

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/151044

Fernandez-Viagas, V.; Ruiz García, R.; Framinan, J. (2017). A new vision of approximate
methods for the permutation flowshop to minimise makespan: State-of-the-art and
computational evaluation. European Journal of Operational Research. 257(3):707-721.
https://doi.org/10.1016/j.ejor.2016.09.055

https://doi.org/10.1016/j.ejor.2016.09.055

Elsevier

A new vision of approximate methods for the
permutation flowshop to minimise makespan:
state-of-the-art and computational evaluation

Victor Fernandez-Viagas1∗, Rubén Ruiz2, Jose M. Framinan1

1 Industrial Management, School of Engineering, University of Seville,

Ave. Descubrimientos s/n, E41092 Seville, Spain, {vfernandezviagas,framinan}@us.es
2 Grupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de Informática

Ciudad Politécnica de la Innovación, Edifico 8G, Acc. B. Universitat Politècnica de València

Camino de Vera s/n, 46021, València, Spain, rruiz@eio.upv.es

August 7, 2016

Abstract

The permutation flowshop problem is a classic machine scheduling problem where n
jobs must be processed on a set of m machines disposed in series and where each job must
visit all machines in the same order. Many production scheduling problems resemble flow-
shops and hence it has generated much interest and had a big impact in the field, resulting in
literally hundreds of heuristic and metaheuristic methods over the last 60 years. However,
most methods proposed for makesan minimisation are not properly compared with existing
procedures so currently it is not possible to know which are the most efficient methods for
the problem regarding the quality of the solutions obtained and the computational effort
required. In this paper, we identify and exhaustively compare the best existing heuristics
and metaheuristics so the state-of-the-art regarding approximate procedures for this rele-
vant problem is established.

Keywords: Scheduling, Flowshop, Heuristics, Metaheuristics, Makespan, Review, Computational
evaluation

∗Corresponding author. Tel.: +34-954487220.

1

1 Introduction

The flowshop is a common manufacturing layout where n jobs have to be processed onmmachines, with

each job following the same route at the machines. The so-called flowshop scheduling problem involves

the determination of the sequence of jobs at each machine. When the sequence of jobs is the same for all

machines, the problem is denoted as Permutation Flowshop Scheduling Problem (PFSP in the following).

The PFSP is one of the most studied problems in the Operations Research literature (e.g. see the reviews

by [21, 71, 74]).

In the related literature, the minimization of makespan, Cmax, (also denoted as maximum completion

time or maximum flowtime) has been commonly chosen by researchers as the objective to optimize in

the PFSP (e.g. see [36], [20], [87], [51], [22] or [81] for other objectives in the PFSP). According to

the notation of [63], this problem is denoted as Fm|prmu|Cmax. Since [73] showed the problem to be

NP-complete for more than two machines, most researchers have focused on implementing approximate

methods to find good solutions without excessive computation times.

There has been a vast number of papers published with algorithms and procedures. [74] carried out an

exhaustive review and computational evaluation of the heuristics and metaheuristics published until 2004

for the PFSP to minimize makespan. A total of 18 heuristics and 7 metaheuristics were implemented

and tested under the same conditions. Among them, two of these methods turned out to be the most

efficient ones: the NEH heuristic [55] was clearly the most efficient among the constructive heuristics for

the problem, and the Iterated Local Search [80] presented itself as the most efficient metaheuristic for the

problem.

Since the publication of the work by [74], more than 100 new algorithms have been proposed in the

literature over the last 10 years. Some of these methods –such as the iterated greedy (IG) of [76]– have

improved the best existing algorithms in [74]. However, the new state-of-the-art remains unclear due to

the lack of a homogeneous framework to conduct the comparison among algorithms. More specifically,

the following problems can be detected:

• Many algorithms are compared under different conditions:

– Tested under different computer conditions (different programming languages and/or differ-

ent computers, operating systems, etc.).

2

– Comparison of algorithms with different CPU time usages.

– Use of different benchmarks (see Section 2).

• Many algorithms are compared in a non-conclusive way:

– Lack of comparison against the state-of-the-art (e.g. without comparing with the iterated

greedy proposed by [76]).

– Among the several runs performed in each instance to increase the power of the results, the

best runs are used instead of the average for some algorithms.

• New advances in the evaluation of the algorithms:

– A more extensive benchmark of instances has been recently proposed by [88]. This testbed

can be used to establish statistical differences among algorithms in a sound way, differently

from what can be done with older benchmarks (such as those by [83], [3], [70], [90], [14],

[26]).

– A new indicator has been proposed by [19] to measure the CPU requirements of the al-

gorithms in relative terms. This indicator improves the deficiencies of the most common

indicator (i.e. average CPU time) for the evaluation of efficient heuristics.

• Finally, a special effort should be made when comparing efficient heuristics against the best meta-

heuristics under the same stopping criterion since the CPU time required by some heuristics is

relatively high in comparison with some metaheuristics.

As a conclusion, a new review and evaluation of the approximate methods for the Fm|prmu|Cmax

problem is pertinent and may serve firstly to establish a clear picture of the state-of-the-art within this

important problem, and secondly, to give indications of possible avenues for future research. This twofold

objective is the goal of our research.

The remainder of the paper is as follows: in Section 2, heuristics and metaheuristics published in the

literature from [74] are analysed and summarised. The most promising ones are chosen to be evaluated

and compared. A description of the evaluation and comparison is carried out in Section 3. Computational

results of the comparisons between heuristics and metaheuristics are described in Section 4. Finally, in

Section 5 conclusions are discussed and some indications and ideas for future research are shown.

3

2 Background

The problem under consideration is the permutation flowshop scheduling problem to minimise the max-

imum completion time or makespan. The problem consists of the determination of the sequence of n

jobs which achieves the minimal makespan when all jobs are processed (in the order indicated by the

sequence) on the m machines of a shop. The following additional hypotheses are usually assumed for the

PFSP:

• Processing times, denoted as pij where i = 1, ...,m and j = 1, ..., n, are known and deterministic.

• No preemption is allowed.

• Release times are set to 0.

• Sequence-dependent set-up times are considered insignificant.

• Sequence-independent setup times are considered as non-anticipatory, and therefore can be added

to the processing time of the jobs on the machines.

• Transportation times can be considered either insignificant or constant.

• Each job can be processed by at most one machine at the same time.

• Each machine can process only one job at the same time.

• Unlimited in-process inventory is considered.

• All machines are available on the whole scheduling horizon.

As mentioned in the previous section, the NP-hard nature of the problem has led the vast major-

ity of research towards the proposal of approximate solutions, usually classified either as heuristics or

metaheuristics. The division between heuristics and metaheuristics is ambiguous and different classifi-

cations have been proposed in the literature (see e.g. [103], [95]). For an in-depth classification of the

Fm|prmu|Cmax problem, we refer to [21]. However, in this paper we use the same division as in [74],

where heuristics and metaheuristics are analysed separately. There, heuristics (constructive and improve-

ment ones) naturally stop when the procedure is finished whereas metaheuristics typically stop after a

4

given number of iterations or elapsed CPU time. This fact naturally leads to perform different compu-

tational experiments in Section 4, since the efficiency of the metaheuristics can be compared by running

them for the same CPU time whereas heuristics should be compared by means of a Pareto-efficient fron-

tier using the quality of the solution and the CPU time as indicators. In order to maintain the readability

of the paper, the same division is considered when analysing the state-of-the-art in this Section.

2.1 Heuristics

Traditionally divided into constructive and improvement types, heuristics have been extensively devel-

oped for Fm|prmu|Cmax either to yield a good solution in less CPU time or to find a seed sequence

for metaheuristics. Since the computational evaluation of [74], several constructive heuristics have been

proposed in the literature, most of them variants of the NEH heuristic by [55]. This heuristic consists of

two phases:

1. First, jobs are ordered according to an initial order (decreasing sum of processing times).

2. The first job is removed from the initial order and placed in a partial sequence, initially without

any job. Next, following this order, each job is removed and tried to be inserted in each possible

position of the partial sequence. The position that minimizes the makespan is chosen for the job.

The procedure is repeated n-1 times until all jobs are placed in the partial sequence.

The computational complexity of the NEH is O(n3m). However, the method proposed by [82]

(denoted as Taillard’s acceleration in the following) reduces its original complexity to O(n2m).

The different variants of the NEH heuristic can be unified using the following notation formed by

three fields: NEH(a|b|c) where the fields a, b and c are defined by:

• a: Initial order used by the NEH. In the computational evaluation, the following sorting criteria

have been considered:

– rand: Jobs are randomly ordered. This order is used by [72] in RAER and RAER-di heuris-

tics as comparison heuristics.

– SD: Non decreasing sum of processing times (original order of the NEH) of the jobs. This

5

order is used by the following heuristics: NEHR [72], NEHR-di [72], NEH [55], NEH-

di [72], NEH1 [30] and NEH1-di [72].

– AD: sum of the mean and deviation of the processing times (proposed by [15]).

– NM: order proposed by [52] and used in NEMR and NEMR-di heuristics by [72].

– KK1: Sorting criterion proposed by [31]. This initial order is applied in NEHKK1 [31] and

NEHKK1-di [72] heuristics.

– KK2: Sorting criterion proposed by [32] in NEHKK2 heuristic.

• b: Once a job is selected for insertion in all positions of a partial sequence, the same makespan

can be obtained for several positions causing ties in each iteration. These ties have a great influ-

ence on the performance of the constructive heuristics (see [30]). In the original proposal, the first

slot (denoted as FS) for which the minimum makespan is achieved is kept as the best sequence.

This b field then defines the type of tie-breaking mechanism implemented in the NEH. The fol-

lowing mechanisms have been considered: TBKK1, proposed by [30]; TBKK2, proposed by [31];

TBKK3, proposed by [32]; DCH, proposed by [15]; RCT, proposed by [72]; and the FF, proposed

by [18].

• c: This field is associated with the reversibility property of the problem (see [72]). It establishes

that the makespan of the permutation Π := (π1, . . . , πn) in instance I (instance formed by n jobs

and m machines with processing times equal to pij) is the same as the makespan of the reverse

permutation Π
′

:= (πn, . . . , π1) in instance I
′

(instance formed by n jobs and m machines with

processing times equal to p
′
ij = pm−j+1,i). Therefore, the value d indicates that the NEH is applied

on the direct instance I whereas i is used when the algorithm is applied on the inverse instance

I
′
. Accordingly, di indicates that both the direct and the inverse are used, and the best sequence is

retained.

This notation has been employed to classify the different variants of the original NEH heuristic –

which can be denoted as NEH(SD|FS|d) in our notation– proposed in the literature. These are sum-

marized in Table 1.

Among the heuristics proposed, some of them –i.e. NEH1, NEHKK1, NEHKK2, NEHD and NEHFF

by [30], [31], [32], [15], and [18] respectively – maintain the original complexity of O(n2m). Other

6

variants with a greater complexity have been proposed by [72], see Table 1 (the heuristics implemented

in this research are indicated in bold, see Section 3).

