salzberg, 2012) with 

end-to-end read alignment.Sequences not contaminated by the host were analysed with the 

SqueezeMeta sequential method (Tamames and Puente-Sánchez, 2019). This pipeline covers 

all the steps for metagenomic analysis: quality filtering through the Trimmomatic program 

(Bolger et al., 2014), assembly of readings, gene prediction on contigs with Prodigal (Hyatt et 

al., 2010) and homology search against functional databases with Diamond software 

(Buchfink et al., 2015). The database used for the functional annotation was the available 

version of KEGG (Kanehisa and Goto, 2000). 

Then, the functional annotation abundance matrice, which includes all individuals with the 

corresponding KEGG (microbial genes) and counts, was obtained. The relative abundances of 

the genes were estimated per animal.  

STATISTICAL ANALYSIS 

Preliminary analysis 

The percentage of 0 counts has been calculated for all individuals in order to detect 

individuals having a high percentage of 0 counts. Then, the database was treated to remove 

low prevalence microbial genes in each line across all samples, keeping only genes shared at 

some level of prevalence using PIME (Prevalence Interval for Microbiome Evaluation) R 

package (Roesch et al., 2019). The R package PIME allows filtering microbial genes 

according to their prevalence across all samples. This package allowed us to filter the dataset 

per variable using different prevalence levels from 5% to 95% with increments of 5% for each 

level. 

Data treatment 

The compositional nature of metagenomic data requires a particular statistical approach. The 

process of analysing and the statistical procedures are illustrated in Figure 2. 

http://prinseq.sourceforge.net/
file:///C:/Users/HP/Downloads/QCReport_MJA19-221.html%23bib-Schmieder2011
https://pubmed.ncbi.nlm.nih.gov/?term=Mago%C4%8D+T&cauthor_id=21903629
file:///C:/Users/HP/Downloads/QCReport_MJA19-221.html%23bib-Magoc2011
file:///C:/Users/HP/Downloads/QCReport_MJA19-221.html%23bib-Magoc2011
file:///C:/Users/HP/Downloads/QCReport_MJA19-221.html%23bib-Magoc2011
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Figure 2. The process of analyzing metagenomic data. 

 Zero imputation  

Data with zero counts are presented in a large number of variables (genes). There are two 

types of zeros: essential zeros and missing data (Martin-Fernandez et al., 2000). Essential 

zeros are a real data indicating that there is not count in this variable; however, missing data 

are caused by the instrument that has not been sufficiently sensitive to detect counts. We 

cannot distinguish between missing data and essential zeros.  

Compositional data are non-negative data, expressed as percentage and sum up to a constant 

(1 or 100%), and that can be transformed in real data using logarithms (Bacon-Shone, 2011). 

Furthermore, these types of data have an asymmetric distribution, so we use logarithms to 

make the distributions more symmetric. This transformation cannot be carried out with zero 

values. So, zero values must first be imputed if the data are going to be transformed using 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5328592/#bib4
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logarithms. Imputing zeros is the process of replacing missing data or essential zeros with 

superseded values close to zero. To impute, a Bayesian-Multiplicative Replacement procedure 

was used (Martín-Fernández et al., 2015) using the cmultRepl function in R package 

zCompositions (Palarea-Albaladejo and Martín-Fernández, 2015).  

 Transformation wCLR 

As previously mentioned, metagenomic data are compositional data. Microbial genes 

expressed as relative abundances, were transformation using weighted centred log ratio 

(wCLR), expressed as: 
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where wj is the weight, xij is the relative abundance of each variable, n is the number of 

samples, i is the sample and j is the total number of microbial genes.  

This transformation was performed using the CLR function in R package easyCODA 

(Greenacre, 2018). The weighted CLR allow to downplay the variables that have little count 

(low relative abundance), and give importance to those that have more counts. 

