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Abstract
With the development of the market globalisation trend and increasing customer orientation, many uncertainties have
entered into the manufacturing context. To create an agile response to the emergence of and change in conditions, this
article presents a dynamic shop floor re-scheduling approach inspired by a neuroendocrine regulation mechanism. The
dynamic re-scheduling function is the result of cooperation among several autonomous bio-inspired manufacturing cells
with computing power and optimisation capabilities. The dynamic re-scheduling model is designed based on hormone
regulation principles to agilely respond to the frequent occurrence of unexpected disturbances at the shop floor level.
The cooperation mechanisms of the dynamic re-scheduling model are described in detail, and a test bed is set up to
simulate and verify the dynamic re-scheduling approach. The results verify that the proposed method is able to improve
the performances and enhance the stability of a manufacturing system.

Keywords
Dynamic re-scheduling, neuroendocrine-inspired manufacturing system, bio-inspired manufacturing cell, neuroendocrine
regulation, hormone regulation

Date received: 8 July 2014; accepted: 13 October 2014

Introduction

With the development of the market globalisation trend
and increasing customer orientation in manufacturing
enterprises, increasingly personalised and diversified
demands bring different types of uncertainties into the
manufacturing system, that is, dynamic task change,
rush orders, and manufacturing equipment failure. To
meet these challenges, the control structure of contem-
porary manufacturing systems is becoming additionally
complex, and the requirements for agility and robust-
ness are also increasing. Therefore, the contemporary
manufacturing system requires a good dynamic sche-
duling mechanism to rapidly respond to uncertainties
and improve production efficiency by optimising the
allocation of tasks and manufacturing resources under
certain manufacturing constraints (product processing
costs, resource utilisation and delivery time, etc.).1

Recently, numerous researchers have focused on fur-
ther studies of manufacturing dynamic scheduling and
have produced many achievements. The results show
that resolution of dynamic scheduling is primarily rea-
lised by means of meta-heuristic and multi-agent tech-
nology. Yandra and Hiroyuki2 applied a genetic

algorithm featuring heterogeneous population to solve
multi-objective flow shop scheduling problems. Fattahi
and Fallahi3 presented a mathematical model for a
dynamic and flexible job shop scheduling approach
and used a genetic algorithm to improve the efficiency
and stability of schedules. Rakesh et al.4 used a
simulation-based genetic algorithm optimisation
method and heuristics to solve process-planning and
scheduling problems. In general, a good solution can
be obtained using meta-heuristic algorithms, but the
required computing time and implementation effort
still pose limitations to these approaches. Agent-based
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technology offers advantages for distributed schedul-
ing, including improved reaction to disturbances and
parallel computation. Renna5 proposed a coordination
approach for multi-agent architecture based on compu-
tation of internal and external indices of the generic
manufacturing cell. Qin and Kan6 introduced a new
production dynamic scheduling method based on an
improved contract net of multi-agents used to solve the
dynamic and complicated problem of production sche-
duling. Iwamura et al.7 applied a real-time scheduling
approach based on utility values to holonic manufac-
turing systems. Jana et al.8 applied a Contract Net
Protocol (CNP) to address negotiation-based task allo-
cation of resources for preparation of dynamic schedul-
ing in an agent-based holonic control framework. The
negotiation mechanism based on CNP has the advan-
tages of a simple strategy and convenient application,
but it is a type of explicit coordination mechanism.
Due to the increasing complication and dynamics of
the manufacturing environment, the limitation of the
CNP coordination mechanism is its enormous need for
communications, which has a tendency to appear in the
process of coordination, negotiation, and cooperation.9

With expansion and further research in artificial intel-
ligence, intelligent modelling of the human body’s infor-
mation processing mechanism has become a new
research focus in recent years. The diversity, complexity,
reliability, and adaptability of the system structure, func-
tion, and regulatory mechanisms are worthy of reference
in studying manufacturing systems. The neuroendocrine
system is a core component of the human body’s infor-
mation processing mechanism, and this complex and
unique information processing mechanism gives
researchers much inspiration. A coordination methodol-
ogy based on the neuroendocrine regulation mechanism
is one type of implicit coordination approach that leads
to rapid coordination between individuals as well as
coordination among all system resources. Using this
mechanism, the system can achieve rapid synchronisa-
tion and cooperation to achieve global optimisation.
Compared with other coordination mechanisms (CNP,
etc.), this mechanism offers fewer communications, sim-
pler coordination, and easier implementation.10

Inspired by the neuroendocrine regulation mechan-
ism, we propose a neuroendocrine-inspired manufac-
turing system (NEIMS) and describe the NEIMS
architecture11 in detail. Based on the NEIMS architec-
ture, this article designs a dynamic re-scheduling
approach that can agilely address different types of
emergencies at the shop floor level to optimise task and
resource allocations. The aim of this research is to
improve the performance indicators of the manufactur-
ing system by applying the mechanism of neuroendo-
crine regulation, thus consolidating and deepening the
NEIMS theory and fundamentals.