Two different variants with a greater complexity have been proposed by [94] and are denoted as

CLWOTS and CLWTS. In CLWOTS, a new mechanism (denoted as backward shift mechanism) is added

to the traditional insertion phase of the NEH. This mechanism increases the sequences to be evaluated

in each iteration by means of a movement of the jobs of the partial sequence. When the tie-breaking

mechanism of [72] is added to the CLWOTS, the heuristic is denoted as CLWTS

Furthermore, 10 heuristics that also modify the insertion phase of the NEH algorithm have been

proposed by [66]. These heuristics are denoted as: FRB1, FRB2, FRB3, FRB42, FRB44, FRB46, FRB48,

FRB410, FRB412 and FRB5. Among then, the FRB1 heuristic is statistically outperformed by several

heuristics (e.g. FRB42 and FRB44) with shorter average CPU times. Finally, [89] proposed a constructive

NEH-based heuristic, NEHI, which also considers different interpretations for the ties in the initial order

of the NEH.

2.2 Metaheuristics

As explained in Section 1, numerous metaheuristics have been published in the literature since 2004. A

summary of them is shown in Tables 2 and 3, where the metaheuristics implemented in this research are

indicated in bold (see Section 3). The first, second, third and fourth columns indicate the year of pub-

lication, the bibliographical reference, the type of metaheuristic and the acronym (maintaining the same

acronym as in the original papers) respectively. The fifth column shows the papers proposing metaheuris-

tics that outperform the referenced one. In the sixth column, the benchmark(s) used for the computational

evaluation are shown (the following notation is used: T1, [83]; T2, non-complete set of instances of [83];

R, [70], C, [3]; D, [14]; W, [90]; H, [26]; O, Other set of instances). The seventh column shows the

ARPD values of the metaheuristics when tested on Taillard’s benchmark [83]. Average Relative Per-

centage Deviation values of algorithm j are denoted as ARPDj and are calculated as follows:

ARPDj =

∑
∀iRPDi,j

I
(1)

where I is the number of instances for which the RPD (Relative Percentage Deviation) values are

7

Table 1: Summary of heuristics

Heuristic NEH Notation Paper
RAER NEH(rand|RCT |d) [72]

RAER-di NEH(rand|RCT |di) [72]
KKER NEH(KK1|RCT |d) [72]

KKER-di NEH(KK1|RCT |di) [72]
NEHR NEH(SD|RCT |d) [72]

NEHR-di NEH(SD|RCT |di) [72]
NEMR NEH(NM |RCT |d) [72]

NEMR-di NEH(NM |RCT |di) [72]
NEH NEH(SD|FS|d) [55]

NEH-di NEH(SD|FS|di) [72]
NEH1 NEH(SD|TBKK1|d) [30]

NEH1-di NEH(SD|TBKK1|di) [72]
NEHKK1 NEH(KK1|TBKK2|d) [31]

NEHKK1-di NEH(KK1|TBKK2|di) [72]
NEHKK2 NEH(KK2|TBKK3|d) [32]

NEHD NEH(AD|DHC|d) [15]
NEHD-di NEH(AD|DHC|di) [72]
NEHFF NEH(AD|FF |d) [18]
CLWTS NEH(SD|FS|d) with a backward shift mechanism in the insertion phase [94]
CLWOTS NEH(SD|RCT |d) with a backward shift mechanism in the insertion phase [94]
NEHI Best of several runs of NEH(−| − |−) [89]
FRB1 Similar to the NEH(SD|FS|d) including a local search method in the insertion phase [66]
FRB2 Similar to the NEH(SD|FS|d) including a local search method in the insertion phase [66]
FRB3 NEH(SD|FS|d) including a local search method in the insertion phase [66]
FRB4k NEH(SD|FS|d) including a local search method in the insertion phase [66]
FRB5 NEH(SD|FS|d) including a local search method in the insertion phase [66]

8

obtained (i.e. the testbed size). RPDij is the relative percentage deviation obtained by algorithm j when

applied to instance i and is typically calculated as follows:

RPDi,j =
Cmax,i,j −Besti

Besti
· 100 (2)

where Cmax,i,j is the makespan of the algorithm j in instance i and Besti is the upper bound (best

solution known) for that instance. When the raw makespan value for each instance is given in the paper,

the ARPD is computed again using (2) and the best known value for those instances (see on-line materi-

als) in order to have a common reference. Otherwise, the ARPD values of the paper are reported. Note

that these papers could have used different upper bounds (Besti) and the values are therefore only ap-

proximations. For papers using the same upper bounds as in [83], a factor of 0.565 is added to correct the

ARPDs. This value is the difference in ARPD between the actual upper bounds and the upper bounds

of [83].

The eight and ninth columns indicate the programming languages used for coding the algorithms

as well as the raw speed of the processors used for the evaluation. Finally, the average CPU time on

Taillard’s instances as a function of the size of the problem (i.e. n and m) is calculated, when possible,

in the last column in order to analyze the CPU requirements of the algorithms. This value is expressed

in terms of tj for metaheuristic j, a variable traditionally used in the literature to measure its stopping

criterion as n ·m ·tj/2 milliseconds (see e.g. [76]). When tj is not indicated and/or other stopping criteria

are used, tj is calculated as follows:

tj =
∑
∀i
tij

and

tij =
2 · CPUij

ni ·mi

where CPUij is the CPU time in milliseconds required by algorithm j in instance i. ni and mi and

the number of jobs and machines in instance i. Therefore, tij balances the CPU time with the size of the

problem, and tj –average of tij– can be seen as an indicator of the average CPU time requirements of an

algorithm, since, given an instance, ni and mi are constants for different algorithms.

For clarity, when a paper proposes several metaheuristics, these methods are included in the table as

9

long as they are used as reference metaheuristics in other papers. Otherwise, only the best one among

the reported results is selected. The language used to code the algorithms has been included in the

table since languages can result in much greater differences than those caused by the use of varying

computer characteristics. This is a well studied phenomenon, mainly in the computer science field. A

deep comparison of this effect can be found in [54].

In view of the tables, the need for a new review and computational evaluation –already discussed in

Section 1– is confirmed, as there are very few papers whose methods are directly compared with the state-

of-the-art algorithms (i.e. the IG_RSLS by [76]). Most of them are directly compared with metaheuristics

of the same type (i.e. papers proposing PSO metaheuristics are compared with other PSO metaheuristics).

Additionally, among all analyzed metaheuristics, only 9 papers (less than 10%) explicitly state that the

metaheuristics are compared using the same conditions. Finally, there is no homogeneity in the set of

instances used to compare the methods. Most metaheuristics (56) are tested in Taillard’s benchmark,

although only 20 of these use all 120 instances of the testbed. The rest of the testbeds used were mainly

Reeves’ (23 times) and Carlier’s (15 times). From this literature review, the current state-of-the-art is far

from easy to identify.

10

Ta
bl

e
2:

Su
m

m
ar

y
of

m
et

ah
eu

ri
st

ic
s

I.

Y
ea

r
R

ef
.

A
lg

or
ith

m
N

ot
at

io
n

O
ut

pe
rf

or
m

ed
by

Te
st

be
d

A
R
P
D

(T
ai

lla
rd

)
C

od
in

g
L

an
g.

Pa
ra

m
et

er
t

20
04

[9
3]

A
C

A
C

S
[1

6]
,[

77
],

[4
8]

,[
2]

T
1

1.
4*

*
C

++
60

8.
11

20
04

[7
9]

N
eu

ro
-T

S
E

X
T

S
[1

6]
T

2
0.

24
5

C
++

28
84

.8
5

20
04

[6
7]

A
C

PA
C

O
[7

5]
’*

,[
76

]*
,[

62
],

[6
2]

”,
[3

5]
,[

10
0]

,[
86

],
[1

02
],

[3
7]

,[
2]

*,
[8

5]
,[

10
]

T
2

0.
71

**
—

—
20

04
[6

7]
A

C
M

-M
M

A
S

[7
5]

’*
,[

76
]*

,[
62

],
[6

2]
”,

[3
5]

,[
86

],
[1

02
],

[3
7]

,[
2]

*,
[8

5]
T

2
0.

80
**

—
—

20
04

[4
9]

SA
LW

K
-S

A
1

[9
1]

,[
39

],
[3

8]
T

2,
D

0.
85

3
—

33
1.

8
20

04
[1

7]
G

A
G

A
[4

2]
*

O
—

Pa
sc

al
—

20
04

[5
7]

SA
H

yb
ri

d
SA

A
—

T
2

0.
89

3
Pa

sc
al

—
20

04
[5

8]
H

yb
ri

d
SA

H
yb

ri
d

SA
A

—
T

2
1.

08
1

Pa
sc

al
13

4.
06

20
04

[5
6]

G
A

G
A

[9
8]

*,
[9

6]
*,

[9
9]

,[
97

]
T

2
1.

84
**

Pa
sc

al
—

20
06

[1
]

A
L

A
N

E
H

-A
L

A
[5

3]
*,

[3
5]

T
1,

C
,R

,H
1.

51
4

V
is

ua
lB

as
ic

79
07

.6
20

06
[7

5]
G

A
G

A
_R

M
A

[7
5]

’*
,[

76
]*

,[
62

],
[6

2]
”,

[5
3]

*,
[1

1]
,[

37
],

[9
8]

*
T

1
1.

12
**

,1
.0

9*
*,

1.
02

**
D

el
ph

i
30

,6
0,

90
20

06
[7

5]
’

G
A

H
G

A
_R

M
A

[7
6]

*,
[6

2]
,[

62
]”

,[
86

],
[1

0]
T

1
0.

55
**

,0
.4

7*
*,

0.
45

**
D

el
ph

i
30

,6
0,

90
20

06
[6

1]
D

E
D

E
[5

3]
*,

[6
5]

O
—

C
++

—
20

06
[6

0]
SS

M
SS

A
—

T
2

>0
.0

54
—

11
39

.3
3

20
06

[4
0]

PS
O

SP
SO

A
[9

],
[9

9]
,[

5]
,[

27
],

[4
]

T
2

3.
00

2
—

—
20

06
[6

4]
G

R
A

SP
G

R
A

SP
—

T
2,

C
,R

19
.0

9
—

—
20

06
[2

8]
IL

S
L

S
—

C
,R

—
C

20
07

[7
6]

IG
IG

_R
S L

S
[6

2]
,[

62
]”

,[
18

]’
*

T
1

0.
44

**
D

el
ph

i
60

20
07

[8
4]

PS
O

PS
O

sp
v

[6
2]

’,
[1

2]
,[

84
]’

,[
29

],
[4

2]
*,

[5
0]

T
2

4.
01

**
C

21
.1

20
07

[8
4]

’
PS

O
PS

O
vn

s
[6

2]
,[

62
]”

,[
91

],
[3

9]
,[

44
],

[8
6]

,[
48

],
[3

8]
,[

47
],

[8
5]

,[
10

],
[4

3]
T

2,
W

0.
47

**
C

26
4.

64
20

07
[4

4]
M

A
-P

SO
PS

O
M

A
[4

6]
,[

45
],

[4
8]

,[
38

],
[4

7]
,[

5]
,[

43
]

C
,R

—
M

at
la

b
—

20
07

[4
2]

PS
O

PS
O

[1
01

],
[3

9]
,[

13
]

T
2,

D
2.

40
9*

*
C

++
11

1.
68

20
08

[1
6]

T
S

3X
T

S
—

T
1

0.
15

**
*

C
++

19
6.