 Discriminant analysis  

Partial least square discriminant analysis (PLS-DA) was performed on the wCLR of different 

prevalence interval data using SIMCA software (Umetrics, Umea, Sweden).We considered 

the lineas the categorical response and microbial genes as predictors. The objective of this 

analysis was to assess the relationships between microbial genes and lines. Determining the 

optimal number of latent components is an important step in building a PLS-DA model. This 

choice is commonly performed by using cross-validation. This method is based on repeat the 

regression several times on subsets of data and predict each time the values of the missing 

subsets. The outcomes from this procedure are the adjustment coefficient (R²) and the cross-

validation (Q²). The equations for R² and Q² are:  

                                                       R² = 1 – (RSS / TSS)                                                          (5) 

                                                      Q² = 1 – (PRESS / TSS)                                                      (6) 
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where RSS is the sum of squared residuals, TSS is the total sum of squares, and PRESS is the 

predictive residual sum of the squares. R² and Q² are good parameters to indicate until which 

component to include in the model.  

The criterion used to select variables (genes) was the VIP parameter (Variable Importance in 

Projection). VIP is a parameter that measures the importance of variables in a PLS model with 

many components(Galindo-Prieto et al., 2014). The VIP calculation is given in the following 

equation:  

                                                  VIP = √𝑘 ×
∑ 𝑊𝑎

2  × 𝑇𝑆𝑆 (𝑎)𝐴
𝑎=1

𝑇𝑆𝑆 (𝐴)

1
                                      (7) 

where, Wa
2 is the squared PLS weight, TSS (a) is the sum of squares explained by component 

a, TSS (A) is the sum of squares explained by the model with A components, A is the total 

number of components, and k is the total number of variables. Only variables with VIP > 1 

were considered important in the projection of the latent structure (Chong and Jun, 2005; 

Galindo-Prieto et al., 2014).  If all variables have the same contribution on the model, all their 

VIPs will be equal to 1. Due to this reason, it is preferred to considervariables with VIP > 1 as 

the most relevant variables (Galindo-Prieto et al., 2014). 

 

RESULTS AND DISCUSSION 

Preliminary analysis 

A total of 3046 microbial geneswere identified and kept for analysing. The distribution of 

genes with 0 counts for all individuals is shown in Figure 3; we can conclude that the 

individual 69 is an outlier since it has a high percentage of 0 counts (around 99%). Therefore, 

this animal has been eliminated because its presence can alter the results. 
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Figure 3. Distribution of microbial genes with 0 counts according to individuals. 

 

Table 7 shows the three prevalences chosen according to the severity of the filtering. The 

prevalence 5% represents the light filtering, the 50% represents the intermediate filtering 

while the 95% interval represents the severe filtering. A prevalence of 5% indicates that at 

least one of two lines must have more than 5% of the data that they were not zero for each of 

the variables. It is noted that the number of variables decreases with increasing the 

prevalence.  

Table 7. Number of variables, percentage of zeros (% Zeros) and the error of 

classification (OOB) obtained with the package PIME (Prevalence Interval for 

Microbiome Evaluation) of R for the prevalence 5%, 50% and 95%. 

 Prevalence5% Prevalence 50% Prevalence 95% 

Number of variables 2655 1526 976 

% Zeros  41.37 10.83 1.05 

OOB (%) 45.59 2.94 0 

 

The OOB error allows evaluating the classification performance of the model; the values can 

vary between 0% and 100% (Table 7). Higher OOB error indicates the low accuracy of the 

model in predicting differences among variables. In our case, the zero OOB is only obtained 
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with a prevalence of 95%. Prevalence 50% has relatively low OOB value (2.94%) while the 

prevalence 5% has a high OOB value (45.59%). 

We performed a PLS-DA discriminant analysis with this database. Several outliers were 

detected (Figure 4). These animals were eliminated because they were out to the region of 

discrimination, in addition to having a high percentage of 0 counts. 

 

Figure 4. Score plot of prevalence 50% and 95% PLS-DA. Projection of the 

observations in the plane defined by the latent variables. Circles represent individuals. 

Colours: blue, high line; green, low line. The arrows in red are the outliers. 

 

The filtering with the PIME package of the new database (without outliers) was done again. 

Table 8 shows the results for each prevalence applied in the dataset after removing outliers. 
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Table 8. Number of variables, percentage of zeros (% Zeros) and the error of 

classification (OOB) obtained with the package PIME (Prevalence Interval for 

Microbiome Evaluation) of R for the prevalence 5%, 50% and 95% after removing 

outliers. 