The remainder of this article is organised as follows.
The section ‘Neuroendocrine-inspired dynamic re-
scheduling architecture’ presents the main principles of
a neuroendocrine-inspired dynamic re-scheduling

architecture, that is, NEIMS components, dynamic re-
scheduling model, and resource allocation mechanism
based on the hormone regulation mechanism. The sec-
tion ‘Cooperation mechanisms for dynamic re-schedul-
ing’ illustrates three types of cooperation mechanisms
for dynamic re-scheduling in NEIMS that use the hor-
mone regulation mechanism to agilely respond to dis-
turbances and maintain the system with relative
stability. The section ‘Test bed for NEIMS simulation’
introduces a pilot test bed for simulation of the pro-
posed dynamic re-scheduling approach in NEIMS. The
section ‘Simulation study’ describes comparisons with
other approaches relative to the potential of improving
the system performance, and the last section
‘Conclusion’ gives a summary of the article and an
introduction to future study.

Neuroendocrine-inspired dynamic
re-scheduling architecture

NEIMS components

The NEIMS control architecture (Figure 1) is built on a
set of autonomous and cooperative units, referred to as
the bio-inspired manufacturing cell (BIMC) (Figure 2),
which represent the manufacturing components. The
functional components of the BIMC are the controller,
decision maker, and perception components. The per-
ception unit of the BIMC can perceive exterior and
interior environmental stimuli, which trigger the deci-
sions required for agile reaction. After a decision is
made, the controller gives a command to the relevant
BIMCs to execute the decision.

A BIMC is defined as an autonomous entity that can
perform certain tasks, achieve a goal autonomously,
and regulate itself when facing non-pre-deterministic
changes in the manufacturing environment. The design
of a basic BIMC incorporates a set of pertinent attri-
butes that can fully represent any level in the architec-
ture hierarchy. In other words, a BIMC can represent
an entire manufacturing shop at the highest level, a
manufacturing cell at the middle level, or a physical
machine at the bottom level. Therefore, the architecture
exhibits the explicit characteristic of recursiveness.

A BIMC at the shop floor level plays the role of
supervisor to provide optimisation and coordination
services to the BIMCs under its supervision. This unit
can handle complicated scheduling problems and elabo-
rate the schedule plans due to the powerful computing
power and optimisation capability embedded within it.
Elaboration of a schedule plan may require a large
amount of computing time and effort, but the plan will
be optimal because of the global view of the BIMC at
the shop floor level.

A BIMC at the cell level plays the role of supervisor
in its own cell to provide optimisation and order execu-
tion services to the BIMCs under its supervision and
coordination services to the BIMCs at all levels. This
unit can address scheduling problems in its own cell
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and elaborate schedule plans due to its computing
power and optimisation capability. The elaboration
process only takes a short time because of the low com-
plexity of the scheduling problems at this level. A sched-
ule plan elaborated by a BIMC at the cell level is the
optimal plan for the cell, but it is not the globally opti-
mal plan because of a lack of global information.

A BIMC at the device level plays the role of perfor-
mer to provide order execution services, and it can han-
dle simple scheduling problems of its own based on its
local knowledge.

Dynamic re-scheduling model

With respect to the NEIMS control architecture, a
dynamic re-scheduling model is introduced in this

section, which is the result of dynamic responses to sti-
muli between the BIMCs at different levels in the
NEIMS.

At the operational level, the constraints of the manu-
facturing schedule are listed as follows:

1. One machine can process only one operation at a
time.

2. One process cannot be started before its preceding
processes are completed.

3. One BIMC has the capacity to execute a task
Tj={Tlj}, if TYPEj4Si�TYPElj2Si, where Si is
the set of skills of BIMC i, TYPEj={TYPElj} is
the list of processing types of Tj, and TYPElj is the
processing type of Tlj.

4. Pre-emption is not allowed in processing each job,
that is, once an operation is started, it must be fin-
ished without interruption.

Figure 3 illustrates an example of how the dynamic
re-scheduling works in NEIMS. In stage I (normal
operation stage), that is, without the occurrence of
unexpected events, the BIMCs at different levels are
organised into a hierarchical structure, and the BIMC
at the shop floor level elaborates and sends the globally
optimised manufacturing schedule plans to the BIMCs
at lower levels. The BIMCs at different levels follow

Figure 1. NEIMS control architecture.