93
20

08
[7

7]
SS

SS
—

T
1

1.
57

**
*

C
++

59
.9

20
08

[5
3]

G
A

C
G

A
L

S
[4

8]
T

1
1.

02
**

D
el

ph
i

60
20

08
[2

3]
G

A
B

D
S

—
T

2
0.

64
—

73
50

20
08

[2
9]

PS
O

C
PS

O
[6

2]
,[

62
]’

,[
62

]”
,[

12
]

T
2

3.
4*

*
C

++
3.

42
20

08
[2

9]
’

PS
O

C
PS

O
-P

N
E

H
—

T
2

0.
59

**
C

++
19

.1
2

20
08

[2
9]

”
PS

O
H

-C
PS

O
[6

2]
,[

62
]”

T
2

0.
45

**
C

++
22

9.
34

20
08

[6
]

G
A

A
C

G
A

[9
],

[2
7]

R
—

—
—

20
08

[6
5]

D
E

H
D

E
[1

01
],

[3
9]

,[
38

],
[3

7]
C

,R
—

D
el

ph
i

—
20

08
[4

1]
PS

O
N

PS
O

[9
6]

*,
[9

8]
*,

[9
7]

,[
47

],
[3

4]
T

2
1.

32
3

—
—

20
08

[9
2]

A
C

A
C

S
[9

8]
*,

[3
7]

R
—

V
P

—
20

08
[6

2]
IG

IG
R

IS
[1

8]
*

T
1

0.
33

**
C

++
30

20
08

[6
2]

’
D

E
D

D
E

[6
2]

*,
[6

2]
”*

,[
27

]
T

1
1.

05
**

C
++

30
20

08
[6

2]
”

D
E

D
D

E
R

L
S

—
T

1
0.

32
**

C
++

30
20

08
[9

8]
PS

O
IP

SO
[3

7]
T

1
0.

76
**

C
++

12
0

N
ot

at
io

n:
A

C
,A

nt
C

ol
on

y
A

lg
or

ith
m

;T
S,

Ta
bu

Se
ar

ch
;A

L
A

,A
da

pt
iv

e
le

ar
ni

ng
ap

pr
oa

ch
;G

A
,G

en
et

ic
A

lg
or

ith
m

;I
G

,I
te

ra
te

d
G

re
ed

y;
IL

S,
It

er
at

ed
lo

ca
ls

ea
rc

h;
D

E
,D

iff
er

en
tia

lE
vo

lu
tio

n;
SS

,S
ca

tte
rS

ea
rc

h;
D

F,
D

is
cr

et
e

Fi
re

fly
;B

C
A

,B
ee

co
lo

ny
al

go
ri

th
m

;P
SO

,

Pa
rt

ic
le

Sw
ar

m
O

pt
im

iz
at

io
n

A
lg

or
ith

m
;S

A
,S

im
ul

at
ed

A
nn

ea
lin

g;
C

S,
C

uc
ko

o
Se

ar
ch

;N
N

,N
eu

ra
lN

et
w

or
k;

E
A

,E
vo

lu
tio

na
ry

al
go

ri
th

m
;E

D
A

,E
st

im
at

io
n

of
D

is
tr

ib
ut

io
n

A
lg

or
ith

m
;P

A
,P

op
ul

at
io

n
ba

se
d

A
lg

or
ith

m
;∗

,C
om

pa
re

d
un

de
rt

he
sa

m
e

co
nd

iti
on

s;
′ ,I

n
ca

se

of
a

pa
pe

rp
ro

po
si

ng
tw

o
m

et
ho

ds
,i

ti
s

us
ed

to
di

st
in

gu
is

h
th

e
se

co
nd

on
e

fr
om

th
e

fir
st

on
e;
′′

,I
n

ca
se

of
a

pa
pe

rp
ro

po
si

ng
th

re
e

m
et

ho
ds

,i
ti

s
us

ed
to

di
st

in
gu

is
h

th
e

th
ir

d
on

e
fr

om
th

e
fir

st
an

d
se

co
nd

on
e;
∗
∗

,A
R
P
D

ta
ke

n
di

re
ct

ly
fr

om
th

e
pa

pe
r;
∗
∗
∗

,A
R
P
D

co
rr

ec
te

d
by

0.
56

5.

11

Ta
bl

e
3:

Su
m

m
ar

y
of

m
et

ah
eu

ri
st

ic
s

II

Y
ea

r
R

ef
.

A
lg

or
ith

m
N

ot
at

io
n

O
ut

pe
rf

or
m

ed
by

Te
st

be
d

A
R
P
D

(T
ai

lla
rd

)
C

od
in

g
L

an
g.

Pa
ra

m
et

er
t

20
09

[8
]

G
A

A
C

E
G

A
—

R
—

—
—

20
09

[3
5]

H
yb

ri
d

PS
A

—
T

2
1.

04
9

C
—

20
09

[1
02

]
G

A
w

ith
V

N
S

N
E

G
A

V
N

S
[8

6]
,[

10
]

T
1

0.
46

8
C

++
11

2.
93

20
09

[9
7]

PS
O

A
T

PP
SO

[3
9]

,[
38

],
[4

7]
T

2
1.

26
9

—
—

20
09

[3
4]

H
yb

ri
d

PS
O

H
PS

O
[4

7]
T

2
0.

76
0

C
55

5.
04

20
09

[8
5]

H
yb

ri
d

G
A

H
yb

ri
d

G
A

[1
3]

T
2

0.
63

**
*

C
++

19
9.

79
20

09
[6

8]
G

A
IG

A
—

C
,R

—
C

—
20

10
[7

8]
D

F
D

is
cr

et
e

Fi
re

fly
—

D
—

M
at

la
b

—
20

10
[1

01
]

D
E

Q
D

E
A

[9
1]

,[
37

],
[3

9]
C

,R
,D

—
—

—
20

10
[9

9]
PS

O
L

-C
D

PS
O

[3
9]

,[
38

]
T

2
0.

40
9

—
—

20
10

[9
6]

PS
O

I-
A

T
T

PS
O

—
T

2
1.

33
1

—
—

20
10

[2
4]

N
N

-G
A

A
N

N
-G

A
-R

IP
S

—
T

2
2.

51
9

—
—

20
10

[7
]

G
A

A
C

G
A

[5
],

[2
7]

R
—

—
—

20
11

[9
]

G
A

H
G

IA
[5

],
[2

7]
T

2,
R

1.
16

C
++

—
20

11
[4

5]
H

yb
ri

d
PS

O
PS

O
-E

D
A

_P
I

[4
6]

,[
5]

C
,R

,W
—

M
at

la
b

—
20

11
[6

9]
N

N
A

N
N

-G
A

—
T

2
2.

34
**

—
—

20
12

[1
2]

G
A

Se
lf

-G
ui

de
d

G
A

[6
2]

’,
[2

7]
T

2
1.

85
**

Ja
va

—
20

12
[8

6]
E

D
A

w
ith

A
C

E
D

A
A

C
S

—
T

1
0.

57
2*

*,
0.

50
8*

*,
0.

46
3*

*
C

30
,6

0,
90

,2
00

20
12

[3
7]

B
C

A
C

D
A

B
C

—
C

,R
,T

1,
D

0.
62

**
M

at
la

b
12

0
20

12
[2

]
A

C
N

A
C

A
—

T
1

0.
58

2*
*

C
++

10
8.

92
20

13
[4

8]
H

yb
ri

d
B

C
A

H
D

A
B

C
—

T
2,

R
0.

48
**

C
++

42
.5

2
20

13
[5

0]
PS

O
PS

O
E

N
T

[1
02

]
T

1
1.

65
**

Fo
rt

ra
n

10
4.

42
20

13
[4

6]
M

A
-P

SO
M

PS
O

M
A

—
C

,R
—

M
at

la
b

—
20

13
[3

9]
D

E
-M

A
O

D
D

E
[9

1]
C

,R
,T

2,
D

0.
40

0
M

at
la

b
—

20
13

[3
8]

C
S

H
C

S
—

C
,R

,T
2,

D
0.

40
1

M
at

la
b

—
20

13
[5

]
E

A
B

B
E

A
[2

7]
T

2,
R

1.
75

**
—

—
20

14
[9

1]
H

yb
ri

d
H

T
L

B
O

—
C

,R
,D

—
C

++
—

20
14

[1
00

]
PS

O
PS

O
—

T
2

0.
39

**
C

++
—

20
14

[1
8]

IG
IG

R
IS

(T
B

FF
)

—
T

1
0.

46
1,

0.
38

5,
0.

35
3*

*
C

#
30

,6
0,

90
20

14
[1

8]
’

IG
IG

_R
S L

S
(T

B
FF

)
—

T
1

0.
46

1,
0.

37
6,

0.
35

0*
*

C
#

30
,6

0,
90

20
14

[1
1]

SA
SE

A
SA

—
T

1
0.

94
**

—
35

20
14

[4
7]

H
yb

ri
d

D
E

L
-H

D
E

—
T

2,
C

,R
0.

75
0

M
at

la
b

—
20

14
[4

]
E

D
A

B
B

E
D

A
[2

7]
T

2,
R

1.
42

0*
*

—
—

20
15

[2
5]

G
A

-S
S

H
G

SS
—

D
—

C
++

—
20

15
[1

0]
PA

H
L

B
S

—
T

1
0.

45
**

,0
.3

8*
*,

0.
35

**
,0

.3
0*

*
C

30
,6

0,
90

,2
00

20
15

[1
3]

C
S

D
IS

C
S

—
T

2,
W

2.
84

**
M

at
la

b
10

.8
8

20
15

[2
7]

E
A

L
M

B
B

E
A

—
T

2,
R

0.
89

—
—

20
15

[4
3]

E
A

H
B

SA
[6

5]
C

,R
—

—
—

12

3 Computational Evaluation

In this Section, the procedure followed to evaluate the algorithms is described. A total of 31 algorithms

have been recoded in C# (using Microsoft Visual Studio Professional 2013 and the .NET Framework

4.5.1). All experiments have been carried out on a computational cluster formed by 30 blade servers. Each

server contains two Intel XEON E5420 processors running at 2.5 GHz and 16 Gbytes of RAM memory.

However, the specific tests are performed on virtual machines running on this cluster. Each virtual ma-

chine runs Microsoft Windows 7 64 bit operating system and has one virtual processor and 2 GBytes of

RAM. Several benchmarks have been used (see e.g. [3,14,26,70,83,90]) in the literature to perform com-

parisons between algorithms. Among them, the most extended one is the benchmark from [83] which in-

cludes 120 instances with 12 different sizes of instance combining the values n ∈ {20, 50, 100, 200, 500}

and m ∈ {5, 10, 20}, with 10 instances for each size. More recently, [88] proposed a more exhaustive

symmetric benchmark which contains 240 instances (denoted as VRF instances) for all the combinations

of parameters n ∈ {100, 200, 300, 400, 500, 600, 700, 800} and m ∈ {20, 40, 60}. This benchmark was

shown to have more discriminant power than that of [83]. In this paper, both benchmarks are used to

compare the algorithms.

