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Abstract: The reconstruction of genome-scale metabolic models and their applications 

represent a great advantage of systems biology. Through their use as metabolic flux 

simulation models, production of industrially-interesting metabolites can be predicted. Due 

to the growing number of studies of metabolic models driven by the increasing genomic 

sequencing projects, it is important to conceptualize steps of reconstruction and analysis. 

We have focused our work in the cyanobacterium Synechococcus elongatus PCC7942, for 

which several analyses and insights are unveiled. A comprehensive approach has been 

used, which can be of interest to lead the process of manual curation and genome-scale 
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metabolic analysis. The final model, iSyf715 includes 851 reactions and 838 metabolites. 

A biomass equation, which encompasses elementary building blocks to allow cell growth, 

is also included. The applicability of the model is finally demonstrated by simulating 

autotrophic growth conditions of Synechococcus elongatus PCC7942. 

Keywords: genome-scale metabolic network reconstruction; systems biology; metabolic 

pathways; flux balance analysis; biological databases 

 

1. Introduction 

Synechococcus elongatus PCC7942 is considered a model organism since the early 1970s, when 

successful transformations of exogenous DNA were performed for the first time in a cyanobacterium [1]. 

In particular, it has been used as a paradigm for the study of circadian rhythms in prokaryotes as it has 

been demonstrated that prokaryotes are capable of measuring time [2]. S. elongatus has a rod-shaped 

appearance, is oligotrophic having the ability to survive in freshwater environments with low nutrients 

and is considered an obligate autotroph [3,4]. The genus Synechococcus is among the most important 

photosynthetic bacteria in the marine environment as it accounts, after different estimates, for about 

25% of the primary production in marine habitats [5]. Like all cyanobacteria, Synechococcus elongatus 

uses CO2 as carbon source and light as energy source, which explains the interest in exploring its 

potential as a photo-biological cell factory for the production of valuable compounds for various 

applications. Potential applications are broad in this sense and research has been focused in the 

production of diverse metabolites of industrial interest, such as different types of biofuels [6] like 

hydrogen [7], among others. Its role as a model organism and the unique properties of this 

photosynthetic prokaryote illustrate why Synechococcus elongatus PCC7942 constitutes an interesting 

target for metabolic engineering and the benefit of developing, for the first time, a genome-scale 

metabolic model of this bacterium. 

The development of genome sequencing and genetic mapping together with omics-science paved 

the way towards the quantitative study of biological systems. Thus, systems biology has emerged as a 

promising predictive science on a large and quantitatively deep scale [8], aiming at engineering of 

metabolic pathways and their capabilities [9]. Biological systems dynamics are inherently nonlinear 

and show functional synergies that may lead to emerging properties [10]. The construction of 

metabolic networks is, not only a compilation of chemical reactions, but also a gathering of exchange 

ratios, metabolic fluxes, and other type of biological constraints that make possible the in silico 

analyses of the organism’s behaviour. These analyses have been used by researchers to design 

metabolic engineering strategies in a variety of problems [11–14]. 

The genome-scale metabolic network reconstruction is based on genetic information available on 

the organism of interest. The Synechococcus elongatus PCC7942 genome was sequenced, annotated 

and published in 1980 [15–17]. In order to build a meaningful model, experimental data are required 

together with established knowledge such as physiological and biochemical information accessible 

from the literature, journal articles, experiments and databases,. In certain cases, lack of clarity and 

quality in published data, such as mistakes in entries, false negatives and false positives undermines 
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the quality of the reconstructed models making their simulations worthless [18]. The relationships 

between complex metabolic processes usually falls to properly determine the processing of substrates 

into products and their stoichiometry, if a transformation is spontaneous or catalyzed by enzymes or if 

cofactors are involved. Moreover, the subcellular localization of the reactions and some thermodynamic 

aspects such as irreversibility must be known [19]. 

The usefulness of genome-scale metabolic models has been demonstrated through several 

computational analyses. Constraint-based approaches, such as flux balance analysis (FBA), are among 

the most common ones used to simulate phenotypic behavior under imposed physiological and/or 

genetic conditions [20–22]. FBA aims to obtain, through the optimization of a cellular objective 

(usually growth), the space of allowable flux distributions of a biological system under steady-state 

conditions. The optimization problem is subject to a set of constraints associated with lower and upper 

bounds in every reaction, which are defined by thermodynamic and experimental data. Finally, the 

resulting flux distribution can be contrasted with in vivo information and, thus, the metabolic model 

can be used for further analyses [23,24]. 