Figure 2. Basic structure of the BIMC.
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the received plans and perform their own stationary
operations.

In NEIMS, reaction to the occurrence of unexpected
events on the shop floor can be divided into two stages:
response to the disturbance stage and recovery after the
disturbance stage. In stage II (response to disturbance

stage), when an unexpected disturbance occurs on the
shop floor (e.g. machine failure), a hormone regulation
mechanism adopted by NEIMS is triggered for system
equilibrium. The hormone regulation processes in a
body control the secretion of hormones to maintain a
well-balanced biochemical environment in the vessels.

Figure 3. Dynamic re-scheduling in NEIMS: (a) normal operation stage, (b) response to disturbance stage, and (c) recovery after
disturbance stage.

124 Proc IMechE Part B: J Engineering Manufacture 229(S1)

 at Univ Politecnica De Valencia on April 15, 2016pib.sagepub.comDownloaded from 

http://pib.sagepub.com/


For instance, if a body is suffering from a cold stimulus,
the hypothalamus stimulates the pituitary and thyroid
glands to secrete thyroxine to increase metabolism and
maintain the body temperature at a stable level.
Similarly, when certain task and resource deviations are
detected in the relevant BIMC at the cell level, these
events can be viewed as oscillations in the concentration
of hormones. The deviations from the original plan sti-
mulate the BIMC to cooperatively interact with other
units to maintain the stability of the system. The related
BIMCs will adjust their original plans from the device
to the cell levels, and the BIMC that suffers the distur-
bance can enact an alternative schedule plan to ensure
on-time product delivery while maintaining a low work-
in-process inventory without the supervision of the
BIMC at the shop floor level. In the example illustrated
in Figure 3(b), two tasks from a failed machine are allo-
cated to another machine that provides similar skills.

In stage III (recovery after disturbance stage), after
the execution of event-based re-scheduling for a period
of time, the machine recovers from the malfunction.
Certain tasks might be delayed from the planned due
dates, and selected deviations from the due date can be
detected in the BIMCs at the device level. In the case of
such a context, a hormone regulation mechanism is
adopted by NEIMS to adjust the system at balance.
When it senses the deviation information, the BIMC at
the shop floor level chooses certain bottleneck tasks
according to the degree of the deviations from the due
date and re-allocates these tasks through interaction
among the BIMCs at different levels. If the delayed tasks
are re-allocated, this means that the influence of a distur-
bance caused by a delay is solved or weakened, but if the
delayed tasks cannot be re-allocated, the delay must be
accepted by the relevant BIMC. As shown in the exam-
ple illustrated in Figure 3(c), one task from a machine
that will seriously deviate from the due date is allocated
to another machine that provides a similar skill.

During the process of reaction to disturbances (from
stage II to stage III), the BIMC at shop floor level does
not directly address the disturbance but receives feed-
back from the interactions among the involved BIMCs,
subsequently continues optimisation of the plan, and
elaborates the task allocation for recovery.

Resource allocation mechanism based on hormone
regulation mechanism

As mentioned previously, the dynamic re-scheduling
model in NEIMS uses the hormone regulation

mechanism to quickly react to disturbances in stages II
and III. This section illustrates the resource allocation
mechanism based on the hormone regulation
mechanism.

Biological hormone regulation mechanism. A feedback-
controlled ensemble model of the stress-responsive
hypothalamus–pituitary–adrenal axis12 is used to
explain the hormone regulation mechanism and the
related control model. This neuroendocrine ensemble
exhibits prominent time-dependent dynamics that are
vividly reflected in the pulsatile and 24-h rhythmic out-
put. Episodic secretion is driven by the hypothalamic
neuronal pacemakers of the central nervous system
(CNS), which secretes the pituitary signalling peptide
CRH (adrenocorticotropic hormone (ACTH)-releasing
hormone). These agonists synergistically stimulate
ACTH synthesis and secretion, which in turn promotes
the dose-responsive biosynthesis of cortisol. Cortisol
feeds back to inhibit CRH and ACTH production via
concentration-dependent and rapid rate-sensitive
mechanisms. A typical control model of hormone regu-
lation is shown in Figure 4, which illustrates the char-
acteristic of negative feedback.