When comparing heuristics, there is a trade-off between the quality of the solution and the computa-

tional effort required. Traditionally, the quality of the solution is measured by the ARPD –defined as in

Equation (1)–, and the computational effort by the Average CPU time (denoted as ACPU) which can be

defined as follows:

ACPUj =

∑
∀iCPUi,j

I
(3)

where, as usual, I is the number of instances and CPUi,j is the CPU time (in seconds) required by

algorithm j in instance i.

Since each constructive heuristic has a different value ofACPU andARPD, assessing the efficiency

of the heuristics is not trivial. In a similar problem, [19] established that the use of the previous indicators

presents several problems since ARPD is a dimensionless indicator and ACPU is heavily instance- and

instance-size-dependent (e.g. the last ten largest instances of the Fm|prmu|
∑
Cj problem contribute

more than 88% to the average CPU time indicator). In order to avoid these problems, [19] defined

13

ARPT
′
j as the average relative percentage time consumed by algorithm j as follows:

ARPT
′
j =

∑
∀iRPTi,j
I

(4)

where RPTi,j (relative percentage computation time obtained by algorithm i for instance j) is calcu-

lated as

RPTi,j =
CPUi,j −ACTi

ACTi
(5)

and ACTi can be computed as

ACTi =

∑
∀iCPUi,j

J
(6)

where J is the number of considered heuristics.

Despite its dimensionless nature, ARPT
′

can be higher than or equal to -1 and therefore, it can

yield negative values. As a result, we suggest a small modification of ARPT
′
, denoted as ARPT in

the following in order to be able to show graphics in logarithmic scale (ARPT > 0). More specifically,

ARPT is defined as follows:

ARPTj = ARPT
′
j + 1 (7)

ARPT represents, on average for all instances, the number of times that the CPU time of each

heuristic is larger than the mean CPU time across all heuristics. Values close to 0 indicate very fast

heuristics (as compared with the rest of heuristics) while high values indicate slow heuristics.

In this paper, we use theARPD indicator to measure the quality of the solutions and bothARPT and

ACPU indicators to measure the computational effort of the algorithms. Note that, despite the problems

when using the ACPU indicator to compare algorithms, it is included in the evaluation in order for

one to be able to reproduce the original comparisons of the authors since all reviewed and implemented

heuristics consider the ACPU indicator. By means of these two indicators, let us denote a method as

efficient in terms of ARPT (ACPU) when there is no other method with both less ARPD and less

ARPT (ACPU).

Regarding the algorithms implemented in the computational evaluation, numerous algorithms have

14

been proposed in the literature since the last computational evaluation of [74]. As a matter of fact, the

number of metaheuristics is staggering and new proposals do not cease to appear. Therefore, only a

selected number of them have been implemented with a cutoff date of December 2014.

Among the heuristics of Section 2.1, the FRB1 heuristic has been statistically improved by sev-

eral heuristics (e.g. FRB46, FRB48) in the same paper. Additionally, the tie-breaking mechanisms

of [15], [30], [31] as well as the original one of [55] are statistically outperformed by the tie-breaking

mechanism proposed by [18] and therefore, heuristics NEHD, NEH1, NEHKK1 and NEH are removed

from the analysis. A total of 19 remaining heuristics, are reimplemented here under the same conditions.

They are: RAER, RAER-di, KKER, KKER-di, NEHR, NEHR-di, NEMR, NEMR-di, NEH-di, NEH1-

di, NEHKK1-di, NEHKK2, NEHD-di, NEHFF, CLWTS, FRB2, FRB3, FRB4k (k ∈ {2, 4, 6, 8, 10, 12})

and FRB5 (indicated in bold in Table 1). Note that, although the recent heuristic NEHI was initially

discarded due to the fact that it was available online after December 2014, it also seems to be clearly

inefficient according to the ARPD and average computational times (around 25 times greater than the

original NEH) shown in that paper (as compared to FRB410 or FRB412 for example). Note that there

are two possible interpretations of RCT , the idle-time- based tie-breaking mechanism proposed by [72].

The authors state that this mechanism can be implemented in O(n2m2). However, as explained in [18],

it can be implemented in O(n3m) if the idle time between jobs is calculated only for the ties. Thereby,

the complexity is O(E ·n2m) due to the need to evaluate a complete sequence for each iteration E times.

Clearly, since the maximum number of tie-breaks is the number of jobs in the partial sequence, the com-

plexity of this interpretation is O(n3m). In this paper, this latter interpretation is employed as it yields

a lower computational effort for the benchmark of [83], i.e. the constant affecting the complexity of the

original interpretation is higher than that of the second one for each instance of the testbed.

Regarding metaheuristics, the decision about which ones to select is not trivial due to the large amount

of existing methods. More precisely, only algorithms fulfilling the two following requirements are con-

sidered:

• ARPD < 0.4 (on T1 or T2, see Table 2) or

• ARPD < 0.6 and t parameter ≤ 90 (on T1).

In other words, we are demanding that for a metaheuristic to be selected it either has to have a

15

good solution quality (ARPD < 0.4), or a reasonable solution quality in short-medium computational

times (ARPD < 0.6 and t parameter ≤ 90). 12 metaheuristics fulfil these requirements: EXTS by [79];

HGA_RMA by [75]; MSSA by [60]; IG_RSLS by [76]; IGRIS by [62]; DDERLS by [62]; 3XTS by [16];

EDAACS by [86]; PSO by [100]; IG_RSLS(TBFF) by [18]; IGRIS(TBFF) by [18]. Among them, EXTS

and HGA_RMA, are discarded since they are outperformed in statistically and/or sound comparisons

by [16] and [76] respectively. Additionally, the H-CPSO algorithm by [29] has been implemented due to

its promising results despite being outperformed by [62] under different stopping criteria and conditions.

Metaheuristic HCS by [38] has also been included in the comparison since the ARPD is very close to

0.4 and has not been shown to be outperformed by any other metaheuristic. Finally, we include the TSAB

tabu search algorithm by [59] in the comparisons, given its excellent performance and the fact that it was

not included in the last computational evaluation by [74]. The reason behind this omission is explained

in [76] which is mainly the difficulty in reproducing the results of the TSAB algorithm. As a matter

of fact, we had to contact the authors of the method, which kindly provided the source code used for

checking our reimplementation. Hence, a total of 12 metaheuristics have been chosen (indicated in bold

in Tables 2 and 3).

Note that all selected algorithms are implemented and tested under the same conditions which means:

• Using the same computer. This means same processor speed, bus speed, memory speed and size,

etc.

• Using the same programming language.

• Using the same operating system.

• Using the same libraries and common functions.

• Using the same stopping criteria for the metaheuristics.

When reimplementing the algorithms, doubts relating to the implementation were transmitted to the

corresponding authors of the papers. All questions were successfully answered by the authors with the

exception of [100], where no answer was received after several tries. Other specifics considered in order

to carry out a fair comparison of the algorithms are the following:

16

• The order of the instances was randomly chosen in the experiments to avoid systematic errors in

the tests.

• The algorithms to be run in each instance are similarly randomized.

• For each instance, ten independent runs were performed for each heuristic to better fit the required

CPU time (the average CPU time is kept).

• For each instance, five independent runs were carried out for each metaheuristic keeping the aver-

age values.

Note that even recently published, this computational evaluation follows many of the practices high-

lighted in [33]. The results of these experiments –that have required a total CPU time effort of 393.03

days– are presented in the next section.

4 Computational Results

4.1 Constructive and Improvement Heuristics

The 19 heuristics implemented in this evaluation are first compared under the classic benchmark set of

Taillard with 120 instances. The detailed results in terms of ARPD, ACPU and ARPD, ordered by

problem size, are presented as on-line materials. The overall results are summarised in Table 4. The

second, third and fourth columns represent the ARPD, ACPU and ARPT values for each algorithm

in the set of instances of Taillard. ARPD values range from 3.89 (RAER heuristic) to 1.48 (FRB5

improvement heuristic) while ARPT values range from 0.02 to 7.23. Results are graphically shown

in Figures 1 and 2 where the y-axis represents the ARPD for each heuristic and x-axis, respectively,

represents ACPU and ARPT in logarithmic scale. Although results obtained for the different time in-

dicators are, in general, similar, there are also differences in the performance of the heuristics. Therefore,

considering ACPU as a measure of the computational effort as compared to ARPT , FRB42 is faster

than KKER-di, NEHR-di and RAER-di in addition to the CLWTS being slower than the FRB2 heuristic.

According to indicators ARPD and ARPT , the efficient heuristics are NEHKK2, NEHFF, NEHR-di

(this last one would not be efficient considering ARPD and ACPU), FRB42, FRB44, FRB46, FRB410,

17

Figure 1: ARPD versus ACPU of heuristics in logarithmic scale on Taillard’s instances.

FRB412, FRB3 and FRB5 (shown with a black circle in Figure 2). To be able to compare heuristics with

different stopping criteria, they are grouped into clusters with similarARPT values (see Figure 2). Then,

the heuristics of each cluster are compared with the best heuristic in terms of ARPD of that cluster, i.e.

NEHFF, FRB42, FRB44, FRB46 and FRB412, respectively, for clusters 1, 2, 3, 4 and 5. The hypotheses

to statistically check the efficiency of the heuristics are shown in Table 5, ordered by these clusters of

heuristics. Since each heuristic is based on the original NEH algorithm and the same set of instances is

used, the hypotheses of independence (denoted by H0,t,i) of the random variables (RDI) can be rejected

(see third and fourth columns in Table 5). The non-parametric Friedman two-way analysis of variance

for paired samples is used to check the statistical significance of the differences among the heuristics in

each cluster (being the null hypothesis –denoted H0,t,f– that there are no differences). Additionally, to

establish the significance of the differences between the best heuristic of the cluster and the rest, the non-

parametric Wilcoxon signed-rank test in a post-hoc analysis is employed (being H0,t,w the corresponding

null hypothesis). Results are shown in Table 5. Assuming a level of confidence of 0.95, several H0,t,w

null hypotheses of the NEHFF heuristic (Cluster 1) have not been rejected (see e.g. NEHFF vs NEHR

or NEHFF vs NEH-di). Additionally, there is not enough statistical evidence to state that FRB46 and

FRB412 outperform FRB48 and FRB2 respectively.

A similar Pareto set is found when the heuristics are compared under the new set of instances VRF

18

Table 4: Summary of heuristics

Algorithm
Taillard VRF

ARPD ACPU ARPT ARPD ACPU ARPT
NEHKK2 3.09 0.02 0.12 3.21 0.47 0.02
NEHFF 2.90 0.02 0.13 2.95 0.46 0.02
NEH-di 3.03 0.04 0.20 3.18 0.91 0.04
NEH1-di 3.11 0.04 0.20 3.15 0.91 0.04

NEHKK1-di 3.15 0.04 0.20 3.19 0.93 0.04
RAER 3.89 0.06 0.20 3.46 0.88 0.04
NEHR 3.05 0.06 0.21 3.16 0.93 0.04
KKER 3.15 0.06 0.21 3.15 0.93 0.04
NEMR 3.16 0.10 0.31 3.22 1.64 0.07

RAER-di 3.53 0.13 0.40 3.33 1.71 0.07
NEHR-di 2.85 0.13 0.40 3.02 1.82 0.07
KKER-di 2.86 0.12 0.42 3.00 1.79 0.07
NEHD-di 2.84 0.16 0.48 2.86 2.06 0.08

FRB42 2.33 0.11 0.48 2.57 2.81 0.13
NEMR-di 2.97 0.18 0.52 3.05 2.53 0.10

FRB44 2.13 0.18 0.68 2.31 4.65 0.20
CLWTS 3.02 0.86 0.73 3.11 26.63 0.68
FRB46 1.91 0.25 0.89 2.17 6.42 0.28
FRB48 1.95 0.31 1.06 2.07 8.09 0.35
FRB410 1.87 0.37 1.20 1.97 9.87 0.43
FRB412 1.79 0.42 1.34 1.94 11.42 0.49
FRB2 1.93 0.64 1.68 1.74 37.97 1.40
FRB3 1.61 5.08 3.61 1.32 198.31 4.34
FRB5 1.48 14.59 7.23 1.04 753.56 14.36

Figure 2: ARPD versus ARPT of heuristics in logarithmic scale on Taillard’s instances.