Presently, the process of reconstruction is long and arduous mainly due to its manual construction 

and proper quality-control check [25]. Some efforts have been directed to automate the metabolic 

reconstruction, or at least some parts of it, in order to cut down the time needed for such an endeavor. 

However, these efforts have been hampered due to problems in database information consistency and 

genome annotations [26]. Thereby, resulting algorithms are still unable to generate quality metabolic 

networks models as a basis for predictive analysis [25]. Several protocols have been published to 

define in detail each one of the steps of a proper reconstruction, as well as the software packages and 

databases that can assist in this labor [19,25–27]. For instance, Thiele and Palsson described in a very 

instructive way the process of debugging and validation [24]. 

Here, we present the manually curated metabolic reconstruction for Synechococcus elongatus 

PCC7942. The current model, iSyf715 features a detailed biomass equation including all the building 

blocks that are needed for a flux distribution simulation. Moreover, FBA analysis is performed to 

assess the accuracy of the model and to explore possible biotechnological production strategies. 

With today’s energy shortage concerns, having seemingly infinite energy source of light represents 

an interesting avenue for research and development. Therefore, iSyf715 is a step towards the 

development of photo-biological production platforms for the synthesis of several compounds of 

industrial interest. 

2. Results and Discussion 

In the reconstruction of a genome-scale metabolic model the reliability of the model depends 

critically on the quality of the data used. Nowadays, several databases (Supplementary File S1) can be 

used to obtain reliable metabolic reactions and annotated genome sequences for the organism of 

interest. The reconstruction of the model of Synechococcus elongatus PCC7942, termed iSyf715 in the 

present work, started with an exhaustive data search and gathering of genome sequences and 

annotation files from the NCBI Entrez Gene database [28]. The rationale behind the name is that the 

“i” of the name refers to an in silico model, followed by the organism database identifier (e.g., KEGG 

ID) and then the number of genes whose information is included in the model. 
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The files, of which descriptions can be found in Table 1, were used as input for the software 

Pathway Tools [29] in order to build a database with all the genes, proteins and metabolites present in 

the cyanobacteria. The list of reactions and cognate genes was then retrieved with this software. 

Alternatively, we used the COPABI computational platform to build a similar database and to 

automatically generate the metabolic model following probabilistic criteria of uniqueness and 

completeness [30]. The algorithm allows identifying and filling gaps in a given pathway, choosing a 

completeness value comparing the available information of our specific metabolic reactions  

(e.g., reactions related with buildings blocks) to a general pathway (meaning, ideally, “all” metabolic 

reactions in nature, or the meta-metabolism). This completeness value is a probability that the missing 

reaction can occur in our metabolic network. Furthermore, this platform gives the possibility to 

exclude duplicated reactions, allowing the inclusion and correction of many isoenzymes, through the 

uniqueness value. This strategy was conceived in order to double check the results of both software. 

Figure 1 summarizes the whole process. 

Table 1. Summary of genome features of Synechococcus elongatus PCC7942. 

 Chromosome Plasmid pANL Plasmid pANS 

Length of DNA (base pairs) 2,695,903 46,366 7835 
G+C (%) ~55.47 52.9 ~59 
RNA genes 54 - - 
rRNA genes 6 - - 
tRNA genes 45 - - 
Other RNA genes 3 - - 
Protein genes 2856 50 8 
With predicted function 1682 17 - 
Without predicted function 1174 33 - 
Total genes 2906 50 8 

Figure 1. Genome-scale metabolic reconstruction process. 

 

The first draft included 672 genes coding for 540 enzymes that participated in 898 reactions. At this 

point we thoroughly checked the model identifying reactions that had no corresponding enzyme-coding 



Metabolites 2014, 4 684 

 

 

gene assigned, but that needed to be included in the model, as well as removing reactions related to 

genetic replication, gene expression and cell division that were not meant to be included in the model [19]. 