Hormone regulation model of NEIMS. Inspired by the bio-
logical hormone regulation mechanism, the hormone
regulation model of NEIMS is proposed for coordina-
tion, as shown in Figure 5, and the notations of the
model are listed as follows:

GT: the global task of the original plan is a set of tasks
that is elaborated and allocated by the BIMC at the
shop floor level.
GR: the global resource capacity of the original plan is
a set of available resources on the shop floor.
DD: the due date information refers to the GT.
PT: the planned task schedule for the relevant BIMC is
a set of tasks allocated by the BIMC at the shop floor
level.
PR: the planned resource allocation to the relevant
BIMC is a set of available resources that is used to exe-
cute PT.
PD: the planned due date information refers to the PT
TF: the task completed by the relevant BIMC is a set
of tasks actually finished by the relevant BIMC.
RC: the resource capacity consumed by the relevant
BIMC is a set of resource capacities that is actually
consumed by the relevant BIMC.
AD: the actual due date information refers to the TF

Figure 4. Negative feedback control model of hormone regulation.
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DR: the resource capacity deviation of the relevant
BIMC is a set of resource capacities between PR and
RC.
DT: the task deviation of the relevant BIMC is a set of
tasks between PT and TF.
DD: the due date deviation of the relevant BIMC is a
set of due date information between PD and AD.

Based on the hormone regulation principle, the
BIMCs at the shop floor level, cell level, and device
level are separately treated as the CNS, pituitary, and
the adrenal glands. Taking the deviations of the
resources, tasks, and dates of delivery as three types of
hormones, the levels of hormone concentrations of the
BIMC can be indicated as DR, DT, and DD. During the
dynamic scheduling plan, the information for the
resource capability deviation DR contains the machine
type, capability, and number of machine units. The
information for task deviation DT refers to the number,
process route, and due date of the workpiece. The
information of due date deviation DD includes the
number of workpieces that cannot be completed on
time, the number of machine units, and the deviation
value of the due date. If a certain hormone concentra-
tion (DR, DT, or DD) is not equal to 0, this means that
unexpected events have occurred on the shop floor, and
the hormone regulation processes will be triggered for
maintenance of system equilibrium via resource regula-
tion. Resource regulation is intended to re-organise the

resource allocations to re-schedule and minimise devia-
tions from the original plan. The details of the resource
allocation mechanism for dynamic re-scheduling are
detailed in the following section.

Resource allocation mechanism. Using the biological hor-
mone regulation mechanism, the distributed resource
allocation mechanism of NEIMS is proposed as shown
in Figure 6, and the notations are given below:

J is the set of jobs.
L is the set of machining processes of a job.
Tj(j 2 J) is the task that can be performed by the BIMC
at the cell level.
Tjl(l 2 L, j 2 J) is the task that can be performed by the
BIMC at the device level.
rj(j 2 J) is the hormone price of performing the task Tj.
rjl(l 2 L, j 2 J) is the hormone price of performing the
task Tjl.

In the presence of deviations (DR, DT, and DD), a
number of bottleneck tasks ({Tj}, similar to CRH) are
selected and released into the shop floor environment
by the BIMC at the shop floor or cell level. Stimulated
by Tj, the BIMCs at the cell level segment Tj into a set
of tasks ({Tjl}, similar to ACTH) that can be performed
by machines and release them into each cell environ-
ment. Stimulated by Tjl, the BIMCs at the device level

Figure 5. Hormone regulation model of NEIMS.

Figure 6. Dynamic responses to stimuli among BIMCs at different levels.
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attempt to insert the new task into the original plans
according to the priorities and determine the feasibility
of performing those tasks by updating the hormone
price (rjl similar to cortisol). The BIMCs at cell or shop
floor level evaluate the updated hormone prices and
select an appropriate cell to assign the task. Hormone
prices updated from the BIMCs at the device level are
the prices (composed of the cost of performing the task
and the influence on the resource utilisation rate) that
must be paid for deviations from the original plan. The
cost can be computed according to the following
function

C
Tjl

im =PC
Tjl

im + IC
Tjl

im +SC
Tjl

im ð1Þ

where PC
Tjl

im is the processing cost, IC
Tjl

im is the inventory
cost, and SC

Tjl

im is the shortage cost. The processing cost
depends on the productivity of the relevant machine,
and the inventory cost and shortage cost depend on the
predicted deviation from the due date. The calculation
process for the cost will not be described in this article.

Once the cost is calculated by the related BIMC at
the device level, the influence on the resource utilisation
rate must be considered, that is, a machine with a low
cost but a high loading rate may lose to a machine with
a slightly higher cost but a lower loading rate. To
ensure that a machine with a low loading rate can be
selected more easily, we propose a weight function for
the loading rate inspired by the up- and down-
regulatory Hill functions13

wim ¼
a 1þ ðLT�LRimÞnc

ðH1ÞncþðLT�LRimÞnc
� �

;LRim \LT

a 1� ðLRim�LTÞnc
ðH2ÞncþðLRim�LTÞnc

� �
;LRim5LT

8<
: ð2Þ

where LT is the appointed loading rate, LRim is the
actual loading rate of device m in cell i, H1 and H2 are
the respective thresholds of the up- and down-
regulatory Hill functions, a is a constant coefficient, nc
is the Hill coefficient, and nc51. The graph of the
weighted function is shown in Figure 7, and the rele-
vant parameters can be set as follows: LT=60%,
H1 =50, H2 =35, a=1, and nc =4.