19

Table 5: Hypotheses, analysis of dependence and Friedman two-way analysis on Taillard’s in-
stances

Clusters Comparison Analysis of Dependence Friedman Wilcoxon
Correlation Sig. Sig. Sig.

Cluster 1 (green)

NEHFF vs NEHKK2 0.891 0.000

0.000

0.015
NEHFF vs NEH-di 0.923 0.000 0.054

NEHFF vs NEHKK1-di 0.895 0.000 0.001
NEHFF vs NEHR 0.893 0.000 0.055

NEHFF vs NEH1-di 0.910 0.000 0.021
NEHFF vs KKER 0.884 0.000 0.010
NEHFF vs NEMR 0.869 0.000 0.006
NEHFF vs RAER 0.830 0.000 0.000

Cluster 2 (blue)

FRB42 vs RAER-di 0.842 0.000

0.000

0.000
FRB42 vs NEHR-di 0.880 0.000 0.000
FRB42 vs KKER-di 0.877 0.000 0.000
FRB42 vs NEHD-di 0.860 0.000 0.000
FRB42 vs NEMR-di 0.864 0.000 0.000

Cluster 3 (orange) FRB44 vs CLWTS 0.868 0.000 0.000 0.000
Cluster 4 (red) FRB46 vs FRB48 0.937 0.000 0.604 —

Cluster 5 (yellow) FRB412 vs FRB2 0.927 0.000 0.107 —

of [88]. Average results are shown in Table 4. The last three columns represent the ARPD, ACPU and

ARPT of each heuristic in that set of instances. Clearly, heuristics of complexity O(n3m) (CLWTS ,

FRB2, FRB3 and FRB5) need proportionally more computational effort since this set of instances con-

siders higher values of n andm than in Taillard’s instances. This increase in the computational effort also

results in a decrease in the ARPD of the heuristics with the exception of CLWTS . Results are graph-

ically shown in Figure 3 comparing ARPD versus ACPU , and in Figure 4 comparing ARPD versus

ARPT . In terms of ARPD and ARPT , efficient heuristics are shown with a black circle in Figure 4.

Note that regarding the NEH-based heuristics of [72] with direct and inverse approach, the best ARPD

is now found by the NEHD-di heuristic instead of the NEHR-di. In order to compare the heuristics, we

group them according to theirARPT (see Figure 4) and perform the same Friedman two-way analysis of

variance to identify the differences among the heuristics in each cluster (being H0,v,f the corresponding

null hypothesis), since hypotheses of independence (H0,v,i) can be rejected again). In a post-hoc analysis,

a non-parametric Wilcoxon signed-rank test is applied to establish the statistical significance of the dif-

ferences between the best heuristic of each cluster (H0,v,w being the null hypothesis). Note that heuristics

FRB4k are not compared together as they are the same heuristic with a different input parameter. Results

are shown in Table 6. Each p-value is 0.000 and all H0,v,f and H0,v,w hypotheses are rejected. Thus,

according to ARPD and ARPT , there is no statistical reason to affirm that the NEHFF, FRB4k, FRB2,

FRB3, FRB5 heuristics are not efficient within each cluster.

20

Table 6: Hypotheses, analysis of dependence and Friedman two-way analysis on VRF instances

Comparison Analysis of Dependence Friedman Wilcoxon
Correlation Sig. Sig. Sig.

Cluster 1 (green)

NEHFF vs NEHKK2 0.950 0.000

0.000

0.000
NEHFF vs NEH-di 0.954 0.000 0.000

NEHFF vs NEHKK1-di 0.952 0.000 0.000
NEHFF vs NEHR 0.946 0.000 0.000

NEHFF vs NEH1-di 0.939 0.000 0.000
NEHFF vs KKER 0.952 0.000 0.000
NEHFF vs RAER 0.945 0.000 0.000

Cluster 2 (blue)

FRB42 vs NEMR 0.943 0.000

0.000

0.000
FRB42 vs RAER-di 0.946 0.000 0.000
FRB42 vs NEHR-di 0.958 0.000 0.000
FRB42 vs KKER-di 0.953 0.000 0.000
FRB42 vs NEHD-di 0.948 0.000 0.000
FRB42 vs NEMR-di 0.952 0.000 0.000

Cluster 3 (orange) FRB412 vs CLWTS 0.942 0.000 0.000 0.000

Figure 3: ARPD versus ACPU of heuristics in logarithmic scale on VRF instances.

21

Figure 4: ARPD vs ARPT of heuristics in logarithmic scale on VRF instances.

4.2 Metaheuristics

In Section 3, 12 metaheuristics were defined as the most promising according to the results shown in their

papers. In this section, these metaheuristics are compared using the sets of instances of [83] and [88].

Each metaheuristic is stopped using the same stopping criterion based on CPU time. More specifically,

three different stopping criteria are applied, t ·n ·m/2 milliseconds with t ∈ {30, 60, 90}, which depends

on the number of jobs and machines. Results are shown in Table 7. For both sets of instances, the best

metaheuristics are those based on the Iterated Greedy (IG_RSLS) proposed by [76], see the results found

by IG_RSLS, IGRIS, IG_RSLS(TBFF) and IGRIS(TBFF) for example. These results are also confirmed by

the DDERLS, a discrete differential evolution algorithm which uses similar phases.

Regarding Taillard’s instances, the ARPDs of Iterated Greedy metaheuristics for t = 90 is between

0.28 and 0.38 which clearly outperforms non IG-based metaheuristics (the ARPDs of 3XTS, H-CPSO,

HCS and PSO are, respectively, 1.24, 0.70, 1.35 and 0.84 for t = 90). The best ARPD value is obtained

by IG_RSLS(TBFF) proposed by [18], with 0.37, 0.32 and 0.37 for t = 30, t = 60 and t = 90 on

Taillard’s instances respectively. Let us highlight the fast convergence behaviour of IG_RSLS(TBFF)

where the ARPD obtained for t = 30 is lower than or equal to every other metaheuristic for t = 90.

Metaheuristics are compared with IG_RSLS(TBFF) using the non-parametric Wilcoxon signed-rank test

(see Table 8). Note that each p-value on the Taillard’s instances is less than or equal to 0.003 regardless

22

Table 7: Summary of ARPDs of the metaheuristics

Metaheuristic Ref.
Taillard VRF

t=30 t=60 t=90 t=30 t=60 t=90
TSAB [59] 0.97 0.87 0.84 2.16 1.96 1.85
MSSA [60] 1.00 0.91 0.84 2.17 1.96 1.84

IG_RSLS [76] 0.47 0.40 0.37 0.96 0.77 0.67
IGRIS [62] 0.49 0.42 0.38 0.85 0.67 0.56

DDERLS [62] 0.52 0.47 0.43 0.92 0.77 0.69
3XTS [16] 1.64 1.34 1.24 2.89 2.65 2.47

H-CPSO [29] 0.84 0.75 0.70 1.65 1.41 1.28
EDAACS [86] 0.60 0.51 0.47 1.43 1.25 1.16

HCS [38] 1.55 1.42 1.35 2.54 2.35 2.27
PSO [100] 1.09 0.95 0.84 2.51 2.14 1.93

IG_RSLS(TBFF) [18] 0.37 0.32 0.28 0.60 0.46 0.37
IGRIS(TBFF) [18] 0.42 0.34 0.31 0.61 0.47 0.38

the value of t.

Regarding the VRF instances, the superiority of the IG-based algorithms is more clear, as VRF in-

stances include a wider range of values of n and m. Thereby, the differences between the ARPD values

of the metaheuristics greatly increase with respect to the IG_RSLS(TBFF) metaheuristic (see the difference

of ARPD between 3XTS and IG_RSLS(TBFF) is 0.96 on Taillard’s instances and 2.10 on VRF instances

for t = 90 for example). Statistical significance has been found for all metaheuristics (maximum p- value

equal to 0.000) with the exception of IGRIS(TBFF) (see Table 8). In view of the results, although there are

many papers proposing metaheuristics, only the Iterated Greedy variants proposed by [18] statistically

outperform IG_RSLS on both Taillard’s and VRF instances.

We have already commented that many metaheuristics have been published since the last computa-

tional evaluation and review of meheuristics proposed by [74] (see Tables 2 and 3) and since the original

Iterated Greedy algorithm proposed by [76]. On one hand, in view of Tables 2 and 3, only 12 meta-

heuristics have promising results in terms of quality of solutions and computational effort. On the other

hand, in view of the results in this Section, only the IGRIS(TBFF) and the IG_RSLS(TBFF) algorithms are

state-of-the-art methods. It follows that many metaheuristics were not state-of-the-art even at the time on

their publication, a fact that strongly highlights the need for a review and framework for computational

evaluation such as the one proposed in this paper.

23

Table 8: Comparison of metaheuristics using Wilcoxon signed-rank tests

Comparison
Taillard (Sig.) VRF (Sig.)

t=30 t=60 t=90 t=30 t=60 t=90
TSAB vs IG_RSLS(TBFF) 0.000 0.000 0.000 0.000 0.000 0.000
MSSA vs IG_RSLS(TBFF) 0.000 0.000 0.000 0.000 0.000 0.000
IGRIS vs IG_RSLS(TBFF) 0.000 0.000 0.000 0.000 0.000 0.000

IG_RSLS vs IG_RSLS(TBFF) 0.000 0.000 0.000 0.000 0.000 0.000
DDERLS vs IG_RSLS(TBFF) 0.000 0.000 0.000 0.000 0.000 0.000
3XTS vs IG_RSLS(TBFF) 0.000 0.000 0.000 0.000 0.000 0.000

H-CPSO vs IG_RSLS(TBFF) 0.000 0.000 0.000 0.000 0.000 0.000
EDAACS vs IG_RSLS(TBFF) 0.000 0.000 0.000 0.000 0.000 0.000

HCS vs IG_RSLS(TBFF) 0.000 0.000 0.000 0.000 0.000 0.000
PSO vs IG_RSLS(TBFF) 0.000 0.000 0.000 0.000 0.000 0.000

IGRIS(TBFF) vs IG_RSLS(TBFF) 0.000 0.003 0.000 0.155 0.220 0.137

4.3 Comparison of heuristics with metaheuristics

Traditionally, researchers have focused either on finding efficient heuristics, or on obtaining the best meta-

heuristic for the problem. The former are implemented to find a good fast solution and/or a good initial

seed sequence for the problem, while the latter are typically implemented to find better solutions using

longer CPU times. As a consequence, typically both heuristics and metaheuristics have been separately

evaluated and compared. In this Section, we analyse both heuristics and metaheuristics together, as there

are several heuristics requiring long CPU times and vice versa. Therefore, each heuristic is compared

with one of the best metaheuristics, i.e. the iterated greedy IG_RSLS(TBFF). In order to have a fair com-

parison, the metaheuristic is stopped at the CPU time used by each heuristic. These comparisons are

performed using the sets of instances of [83] and [88]. A summary of the results is shown in Table 9 as

well as in Figures 5 and 6 for these benchmarks, respectively, where the dotted lines represent logarith-

mic trend lines for the heuristics and the red squares represent all values obtained by IG_RSLS(TBFF).