Characteristics of this first draft and the final model version can be studied in Table 2. We verified EC 

numbers and stoichiometry of the reactions with several databases, such as KEGG pathway [31] and 

MetaCyc [32], as well as a complete literature examination from different biochemistry books [33–36]. 

If no conclusive outcome came from these sources, certain published metabolic models, such as 

Synechocystis sp. PCC6803 [11,12], cyanobacteria of the same phylogenetic Phylum as Synechococcus 

elongatus PCC7942 served as a reference to solve these issues. 

Table 2. Distribution of elements in the database retrieved from Pathways Tools and the 

final model, iSyf715. 

General Overview  iSyf715 

Genes 715 
Metabolic reactions 851 
Metabolites 838 
Enzymes 530 
Multimeric enzymes and enzymatic complexes 79 
Reactions overview  
Reversible reactions 326 
Irreversible reactions 525 
Reactions with assigned genes 735 
Enzymatic conversion  710 
Protein-mediated transport (active and passive-mediated transports) 25 
Reactions with no cognate genes 116 
Non-enzymatic conversion (spontaneous) 13 
Passive transport reactions (simple diffusion) 16 
EC reactions not annotated  76 
Unassigned reactions 11 

In order to render chemical conversions coherent, all elements were balanced. Protons have  

been balanced, by accounting the total number of each chemicals element on both sides of the 

associated-reactions in model. Electrons were balanced in the chemical reactions, even though we are 

unable to know the reducing state of metabolites in many reactions. We considered the principle of 

conservation of reducing power and have corrected the REDOX reactions based on an approximate 

balance of electron-donor and electron-acceptor. As some of the reactions included in these databases 

are usually reported in a non-specific form (e.g., an electron acceptor or an alcohol), corresponding 

organism-specific metabolites had to be identified [25]. In addition, reactions catalyzed by multimeric 

enzymes or enzymatic complexes were described as a single reaction [19]. The BRENDA database [37] 

helped to identify 325 reactions that were found to be reversible in the model. If no conclusive 

evidence was reported, reactions were set to be reversible. 

Through these analyses, we assessed the possibility of including missing cofactors (e.g., water 

molecule or hydrogen ion, among others) in some reactions, like the ones catalyzed by hydrolases, 

oxidoreductases or transferases. If state of the art was unable to specify a single cofactor requirement, 

like NADH or NADPH, two reactions were included in the metabolic network. 
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No lumped reactions were left in the model to enable the tracing of the reactions’ fluxes. Several 

reactions were found to be necessary for the synthesis of monomers, precursors or building blocks, but 

had no corresponding enzyme-coding gene assigned. We included these reactions to allow the 

formation of biomass, which was an objective function of the simulations. Whenever such a reaction 

was included in the model, it was mentioned explicitly. 

In the biomass reaction, proteins, nucleic acids, lipids, carbohydrates, and other essential organic 

compounds, are drained together in a virtual reaction that evolves a mole of biomass. The ratios of each one 

of these precursors, ideally determined experimentally, are added as stoichiometries in the reaction. 

Additionally, some transport systems across the membrane such as: phosphate, water, sulphate, 

nitrate, ammonia, as well as carbon monoxide and hydrogen peroxide transport, were included in the 

model and properly bounded. Some of the reversible reactions involving NADH and NADPH were 

constrained to be irreversible so that spurious transhydrogenation was controlled. 

Another essential point in the debugging process was the removing of internal loops that are 

thermodynamically infeasible, for instance futile cycles, like substrate cycles described in [33] and 

Type III-extreme pathway [38]. Blocking these reactions is crucial since several constraint-based 

approaches, such as Flux Balance Analysis [20], do not account for regulation, thus, futile cycles 

cannot be shut down otherwise and simulations could retrieve unnatural flux behaviors. 

The resulting network of this reconstruction process encompasses all known metabolites that take 

place in Synechococcus elongatus PCC7942 and consists of 851 metabolic reactions and 838 

metabolites (see Table 2). The bulk of reactions are catalyzed by 530 enzymes encoded by 715 genes. 