Based on the deviation between the appointed load-
ing rate and the actual loading rate (LT� LRim), the
cost can be adjusted as follows. If LT� LRim . 20%
(e.g. LRim =30%), the cost must be decreased to
ensure that the BIMC can be selected more easily. If
LT� LRim \ � 20% (e.g. LRim =90%), the cost will
be raised to prevent the BIMC from being selected. If
LT� LRim 2 ½�20%, 20%�, the cost is maintained or
finely adjusted, and the BIMC can be selected accord-
ing to its actual cost. Inspired by equation (2) and the
curve in Figure 7, the weighted cost of the hormone
quantum considering the utilisation rate can be calcu-
lated as shown in equation (3)

r
Tjl

im =
C

Tjl

im

wim
ð3Þ

After calculating the hormone quantum of a device
in the current state, the BIMC at the device level with
the lowest hormone level will be selected by its cell. If
the BIMC at the cell level senses several hormones with
the same and lowest quantum from the BIMCs at the
device level, it will select the BIMC with the lowest real
loading rate.

In the process of resource allocation, the autono-
mous capability of each BIMC acts as the key concept,
and the hormone regulation mechanism acts as the
important function for support of the adaptive control
and scheduling strategy. Those resources with lower
cost can be detected from the bottom (device) level of
the system, and at the same time, the resource utilisa-
tion rate can be balanced.

Cooperation mechanisms for dynamic re-
scheduling

This section describes several types of dynamic re-
scheduling mechanisms triggered by unexpected
disturbances.

Dynamic re-scheduling for rush orders

A rush order is an order (usually with high priority)
that must be processed immediately after reaching the
shop floor because it has an impending delivery time.
These orders lead to a disturbance in the system
because optimised manufacturing schedule plan was
previously elaborated by the BIMC at the shop floor
level. In this situation, the task deviations from that
plan caused by rush orders act as the oscillation of task
hormones and trigger the hormone regulation pro-
cesses. As shown in Figure 8, the BIMCs at different
levels follow the steps below to conduct their own
inherent operations:

Figure 7. Curve of weight function of loading rate.
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Step 01: when rush orders are accepted by the BIMC
at the shop floor level, they (DGT) will be added to the
global tasks.
Step 02: the BIMC at the shop floor level segments
DGT into a set of tasks fDTjg that can be performed
by the cells.
Step 03: the BIMC at the shop floor level releases the
task hormone information (DTj) into the shop floor
environment as CRH.
Step 04: when each BIMC at the cell level senses DTj, it
will segment DTj into a set of tasks fDTjlg that can be
performed by the machines.
Step 05: each BIMC at the cell level releases hormone
information DTjl into its relevant cell environment as
ACTH.
Step 06: when the BIMC at the device level senses DTjl,
it will abstract the processing type (TYPElj) from DTjl

and check its machine skills (Sim). If TYPElj � Sim, it
will abstract the priority of the new task and attempt
to insert the new task at the front of the lower priority
tasks and re-schedule the original plan; in addition, it
will evaluate the increase in the hormone quantum
(r

DTjl

im ) based on equation (3). If TYPElj 6� Sim, the
BIMC will do nothing. In the process of re-scheduling,
the decision maker of the BIMC selects the plan (pim)
from the set of alternative production plans that has
the minimum increase in hormone quantum as the
optimal plan.
Step 07: the BIMC at the device level feeds back the
new plan with the increase in hormone quantum
(pim, r

DTjl

im ) to its cell as cortisol.
Step 08: when the BIMC at the cell level senses the
feedback information f(pim, rDTjl

im )g from the relevant
devices, it will re-schedule the plan and select the opti-
mal plan with the minimum increase of hormone quan-
tum (pi, r

DTj

i ) from the alternative production plans in
the cell.
Step 09: the BIMC at the cell level feeds back the new
plan with the increase of hormone quantum (pi, r

DTj

i )
to the shop floor controller as cortisol.
Step 10: when the BIMC at the shop floor level senses
the feedback information f(pi, rDTj

i )g, it will select the
optimal plan with the minimum increase in hormone
quantum (p

opt
i , r

DTj

i ) from the alternative production
plans.

Step 11: the BIMC at the shop floor level allocates DTj

to the relevant cell.
Step 12: the BIMC at the cell level allocates fDTjlg to
the relevant device(s).
Step 13: each BIMC at the device level executes the
new plan.