Note that IG_RSLS(TBFF) starts with the sequence obtained by NEHFF and therefore, NEHKK2 and

NEHFF are not included in the comparison as they need shorter CPU times. For all other heuristics,

the metaheuristic outperforms them in terms of ARPD. All compared heuristics are outperformed by

IG_RSLS(TBFF), especially when compared on the VRF instances. The statistical significance of these

comparisons is established by means of the non-parametric Wilcoxon signed-rank test since the normality

24

and homoscedasticity assumptions are not fulfilled. Note that statistical significances are found for each

comparison on the Taillard instances, even against the heuristics proposed by [66] which have ARPD

values similar to or even better than those obtained by IG_RSLS(TBFF) for several problem sizes. Simi-

larly, each corresponding null hypothesis is rejected on VRF instances, 0.001 being the highest p value.

This Section highlights the exceptional performance of IG-based algorithms for short periods of time

and also serves to classify IG_RSLS(TBFF) as a state-of-the-art method for constructive and improvement

heuristics.

25

Ta
bl

e
9:

C
om

pa
ri

so
n

be
tw

ee
n

he
ur

is
tic

s
an

d
th

e
be

st
m

et
ah

eu
ri

st
ic

A
lg

or
ith

m
Ta

ill
ar

d
V

R
F

O
ri

gi
na

lH
eu

ri
st

ic
s

IG
_R

S L
S

(T
B

FF
)

W
ilc

ox
on

O
ri

gi
na

lH
eu

ri
st

ic
s

IG
_R

S L
S

(T
B

FF
)

W
ilc

ox
on

A
R
P
D

A
C
P
U

A
R
P
T

A
R
P
D

A
C
P
U

A
R
P
T

Si
g.

A
R
P
D

A
C
P
U

A
R
P
T

A
R
P
D

A
C
P
U

A
R
P
T

Si
g.

N
E

H
K

K
2

3.
09

0.
02

0.
12

—
—

—
—

3.
21

0.
47

0.
02

—
—

—
—

N
E

H
FF

2.
90

0.
02

0.
13

—
—

—
—

2.
95

0.
46

0.
02

—
—

—
—

N
E

H
-d

i
3.

03
0.

04
0.

20
2.

53
0.

06
0.

22
0.

00
0

3.
18

0.
91

0.
04

2.
55

1.
42

0.
06

0.
00

0
N

E
H

1-
di

3.
11

0.
04

0.
20

2.
50

0.
06

0.
26

0.
00

0
3.

15
0.

91
0.

04
2.

55
1.

42
0.

06
0.

00
0

N
E

H
K

K
1-

di
3.

15
0.

04
0.

20
2.

52
0.

06
0.

23
0.

00
0

3.
19

0.
93

0.
04

2.
55

1.
47

0.
06

0.
00

0
R

A
E

R
3.

89
0.

06
0.

20
2.

50
0.

09
0.

27
0.

00
0

3.
46

0.
88

0.
04

2.
53

1.
61

0.
07

0.
00

0
N

E
H

R
3.

05
0.

06
0.

21
2.

51
0.

08
0.

34
0.

00
0

3.
16

0.
93

0.
04

2.
53

1.
62

0.
07

0.
00

0
K

K
E

R
3.

15
0.

06
0.

21
2.

50
0.

08
0.

27
0.

00
0

3.
15

0.
93

0.
04

2.
53

1.
63

0.
07

0.
00

0
N

E
M

R
3.

16
0.

10
0.

31
2.

39
0.

12
0.

34
0.

00
0

3.
22

1.
64

0.
07

2.
43

2.
11

0.
09

0.
00

0
R

A
E

R
-d

i
3.

53
0.

13
0.

40
2.

36
0.

15
0.

42
0.

00
0

3.
33

1.
71

0.
07

2.
44

2.
04

0.
09

0.
00

0
N

E
H

R
-d

i
2.

85
0.

13
0.

40
2.

35
0.

15
0.

42
0.

00
0

3.
02

1.
82

0.
07

2.
44

2.
16

0.
09

0.
00

0
K

K
E

R
-d

i
2.

86
0.

12
0.

42
2.

34
0.

14
0.

47
0.

00
0

3.
00

1.
79

0.
07

2.
43

2.
12

0.
09

0.
00

0
N

E
H

D
-d

i
2.

84
0.

16
0.

48
2.

30
0.

17
0.

50
0.

00
0

2.
86

2.
06

0.
08

2.
41

2.
42

0.
10

0.
00

0
N

E
M

R
-d

i
2.

97
0.

18
0.

52
2.

28
0.

20
0.

49
0.

00
0

3.
05

2.
53

0.
10

2.
27

2.
90

0.
12

0.
00

0
C

L
W

T
S

3.
02

0.
86

0.
73

2.
05

0.
84

0.
73

0.
00

0
3.

11
26

.6
3

0.
68

1.
60

24
.8

4
0.

64
0.

00
0

FR
B

4 2
2.

33
0.

11
0.

48
2.

11
0.

13
0.

53
0.

00
1

2.
57

2.
81

0.
13

2.
18

3.
36

0.
15

0.
00

0
FR

B
4 4

2.
13

0.
18

0.
68

1.
98

0.
19

0.
68

0.
00

8
2.

31
4.

65
0.

20
1.

98
5.

16
0.

22
0.

00
0

FR
B

4 6
1.

91
0.

25
0.

89
1.

83
0.

24
0.

94
0.

01
9

2.
17

6.
42

0.
28

1.
88

6.
86

0.
29

0.
00

0
FR

B
4 8

1.
95

0.
31

1.
06

1.
75

0.
30

1.
15

0.
00

5
2.

07
8.

09
0.

35
1.

80
8.

47
0.

35
0.

00
0

FR
B
4
1
0

1.
87

0.
37

1.
20

1.
70

0.
34

1.
34

0.
00

2
1.

97
9.

87
0.

43
1.

74
10

.1
0

0.
41

0.
00

0
FR

B
4 1

2
1.

79
0.

42
1.

34
1.

67
0.

37
1.

46
0.

02
6

1.
94

11
.4

2
0.

49
1.

69
11

.5
7

0.
47

0.
00

0
FR

B
2

1.
93

0.
64

1.
68

1.
61

0.
61

1.
68

0.
00

0
1.

74
37

.9
7

1.
40

1.
39

35
.2

9
1.

35
0.

00
0

FR
B

3
1.

61
5.

08
3.

61
1.

40
5.

06
3.

76
0.

00
0

1.
32

19
8.

31
4.

34
1.

11
19

7.
65

4.
32

0.
00

0
FR

B
5

1.
48

14
.5

9
7.

23
1.

21
14

.5
8

7.
38

0.
00

0
1.

04
75

3.
56

14
.3

6
0.

82
75

3.
03

14
.3

4
0.

00
0

26

Figure 5: Heuristics versus IG_RSLS(TBFF) on the set of instances of [83]. X-axis (variable
ARPT) is shown in logarithmic scale.

5 Conclusions

Since the last reviews in 2005, a large number of heuristics and metaheuristics have been proposed for the

permutation flowshop scheduling problem to minimize makespan. Most of them are compared with other

non-efficient algorithms and/or under uncomparable conditions. Thus, it was not clear which algorithms

were state-of-the-art. In this paper, an exhaustive review and evaluation of algorithms for the permutation

flowshop is proposed, with special attention being paid to conducting a fair comparison of algorithms.

The most promising ones, i.e. a total of 31 algorithms (19 constructive heuristics and 12 metaheuristics),

have been implemented and compared under the same conditions. The comparisons have been done using

the benchmarks of [83] and [88]. On one hand, the metaheuristics are compared under three different

stopping criteria to analyse the evolution of the each algorithm with the computational effort. On the

other hand, the comparison of (constructive and improvement) heuristics has been performed using two

relative indicators to measure the quality of the solution and the computational effort in order to identify

the efficient ones. Statistical analyses of the quality of the solutions have been carried out to study the

efficiency of the heuristics as well as to compare the metaheuristics. Additionally, each heuristic has been

compared with the best metaheuristic under the stopping criterion of the heuristic to analyze tentative best

27

Figure 6: Heuristics versus IG_RSLS(TBFF) on the set of instances of [88]. X-axis (variable
ARPT) is shown in logarithmic scale.

seed sequences for the metaheuristics. Therefore, we believe that this paper may represent a starting point

for future researchers who attempt to propose new algorithms for the permutation flowshop scheduling

problem with makespan objective.

Notice that all analysed algorithms have been completely recoded. The authors later contacted the

corresponding authors of many papers in order to avoid different interpretations in their description of the

algorithms. It is worth highlighting that sometimes the great differences in the quality of the solutions

are due to the different interpretations of the algorithms. Small variations in some algorithms have even

resulted in greater differences than, for example, completely changing the algorithm. To ensure the

repeatability and the reproducibility of the algorithms, we consider that at the least a clear pseudo code

should be included in the papers, if not the publication of the full source codes on-line, as recommended

by the Good Laboratory Practice for Optimization Research (GLP4OPT) practices, recently published

by [33].

Among all coded metaheuristics, algorithms based in the IG method of [76] have been clearly identi-

fied as the most efficient metaheuristics for the problem. This fact is further confirmed since other well-

performing metaheuristics also incorporate some part of the IG algorithm (see metaheuristics EDA_ACS

or DDE_RLS for example). In particular, the implementation proposed by [18] is the most efficient one.

Additionally, the difference in solution quality between IG-based algorithms and other methods is even

28

greater in the new set of instances of [88] which also consider a higher number of jobs and machines, a

fact which explains why some metaheuristics tested on just a subset of the instances of [83] were found

to be efficient ones at their time.

Although the excellent performance of non-population based algorithms was shown by [59], [76],

[62] and [18], the literature using this type of metaheuristic is scarce and researchers have mainly been

focused on the implementation of algorithms using several populations in parallel. In fact, most common

metaheuristics chosen by the researches were Particle Swarm Optimization Algorithm (17 times), Ge-

netic Algorithm (15 times), Ant Colony Algorithm (6 times) and Differential Algorithm (6 times). The

remaining types have been implemented less than 4 times in the papers analysed.

Regarding heuristics, most have been identified and classified as variations of the NEH algorithm.