The presence of protein complexes and multimeric enzymes, explains the differences between the 

number of enzymes and genes. Additionally, a set of reactions with no cognate genes is present in 

iSyf715: 13 non-enzymatic (spontaneous) conversions, 16 simple diffusion reactions, and 11 unassigned 

reactions (the majority according to the KEGG report). During the reconstruction process, 54 external 

metabolites and 40 exchange reactions were included. In short, a total of 76 reactions not annotated in 

the genome were included in the model on the basis of biochemical evidence or physiological 

considerations. Examples of these are the genes that encode for malate synthase (EC 2.3.3.9) and 

isocitratelyase (EC 4.1.3.1), whose enzymatic activities have been measured [39], but do not have a 

cognate ORF associated to them, and whose presence is necessary to complete the glyoxylate shunt. 

The final model includes central metabolic pathways, such as the glycolysis/gluconeogenesis 

pathway, the Calvin-Benson cycle, the pentose phosphate pathway, incomplete reactions within the 

tricarboxylic acid cycle (TCA), as well as the complete set of anabolic pathways involved in the 

biosynthesis of chlorophyll, glycogen, amino acids, lipids, nucleotides, vitamins, cofactors, etc. 

Pathways for glyoxylate synthesis (via ribulose-1, 5-bisphosphate carboxylase/oxygenase and the 

shunt across TCA cycle), and amino sugars metabolism are also included. 

Photosynthetic electron transfer associated with the thylakoid membrane is represented as a set of 

10 separate reactions, including light captured by photosystem II (PSII) and photosystem I (PSI), 

electron transfer between the two photosystems, and cyclic electron transfer which involves PSI  

and ferredoxin. 

Working model files can be obtained in Supplementary information. Additionally, iSyf715  

model on SBML format was deposited in BioModels Database [40] and assigned the identifier 

MODEL1407310000. 
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2.1. Network Topology and Connectivity Analysis 

The network topology analysis of iSyf715 can help in the understanding of how metabolites and 

their interactions determine their metabolic function in the cell. As many studies have shown, most of 

these networks are scale-free and thereby the nodes connection can be estimated by a power-law 

degree distribution [41–44]. Most connected metabolites distribution in the iSyf715 network and a 

comparison with their presence in other microbial genome-scale metabolic networks can be seen  

in Table 3. 

Table 3. Most connected metabolites in S. elongatus PCC7942 and other genome-scale 

metabolic models. 

Metabolic Hubs 
Neighbors 
in iSyf715 

Neighbors in 
iSyn811 [12] 

Neighbors in 
E. coli [45] 

Neighbors 
in Yeast 

[19] 

H2O 243 219 697 - 
Phosphate 169 112 81 113 
ADP 159 111 253 131 
ATP 148 136 338 166 
H+ 149 153 923 188 
Diphosphate 110 84 28 - 
CO2 69 72 53 66 
AMP 74 21 86 48 
NADPH 74 68 66 57 
NADP+ 72 68 39 61 
L-glutamate 52 44 52 56 
NAD+ 46 52 79 58 
NADH 45 48 75 52 
oxygen O2 45 40 40 31 
S-adenosyl-L- 
methionine 

37 28 18 19 

Ammonia 44 28 22 - 
coenzyme A 29 23 71 39 
Pyruvate 32 20 61 20 
L-glutamine 30 21 18 23 
Glutathione 32 26 17 10 
S-adenosyl-L-
homocysteine 

25 24 12 14 

A few metabolites are involved in many reactions and are widely used by diverse metabolic 

machineries; on the other hand, many metabolites have very few connections. These highly connected 

metabolites are often referred as metabolic hubs; these are the metabolites around which metabolism is 

organized in a bow tie manner [46]. Unsurprisingly, water is the well-connected compound. Its role 

both as a substrate or product in reactions, such as reduction-oxidation, hydrolysis and condensation, is 

well known. As we can see in Table 3, other most well connected metabolites include carrier 

molecules like: ADP, ATP, NADP+, NAD+, phosphate, and oxygen, which are related to energy 
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transport, energy storage and redox pathways; a few amino acids, peptides and their precursors  

(L-glutamate, L-glutamine and glutathione); and key components in the porphyrin and chlorophyll 

metabolism (S-adenosyl-L-methionine/S-adenosyl-L-homocysteine). Additional well connected metabolites 

are ammonia, coenzyme A and pyruvate, which constitute either the substrates or products of many 

central metabolic pathways, like glycolysis, tricarboxylic acid (TCA) cycle, glyoxylate shunt, and 

amino acids metabolism. 

