Document downloaded from:

http://hdl.handle.net/10251/151048
This paper must be cited as:

Lucas Alba, S.; Meseguer, J. (2017). Dependency pairs for proving termination properties of
conditional term rewriting systems. Journal of Logical and Algebraic Methods in
Programming. 86(1):236-268. https://doi.org/10.1016/}.jlamp.2016.03.003

The final publication is available at

https://doi.org/10.1016/}.jlamp.2016.03.003

Copyright E|sevier

Additional Information



Dependency pairs for proving termination properties of
conditional term rewriting systems™

Salvador Lucas®, José Meseguer®

@DSIC, Universitat Politécnica de Valéncia
bCS Dept. at the University of Illinois at Urbana-Champaign

Dedicated to the memory of Bernhard Gramlich

Abstract

The notion of operational termination provides a logic-based definition of ter-
mination of computational systems as the absence of infinite inferences in the
computational logic describing the operational semantics of the system. For
Conditional Term Rewriting Systems we show that operational termination is
characterized as the conjunction of two termination properties. One of them is
traditionally called termination and corresponds to the absence of infinite se-
quences of rewriting steps (a horizontal dimension). The other property, that we
call V -termination, concerns the absence of infinitely many attempts to launch
the subsidiary processes that are required to perform a single rewriting step (a
vertical dimension). We introduce appropriate notions of dependency pairs to
characterize termination, V-termination, and operational termination of Con-
ditional Term Rewriting Systems. This can be used to obtain a powerful and
more expressive framework for proving termination properties of Conditional
Term Rewriting Systems.

Keywords: Conditional term rewriting, dependency pairs, program analysis,
operational termination

1. Introduction

Conditional Term Rewriting Systems (CTRSs [6, 11, 24]) extend Term Rewrit-
ing Systems (TRSs [5, 36, 41]) by adding a (possibly empty) conditional part ¢
to each rewrite rule ¢ — r, thus obtaining a conditional rewrite rule £ — r < c.
The addition of such conditional parts ¢ substantially increases the expressive-
ness of programming languages that use them (e.g., ASF+SDF [8], CafeOBJ [15],
ELAN [7], Haskell [23], OBJ [19], or Maude [9]) and often clarifies the purpose of
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1-P and TIN2015-69175-C4-1-R, GV project PROMETEOII/2015/013, and NSF grant CNS
13-19109. Salvador Lucas’ research was partly developed during a sabbatical year at UTUC.
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the rules to make programs more readable and self-explanatory. For instance, in
functional programs, the use of guards and local definitions (by means of where
clauses) is customary.

Example 1. The following Haskell program implements the well-known quick-
sort algorithm [36, Section 1]:

split x [1 = ([1,[D)

split x (y:ys)
| x <=y = (xs,y:28)
| otherwise = (y:xs,zs)
where (xs,zs) = split x ys

gsort [1 = []
gsort (x:xs) = gsort ys ++ (x:gsort zs)
where (ys,zs) = split x xs

This program can be understood as a CTRS (borrowing from [36, Section 1];
we have added rules to compare natural numbers in Peano’s notation (with leq),
and for implementing Haskell’s appending operator ++ for lists with app):

leq(0,z) — true (1)

leq(s(x),0) — false (2)

lea(s(z),5(x)) — lea(z,y) (3)

app(nil,zs) — s (4)

app(cons(z, xs),ys) — cons(x,app(xs,ys)) (5)

split(x, nil)  —  pair(nil, nil) (6)

split(z, cons(y,ys)) — pair(xs,cons(y, zs)) (7)
< leq(z,y) — true, split(z, ys) — pair(xs, zs)

split(x, cons(y,ys)) —  pair(cons(y,xs), zs) (8)
< leq(z,y) — false, split(z, ys) — pair(xs, zs)

gsort(nil) — nil 9)

gsort(cons(z,xs)) — app(gsort(ys), cons(x,qgsort(zs))) (10)

< split(x, xs) — pair(ys, zs)

Note the following:

1. a guard b in the Haskell program (e.g., x <= y and otherwise, which here
means that the condition x <= y does not hold) is translated as a boolean
test b —* true or b —* false. The intended meaning is that the boolean
expression b is evaluated by rewriting (in zero or more steps, denoted as
—*) and then the outcome is checked to see whether it is true or false,
respectively.

2. where clauses defining pattern matching conditions p = e for an expres-
sion e whose value is matched against a pattern p are translated as rewrit-
ing conditions e —* p. The intended meaning is that e will be evaluated
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Figure 1: Inference rules for conditional rewriting (z,v, 2,21, ..., Tk, Y1, - ., Yk are variables)

and the outcome matched against p. In this way, variables in p become
instantiated to expressions which are then used in the right-hand side of
the rule to return the final result of the computation. Thus, part of such
a computation is accomplished in the conditional part of the rules.

The example illustrates two practical uses of conditional rules when defining
functions:

1. Testing boolean conditions before applying a rule, as in (7) and (8).

2. Local reductions of specific expressions followed by matching against a
pattern in order to obtain pieces of information which can be used to
build the outcome as in rules (7), (8), and (10).

Although several transformations have been envisaged to remove the conditional
part of the rules, thus yielding an ‘equivalent’” TRS (see [31, 35, 37, 39] and
the references therein), programmers still find conditional rules valuable when
writing programs in the aforementioned languages.

1.1. Termination, V -termination, and operational termination of CTRSs

The semantics of rewriting-based computational systems is often described
by means of the transitions induced by the rewriting steps. The one-step rewrit-
ing relation —7 on terms induced by a CTRS R is the basis to describe any
accomplished evaluation or transformation of expressions. In this setting, the
absence of infinite rewrite sequences t1 —x to —x - -+ arises as a natural defi-
nition of terminating behavior for CTRSs. However, computations with CTRSs
with rules £ — r < s — t1,...,8, — t, (i.e., the conditional part of a rule
consists of a sequence of pairs s; — t;, for 1 < i < n) are defined by means of
an Inference System where each rewriting step s —x t requires a proof. Figure
1 shows the inference system for conditional rewriting.! This proof also affects
the termination behavior of R, representing a different dimension of it.

By - By
A

LAll rules in this system are schematic in that each inference rule can actually

be used under any instance %&U(Bn) of the rule by a substitution o. For instance,

(Repl) actually establishes that, for every rule £ — r < s1 — t1,...,8n, — ¢, in the CTRS
R, every instance o(£) by a substitution o rewrites into o(r) provided that, for each s; — ¢,
with 1 <4 < n, the reachability condition o(s;) —=* o(t;) can be proved.



Assume that we have an interpreter for a logic L, i.e., an inference machine
that, given a theory & and a goal formula ¢, tries to incrementally build a proof
tree for ¢. Intuitively, we call S terminating if for any ¢ the interpreter either
finds a proof in finite time, or fails in all possible attempts also in finite time.
The notion of operational termination captures this idea, meaning that, given an
initial goal, an interpreter will either succeed in finite time in producing a closed
proof tree, or will fail in finite time, not being able to close or extend further any
of the possible proof trees, after exhaustively searching all such proof trees [26].
Besides implying termination in the usual TRS sense, operational termination
also captures a ‘vertical’ dimension of the termination behavior which is missing
in the usual “without infinite reduction sequences” definition of termination (the
‘horizontal’ dimension).

Example 2. The following CTRS R:

gla) — c(b) (11)
b — f(a (12)
flx) — z<glx)—cly) (13)

is terminating in the usual sense: there is no infinite rewrite sequence. This is
easily proved in this particular case because the underlying TRS R, :

gla) — c(b)
b — f(a)
flx) — =«

which is obtained from R by removing the conditional part of the rules (see /6,
page 324] and [36, Definition 7.1.2], for instance), is terminating.