Dynamic re-scheduling for machine malfunction

In the case of the occurrence of machine breakdown,
task and resource deviations from plan as estimated by
the relevant BIMC at the device level act as a type of
hormone and trigger the hormone regulation process.
As shown in Figure 9, the BIMCs at different levels fol-
low the steps below to conduct their own inherent
operations:

Step 01: the BIMC m0 at the device level of the failed
machine estimates the state of the machine, abstracts
the task and resource hormone information (fDTjlg
and DRi0m0), and updates this information to its cell.
The fDTjlg includes the information on the processes
that cannot be performed during the downtime, and
DRi0m0 includes the information on the state and down-
time of the machine.
Step 02: the BIMC i# at the cell level of the failed
machine releases DTjl into the shop floor environment
as CRH.
Step 03: when each BIMC at the cell level senses the
hormone information (DTjl), it will release DTjl into its
relevant cell environment as ACTH.
Step 04: when the BIMC at the device level senses DTjl,
it will abstract the processing type (TYPElj) from DTjl

and check the machine skills Sim. If TYPElj � Sim, the
BIMC will attempt to insert the new task into the origi-
nal plan and re-schedule and will subsequently evaluate
the increase in hormone quantum (r

DTjl

im ) based on
equation (3); if TYPElj 6� Sim, it will do nothing. In the
process of re-scheduling, the decision maker of the
BIMC selects the plan (pim) with the minimum increase
in hormone quantum from the alternative production
plans as the optimal plan.
Step 05: the BIMC at the device level feeds back the
new plan with the increase in hormone quantum
(pim, r

DTjl

im ) to its cell as cortisol.

Figure 8. Dynamic re-scheduling caused by rush orders.
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Step 06: when the BIMC at the cell level senses the
feedback information f(pim, rDTjl

im )g from the relevant
BIMCs at the device level, it will re-schedule the plan
and select the optimal plan with the minimum increase
of hormone quantum (pi, r

DTjl

im ) from the alternative
production plans in the cell.
Step 07: the BIMC at the cell level feeds back the new
plan with the increase in hormone quantum (pi, r

DTjl

im )
to the BIMC i# cell level as cortisol.
Step 08: when the BIMC i# at the cell level senses the
feedback information f(pi, rDTjl

im )g, it will select the
optimal plan (p

opt
i , r

DTjl

im ) with the minimum increase in
hormone quantum from the alternative production
plans.
Step 09: the BIMC i# at the cell level allocates DTjl to
the relevant cell.
Step 10: the BIMC at the cell level allocates DTjl to the
relevant device(s).
Step 11: each BIMC at the device level executes the
new plan.

Dynamic re-scheduling for delays

An operational delay can occur after disturbances if the
BIMCs at the device level detect due date deviations. In
this situation, the task deviations from plan caused by
the delays act as a type of hormone and trigger the hor-
mone regulation process. As shown in Figure 10, the
BIMCs at different levels follow the steps below to con-
duct their own inherent operations:

Step 01: the BIMC at the device level affected by the
unexpected events detects the processing state of the
machine and abstracts task deviations (DTjl,Dd

DTjl

jl ,
r

DTjl

im, orig) with the due date deviations and increases in
hormone quantum of the relevant tasks.
Step 02: the BIMC at the device level updates
(DTjl,Dd

DTjl

jl , r
DTjl

im, orig) to its own cell.
Step 03: when the BIMC at the cell level senses the
information f(DTjl,Dd

DTjl

jl , r
DTjl

im, orig)g from its devices, it
will collect and update them to the BIMC at the shop
floor level.

Figure 9. Dynamic re-scheduling caused by machine malfunction.

Figure 10. Dynamic scheduling caused by delays.

Zheng et al. 129

 at Univ Politecnica De Valencia on April 15, 2016pib.sagepub.comDownloaded from 

http://pib.sagepub.com/


Step 04: after collecting the information from all cells,
the BIMC at the shop floor level chooses several bot-
tleneck tasks fDTjlg for which there are serious devia-
tions from the due date.
Step 05: the BIMC at the shop floor level releases the
task hormone information DTjl into shop floor envi-
ronment as CRH.
Step 06: when each BIMC at the cell level senses DTij,
it will directly release DTij into its relevant cell environ-
ment as ACTH.
Step 07: when the BIMC at the device level senses DTjl,
it will abstract the processing type (TYPElj) from DTjl

and check the machine skills Sim. If TYPElj � Sim, it
will attempt to insert a new task into the original plan
and re-schedule and subsequently evaluate the increase
in hormone quantum (r