For the connectivity distribution analysis of iSyf715 we used a systematic mathematical approach: the 

Pareto’s law in terms of the cumulative distribution function (P (K>k)~k−γ + 1) to get a proper fit [47,48].We 

used the cumulative distribution rather than picturing a log-log scale plot of the distribution of 

connections counts among number of nodes, so that the distribution tail smoothed out in the 

cumulative distribution and no data were “obscured” as in the logarithmic binning procedure [49]. Our 

analysis of the data from Table 3 leads us to think the iSyf715 network is reasonably characterized by 

a power-law distribution (γ = 2.203) with high non-uniformity, as we can see at the cumulative 

distribution towards the right of Figure 2. The biological significance of this hierarchical connectivity 

is said to be related to an evolutionary process, where the hubs were the first compounds that were 

present in the earliest cells predecessor’s metabolism [50]. Metabolic hubs represent effective targets 

for metabolic engineering and should be considered in the design of strategies for the production of 

other metabolites. 

Figure 2. Connectivity distribution of the iSyf715 metabolic model using the cumulative 

distribution towards the right via Pareto cumulative distribution. 
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2.2. Simulation of the Model 

We performed a constraint-based flux simulation by using the Flux Balance Analysis (FBA) [20] 

algorithm. This approach has been used to simulate exponential growth in bacteria and assumes that 

the cells grow optimally using a given amount of carbon and energy source. Another assumption is the 

steady state of intracellular reactions in the exponential phase. As the number of equations (reactions) 

is much larger than the number of variables (metabolites), we have an underdetermined system of 

equations, which is solved by applying a steady state and optimizing for an objective function (cell 

growth or biomass evolution). This optimization was done with linear programming, which requires 

the establishment of boundary parameters for the uptake. The solution for this mathematical problem 

(see Methods) is a flux vector, where each reaction has a flux value. Model validation usually focuses 

on testing whether the growth capabilities or any particular objective flux corresponds to a given set of 

experimental flux data. 

Synechococcus elongatus PCC7942 is an obligate photoautotroph organism, thus we defined a set 

of constraints for this growth conditions (detailed in Supplementary file S1, Table S2). A two-step 

optimization procedure was applied as in previous works [11]. The first step was the maximization of 

biomass growth while the light intake was unconstrained. Next, the maximum growth value was 

incorporated as a constraint to minimize the light uptake rate (the second step). This was designed with 

the aim to estimate physiologically meaningful photon uptake values that tallied experimental growth 

measurements. Biomass synthesis, a theoretical abstraction for cellular growth, is considered as a drain 

of some metabolite intermediates, into a general biomass component [11]. We looked upon 

information about weight fractions of macromolecules and monomers to reflect the composition of 

biomass. Frequently, data related to the relative amounts of these metabolites are not available in 

literature, or the published information is shown in a particular physiological condition not usable  

for our goals. As long as possible, the weight fractions were updated to reflect the specifics of 

Synechococcus elongatus PCC7942. The quantities measured in other phylogenetically related 

biological systems could be a close approximation to the metabolic reality of the concerned organism. 

In the present work we have used the biomass composition reported in Table 4. For details, please find 

a more detailed explanation of biomass equation in Methods and Supplementary File S1. 

For the estimation of the theoretical maximum illumination we calculated the surface area per 

weight of biomass. We considered a spheroid geometry of the cell with a length of 3.57 ± 0.12 μm, a 

width of 1.47 ± 0.09 μm and a dry weight of 3.87 ± 0.03 ng [51] and we assumed an irradiance value 

of 0.156 mE m−2 s−1 in a 12:12 hours photoperiod as the value with the highest growth rate 

experimentally determined [51]. Taking into account these data the theoretical maximum illumination that 

would reach the cell membrane in our model was estimated as 1.96 mE gDW−1 h−1. The first optimization 

was carried out by constraining the CO2 and HCO3
− uptake rates at 1.99 mmol gDW−1 h−1 [52] and 

maximizing growth. Then we imposed that specific growth rate as a condition and we minimized the 

photon uptake rate. That is, finding the minimal quantity of photons needed for the metabolism to 

work with the experimentally determined carbon uptake. In this way, we estimated physiologically 

meaningful photon uptake values, which do tally with experimental growth measurements [11,53]. The 

specific growth rate for iSyf715 resulted to be 0.05987 h−1 with a photon uptake rate of 0.1 mE gDW−1 

h−1 on each photosystem. 
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Due to the biphasic nature of cyanobacterium growth, we look for reported data for exponential 

growth phase with which to compare our simulation. The maximum specific growth rate of 