However, R is not operationally terminating: we have an infinite proof tree
for the inference system for CTRSs in Figure 1 (substitutions provide the neces-
sary match of rules against the different goals; the labels indicating the applied
rules have been conveniently shortened):

(Rp) f(a) —a (<€)
b — f(a) o c(f(a)) — c(a) c(a) =" c(b) .
B (@) <(f(a)) > c(b) .
g(a) — c(b) c(b) =" c(b o
g(a) =" c(b)

(Rp)

Note that the rightmost uppermost goal c(a) —* c(b) remains open due to the
left-to-right evaluation strategy for the goals, which first takes over the infinite
branch on its left. This infinite proof tree concerns a single rewriting step f(a) —
a. However such a step is indeed possible; the use of (Refl) instead of (Tran)
proves c(b) —* c(b) and closes the tree by cutting its infinite developmenit:



(Rf)

(T)

(Rp)

g(a) — c(b) c(b) =" c(b)

g(a) =" c(b)
f(a) > a

(Rp)

Available tools for proving operational termination of CTRSs R (e.g., AProVE
[18] or VMTL [38]) rely on transformations U that prove operational termination
of R as termination of the TRS U(R). However, this transformational approach
has substantial limitations.

Example 3. The following CTRS R [36, Example 7.2.51]

h(d) — c(a) (14)
h(d) — c(b) (15)
f(k(a),k(b),z) — f(z,z,x) (16)
glz) — k(y) < h(x) —d,h(z) = c(y) (17)

is operationally terminating® but U(R) (where U is the transformation in [36,
Definition 7.2.48]) is not terminating: U(R) consists of rules (14), (15) and
(16) together with the following rules that replace the conditional rule (17)

glx) — Ui(h(z),z) (18)
Ui(d,z) — Ua(h(z),z) (19)
Ua(c(y),z) — k(y) (20)

with Uy and Uy new function symbols. Ohlebusch displays the following cycle:

f(k(a), k(b),Uz(h(d),d)) —u(w) f(Uz2(h(d),d),Uz(h(d),d),Us(h(d),d))
iy f(Uz(c(a), d), Uz(c(b),d), Ua(h(d), d))
%Z(R) f(k(a), k(b), Uz(h(d),d))

In this paper we define the notion of V-termination, which captures the vertical
dimension of the termination behavior of CTRSs. We provide a uniform defini-
tion of termination and V-termination of CTRSs as the absence of specific kinds
of infinite proof trees. We prove that operational termination is just the con-
junction of termination and V-termination. We use these results to develop a
methodology to prove or disprove termination, V-termination, and operational
termination of CTRSs. In the TRS setting an interesting approach to develop
methods for proving termination of (variants of) rewriting is the extension or
generalization of the Dependency Pair (DP) approach for TRSs [1]: the rules
¢ — r that are able to produce infinite sequences are those whose right-hand
side r contains (possibly recursive) function calls which are represented as new

20hlebusch proves R quasi-reductive, which implies its quasi-decreasingness, which in turn
implies its operational termination [26].



rules u — v, called dependency pairs and collected in a new TRS DP(R). Pairs
in DP(R) determine dependency chains whose finiteness characterizes termina-
tion of R. In this paper we generalize the DP approach to all aforementioned
termination properties of CTRSs.

1.2. Our contributions

The contributions of this paper (after Section 2, which introduces some pre-
liminary notions and definitions) can be summarized as follows:

1. In Section 3 we introduce the notion of V-termination as the absence of a
specific kind of infinite proof trees. We prove that operational termination
is the conjunction of termination and V-termination. We also introduce
a generic notion of minimality of terms and a number of generic results
that are the basis for the developments in the subsequent sections.

2. We provide a complete characterization of termination of CTRSs using
dependency pairs (Section 4). Although our main goal is the development
of methods for proving and disproving operational termination of CTRSs,
a first consideration of the problem of proving termination of CTRSs is
useful because: (i) the adaptation of our methodology to characterize
termination using dependency pairs is simpler, and (ii) the dependency
pairs introduced to analyze termination of CTRSs are also used to analyze
operational termination of CTRSs. Our analysis and results apply to
arbitrary CTRSs, without any restriction on the shape of the rules £ —
r < ¢ beyond a general requirement for £ not being a variable, something
that is fulfilled in most cases.

3. We provide a complete characterization of V -termination of CTRSs using
dependency pairs (Section 5). As in the previous case (termination of
CTRSs) the obtained dependency pairs are also used to prove operational
termination of CTRSs as discussed in the next item.

4. Operational termination of CTRSs can be proved by using the previously
introduced dependency pairs for proving termination and V-termination
of CTRSs. In Section 6 we show that this can be more efficiently done by
considering smaller sets of dependency pairs.

5. Section 7 introduces a new kind of chains, called O-chains, which provide
a simpler characterization of operational termination of deterministic 3-
CTRSs. We also show how to use O-chains of dependency pairs to prove
and disprove termination, V-termination and operational termination of
CTRSs using the different kinds of dependency pairs introduced above.

Section 8 summarizes in more detail our contributions, discusses related work,
and briefly describes the practical use of the ideas developed in this paper in the
recent version of the termination tool MU-TERM [3]. Section 9 discusses future
work and concludes.

This paper is an extended and completely revised version of [28, Sections 3
and 4]. In particular, we have invested a substantial effort in the foundational
aspects of the paper. There are many new contributions with respect to [28].



The characterization of operational termination in terms of different kinds of
proof trees in Section3 is completely new. Sections 4 and 5 about termination
and V-termination of CTRSs are also completely new. We have simplified the
definition of the 2D DPs given in [28]. And the corresponding notion of chain
has been slightly changed to make it more precise. We also provide full proofs
of all results.

This paper is dedicated in memoriam to Bernhard Gramlich, who made impor-
tant contributions, in particular, to the analysis of computations with condi-
tional rewrite systems. He passed away in June 2014, during the preparation of
a first version of this paper, where we pay attention to some of his contributions.

2. Preliminaries

The material in this section follows [36]. A binary relation R on a set A is

terminating if there is no infinite sequence a; R as R az---. Given relations
RISCAxA welet RoS={(a,b) e Ax A|3Ic€ A,aRcAcSb}.

2.1. Signatures, Terms, and Positions

Throughout the paper, X denotes a countable set of variables and F denotes
a signature, i.e., a set of function symbols {f,g, ...}, each having a fixed arity
given by a mapping ar : F — N. The set of terms built from F and X is
T(F,X). Var(t) is the set of variables occurring in a term t.

Terms are viewed as labelled trees in the usual way. Positions p,q, ... are
represented by sequences of positive natural numbers used to address subterms
of t. We denote the empty sequence by e. Given positions p, g, we denote their
concatenation as p.q. Positions are ordered by the standard prefix ordering:
p < q if 3¢’ such that ¢ = p.¢’. If p is a position, and Q is a set of positions,
then p.Q = {p.q | ¢ € Q}. The set of positions of a term ¢ is Pos(t). Positions
of nonvariable symbols in ¢ are denoted as Posx(t). The subterm at position p
of ¢ is denoted as t|,, and t[s], is t with ¢|, replaced by s.

We write s > t, read t is a subterm of s, if t = s|, for some p € Pos(s)
and s>t if s> ¢ and s # ¢t. We write s ¥ ¢ and s ¢ t for the negation
of the corresponding properties. The symbol labeling the root of ¢ is denoted
as root(t). A context is a term C € T(FU{O},X) with a ‘hole’ O (a fresh
constant symbol). We write C[ ], to denote that there is a (usually single) hole
O at position p of C. Generally, we write C[ | to denote an arbitrary context
and make the position of the hole explicit only if necessary. C[]. = O is called
the empty context.

2.2. Substitutions, renamings, and unifiers

A substitution is a mapping ¢ : X — T (F,X). The ‘identity’ substitution
x +— x for all z € X is denoted €. The set Dom(o) = {x € X | o(x) # z} is
called the domain of o.