DTjl

im ) based on equation (3); if
TYPElj 6� Sim, it will do nothing. In the process of re-
scheduling, the decision maker of the BIMC selects the
plan (pim) with the minimum increase in hormone
quantum from the alternative production plans as the
optimal plan.
Step 08: the BIMC at the device level feeds back the
new plan with the increase in hormone quantum
(pim, r

DTjl

im ) to its cell as cortisol.
Step 09: when the BIMC at cell level senses the feed-
back information f(pim, rDTjl

im )g from the relevant
devices, it will re-schedule the plan and select the opti-
mal plan (pi, r

DTjl

im ) with the minimum increase in hor-
mone quantum from the alternative production plans
in the cell.
Step 10: the BIMC at the cell level feeds back the new
plan with the increase of hormone quantum (pi, r

DTjl

im )
as cortisol to the BIMC at the shop floor level.
Step 11: when the BIMC at the shop floor level senses

the feedback information f(pi, rDTjl

im )g, it will select the
optimal plan (popti , r

DTjl

im ) with the minimum increase in

hormone quantum from the alternative production

plans. If r
DTjl

im \ r
DTjl

im, orig, the new plan of DTij is better,

and go to Step 12; if r
DTjl

im 5r
DTjl

im, orig, the original plan of

DTij is better, and go to Step 15;

Step 12: the BIMC at the shop floor level allocates DTij

to the relevant cell.
Step 13: the BIMC at the cell level allocates DTjl to the
relevant device(s).
Step 14: the relevant BIMC at the device level executes
the new plan. If tasks remain with due date deviations,
the BIMC abstracts the task information and goes to
Step 02.
Step 15: ending all the allocations of fDTijg, the BIMC
at the shop floor level begins global optimisation of the
plan.

Test bed for NEIMS simulation

A test bed (shown in Figure 11) was set up to simulate
the dynamic re-scheduling approach of NEIMS. An
Advanced RISC Machine (ARM) controller linked
with a Pentium IV personal computer serves as the

BIMC controller at the shop floor level and is responsi-
ble for the role of the CNS. Several ARM controllers
act as the BIMC controllers at the cell level and are
linked through a CAN bus to communicate with each
other without the host computer. Wireless communica-
tion technology is adopted between the ARM control-
lers and several auto-guided vehicles (AGVs). Several
single chips act as the BIMC controllers at the device
level. One automated storage/retrieval system (AS/RS)
was set up to store the raw materials and machined
parts. A liquid-crystal display (LCD) thin film transis-
tor (TFT) screen at the shop floor level displays the
real-time operation situation of the entire system, and
several LCD TFT screens at the cell level display the
machine status of the cells. The physical test bed that
simulates the operation of the entire system is shown in
Figure 12.

Simulation study

To obtain benchmarking for dynamic re-scheduling
approach implementation in NEIMS, the simulation
experiments were performed over several different
models with consideration of different disturbance con-
ditions according to the framework defined by
Cavalieri et al.14 In the experiment, no set-up is
required because each machine is equipped with the
tools required to execute a range of operations, and
work orders are executed in the exact estimated manu-
facturing time. The experimental case study considers
four types of orders with different plant loads. Each
individual order includes four to six jobs, and each job
is composed of two to four machining processes.
Different orders arrive sequentially at the NEIMS, and
jobs that belong to the same order arrive in the system
at the same time. In the experiment, three plant scenar-
ios15 are considered:

1. No unexpected disturbances occur.
2. Occurrence of failure in one turning machine of

BIMC 1 at the cell level with a probability of 20%.
3. Occurrence of failures in two turning machines of

BIMC 1 and BIMC 2 at the cell level with a prob-
ability of 20%.

Performance indicators

In the manufacturing context, the performance indica-
tors can be classified as qualitative or quantitative. In
this study, the quantitative indicators used to evaluate
the implementation of dynamic re-scheduling approach
in NEIMS are output rate, resource utilisation, lead-
time, and lateness.

The output rate is an indicator of the productivity of
a manufacturing system and is defined as the ratio
between the output and the duration of the reference
period. The resource utilisation is defined as the
percentage of processing time during a time interval.
The lead-time is the total time required to process a

130 Proc IMechE Part B: J Engineering Manufacture 229(S1)

 at Univ Politecnica De Valencia on April 15, 2016pib.sagepub.comDownloaded from 

http://pib.sagepub.com/


given product through the factory plant and includes
the post-process waiting time, the transport time, the
pre-process waiting time, the set-up time, and the pro-
cessing time. The shorter the lead-time, the more

products can be produced by the production plant in
the same period of time. The lateness is the deviation
between the actual processing end and the target pro-
cess end.

Figure 11. Simulation structure of NEIMS.

Figure 12. Physical test bed of NEIMS.
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In this study, the two qualitative indicators defined
and tested to analyse the performance in NEIMS are
robustness and agility.