Synechococcus elongatus PCC7942 has been reported from 0.0519 h−1 to 0.0551 h−1 [52,54], despite 

scarce information about studies on optimization of the specific growth rate of this prokaryote. The 

slight difference of our simulated growth with the experimental data could be the result of several 

factors, including regulation, stress and feedback inhibition, which cannot be captured in constraint-based 

stoichiometric models. Moreover, the growth of many laboratory strains are not consistent with the 

computed optimal by FBA because they are not necessarily evolved for growth maximization [55,56]. 

These results are, therefore, an overall acceptable validation of the genome-scale metabolic model. 

Table 4. Biomass composition of the S. elongatus PCC7942 metabolic model. 

Metabolites mmol/gDW Metabolites mmol/gDW 

Proteins 0.000459 
Ribonucleotide
s 

 

Carbohydrates  AMP 0.140389293 
Glycogen 0.53439 UMP 0.140389293 
Antenna 
chromophores 

 GMP 0.123745851 

Zeaxanthin 0.00079 CMP 0.123745851 
Beta-carotene 0.000875 Lipids  
Trans-lycopene 0.00820225 14C-lipid 0.028 
Chlorophyll a 0.0057 16C-lipid 0.0042 
Phycocyanobiline 0.0285 18C-lipid 0.00448 
Deoxyribonucleotides  (9Z)16C-lipid 0.0066 
dATP 0.0201156 (9Z)18C-lipid 0.00625 
dTTP 0.0201156   
dGTP 0.02538445   
dCTP 0.02538445   

Furthermore, we studied split-flux reactions, nodes in the network where flux can go in two or more 

directions and that are very good checkpoints to see if complex metabolic behavior has been properly 

captured by the metabolic model (Figure 3 depicts the relevant reactions vector). The flux landscape of 

the model shows a flux distribution directed towards the CO2 fixation at the Calvin-Benson cycle, as 

expected of a photosynthetic cell that uses light and carbon substrates to build complex carbohydrate 

molecules. The solution space reveals that the autotrophic growth flows in the gluconeogenic direction 

(see Figure 3). Unsurprisingly, RuBisCO (reaction “4.1.1.39b”) and carbonic anhydrase (reaction 

“4.2.1.1b”) have high fluxes as they are entry points of carbon dioxide and carbonic acid, the carbon 

sources of the system. The demand of ATP and NADPH is supplemented by the photosynthetic 

processes. Depending on the needs of each of them, photosynthesis will be linear or include a cyclic 

part if more ATP is required. iSyf715 shows significant flows over the ferredoxin-NADP+ reductase 

(reaction “_1.18.1.2”) and across the ATPase (reaction “_3.6.3.14”), the governing complex in the 

photophosphorylation process. Thus, iSyf715 is flexible enough as to incorporate ATP/NADPH ratios, 

following the hypothesis that the existence of both electron transports must be essential for efficient 

photosynthesis [57].  
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Figure 3. Flux landscape of the iSyf715 metabolic model. Abbreviations: β-D-gluc = β-D-

glucose; β-D-gluc-6-P = β-D-glucose-6-phosphate; α-D-gluc-6-P = α-D-glucose-6-phosphate;  

β-D-fruct-6-P = beta-D-fructose-6-phosphate; β-D-fruct-1,6-P = β-D-fructose-1,6-bisphosphate; 

dihydroxi-acet-P = dihydroxy-acetone phosphate; D-glyceral-3-P = D-glyceraldehyde-3-

phosphate; Pi = phosphate; 1,3-di-P-glyc = 1,3 diphosphateglycerate; 3-P-glyc = 3-

phosphoglycerate; 2-P-glyc = 2-phosphoglycerate; P-enolpyr = phosphoenolpyruvate; pyr = 

pyruvate; ac-CoA = acetyl-CoA; ox-acet = oxaloacetate; mal = malate; fum = fumarate; 