Among the 19 coded algorithms, only 5 heuristics (NEHFF, FRB4k, FRB2, FRB3 and FRB5) could be

classified as efficient. Similar results have been found for both Taillard and VRF instances. Neverthe-

less, when they are compared with the best metaheuristic under the stopping criteria of the heuristic, all

efficient heuristics have been outperformed by the metaheuristic, with the exception of NEHFF since that

heuristic is the initial solution of the metaheuristic. Hence, this fact clearly indicates a way of proceed-

ing when future new heuristics are proposed in the literature. From now, constructive and improvement

heuristics should be directly compared either with the best metaheuristic under the same stopping crite-

rion or with NEHFF with at least the same computational effort, as it might turn out that a few iterations

of a good metaheuristic already give better results.

Note that the best metaheuristic and the best heuristics include Taillard’s acceleration as well as tie-

breaking mechanisms, which are two special characteristics of the Fm|prmu|Cmax problem. Obviously,

the former probably represent the main reason for the excellent behaviour of insertion phases in the

algorithms and could explain its extensive use in the heuristics and metaheuristics of the last decade, as

well as the excellent performance of the NEH and IG-based algorithms. The latter represents an advance

in the intensification of the algorithms applying special knowledge of the problem. In our opinion, these

facts highlight that future advances in this field will come from a better understanding of the problem and

its properties.

29

Acknowledgements

The authors are sincerely grateful to the anonymous referees, who provide very valuable comments on

the earlier version of the paper. This research has been funded by the Spanish Ministry of Science and

Innovation, under projects “ADDRESS” (DPI2013-44461-P/DPI) and “SCHEYARD” (DPI2015-65895-

R) co-financed by FEDER funds.

References
[1] A. Agarwal, S. Colak, and E. Eryarsoy. Improvement heuristic for the flow-shop scheduling prob-

lem: An adaptive-learning approach. European Journal of Operational Research, 169(3):801–815,
2006.

[2] F. Ahmadizar. A new ant colony algorithm for makespan minimization in permutation flow shops.
Computers and Industrial Engineering, 63(2):355–361, 2012.

[3] J. Carlier. Ordonnancements a contraintes disjonctives. RAIRO Recherche Operationnelle,
12(4):333–350, 1978.

[4] P.-C. Chang and M.-H. Chen. A block based estimation of distribution algorithm using bivariate
model for scheduling problems. Soft Computing, 18(6):1177–1188, 2014.

[5] P.-C. Chang, M.-H. Chen, M.K. Tiwari, and A.S. Iquebal. A block-based evolutionary algorithm
for flow-shop scheduling problem. Applied Soft Computing Journal, 13(12):4536–4547, 2013.

[6] P.-C. Chang, S.-H. Chen, C.-Y. Fan, and C.-L. Chan. Genetic algorithm integrated with artifi-
cial chromosomes for multi-objective flowshop scheduling problems. Applied Mathematics and
Computation, 205(2):550–561, 2008.

[7] P.-C. Chang, S.-H. Chen, C.-Y. Fan, and V. Mani. Generating artificial chromosomes with probabil-
ity control in genetic algorithm for machine scheduling problems. Annals of Operations Research,
180(1):197–211, 2010.

[8] P.-C. Chang, J.-C. Hsieh, S.-H. Chen, J.-L. Lin, and W.-H. Huang. Artificial chromosomes em-
bedded in genetic algorithm for a chip resistor scheduling problem in minimizing the makespan.
Expert Systems with Applications, 36(3 PART 2):7135–7141, 2009.

[9] P.-C. Chang, W.-H. Huang, and C.-J. Ting. A hybrid genetic-immune algorithm with improved
lifespan and elite antigen for flow-shop scheduling problems. International Journal of Production
Research, 49(17):5207–5230, 2011.

[10] C.-L. Chen, Y.-R. Tzeng, and C.-L. Chen. A new heuristic based on local best solution for permu-
tation flow shop scheduling. Applied Soft Computing Journal, 29:75–81, 2015.

[11] R.-M. Chen and F.-R. Hsieh. An exchange local search heuristic based scheme for permutation
flow shop problems. Applied Mathematics and Information Sciences, 8(1 L):209–215, 2014.

30

[12] S.-H. Chen, P.-C. Chang, T.C.E. Cheng, and Q. Zhang. A self-guided genetic algorithm for per-
mutation flowshop scheduling problems. Computers and Operations Research, 39(7):1450–1457,
2012.

[13] P. Dasgupta and S. Das. A discrete inter-species cuckoo search for flowshop scheduling problems.
Computers and Operations Research, 60(0):111 – 120, 2015.

[14] E. Demirkol, S. Mehta, and R. Uzsoy. Benchmarks for shop scheduling problems. European
Journal of Operational Research, 109(1):137–141, 1998.

[15] X. Dong, H. Huang, and P. Chen. An improved NEH-based heuristic for the permutation flowshop
problem. Computers and Operations Research, 35(12):3962–3968, December 2008.

[16] B. Eksioglu, S.D. Eksioglu, and P. Jain. A tabu search algorithm for the flowshop scheduling
problem with changing neighborhoods. Computers and Industrial Engineering, 54(1):1–11, 2008.

[17] O. Etiler, B. Toklu, M. Atak, and J. Wilson. A genetic algorithm for flow shop scheduling prob-
lems. Journal of the Operational Research Society, 55(8):830–835, 2004.

[18] V. Fernandez-Viagas and J. M. Framinan. On insertion tie-breaking rules in heuristics for the
permutation flowshop scheduling problem. Computers and Operations Research, 45:60 – 67,
2014.

[19] V. Fernandez-Viagas and J.M. Framinan. A new set of high-performing heuristics to minimise
flowtime in permutation flowshops. Computers and Operations Research, 53:68–80, 2015.

[20] V. Fernandez-Viagas and J.M. Framinan. NEH-based heuristics for the permutation flowshop
scheduling problem to minimise total tardiness. Computers and Operations Research, 60:27–36,
2015.

[21] J.M. Framinan, J.N.D. Gupta, and R. Leisten. A review and classification of heuristics for per-
mutation flow-shop scheduling with makespan objective. Journal of the Operational Research
Society, 55(12):1243–1255, 2004.

[22] J.M. Framinan and R. Leisten. A heuristic for scheduling a permutation flowshop with makespan
objective subject to maximum tardiness. International Journal of Production Economics, 99(1-
2):28–40, 2006.

[23] J.M. Framinan and R. Pastor. A proposal for a hybrid meta-strategy for combinatorial optimization
problems. Journal of Heuristics, 14(4):375–390, 2008.

[24] A.N. Haq, T.R. Ramanan, K.S. Shashikant, and R. Sridharan. A hybrid neural network-genetic
algorithm approach for permutation flow shop scheduling. International Journal of Production
Research, 48(14):4217–4231, 2010.

[25] R. Hariharan and R.J. Golden Renjith Nimal. Solving flow shop scheduling problems using a
hybrid genetic scatter search algorithm. Middle - East Journal of Scientific Research, 20(3):328–
333, 2014.

[26] J. Heller. Some numerical experiments for an m x j flow shop and its decision-theoretical aspects.
Operations Research, 8(2):178–184, 1960.

31

[27] C.-Y. Hsu, P.-C. Chang, and M.-H. Chen. A linkage mining in block-based evolutionary algorithm
for permutation flowshop scheduling problem. Computers and Industrial Engineering, 83:159–
171, 2015.

[28] W.Q. Huang and L. Wang. A local search method for permutation flow shop scheduling. Journal
of the Operational Research Society, 57(10):1248–1251, 2006.

[29] B. Jarboui, S. Ibrahim, P. Siarry, and A. Rebai. A combinatorial particle swarm optimisation for
solving permutation flowshop problems. Computers and Industrial Engineering, 54(3):526–538,
2008.

[30] P. J. Kalczynski and J. Kamburowski. On the NEH heuristic for minimizing the makespan in
permutation flow shops. OMEGA, The International Journal of Management Science, 35(1):53–
60, February 2007.

[31] P. J. Kalczynski and J. Kamburowski. An improved NEH heuristic to minimize makespan in
permutation flow shops. Computers and Operations Research, 35(9):3001–3008, 2008.

[32] P. J. Kalczynski and J. Kamburowski. An empirical analysis of the optimality rate of flow shop
heuristics. European Journal of Operational Research, 198(1):93 – 101, 2009.

[33] G. Kendall, R. Bai, J. Błazewicz, P. De Causmaecker, M. Gendreau, R. John, J. Li, B. McCol-
lum, E. Pesch, R. Qu, N. Sabar, G. Vanden Berghe, and A. Yee. Good laboratory practice for
optimization research. Journal of the Operational Research Society, 67(4):676–689, 2016.

[34] I.-H. Kuo, S.-J. Horng, T.-W. Kao, T.-L. Lin, C.-L. Lee, T. Terano, and Y. Pan. An efficient flow-
shop scheduling algorithm based on a hybrid particle swarm optimization model. Expert Systems
with Applications, 36(3 PART 2):7027–7032, 2009.

[35] D. Laha and U.K. Chakraborty. An efficient hybrid heuristic for makespan minimization in per-
mutation flow shop scheduling. International Journal of Advanced Manufacturing Technology,
44(5-6):559–569, 2009.

[36] R. Leisten and C. Rajendran. Variability of completion time differences in permutation flow shop
scheduling. Computers and Operations Research, 54:155–167, 2014.

[37] X. Li and M. Yin. A discrete artificial bee colony algorithm with composite mutation strategies
for permutation flow shop scheduling problem. Scientia Iranica, 19(6):1921–1935, 2012.

[38] X. Li and M. Yin. A hybrid cuckoo search via Lévy flights for the permutation flow shop schedul-
ing problem. International Journal of Production Research, 51(16):4732–4754, 2013.

[39] X. Li and M. Yin. An opposition-based differential evolution algorithm for permutation flow shop
scheduling based on diversity measure. Advances in Engineering Software, 55:10–31, 2013.

[40] Z. Lian, X. Gu, and B. Jiao. A similar particle swarm optimization algorithm for permutation
flowshop scheduling to minimize makespan. Applied Mathematics and Computation, 175(1):773–
785, 2006.

[41] Z. Lian, X. Gu, and B. Jiao. A novel particle swarm optimization algorithm for permutation flow-
shop scheduling to minimize makespan. Chaos, Solitons and Fractals, 35(5):851–861, 2008.

[42] C.-J. Liao, Chao-Tang Tseng, and P. Luarn. A discrete version of particle swarm optimization for
flowshop scheduling problems. Computers and Operations Research, 34(10):3099–3111, 2007.

32

[43] Q. Lin, L. Gao, X. Li, and C. Zhang. A hybrid backtracking search algorithm for permutation
flow-shop scheduling problem. Computers and Industrial Engineering, 85:437 – 446, 2015.

[44] B. Liu, L. Wang, and Y.-H. Jin. An effective pso-based memetic algorithm for flow shop schedul-
ing. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 37(1):18–27,
2007.

[45] H. Liu, L. Gao, and Q.-K. Pan. A hybrid particle swarm optimization with estimation of dis-
tribution algorithm for solving permutation flowshop scheduling problem. Expert Systems with
Applications, 38(4):4348–4360, 2011.

[46] R. Liu, C. Ma, W. Ma, and Y. Li. A multipopulation pso based memetic algorithm for permutation
flow shop scheduling. The Scientific World Journal, 2013.