 Prevalence5% Prevalence 50% Prevalence 95% 

Number of variables 2620 1572 1034 

% Zeros  39.69 10.50 0.71 

OOB (%) 32.26 6.45 0 

 

After removing outliers, the OOB obtained was 32.26% with prevalence 5%, 6.45% with 

prevalence 50% and 0 % with prevalence 95% (Table 8). The high OOB obtained with 

prevalence 5% is one of the reasons why we focused only on the other two prevalences. The 

second reason was to keep a number of variable high enough for analysing. 

According to the Tables 7 and 8, after eliminating outliers, the number of variables increases 

forprevalence 50% and 95%. Indeed, the elimination of individuals with a high percentage of 

0 counts makes possible to reduce the pressure and the percentage of 0 counts in certain 

variables, hence its retention in the model. 

Discriminant analysis  

We performed a partial least square discriminant analysis (PLS-DA) to associate microbial 

genes and lines. We did a PLS-DA analysis with two different prevalences (50% and 95%). 

The results of PLS-DA are presented in the Table 9. 

Table 9. Number of variables, number of variables whose VIP is greater than 0.95 

(Variable VIP > 0.95, adjustment coefficient (R²) and cross-validation (Q²) associated to 

PLS-DA with variables VIP > 0.95 after removing outliers. 

 Prevalence 50% Prevalence 95% 

Number of variables 1572 1034 

Variable VIP > 0.95 448 292 

R² 0.85 0.85 

Q² 0.52 0.47 

 

The two prevalences 50% and 95% have the same value of R², but the prevalence 50% has 

slightly a better cross-validation (Q²= 0.52), i.e., better accuracy in prediction of model, and 

in addition to having a greater number of variables than prevalence 95%. Hence, the 

prevalence 50% has been selected to follow the analyses and to select variables. 
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Table 10 shows the principal statistical parameters of PLS-DA for prevalence 50%. The 

choice of the optimal number of latent variables is made generally based on adjustment 

coefficient (R²) and cross-validation (Q²) values. In this case, from the second component, the 

values of R² are quite high, therefore the choice of the optimal number of latent variables is 

made according to the values of Q². The predictive ability for the first two components 

measured by the cumulative was insufficient (Q2 = 0.34) and for the first four components the 

cumulative (Q2 = 0.52). Hence, we chose to work with the first four components.  

Table 10. Statistical parameters of PLS-DA for prevalence 50%. 

Number of components R² Q² 

1 0.4 0.04 

2 0.67 0.34 

3 0.78 0.39 

4 0.85 0.52 

5 0.92 0.64 

6 

7 

0.97 

0.98 

0.74 

0.78 

R²: the adjustment coefficient; Q2: the cross-validation coefficient 

 

The PLS-DA score plot showed that the projection of data on the four latent variables has a 

good adjustment coefficient (R2 = 0.85). This projection explained 52% of the predicted 

variance from cross-validation (Q2  = 0.52).  

A good separation was observed between lines and confirmed by the score plot (Figure 5). 

The Hotelling T2 ellipse shows two animals from the high line outside the 95% confidence 

region of the model. We did not eliminate these two individuals because they are relatively 

close to the region of discrimination, in addition to having a low percentage of 0 counts 

compared to the animals previously eliminated.  
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Figure 5. Score plot of prevalence 50% PLS-DA. Projection of the observations in the 

plane defined by the latent variables. circles represent individuals. Colours: blue, high 

line; green, low line. 

 

The loading plot (Figure 6) shows how the variables relate to each line and that the two lines 

are negatively correlated.  

 

Figure 6. Loading plot of filtered 50% PLS-DA. Colours: green, microbial genes; red, 

high line; blue, low line. 

 

High line  

Low line  
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VIP (variable importance in the projection) is a parameter to find which variable is most 

relevant for explaining the lines. VIP is equal to 1 means that all variables have the same 

contribution on the model. Due to this reason,it is preferred to use variables with VIP > 1 as 

the most relevant variables (Galindo-Prieto et al., 2014). But in our case, VIPs> 0.95 have 

been selected so as not to eliminate a large number of VIPs between 0.95 and 1 that can make 

the difference in the discrimination. 