UQH2 /UQ = reduced ubiquinone/oxidized ubiquinone; succ = succinate; succ-CoA = 

succinyl-CoA; 2-ketoglut = 2-ketoglutarate; D-isocit = D-isocitrate; cit = citrate; CoA = 

coenzyme A; ribul-1,5-bisP = D-ribulose-1,5-bisphosphate; D-ribul-5-P = D-ribulose-5-

phosphate; D-rib-5-P = D-ribose-5-phosphate; D-xylul-5-P = D-xylulose-5-phosphate. 

 

The iSyf715 model displays the activation of the production of glycogen through the  

ADP-D-glucose synthesis, which serves as a form of carbon storage. The glyoxylate shunt is basically 

inactive, and the TCA cycle is incomplete. As known in many metabolic engineering works,  

acetyl-CoA stands as a possible metabolite of industrial relevance in Synechococcus as it can be the 

starting point of biosynthesis of several amino acids and fatty acids, which are of high importance to 

the production of biofuels [6]. In this sense, previous studies have worked on engineering reactions 

around acetyl-CoA, and have reported promising results in microorganisms genetically engineered to 

produce added-value metabolites [58–60]. 

It is noteworthy that reactions such as those catalyzed by glucokinase (reaction “2.7.1.2a”), 

phosphofructokinase (reaction “2.7.1.11”) and pyruvate kinase (reaction “2.7.1.40a”), associated with 

de novo synthesis of carbohydrates, exhibit no flux, which is in correspondence with photoautotrophic 

growth conditions [33,61]. Others, like those catalyzed by glucose-6-phosphate isomerase (reaction 
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“5.3.1.9a,b”), fructose 1,6-bisphosphate phosphatase (reaction “3.1.3.11”) and phosphoribulokinase 

(reaction “2.7.1.19”), as well as those that produce D-ribulose-1,5-bisphosphate and catalyzed by 

ribose-5-phosphate isomerase (reaction “5.3.1.6”) and ribulose-phosphate 3-epimerase (reaction 

“5.1.3.1”), are active, as should be in photoautotrophic conditions. Finally, we would like to focus on 

the high flux value of the reversible reaction “_1.3.99.1” catalyzed by succinate dehydrogenase. In this 

case the direction implies the succinate oxidation to fumarate reducing ubiquinone. The synthesis of 

fumarate is an essential reaction since it represents an intermediate node in many metabolic pathways 

that yield building blocks for biomass formation; such as uridine monophosphate (UMP) and aspartate. 

It is known that this cyanobacterium does not have abundance of complex morphological 

characteristics [62], therefore, the reduced ubiquinone could be oxidized by other processes, such as 

photosynthesis electronic transfer, contributing to the formation of NADPH and ATP without 

triggering their classical synthesis reactions’ fluxes. 

The genome-scale metabolic model of SynechococcuselongatusPCC7942, iSyf715, is available in 

Supplementary files S2, S3 and S4 and its results can be traced in Supplementary file S5. 

3. Methods 

3.1. Genome-Scale Metabolic Network Reconstruction 

Pathway Tools [29] and COPABI [30] software were used to construct a specific database of genes, 

proteins, enzymes and metabolites. All the genome and annotation files of Synechococcus elongatus 

PCC7942 were downloaded from the NCBI Entrez Genome [28] repository as of 24 February, 2011. 

The network was retrieved by Pathway Tools and was checked using COPABI filling gaps algorithms 

and different databases, like KEGG pathway database [31], MetaCyc [32], and BRENDA Enzyme 

database [37]. See Supplementary File S1 for a complete list. 

iSyf715 model on SBML format was deposited in BioModels Database [40] and assigned the 

identifier MODEL1407310000. 