[47] Y. Liu, M. Yin, and W. Gu. An effective differential evolution algorithm for permutation flow shop
scheduling problem. Applied Mathematics and Computation, 248:143–159, 2014.

[48] Y.-F. Liu and S.-Y. Liu. A hybrid discrete artificial bee colony algorithm for permutation flowshop
scheduling problem. Applied Soft Computing Journal, 13(3):1459–1463, 2013.

[49] C. Low, J.-Y. Yeh, and K.-I. Huang. A robust simulated annealing heuristic for flow shop schedul-
ing problems. International Journal of Advanced Manufacturing Technology, 23(9-10):762–767,
2004.

[50] Y. Marinakis and M. Marinaki. Particle swarm optimization with expanding neighborhood topol-
ogy for the permutation flowshop scheduling problem. Soft Computing, 17(7):1159–1173, 2013.

[51] R. M’Hallah. An iterated local search variable neighborhood descent hybrid heuristic for the
total earliness tardiness permutation flow shop. International Journal of Production Research,
52(13):3802–3819, 2014.

[52] M.S. Nagano and J.V. Moccellin. A high quality solution constructive heuristic for flow shop
sequencing. Journal of the Operational Research Society, 53(12):1374–1379, 2002.

[53] M.S. Nagano, R. Ruiz, and L.A.N. Lorena. A constructive genetic algorithm for permutation
flowshop scheduling. Computers and Industrial Engineering, 55(1):195–207, 2008.

[54] S. Nanz and C. A. Furia. A comparative study of programming languages in rosetta code. In
Proceedings of the 37th International Conference on Software Engineering, volume 1, pages 778–
778, 2015.

[55] M. Nawaz, E.E. Enscore Jr., and I. Ham. A heuristic algorithm for the m-machine, n-job flow-shop
sequencing problem. OMEGA, The International Journal of Management Science, 11(1):91–95,
1983.

[56] A.C. Nearchou. The effect of various operators on the genetic search for large scheduling prob-
lems. International Journal of Production Economics, 88(2):191–203, 2004.

[57] A.C. Nearchou. Flow-shop sequencing using hybrid simulated annealing. Journal of Intelligent
Manufacturing, 15(3):317–328, 2004.

[58] A.C. Nearchou. A novel metaheuristic approach for the flow shop scheduling problem. Engineer-
ing Applications of Artificial Intelligence, 17(3):289–300, 2004.

33

[59] E. Nowicki and C. Smutnicki. A fast tabu search algorithm for the permutation flow-shop problem.
European Journal of Operational Research, 91(1):160–175, 1996.

[60] E. Nowicki and C. Smutnicki. Some aspects of scatter search in the flow-shop problem. European
Journal of Operational Research, 169(2):654–666, 2006.

[61] G. Onwubolu and D. Davendra. Scheduling flow shops using differential evolution algorithm.
European Journal of Operational Research, 171(2):674–692, 2006.

[62] Q.-K. Pan, M.F. Tasgetiren, and Y.-C. Liang. A discrete differential evolution algorithm for the
permutation flowshop scheduling problem. Computers and Industrial Engineering, 55(4):795–
816, 2008.

[63] M. Pinedo. Scheduling: Theory, Algorithms and Systems. Prentice Hall, fourth edition, 2012.

[64] G. Prabhaharan, B.S.H. Khan, and L. Rakesh. Implementation of GRASP in flow shop scheduling.
International Journal of Advanced Manufacturing Technology, 30(11-12):1126–1131, 2006.

[65] B. Qian, L. Wang, R. Hu, W.-L. Wang, D.-X. Huang, and X. Wang. A hybrid differential evolution
method for permutation flow-shop scheduling. International Journal of Advanced Manufacturing
Technology, 38(7-8):757–777, 2008.

[66] S. F. Rad, R. Ruiz, and N. Boroojerdian. New high performing heuristics for minimizing
makespan in permutation flowshops. OMEGA, The International Journal of Management Science,
37(2):331–345, 2009.

[67] C. Rajendran and H. Ziegler. Ant-colony algorithms for permutation flowshop scheduling to min-
imize makespan/total flowtime of jobs. European Journal of Operational Research, 155(2):426–
438, 2004.

[68] R. Rajkumar and P. Shahabudeen. An improved genetic algorithm for the flowshop scheduling
problem. International Journal of Production Research, 47(1):233–249, 2009.

[69] T.R. Ramanan, R. Sridharan, K.S. Shashikant, and A.N. Haq. An artificial neural network based
heuristic for flow shop scheduling problems. Journal of Intelligent Manufacturing, 22(2):279–288,
2011.

[70] C.R. Reeves. A genetic algorithm for flowshop sequencing. Computers and Operations Research,
22(1):5–13, 1995.

[71] S. Reza Hejazi and S. Saghafian. Flowshop-scheduling problems with makespan criterion: A
review. International Journal of Production Research, 43(14):2895–2929, 2005.

[72] I. Ribas, R. Companys, and X. Tort-Martorell. Comparing three-step heuristics for the permutation
flow shop problem. Computers and Operations Research, 37(12):2062–2070, 2010.

[73] A. H. G. Rinnooy Kan. Machine Scheduling Problems: Classification, Complexity and Computa-
tions. Martinus Nijhoff, The Hague, 1976.

[74] R. Ruiz and C. Maroto. A comprehensive review and evaluation of permutation flowshop heuris-
tics. European Journal of Operational Research, 165(2):479–494, 2005.

[75] R. Ruiz, C. Maroto, and J. Alcaraz. Two new robust genetic algorithms for the flowshop scheduling
problem. OMEGA, The International Journal of Management Science, 34(5):461–476, 2006.

34

[76] R. Ruiz and T. Stützle. A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem. European Journal of Operational Research, 177(3):2033–2049,
2007.

[77] M. Saravanan, A. Noorul Haq, A.R. Vivekraj, and T. Prasad. Performance evaluation of the scatter
search method for permutation flowshop sequencing problems. International Journal of Advanced
Manufacturing Technology, 37(11-12):1200–1208, 2008.

[78] M.K. Sayadi, R. Ramezanian, and N. Ghaffari-Nasab. A discrete firefly meta-heuristic with local
search for makespan minimization in permutation flow shop scheduling problems. International
Journal of Industrial Engineering Computations, 1(1):1–10, 2010.

[79] M. Solimanpur, P. Vrat, and R. Shankar. A neuro-tabu search heuristic for the flow shop scheduling
problem. Computers and Operations Research, 31(13):2151–2164, 2004.

[80] T. Stütze. Applying iterated local search to the permutation flow shop problem. Technical report,
AIDA-98-04, FG Intellektik, FB Informatik, TU Darmstadt, 1998.

[81] Y. Sun, C. Zhang, L. Gao, and X. Wang. Multi-objective optimization algorithms for flow shop
scheduling problem: A review and prospects. International Journal of Advanced Manufacturing
Technology, 55(5-8):723–739, 2011.

[82] E. Taillard. Some efficient heuristic methods for the flow shop sequencing problem. European
Journal of Operational Research, 47(1):65–74, 1990.

[83] E. Taillard. Benchmarks for basic scheduling problems. European Journal of Operational Re-
search, 64(2):278–285, 1993.

[84] M.F. Tasgetiren, Y.-C. Liang, M. Sevkli, and G. Gencyilmaz. A particle swarm optimization
algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing
problem. European Journal of Operational Research, 177(3):1930–1947, 2007.

[85] L.-Y. Tseng and Y.-T. Lin. A hybrid genetic local search algorithm for the permutation flowshop
scheduling problem. European Journal of Operational Research, 198(1):84–92, 2009.

[86] Y.-R. Tzeng and C.-L. Chen. A hybrid eda with acs for solving permutation flow shop scheduling.
International Journal of Advanced Manufacturing Technology, 60(9-12):1139–1147, 2012.

[87] E. Vallada and R. Ruiz. Genetic algorithms with path relinking for the minimum tardiness per-
mutation flowshop problem. OMEGA, The International Journal of Management Science, 38(1-
2):57–67, 2010.

[88] E. Vallada, R. Ruiz, and J.M. Framinan. New hard benchmark for flowshop scheduling problems
minimising makespan. European Journal of Operational Research, 240:666–677, 2015.

[89] D. Vasiljevic and M. Danilovic. Handling ties in heuristics for the permutation flow shop schedul-
ing problem. Journal of Manufacturing Systems, 35:1–9, 2015.

[90] J.P. Watson, L. Barbulescu, L.D. Whitley, and A.E. Howe. Contrasting structured and random
permutation flow-shop scheduling problems: Search-space topology and algorithm performance.
INFORMS Journal on Computing, 14(2):98–123, 2002.

35

[91] Z. Xie, C. Zhang, X. Shao, W. Lin, and H. Zhu. An effective hybrid teaching-learning-based
optimization algorithm for permutation flow shop scheduling problem. Advances in Engineering
Software, 77:35–47, 2014.

[92] B. Yagmahan and M.M. Yenisey. Ant colony optimization for multi-objective flow shop scheduling
problem. Computers and Industrial Engineering, 54(3):411–420, 2008.

[93] K.-C. Ying and C.-J. Liao. An ant colony system for permutation flow-shop sequencing. Comput-
ers and Operations Research, 31(5):791–801, 2004.

[94] K.-C. Ying and S.-W. Lin. A high-performing constructive heuristic for minimizing makespan in
permutation flowshops. Journal of Industrial and Production Engineering, 30(6):355–362, 2013.

[95] S.H. Zanakis, J.R. Evans, and A.A. Vazacopoulos. Heuristic methods and applications: A catego-
rized survey. European Journal of Operational Research, 43(1):88–110, 1989.

[96] C. Zhang, J. Ning, and D. Ouyang. A hybrid alternate two phases particle swarm optimization
algorithm for flow shop scheduling problem. Computers and Industrial Engineering, 58(1):1–11,
2010.

[97] C. Zhang and J. Sun. An alternate two phases particle swarm optimization algorithm for flow shop
scheduling problem. Expert Systems with Applications, 36(3 PART 1):5162–5167, 2009.

[98] C. Zhang, J. Sun, X. Zhu, and Q. Yang. An improved particle swarm optimization algorithm for
flowshop scheduling problem. Information Processing Letters, 108(4):204–209, 2008.

[99] J. Zhang, C. Zhang, and S. Liang. The circular discrete particle swarm optimization algorithm for
flow shop scheduling problem. Expert Systems with Applications, 37(8):5827–5834, 2010.

[100] L. Zhang and J. Wu. A PSO-based hybrid metaheuristic for permutation flowshop scheduling
problems. The Scientific World Journal, 2014.

[101] T. Zheng and M. Yamashiro. Solving flow shop scheduling problems by quantum differential evo-
lutionary algorithm. International Journal of Advanced Manufacturing Technology, 49(5-8):643–
662, 2010.

[102] G.I. Zobolas, C.D. Tarantilis, and G. Ioannou. Minimizing makespan in permutation flow shop
scheduling problems using a hybrid metaheuristic algorithm. Computers and Operations Research,
36(4):1249–1267, 2009.

[103] G. Zäpfel, R. Braune, and M. Bögl. Metaheuristic Search Concepts. Springer, 2010.

36