Remark 4. We do not impose that the domain of the substitutions be finite.
This is usual practice in the dependency pair approach, where a single substitu-
tion is used to instantiate an infinite number of variables coming from renamed
versions of the dependency pairs (see below). When substitutions with finite
domain are assumed, we explicitly call them finite substitutions.

A renaming is a bijective substitution p such that p(z) € X for all z € X.
A finite substitution o such that o(s) = o(¢) for two terms s,t € T(F,X) is
called a unifier of s and t; we also say that s and ¢ unify (with substitution o).
If two terms s and ¢ unify, then there is a unique most general unifier o (up
to renaming of variables) such that for every other unifier 7, there is a finite
substitution 6 such that § oo = 7.

2.3. Conditional Rewrite Systems

An (oriented) CTRS R is a pair R = (F, R) where F is a signature and R a
set of rules £ — r <= s — t1, -+ , S, —> t,. In this paper we assume that ¢ ¢ X
As usual, £ and r are called the left- and right-hand sides of the rule, and the
sequence 81 — t1,- -, 8, — t, (often abreviated to ¢) is the conditional part of
the rule. Labeled rules are written « : £ — r < ¢, where « is a label, which is
often used by itself to refer to the rule.

Rewrite rules ¢ — r < ¢ are classified according to the distribution of
variables among ¢, r, and ¢, as follows: type 1, if Var(r) UVar(c) C Var(¢); type
2, if Var(r) C Var(l); type 8, if Var(r) C Var(f) U Var(c); and type 4, if no
restriction is given. A rule of type n is often called an n-rule. A rewrite rule
a is a proper n-rule if for all m < n, « is not an m-rule. An n-CTRS contains
only m-rules for m < n. A TRS is a 1-CTRS whose rules have no conditional
part; we write them ¢ — r.

A 3-CTRS R is called deterministic if for eachrule ¢ — r < s1 — t1,...,5, —
t, in R and each 1 < i < n, we have Var(s;) C Var(l) U U;;ll Var(t;).
Given R = (F,R), we consider F as the disjoint union F = C W D of sym-
bols ¢ € C (called constructors) and symbols f € D (called defined functions),
where D = {root({) | ({ = r <= ¢) € R} and C = F — D. If necessary we may
write Cx and Dx to make explicit the CTRS R which is used to establish the
partition of F into constructor and defined symbols. Terms t € T(F, X) such
that root(t) € D are called defined terms. Posp(t) is the set of positions p of
subterms ¢|, such that root(t|,) € D.

2.4. Proof trees

Given an atom A (in the CTRS logic) of the form s — ¢t or s —* ¢ for
terms s and ¢, we write pred(A) to refer to its predicate symbol — or —*,
respectively. We also write left(A) to denote term s of A. A finite proof tree T
(for the inference system in Figure 1) is either: (i) an open goal, simply denoted
as G, where G is of the form s — ¢ or s —* ¢ for terms s,t; then, we denote
root(T) = G; otherwise, (ii) is a derivation tree with root G, denoted as

T - T,
L)



where G is as above, T1,...,T;, are finite proof trees (for n > 0), and p : % is

an inference rule such that G = o(A), root(T1) = o(B1), ..., root(T,) = o(By)
for some substitution o. We write root(T) = G. We say that a finite proof tree
T is closed if it contains no open goals.

A finite proof tree T is a proper prefix of a finite proof tree T" if there are
one or more open goals Gy,...,G, in T such that T is obtained from T by
replacing each G; by a derivation tree T; with root G;. We denote this as
T C T'. An infinite proof tree T is an infinite increasing chain of finite proof
trees, that is, a sequence {T; };en such that for all ¢, T; C T;41. Note that, for all
i € N, root(T;) = root(T;41); then, we write root(T) = root(Tp). We consider
two infinite trees {T;}ien and {T7}ien equivalent, written {T;}ien = {77 }iens
iff (Vi)(37) T: C Tj and (Vi)(3j) T; C T;. This captures the intuitive idea that
both chains have the same infinite limit.

Remark 5. There can be different (equivalent) ways to represent the same in-
finite proof tree T as an infinite increasing chain {T;};en of finite proof trees
T;. This is due to the possibility of replacing one of more open goals in T; by
proof trees to obtain Tyy1. For instance, consider the following sequence?:

1. Ty is a goal Gy.
2. T is %ﬁol where S is a closed proof tree and G1 and O1 are open

goals.
3 T, is 5151 O ;o ,
- Tyis =——g— where S1 is a closed proof tree with root G.
S s o2 ,
4. Ty is e where Sy is a closed proof tree and G2 and O2
are open goals.
s g 2% O . .
5. Ty is reTum— where S} is a closed proof tree with root Gs.
6. T5 is e where S3 is a closed proof tree and G

and O3 are open goals.

7o

Note that, for alli > 0, T; C T;11 as required. Thus, {T;}icn can be used to
represent an infinite proof tree T. However, {T!};en (where T = Ty; for all
i € N) also represents T' because {T;}ien = {T) }ien.

A finite proof tree T is well-formed if it is either an open goal, or a closed proof
tree, or a derivation tree

T - T,
e (p)
where there is 7, 1 < i < n, such that Ty, ...,T;_1 are closed, T; is a well-formed
but not closed finite proof tree, and T;y1,...,T, are open goals. An infinite

proof tree is well-formed if it is an increasing chain of well-formed finite proof

3This example has been suggested by one of the referees of the paper.



Figure 2: Structure of an infinite well-formed proof tree T'

trees. Intuitively, well-formed (finite or infinite) proof trees are the proof trees
that an interpreter would incrementally build when trying to solve one condition
at a time from left to right.

Remark 6. Infinite well-formed proof trees T have a single infinite branch as
shown in Figure 2 where for alli > 1, ﬁ are sequences of closed proof trees and
O; are sequences of open goals. For all i > 0, goal G; is the root of the infinite
subtree immediately above it. Formally, T is the limit of the sequence {S;}ien,
where Sy = Gy and for all © > 0, S;+1 is obtained from S; by replacing the open

goal G; by Tit G&fl Oit1 - Note that, for alli >0, S; C S;y1, as required.

Definition 7. Let T be an infinite well-formed proof tree as in Figure 2. We
call the infinite sequence (G;);en the spine of T, denoted spine(T).

2.5. Conditional rewriting

We write s - t (resp. s =% t) iff there is a finite well-formed proof tree for
s — t (resp. s —»* t) using R. We often drop R from —% or —% if no confusion
arises. Note that s —x ¢ if and only if there is p € Pos(s), £ > r<=c€ R
and a substitution ¢ such that o(u) =% o(v) for all u — v € ¢, s|, = o(f)
and t = s[o(r)],. We can make this explicit by writing s 25 t. We also write

s QR t if there is ¢ > p such that s 5% t. It is easy to prove that s —5 t
holds if and only if there is a sequence s1,..., s, of terms for some n > 1 such
that s = s1, t = s, and for all i, 1 <i < mn, s; =g S;+1; in particular, we write
s =S* ¢ iff s »* ¢t and for all i >0, s; s Si+1 holds.

The following definitions introduce some basic combinators for proof trees
which are used to connect the usual rewriting notation based on sequences and
the corresponding proof trees. First we consider the use of the congruence rule.

Definition 8. Let R be a CTRS, s,t be terms, T be a proof tree with root(T) =
s —=t, and C[] be a context.

1. If T is a finite proof tree, then C[T] is the finite proof tree
T

(©)

oY

10



2. If T is an infinite proof tree {T;}ien for finite proof trees Ty, i > 0, then
C[T)] is the infinite proof tree {C[T;]}ien-

The following definition concerns the repeated use of rule (Tran). Note that we
do not try to cover all possible uses of the rule, but only those which are useful
in our development (see also Proposition 10 below).