3.2. Linear Programming for Flux Balance Analysis 

All biochemical reactions in iSyf715 were formulated as a stoichiometric model, such as: 

S·v 

Here, S is a stoichiometric matrix that contains the stoichiometric coefficients from all internal 

(balanced) metabolites, whereas v is a flux vector that corresponds to the columns of S. Using an 

approach known as flux balance analysis or FBA [20], the former equation can be solved using linear 

programming and a given set of experimentally-driven constraints. In FBA the number of reactions is 

often larger than the number of metabolites, making the system underdetermined. Generally, in order 

to solve the problem and obtain a feasible solution for the intracellular fluxes, a steady state and an 

optimization criterion on metabolic balances has to be imposed. Steady state can be imposed so that: 

S·v = 0 
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In addition, the optimization criterion can be set by maximizing one biochemical reaction, such as 

the biomass evolving equation. Additionally, boundary conditions have to be used to be able to 

simulate the steady state. 

For instance, 

Max (vj)   subject to S · vj = 0  ∀j∈ N 

vj, irr∈ R+ 

vj, rev∈ R 

vj, const∈ R, vmin<vj,const<vmax 

vj,uptake∈ R, vmin<vj,uptake<vmax 

Where vj is the rate of the jth reaction. The elements of the flux vector v were constrained for the 

definition of reversible and irreversible reactions, vj, rev and vj, irr, respectively. Additionally, two set of 

equations were established, vj, const, constraining metabolic reactions, and vj, uptake, uptake reactions, 

which were bound through experimentally determined values from the literature. Biomass synthesis 

was considered as a drain of precursors or building blocks into hypothetical biomass component. Flux 

through biomass synthesis reaction, being the biomass formation rate, is directly related to growth of 

the modeled organism. Simulations were performed using the OptGene software [63], later termed 

BioOpt [64,65] 

More information about the modeling mechanics can be found in Montagud et al., 2010 [11]. 

Readers will find in Supplementary file S2 the model file where all reactions and simulated constraints 

are depicted and ready to be used in OptGene software [63]. 

3.3. Biomass Composition 

Biomass synthesis was considered as a drain of precursors or building blocks into a hypothetical 

biomass component. Precursors considered were amino acid, carbohydrates, chromophores, nucleic 

acids, and lipids. All data were retrieved from published information as described in Supplementary 

File S1. Flux through the biomass synthesis reaction, being the biomass formation rate, is directly 

related to growth of the modeled organism [20]. Table 4 shows the biomass composition that  

was considered in the current metabolic model and a detailed description can be found in 

Supplementary File S1. 

4. Conclusions 

We have successfully reconstructed the first genome-scale metabolic network for Synechococcus 

elongatus PCC7942, called iSyf715. The curated model represents an up-to-date database that 

encompasses all knowledge available in public databases, scientific publications and textbooks on the 

metabolism of this cyanobacterium. The model has been compiled in OptGene and SBML to enable its 

use with different software. 

Our model includes 851 metabolic reactions and 838 metabolites, as well as the information from 

715 genes. Moreover, we identified 76 enzymatic reactions needed for the correct function of the 
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metabolism, but with no annotated cognate gene. These genes are interesting targets for experimental 

studies as we have seen that their presence is required in order to build up the basic cellular components. 

From the topological perspective the characteristics of the model are very similar to other published 

organisms’ providing support for an evolutionary study of the structure and organizational properties 

of metabolic networks, in the line of recent works [66]. The connectivity analysis of the network 

model using the Pareto cumulative distribution shows scale-free behavior with a high non-uniformity 

and a hierarchical connectivity of the metabolites, which is typical of biological networks and points 

towards functional properties discussed in other works [46]. 

Flux balance analysis of the model was applied in order to simulate the autotrophic growth rate of 

the cyanobacteria. The iSyf715 was able to simulate growth, which approached experimental values as 

well as characteristic reactions directions and split fluxes specific of this cyanobacterium. Moreover, 

typical flux characteristics of photosynthetic cells, such as active Calvin-Benson cycle or production of 

glycogen through the ADP-D-glucose synthesis were observed in our simulations. 

In conclusion, the genome-scale metabolic network of Synechococcus elongatus PCC7942 

(iSyf715) will be a valuable tool for industrial applications and fundamental research. Its use will 

allow the study and experimentation of this cyanobacterium as a possible light-driven production 

chassis for metabolites of industrial interest, in the line of Synechocystis sp. PCC6803 [11,12], 

Cyanothece sp. ATCC 51142 [67] or Synechococcus sp. PCC 7002 [68]. 
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