The robustness is the ability of a manufacturing sys-
tem to continue working correctly and relatively stably
in the face of internal and external unexpected distur-
bances.16 In this article, the robustness is measured by
introducing possible disturbances and verifying whether
the manufacturing system continues to work correctly.
For example, the system quickly reacts to the occur-
rences of machine breakdown, new rush orders,
increases in the number of orders, and so on.

The agility of a manufacturing system is its ability to
rapidly react to the occurrence of unexpected distur-
bances.17 In this article, the agility of a manufacturing
system is evaluated using the loss of output rate

lopr= 1� oprtransient
oprsteady

� �
3 100% ð4Þ

where oprsteady is the output rate in a steady scenario
and oprtransient is the output rate in a transient scenario
after the occurrence of disturbance. The loss of output
rate directly reflects the agility of a manufacturing sys-
tem. The smaller the lopr, the higher the agility of the
manufacturing system will be.

Using simulation of the proposed approach in the
test bed, various scales can be constructed to evaluate
the performance of NEIMS.

Analysis of results

To compare the dynamic re-scheduling approach imple-
mented in NEIMS, the same manufacturing system is

modelled with the conventional control architecture.
The conventional control approach is a traditional cen-
tralised control system that uses the centralised control-
ler as the shop floor controller. Both the scheduling
approaches use the same test bed:

1. In the conventional approach, the orders are
scheduled according to the earliest due date first
(EDD) rule, and the parts flow along the processes
according to the first-in-first-out (FIFO) rule. If
the disturbances are not addressed on the shop
floor, the shop floor controller must optimise the
schedules of every machine and attempt to react to
the disturbances.

2. In the NEIMS approach, the BIMCs at different
levels are organised in a hierarchical structure, and
the shop floor controller elaborates and sends
schedule plans to the cell controllers of BIMCs in
the normal state. The NEIMS adopts the hormone
regulation mechanism to agilely adjust its beha-
viours for recovery in the disturbance state.

Figure 13 illustrates four quantitative indicators that
are extracted from the experiments simulated in the test
bed. The result shows that the NEIMS approach pro-
duces higher values for output rate and resource utilisa-
tion and lower values for lead-time and lateness than
the conventional approach, thus reflecting better pro-
duction optimisation.

The robustness results of the two approaches are
illustrated as follows. In the conventional approach,
the shop floor controller optimises the schedules of the
entire system at the time of machine breakdown and

Figure 13. Quantitative comparison results.
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recovery. The system must wait until the new schedules
are calculated. In the NEIMS approach, the system can
dynamically respond to the machine breakdown and
recovery and maintains stability without breakdown of
the entire system. The result shows that the NEIMS
approach produces higher robustness than the conven-
tional approach.

Figure 14 illustrates the loss of output rate of the
evaluated approaches. The result shows that NEIMS
approach results in lower values of loss of output rate
than the conventional approach, thus reflecting a higher
agility.

Analysing the qualitative and quantitative indicators
simultaneously, the experimental results reveal that the
proposed approach has the potential to improve the
system performance.

Conclusion

In this article, we presented a dynamic shop floor re-
scheduling approach in NEIMS. The dynamic re-
scheduling approach, which is inspired by hormone
regulation, is used to agilely respond to uncertain dis-
turbances and maintain global optimisation and system
stability. The computing power and optimisation cap-
abilities embedded in the BIMCs at different levels play
important roles in realising fast dynamic re-scheduling
in NEIMS. The influences of delivery time and loading
rate considered in the price hormone calculations
ensure that lateness and resource utilisation can be
solved and balanced at the bottom level. A test bed was
built to simulate and verify the proposed dynamic re-
scheduling approach in NEIMS. Finally, a simulation
case study was conducted to analyse the qualitative and
quantitative indicators. The experimental results prove
that the NEIMS approach combines good global pro-
duction optimisation, strong system robustness, and
high system agility.

The aim of this research primarily focuses on rapid
and dynamic re-scheduling in NEIMS to address unex-
pected disturbances on the shop floor. During the pro-
cess of re-scheduling, several manufacturing constraints

(e.g. energy efficiency and human resources) were not
taken into consideration. Therefore, future work
should be directed towards application of the dynamic
re-scheduling approach in more complex and practical
manufacturing contexts to prove its extensive practic-
ability. This article presents a contrast between the two
approaches for potential to improve the system perfor-
mance. However, the contrast between the proposed
approach and other dynamic re-scheduling approaches
has not been implemented. Hence, in future work, sev-
eral typical dynamic re-scheduling approaches should
be taken into consideration in the case design to verify
the advantages and disadvantages of various
approaches.
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