Definition 9. For all i > 0, let t; be terms and, for all i > 1, let T; be finite
proof trees with root(T;) = t;—1 — t;. We write the infinite sequence of such
trees as T, Ts,... Let n € N and u be a term. Then

1. Tr(Th,...,T,) is given by:

(Rf)
T, tn =" ty
(Tv)
. (7r)
T to —* tn )
oS
T ty =% t, ' .
to —* tn '
2. Try(Th,...,T,) is given by:
T, tn =" U
(Tr)
- Tr)
T2 to —*u ) -
Tl tq —*u i
to —*u aw

If S is an infinite proof tree {S;}ien with root(S) = t,—1 — tn, then
Tr(Ty,...,Th1,S) is the infinite proof tree { Try (T4, ..., Th-1,5;)}ien-
3. If T is a finite proof tree with root(T') = t, —* u, then Trp(Th,...,T,) is

given by:
T, T
(Tr)
TS to —* "
T 1 —* o
to —*u "

If S is an infinite proof tree {S;}ien with root(S) = t, —* u, then
Trs(Ty,...,Ty) is the infinite proof tree { Trgs,(T1,...,Tn)}ien-
4. Troo(Ty, Ts, . . ) is given as the limit of the infinite sequence {S; }ien, where
S() 18
T1 tq —*
to —*u

(

11



and for all i > 0, S;11 is obtained from S; by replacing the open goal
t; —* u by the derivation tree

Tit1 tivi =" u
t; —*

(Tr)

Note that, for all t > 0, S; C Sijy1, as required.

The following result is obvious from the definitions above and is tacitly used in
the sequel; in this result, we write proof tree to indistinctly refer to a finite or
infinite proof tree.

Proposition 10. Let R be a CTRS, s,t be terms and C[] be a context.

1. If T is a closed (resp. infinite, well-formed) proof tree, then C[T] is closed
(resp. infinite, well-formed).

2. For alli > 1, let s;,t; be terms such that t; = s;41 and T; be finite proof
trees with root(T;) = s; — t;. Let n € N and u be a term. Then

(a) If for all i, 1 < i < n, T; is a closed proof tree, then Tr(T1,...,Ty)
is closed.

(b) If for alli, 1 <i < mn, T; is a closed proof tree and T,, is a well-formed
proof tree, then Tr,(T1,...,T,) is a well-formed proof tree.

(c¢) If for all i, 1 < i < n, T; is a closed proof tree and T is a well-
formed proof tree with root(T) = t,, —* u, then Trp(T1,...,T,) is a
well-formed proof tree.

(d) If for all i > 1, T; is a closed proof tree, then Try (Th,Tz,...) is a
well-formed proof tree.

3. Operational termination of conditional rewriting revisited

Let R be a CTRS. A term t such that there is no infinite well-formed proof
tree T with left(root(T)) = t is called operationally R-terminating (or just
operationally terminating). Actually, we have the following.

Proposition 11. Let R be a CTRS. A term t is operationally terminating if
and only if there is no infinite well-formed proof tree T with root(T) =t —* u
for any term u.

PrROOF. The only if part is obvious. The if part follows by contradiction.
Assume that ¢ is operationally nonterminating but no goal ¢ —* u has an infinite
well-formed tree for any term w. Then, there is an infinite well-formed proof
tree T' with root(T) = t — v for some term v. Then, T°° = Tr,(T) is an infinite
well-formed proof tree with root(T°°) =t —* u, leading to a contradiction. O

A CTRS R is called operationally terminating if every term is operationally
terminating. Termination can be seen as a horizontal dimension of operational
termination that concerns the absence of infinite sequences of rewriting steps:
a term ¢t is said to be R-terminating (or just terminating if no confusion arises)
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if there is no infinite rewrite sequence t = t; — to — - - starting from ¢. And
R is said to be terminating if every term is terminating. Actually, termination
of terms can also be characterized in a proof-theoretic way, as follows.

Proposition 12. Let R be a CTRS. A term t is terminating if and only if there
is no infinite well-formed proof tree T such that left(root(T)) = t and for all
G € spine(T), pred(G) = —*.

PrOOF. By contradiction. For the if part, if ¢ is not terminating, then there is
an infinite rewrite sequence t = s; =g S2 —R *** =R Sp —R +--. Foralli > 1,
let T; be the closed proof tree of s; — s;+1. Let u be an arbitrary term. Then,
T = Tr;°(T1, T, ...) is an infinite well-formed proof tree with root(T) =t —* u
and for all G € spine(T), pred(G) =—*, leading to a contradiction. For the only
if part, if there is an infinite well-formed proof tree T with left(root(T)) =t
and for all G € spine(T), pred(G) = —*, then, the only rule that can generate
such a tree is (Tran), i.e., T is as follows:

(Tran)

T’Vl G’I’L

(Tran)

- (Tran)

T G >

Tran

Gy )

where for all ¢ > 1, T; is a closed proof tree with root(T;) = s; — s;4+1. Thus,
there is an infinite rewrite sequence t = s1 =g S3 =R -+ =R Sp —R - for
some terms Si,...,Sy,.... that contradicts termination of ¢. O

We define now another termination property, called V-termination, which
expresses a vertical dimension of operational termination.

Definition 13 (V-termination). Let R be a CTRS. A term t is said to be V-
terminating iff there is no infinite well-formed proof tree T' such that left(root(T))
t and spine(T) contains infinitely many goals G satisfying pred(G) = —. We
say that R is V-terminating iff every term is V -terminating.

We characterize operational termination of CTRSs as the conjunction of ter-
mination and V-termination. This formalizes the idea of termination and V-
termination being the two dimensions of operational termination.

Theorem 14. A CTRS R is operationally terminating if and only if it is ter-
minating and V -terminating.

Proor. If R is operationally terminating, then there is no infinite well-formed
proof tree. Then, R is terminating (by Proposition 12) and V-terminating.
For the if part, we reason by contradiction. If R is terminating and V-
terminating but operationally nonterminating, then there is an infinite well-
formed proof tree T. By Proposition 12, spine(T) contains an infinite number
of goals G such that pred(G) = —. This contradicts V-termination of R. ad
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Let HT, VT, and OT denote, respectively, the properties of termination, V-
termination, and operational termination. Theorem 14 states the equivalence

((Vt) OT(t)) & ((Vt) HT(t) A VT (t))
However, the equivalence
(Vt) (OT(t) < HT(t) N VT(t))

does not follow from Theorem 14.% In fact, the latter equivalence does not hold
in general (although (V¢) (OT(t) = HT(t) A VT'(t)) obviously holds).

Example 15. Consider the following CTRS R

a — b«<c—d (21)
c = ¢ (22)

Here, a is terminating and V -terminating but operationally nonterminating.

In order to obtain a characterization of operational termination of terms, we
have to consider an additional termination property

Definition 16. Let R be a CTRS and t be a term. We say that t is VH-
terminating, written VHT(t), iff there is no infinite well-formed proof tree T
with left(root(T)) =t and spine(T) = (G;)ien such that there isn € N satisfying
that for all i > n, pred(G;) = —*.

Note that, if we let n = 0 in Definition 16, we obtain HT'(t) (according to Propo-
sition 12). Thus, this property is stronger than termination, i.e., (Vt) VHT(t) =
HT(t). For instance, a in Example 15 is not VH-terminating.