This work is part of a project that aims to identify microbial genes associated with 

environmental variability of litter size in rabbits. Environmental variance of litter size has a 

low heritability, then the associations between the trait and microbial genes may be mainly 

random. In order to resolve this problem, we use two selected lines divergently for the 

environmental variability of litter size (Blasco et al., 2017), and thus we can associate the 

genes to the trait directly. As both lines are under the same environmental, we can consider 

that the associations obtained are due to only genetic effects. But, the divergent selection can 

have also sampling effects caused in this case by genetic drift. Moreover, if an allele has an 

extreme frequency (tend towards 1 or tend towards 0) at the beginning of the selection, in the 

following generations, this frequency will change slightly in value. For example, if an allele 

for homogeneity has a frequency of 0.99, it cannot be separated in the two lines in subsequent 

generations. 

The aim of our study was to analyse the microbial genes related to the environmental 

variability of litter size, in order to separate the high line and the low line using PLS-

DA.Partial least square discriminant analysis (PLS-DA) was used to associate microbial genes 

and lines. PLS-DA is a useful statistical approach for discrimination when we have a larger 

number of predictors (Varmuza and Filzmoser, 2009). This is why recently, the PLS-DA start 

of being used in metagenomic and metabolomic analyses (Zang and Powers, 2012). In our 

case, the PLS-DA was able to discriminate between the two lines (high line and low line), and 

the loading plot (Figure 5) showed that the two lines were clearly separated. This 

discrimination capacity of the PLS-DA was confirmed by Clos-Garcia et al. (2020) 

comparing the metabolomics analysis of different groups of patients (healthy controls and 

colorectal cancer patients) in order toidentify early biomarkersfor disease 

progression.Furthermore, Gao et al. (2017) with a metagenomic analysis, also confirmed the 

ability of PLS-DA to separate the microbiome composition and genes between two groups of 

mice to determine the impact of diazinon exposure on the gut microbiome composition and its 

metabolic functions.  
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After this discrimination analysis, the most important KEGGs (according to the value of VIP) 

should be identified in order to know their biological and metabolic functions. 

 

CONCLUSIONS 

The PLS-DA approach usedto discriminate between the two divergent lines, allowed us to 

identify microbial genes that discriminate between linesassociated with environmental 

variability of litter size. These findings provide support for the effect of host genotype on 

microbiome modification. Further studies are needed toidentify the functions of these genes 

as well as the taxa responsible for the separation between lines. 
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A divergent selection experiment for environmental variance of litter size at birth was carried 

out successfully in rabbits during thirteen generations (Blasco et al., 2017). Environmental 

variance of litter size has been related to response to stress and disease in females, which are 

related to welfare (Argente et al., 2019; Bergholf et al., 2019; Formoso-Rafferty et al., 2016). 

Inflammation is the immune system's response that is triggered to microbial invasion or tissue 

damage (Liu et al., 2017). Then, inflammatory response can be used to measure the 

susceptibility to diseases in the animal. Susceptibility to diseases and stress is closely related 

to the gut microbiota of the animal. Indeed, it is well known that gut microbiota has an 

important role in the development of the immune system and the activation of the 

hypothalamic-pituitary-adrenal (HPA) axis in the host. This study aimed to analyse the effect 

of selection for environmental variance of litter size on susceptibility to diseases, and to 

examine the existence of microbial genes associated withthe environmental variability of litter 

size that separates the high and the low line. 

 In the chapter 3, we found that the high lineis characterized by a major chronic inflammation 

and a large weakness of their immune system. Therefore, animals from the high line are more 

susceptible to diseases and infections than those from the low line, and consequently 

presenting a higher degree of variability in litter size. We can conclude thatselection for 

environmental variabilitymay have implications on animal welfare.  

In the chapter 4, we performed an exploratory metagenomic study using the former lines. 

Metagenomic data analysis is complex and requires several steps (Thomas et al., 2012). After 

imputing the zeros, find the optimal prevalence interval and normalize the data, a PLS-DA 

analysis was performed to allow us to identify microbial genes that discriminate between 

lines. The two lines are separated according to the microbial genes, suggesting that selection 

for environmental variability of litter size intervenes in the modification of the microbiome. 

After this preliminary analysis, additional studies will be necessary carried out to identify the 

most important KEGGs according to the VIP value, in order to know their biological and 

metabolic functions on susceptibility to diseases in our divergent lines for environmental 

variance of litter size. 
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