Proposition 17. Let R be a CTRS and t be a term. Then,
OT(t) & VHT(t) A VT(t)

PRrROOF. The only if part is obvious. For the if part, we reason by contradic-
tion. If OT(t) does not hold, then there is an infinite well-formed proof tree T
with left(root(T)) = t. Let spine(T) = (Gi)ien. Since t is V-terminating, there
is n such that, for all ¢ > n, pred(G;) = —*. This contradicts VHT(t). ad

Proposition 17 tells us that we need the stronger property VHT(t) (together
with VT(t)) to characterize operational termination of a term t (i.e., OT(t)).
However, the following result shows that there is no point in defining a new VH-
termination property for CTRSs (namely (Vt) VHT(t)) beyond termination:

Proposition 18. Let R be a CTRS. Then, ((Vt) VHT(t)) < ((Vt) HT(t)).

4This observation and the example are due to a reviewer of the paper.
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PrOOF. We have already noticed that for all terms ¢, VHT (t) = HT(t) holds.
Hence, the implication ((Vt) VHT(t)) = ((vt) HT(t)) is immediate. We prove
that ((Vt) HT(t)) = ((Vt) VHT(t)) by contradiction. If there is a term s such
that VHT(s) does not hold, then there is an infinite proof tree T such that
left(root(T')) = s and for spine(T) = (Gi)ien there is n > 0 such that for all
i > n, pred(G;) = —*. Let T’ be the infinite well-formed proof tree which is
obtained as the subtree of T with root G,,. Note that spine(T") = (Gpnti)ien
and for all G € spine(T"), pred(G) = —*. Let u = left(G,). By Proposition 12,
HT(u) does not hold, contradicting that ((Vt) HT(t)) holds. m|

Now, Theorem 14 can be seen as a consequence of Propositions 17 and 18:

‘R is operationally terminating &
(Vt) OT(t) = (by definition)
(Vt) (VHT(t) AN VT()) & (by Proposition 17)

((vt) VHT(t)) A ((Vt) VT (1)) &
((Vt) HT'(t)) A ((Vt) VT(t)) & (by Proposition 18)
R is terminating and V-terminating (by definition)

Thus, in the following we focus on termination rather than VH-termination.

Notation 19. In the following, we adopt a uniform notation to designate terms
and CTRSs with different (terminating, V -terminating, and operationally termi-
nating) properties by using labels H,V, O to speak of H-, V-, and O-terminating
terms and CTRSSs, respectively. By chosing H to designate terminating terms,
we stress that termination is the horizontal dimension of operational termina-
tion. We also let A = {H,V,O} to collect all these termination behaviors.

8.1. Minimality

As remarked in the introduction, the dependency pair approach is the ba-
sis of most automatic tools for proving termination properties of (variants of)
TRSs. Our methodology for the adaptation of the Dependency Pair approach
for TRSs to other variants of rewriting or other extensions of rewrite systems
makes explicit previous developments in [1, 17, 21, 22] and involves:®

1. The definition of a notion of minimal non-A-terminating term (or just A-
minimal, for A € A) which can be used to investigate A-termination by
restricting the attention to a smaller subset of non-A-terminating terms.

2. The investigation of the structure of rewrite sequences starting from such
A-minimal terms.

3. The definition of a notion of dependency pair, which is able to capture all
infinite sequences starting from A-minimal terms.

4. The definition of an abstract notion of A-chain, which can be used to
characterize \-termination as the absence of infinite A-chains.

5This methodology has been successfully applied to, for instance, contezt-sensitive rewrit-
ing, as in [2, 20], Order-Sorted TRSs, as in [27], and A V C-rewriting, as in [4].
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In this section we therefore prove some technical results which are used in the
rest of the paper to prove our results about using dependency pairs to prove
termination properties of CTRSs. These results are parametric on A € A.

For non-)\-terminating terms we introduce the following notion and then
prove some essential facts that will be used later.

Definition 20 (Minimality). Let R be a CTRS, A € A and t be a non-A-
terminating term. We say that t is A-minimal if every strict subterm s of t is
A-terminating. Let T be the set of minimal non-\-terminating terms.

The following lemma shows that non-A-terminating terms always contain a A-
minimal term.

Lemma 21. Let R = (F,R) be a CTRS, A € A and s € T(F,X). If s is
non-A-terminating, then there is a subterm t of s (s> t) such that t € Ty co-

PROOF. By structural induction. If s is a constant symbol, take t = s. If

s= f(s1,...,8k), we assume that s & T_o (otherwise, again let t = s). Then,
there is a strict subterm s’ of s (s > s’) which is non-A-terminating. By the
induction hypothesis, there is t € Ty.o such that s’ > ¢, i.e., s> t. O

Corollary 22. Let \€ A. A CTRS R is A-terminating iff Th-oo = 0.
Subterms and reducts of A-terminating terms are A-terminating as well.

Lemma 23. Let R = (F,R) be a CTRS, A € A, and s,t € T(F,X). If s is
A-terminating, then:

1. If s> t, then t is A-terminating.
2. If s =% t, then t is A-terminating.

PrOOF. If A = H, then the proofs are analogous to the well-known proofs for
terminating terms in the TRS setting [21, 22]. Assume A € {V, O}.

1. We reason by contradiction. Assume that s = C]t] for some context
C[]. If t is non-A-terminating, then there is an infinite well-formed proof
tree T' (of the appropriate shape, depending on A) as in Figure 2, where
Go = root(T). We consider two cases:

(a) If Gg =t — u for some term u, then C[T] is an infinite well-formed
proof tree with root(C[T]) = s — Clu]. If A = O, this already con-
tradicts OT-termination of s. If A = V', then by our assumptions
on T, spine(T) contains an infinite number of goals G; satisfying
pred(G;) = —. Hence C[T] is an infinite well-formed proof tree
and spine(C[T]) contains an infinite number of goals G; satisfying
pred(G;) = —. This contradicts V-termination of s.

(b) If Go =t —* u for some term wu, then the first inference rule that
applies to G in T is (Tran). We consider two cases:

16



i. There are goals G € spine(T') such that pred(G) = —. Then,
there is m > 0 such that, for all 7, 1 < i < m only the transitivity
rule (Tran) has been applied, i.e., T; contains a single closed
proof tree T; with root(T};) = u;—1 — u; for some term u;; O; is
empty and G; = u; —* u. Then, fm is empty, Gip = Up—1 —
U, is the root of an infinite well-formed subtree T);° of T, and
O, consists of a single open goal u,, —* u. Thus, we can build
the following infinite well-formed proof tree T”

CITY] Clum] =" u

Tl, G,l (Tran)
Clt] =" u
(where T] = C[T;] and G} = Clu;] — w for all 4, 1 < i < m)
which already contradicts A-termination of s if A = O. Fur-
thermore, if A = V, since T” still contains an infinite number of
goals G € spine(T") satisfying pred(G) = —, it also contradicts
A-termination of s.
ii. For all G € spine(T) we have pred(G) = —*. Note that, in this
case, we can only have A = O. Then for all i > 1, T, consists of
a closed proof tree T; with root(T;) = u;—1 — u; for some term
Uj; 0; is empty and G; = u; —* u. Thus, for all ¢ > 1, we can
replace each T; by T} = C[T;]. Thus, we obtain:

(Tran)

(Tran)

T, G,

. (Tran)

T —G;/ (Tran)

1 1

Clt] =" u

where, for all ¢ > 1, G} = Clu;] —* u which contradicts O-
termination of s.

(Tran)

2. Since s —* t, there are terms tg,...,t, such that, for all i, 0 < i < n,
t; =R ti+1 has a closed proof tree T; 1 and we let ¢ty = s and ¢, = t. Thus,
there is a finite well-formed proof tree T' = Tr(Ty,...,T,) for s =% t.

Assume that ¢ is not A-terminating (for A € {V,0}). Then, there is an
infinite well-formed proof tree T” of the appropriate shape (depending on
A). We consider two cases:

(a) If root(T') =t — u for some term u, we let T be

T u—*d
7 _>* u/ (Tran)

for some term v’ to obtain Trp.(T1,...,T,), an infinite well-formed
proof tree with root s —* u’, which contradicts A-termination of s as
T’ is a subtree of the obtained tree.
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(b) If root(T') = t —* w for some term w. Again, the infinite well-
formed proof tree Trr:(Ti,...,T,) with root s —* wu contradicts
A-termination of s.

O
Non-A-terminating inner reducts of A-minimal terms are A-minimal as well.

Lemma 24. Let R be a CTRS, A € A, andt € Th.- Ift 25 w and u is
non-A-terminating, then u € T oo-

Proor. All rewritings below the root of ¢ are issued on A-terminating terms
that remain A-terminating by Lemma 23. Then, strict subterms of u are all
A-terminating. Since w is non-A-terminating, u € Ty oo- ]

Given a signature F and f € F, we let f* (often just capitalized, e.g., F)
be a fresh symbol associated to f. Let F& = {f# | f € F} (assume F N F* =
0). For t = f(t1,...,ty) € T(F,X), we write t* to denote the marked term
fH(ty,...,tr). And given a marked term t = f¥(ty,... 1), where ty,... 1 €
T(F,X), we write t” to denote the term f(ty,...,tx) € T(F,X).

Proposition 25. Let R be a CTRS and X\ € {H,V,0}. Ift € Th.oo, then t¥ is

A-terminating.

PRrOOF.  (Sketch) By contradiction. If ¢* is not A-terminating, then there i
an infinite well-formed proof tree T with left(root(T)) = t*. Let spine(T)
(Gi)ien. We consider the three possible cases for A:

»n

e \ = H. By Proposition 12, we may assume that root(T) = t* —* u for
some term w and for all i € N, G; = s; —* u for some terms s; (with
t# = s0). Since no rule in R can remove the mark from (the root of) tf,
this means that there is a strict subterm ¢; of t* (and hence of t!) starting
an infinite rewrite sequence. This contradicts minimality of ¢.

e )\ = V. There are infinitely many G € spine(T") with pred(G) = —. The
first of such goals corresponds to the application of a rule @ : £ — r < ¢
with ¢ nonempty to a reduct v of ¢, i.e., t* —% uso that T'becomes infinite
because of attempts of evaluation for some of the conditions in c¢. Since
the root symbol f* of t¥ is marked, we can assume that t* = f#(¢y,..., 1),
uw= f(uy,...,ux), and for all i,1 <i < k, t; =* u;. Thus, the reduction
with « is attempted on w; for some j,1 < j < k. Hence, t; (a proper
subterm of ¢) is non-V-terminating, contradicting minimality of .

e If A = O, then the only missing case in the previous two points is that ¢*
reduces to a term u (i.e., t# —* u) to which a rule a : £ — 7 < ¢ with ¢
nonempty is attempted but now one of the left-hand sides v of a condition
v — w € c starts an infinite rewriting sequence (after instantiation with
the matching substitution). Thus, there is n € N such that for all ¢ >
n, pred(G;) = —* but pred(G,) = —. This case, however, leads to a
contradiction with ¢ being O-minimal as in the case A = V.
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Notation 26. In the following, rather than talking of H-terminating or H-
minimal terms, we will use terminating and minimal terms as these notions
already exist in the literature. Similarly, rather than Ty.oo, we use the usual
notation Too for TRSs (see [21], for instance) to denote the set of H-minimal
terms (minimal nonterminating terms in [21]).

In general, the sets of minimal nonterminating, non-V-terminating and opera-
tionally nonterminating terms are not related by inclusion.

Example 27. Term a in Example 15 is minimal operationally nonterminating,
but it is terminating and V -terminating. Thus, To-co € Too U Tv.co. As for

fa) — f(a) (23)
a —- b«a—b (24)

f(a) is not terminating and, since a is terminating, f(a) € Too. However, f(a) ¢
To-00 (because a € To o). Therefore, Too € To.co- Actually, for this example,
To-0o ={a} and Too = {f(a)}, i.€., Too N To.00 = 0. Now, with

a — a (25)
fz) — b<f(z)—b (26)

we have f(a) € Ty.co, but f(a) & To-oo (and f(a) ¢ Tss) because a is nontermi-
nating. Therefore, Tv.co € TO-00-

In the following we investigate practical approaches to prove termination, V-
termination and operational termination of CTRSs using dependency pairs.
Since many definitions and results apply to arbitrary CTRSs, we do not im-
pose any specific restriction on CTRSs when formulating them. Instead, when
a specific restriction is required for some result (typically type 3 and determin-
ism) we will make it explicit in its statement.

4. Dependency pairs for proving termination of CTRSs

In this section we consider the analysis of termination of CTRSs following
the methodology summarized in the first paragraphs of Section 3.1.

4.1. Infinite rewrite sequences starting from minimal terms

Our first result in this section is Proposition 29. It establishes that every
infinite rewrite sequence starting from a minimal term t = f(t1,...,t) first
rewrites t1,...,t, to obtain ¢’ = f(¢},...,t},). Then, arule a: f(l1,...,0;) —
r <= ¢ applies at the root of t'. Proposition 29 below also tells us that, either:

1. the right-hand side r of a depends on other rules in R, i.e., there are
defined symbols in 7, or
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2. «is not a 2-rule, i.e., r contains an extra variable x € Var(r) — Var ().
Definition 28. Let R be a CTRS. The set of defined subterms of a term t is:
DSubterm(R,t) = {t|, | p € Posp(t)}.

Proposition 29. Let R be a CTRS and t € To. There exist a1 £ —r < ¢ €
R, a substitution o, and u € Tao such that t =5* o(f) 5 o(r) > u, and either

1. there is s € DSubterm(R, 1), L tt s, such that u = o(s), or
2. there is x € Var(r) — Var(f) such that o(x) > u.

PrOOF. Consider an infinite rewrite sequence starting from ¢. By definition of
Teo, all proper subterms of ¢ are terminating. Therefore, ¢ has an inner reduction

to an instance o(¢) of the left-hand side of arule a: ¢ — r < 51 = t1,...,8, —
tn of R: t =5* o(0) 5 o(r) with o(s;) —* o(t;) for all i, 1 <i < n, and o(r)
is nonterminating. Thus, we can write t = f(t1,...,t) and £ = f(¢1,...,0)

for some k-ary defined symbol f, and t; —* o(¥¢;) for all 4, 1 < i < k. Since all
t; are terminating, by Lemma 23 (with A = H), o(¢;) and all its subterms are
also terminating. Hence, o(¢) is also minimal: ¢(¢) € To,. By Lemma 23, o(y)
is terminating for all y € Var(¢). Since o(r) is nonterminating, by Lemma 21,
it contains a subterm u € Too: o(r) > u, i.e., there is a position p € Pos(c(r))
such that o(r)|, = u. We have two cases:

1. If p € Posz(r), then, since u € Too, 100t(u) € D and there is a defined
subterm s of r, s € DSubterm(R,r), such that v = o(s). Note that s
cannot be a strict subterm of £, i.e., £ ¥ s. Otherwise, u = o(s) would be
a subterm of o(¢), thus failing to be minimal.

2. If p ¢ Posx(r), then there is € Var(r) such that o(z) > u. Since o(y) is
terminating for all y € Var(¢), it follows that « € Var(r) — Var(¢).

O

The proof of case 1 in Proposition 29 is analogous to [21, Lemma 1] (for
TRSs). Case 2 is specifically due to the use of conditional rules (with extra
variables in the right-hand side). The following definition collects the rules that
are used in the first and second cases of Proposition 29, respectively.

Definition 30. Let R be a CTRS. Let DRules(R) be the set of rules in R which
depend on other defined symbols in R:

DRules(R)={{ - r<ceR|r¢T({C,X)}
The set of rules in R whose right-hand sides contain extra variables is:
ERules(R) ={¢ - r < ce R |Var(r) — Var({) # 0}

Note that, if R is a 2-CTRS, then ERules(R) = 0.
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Example 31. For R in Example 2, D = {b,f, g}, C = {a,c}, and DRules(R) =
{(11),(12)}, i.e.,

gla) — c(b)
b — f(a)

However, (13) ¢ DRules(R) because (13) is
flx) = z < g(z) = c(y)

with right-hand side x € T(C,X). Since R is a 2-CTRS, ERules(R) = 0.
For R in Example 8, D = {f,g,h}, C = {a,b,c,d,k}, DRules(R) = {(16)}
and ERules(R) = {(17)}.

As a corollary of Proposition 29, we have the following result.

Theorem 32. Let R be a CTRS. For allt € Ty, there is an infinite sequence

t:to 1)* O’l(ll) i) 0'1(7‘1) \Z tl 1)* 0'2(12) i) 0'2(7‘2) \Z tQ 1)*
where, for alli > 1, (o; 1 l; = 1 < ¢;) € R, 0; are substitutions such that o;(x)
is terminating for all x € Var(¢;), and terms t; are minimal terms t; € Too such
that either:

1. a; € DRules(R) and there is a defined subterm s; of v, i > s;, €; b 4,
such that t; = 0;(s;), or
2. «; € ERules(R) and there is x; € Var(r;) — Var({;) such that o;(x;) > t;.

Remark 33. Item 2 in Proposition 29 concerns proper 3- and 4-rules only.
According to the proof of Proposition 29, this is because instances o(x) of vari-
ables x that occur in the left-hand side £ of the rule o in Proposition 29 are
terminating. This cannot be ensured for variables x € Var(r) —Var(£) and this
is the reason for including item 2 in Proposition 29. In the following section we
investigate conditions to avoid this.

4.2. Preservation of terminating substitutions
In the following, given a CTRS R, a substitution o, and V' C X, we say that
o is terminating over V if o(x) is terminating for all x € V.

Definition 34 (Preserving terminating substitutions). Let R be a CTRS
and a: { = r <= c € R. Let 0 be a substitution terminating over Var(f). We
say that o preserves termination of o iff o is terminating over Var(r) whenever
o(s) =% o(t) for all s — t € c. We say that R preserves terminating substitu-
tions if for all substitutions 0 and o : { — r <= ¢ € R, if o is terminating over
Var({), then a preserves termination of o.

Rules ¢ — r < c¢ that preserve terminating substitutions ensure that, if the
conditions s — ¢ € ¢ are all satisfied by a substitution ¢ whose bindings o(x)
are terminating for all z € Var(¢), then any other binding o(y) for a (possibly
new) variable y € Var(r) is terminating as well. Considering Definition 34, the
following refinements of Proposition 29 and Theorem 32 are obvious:
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Proposition 35. Let R be a CTRS which preserves terminating substitutions.
Then, for all t € Ty, there exist £ — r < ¢ € DRules(R,t), a substitution
o, and a term u € Ta such that t =5* o(f) S o(r) > u, and there is
s € DSubterm(R,r), L ¥ s, such that u= o(s).

Proor. By Proposition 29, infinite rewrite sequences starting from minimal
nonterminating terms can proceed in two precise ways. Either:

1. there is s € DSubterm(R, ), £ ¥ s, such that u = o(s), or
2. there is x € Var(r) — Var(£) such that o(z) > u.

Condition 2, though, does not apply as R preserves terminating substitutions
(i.e., o(x) is terminating) and u is nonterminating. O

Corollary 36. Let R be a CTRS which preserves terminating substitutions.
For all t € Ty, there is an infinite sequence

tzto i)* Ul(ll) —€> 0'1(’/‘1) \Z tl i)”( 0’2(12) —€> 0'2(7“2) \Z tQ i)*

where, for alli > 1, (I = r; <= ¢;) € DRules(R), o; is a substitution such that
o;(x) is terminating for all x € Var(¢;), and t; € Too is such that t; = o;(s;)
for some s; € DSubterm(R, 1), {; ¥ s;.

The following fact easily follows from Definition 34.
Proposition 37. Every 2-CTRS preserves terminating substitutions.

Theorem 32 and Corollary 36 are the basis for our next results, which provide
several new methods for proving termination of CTRSs.

4.8. Dependency pairs for termination of CTRSs

In the following, given a CTRS R, we obtain a new CTRS R’. Each rule
in R’ is obtained from a rule £ — r < ¢ € R by marking the left-hand sides
¢ and also using subterms v in the right-hand side r. The obtained rules are
of the form ¢# — v < ¢ where v/ = v if v € X and v/ = v* otherwise. For
historical reasons, we usually call them pairs.® In our definitions we assume
that the signatures 7' of such new CTRSs R’ are obtained by just extracting
all function symbols (with the corresponding arity) from the obtained rules”
0" — o' < ¢. The following set of horizontal dependency pairs corresponds to
rules issuing root steps in infinite minimal sequences (see Theorem 32, item 1):

6The first presentation of the DP approach for TRSs [1] clearly distinguished between
rewrite rules and dependency pairs (even using (u,v) rather than u — v for the latter),
although syntactically they are isomorphic structures. This difference became less relevant in
other presentations like [21] and [16, 17]. The original terminology, however, is useful as it
stresses the different role of pairs and rewrite rules (from R) in the DP approach.

7See [40] for an interesting discussion about the formal use of this assumption in termination
analysis in the TRS setting. See also [36, Section 8.7] and the references therein for related
considerations for CTRSs.
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Definition 38. Let R be a CTRS. The CTRS DPg(R) of horizontal depen-
dency pairs is:

DPy(R) = {¢* = v < c |l — r < c€ DRules(R),v € DSubterm(R,r),{ ¥ v}
Example 39. For R in Example 1, DPg(R) consists of the rules:

LEQ(s(),s(y)) — LEQ(z,y) (27)
APP(cons(z, xs),ys) APP(zs,ys) (28)
QSORT (cons(z, z:s)) APP(gsort(ys), cons(x, gsort(zs))) (29)

split(z, xs) — pair(ys, zs)
QSORT (cons(z, zs)) QSORT (ys) < split(z, zs) — pair(ys, zs) (30)
QSORT (cons(z,zs)) — QSORT(zs) < split(x, xs) — pair(ys,zs) (31)
Example 40. For R in Ezample 2, DPy(R) is:
Gla) — B (32)
B — F(a) (33)
For R in Example 8, DPy(R) = {F(k(a),k(b),z) = F(z,z,z)}.

U (A

The following set of collapsing dependency pairs corresponds to rules extracting
minimal terms from substitution bindings in infinite minimal sequences (see
Theorem 32, item 2):

Definition 41. Let R be a CTRS. The CTRS DP¢(R) of collapsing depen-
dency pairs is:

DPo(R)={* -z <c|l—r<cc ERules(R),z € Var(r) — Var(()}
Example 42. For R in Example 1, DP(R) consists of the rules:

SPLIT(z,cons(y,ys)) — xs (34)
< less(z,y) — true, split(z,ys) — pair(zs, zs)
SPLIT(z,cons(y,ys)) — zs (35)
< less(x,y) — true, split(z, ys) — pair(zs, 28)
SPLIT (z,cons(y,ys)) — xs (36)
< less(x,y) — false, split(z, ys) — pair(zs, zs)
SPLIT(z,cons(y,ys)) — zs (37)
< less(x,y) — false, split(z, ys) — pair(zs, zs)
QSORT (cons(x, xs)) — ys < split(x, xs) — pair(ys, zs) (38)
QSORT (cons(x,xs)) — zs < split(z, zs) — pair(ys, zs) (39)

For R in Example 2, DP¢(R) = 0. For R in Example 3,
DP¢(R) = {G(z) = y < h(z) — d,h(z) — c(y)}.
Definition 43. In the following, DPpyc(R) is:
DPrc(R) =DPy(R)UDPs(R).
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4.4. Characterization of termination of CTRSs

An essential achievement of the DP approach is the characterization of ter-
mination of a TRS R as the absence of infinite chains of dependency pairs in
DP(R), the set of dependency pairs associated to R [1]. In this TRS setting,
given a subset P C DP(R) of dependency pairs, a (P, R)-chain is a (possibly in-
finite) sequence u1 — v1,us — vg, ... of (renamed versions of) rules u; — v; € P
together with a substitution ¢ such that o(v;) =% o(u;41) for all ¢ > 1. Note
the different role of rules in P and R: rules in P (called pairs) are the compo-
nents of the chain; rules in R are used to connect consecutive pairs by rewriting.

In the following we generalize this approach to prove termination of CTRSs.
First, we introduce a suitable notion of H-chain that can be used with our
dependency pairs in Section 4.3 to model the infinite sequences of minimal
terms whose structure is described by Theorem 32 above. Our H-chains are
sequences of renamed variants of rules P C DP ¢ (R), which we also call pairs.
Such pairs are connected by means of rewriting steps issued not only with R,
but also using a TRS Q which is used to extract and mark (minimal) subterms
(Theorem 32).

Remark 44. In the remainder of the paper, unless stated otherwise, P, Q, and
R are CTRSs having possibly different signatures.

In the following definition, given a TRS Q, we write Q.. = {{ - r | { = r €
Q,/>r}and Qy = Q— Q.

Definition 45. Let P and R be CTRSs and Q be a TRS. A (P, Q,R)-H-chain
is a finite or infinite sequence of (renamed) rules u; — v; < ¢; € P, which
are viewed as “conditional dependency pairs”, together with a substitution o
satisfying that, for alli > 1 and all s — t € ¢;, 0(s) =% o(t). Also, for all
1 > 1, there is a term w; such that:

1. Ifv; ¢ X —Var(w;), then o(v;) = w; =% 0(Uiy1).

2. Ifv; € X — Var(u;), then o(v;) L>*Q> o —€>Qﬁ w; =5 o(Uig1).

A (P,Q,R)-H-chain is called minimal if for all i > 1, w; is R-terminating.

As usual, in Definition 45 we assume that for all i,5 > 1, i # j, Var(u; = v; <
¢;) NVar(u; — vj < ¢;) = 0 (renaming substitutions are used if necessary).
In the following, given a signature F, we write

Emb(F) = {f(z1,...,zp) —m x| feF, k=ar(f),1 <i<k}
MUF) = {f(xy,...,x6) = fH2r,... x0) | f e Fok=ar(f)}

where 1, ..., xy are fresh variables. Here, Emb(F) is used to extract from o(x)
(for a collapsing rule { — x < ¢ € P) any minimal nonterminating subterm u
which may be inside. Clearly, if s > ¢, then s é}mb(}-) t. And we then use
MEH(F) to mark the root (defined) symbol f of u (i.e., f = root(u)) so that uf
can be eventually rewritten into the left-hand side u of a pair in a chain.
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Definition 46. For signatures F and F', we let
EMI(F,F') = Emb(F) U MH(F).
We now provide a new characterization of termination of CTRSs.

Theorem 47 (Termination). Let R = (F,R) = (CW D, R) be a CTRS.

1. If there is no infinite minimal (DPyc(R), EM*(F, D), R)-H-chain, then
R s terminating.
2. If there is an infinite (DPyc(R), EMH(F, D), R)-H-chain, then R is not

terminating.

PROOF.

1. By contradiction. If R is nonterminating, then there is a minimal term ¢
starting an infinite minimal sequence. By Theorem 32, this sequence has
the following form:

t:to ﬁ)* 0'1((1) i) 0'1(7“1) 12 tl i)* Ug(fg) —€> 02(7“2) 12 t2 i)”K
where, for all i > 1, (o : €; = 7; < ¢;) € R, 0; are substitutions such that
o;(z) is terminating for all x € Var(¢;), and terms ¢; € To are minimal
nonterminating terms such that either
(a) a; € DRules(R) and there is a defined subterm s; of r;, r; > s;,
4; 14 s, such that t; = o;(s;). In this case, 65 — sf < c¢; € DPy(R)
and a(sg) =o(s;)f = tg —% U(£§+1).
(b) a; € FRules(R) and there is z; € Var(r;)—Var(¢;) such that o;(z;)>
t;. In this case, Eg — x; < ¢ € DP¢(R) and o(x;) é%mb(}-) t;.
Since #; is minimal, root(t;) € D and we have t; <y (p) tf =%

o(th1)
Note that, in both cases, by Proposition 25, t? is R-terminating. Thus,
we obtain an infinite minimal (DP ¢ (R), EMH(F, D), R)-H-chain.

2. Let (u; — v; <= ¢;);>1 be an infinite (DP o (R), EMH(F, D), R)-H-chain.
If we remove all marks from any term in this chain and restore the contexts
which were removed from the rules of R to obtain the pairs in DPg¢(R),
we obtain an infinite rewrite sequence witnessing nontermination of R.

O

Example 48. Consider the CTRS R in Example 2. With DP g (R) as in Exam-
ple 40 and DP¢(R) = 0 (Example 42), the longest (DPyc(R), EMF*(F, D), R)-
H-chain consists of (32) followed by (33). Thus, R is terminating.

Example 49. Consider the following 3-CTRS R, which is obtained from the
2-CTRS in Example 2 by a small change in rule (13) to yield (42):

gla) — c(b) (40
b — f(a (41
flz) = y<=gle)—=cly) (42



Note that DRules(R) = {(40),(41)}. Again, DPy(R) is as in Example 40, but
DP¢(R) consists now of a single rule

Flz) — y<glz)—cy) (43)

With Emb(F) given by

c(z) — = (44)
flx) — = (45)
glx) — =z (46)
and M*(D) as follows:
b — B (47)
f(x) — F(x) (48)
gz) — gl=) (49)

there is an infinite (DPgc(R), EMP(F, D), R)-H-chain
B —(33) F(a) —(3) b —(ar) B —(33) F(a) =3y b =) -+
witnessing that R is not terminating.

The following simpler characterization of termination for CTRSs that preserve
terminating substitutions is obtained from the proof of Theorem 47 by using
Corollary 36 instead of Theorem 32.

Corollary 50. A CTRS R which preserves terminating substitutions is termi-
nating if and only if there is no infinite minimal (DPg(R), 0, R)-H-chain.

Corollary 51 (Termination of 2-CTRSs). A 2-CTRS R is terminating if
and only if there is no infinite minimal (DPy(R),0, R)-H-chain.

4.5. Termination of which (type of) CTRSs?

Term Rewriting Systems having rules ¢ — r with extra variables (i.e., vari-
ables y € Var(r) such that y ¢ Var(¢)) are not terminating: since r = rly], we
can define a matching substitution o to obtain an infinite rewrite sequence:

C—rll] =] — -

as follows: o(z) =z for all z € X — {y} and o(y) = ¢.

The notion of type of a CTRS (see Section 2.3) provides a more precise
characterization of where extra variables are allowed. In this setting, proper
4-CTRSs are intrinsically nonterminating if the proper 4-rule £ — r < c is not
unsatisfiable. Indeed, if there is a substitution o such that o(s) =% o(t) holds
for all s — ¢ € ¢ but avis a proper 4-rule, then there is a variable y € Var(r) such

26



that y ¢ Var(¢) UVar(c) and r = r[y]. Thus, we just need to write o(y) = o(¥)
to obtain an infinite rewrite sequence:

o(f) = o(rly]) = o(r)o(O)] = a(r)o(r)e(D)]] = -

Our treatment of termination applies to CTRS of arbitrary type. However,
the previous observation shows that 3-CTRSs are a more realistic target when
proofs of termination are attempted. The following example shows, however,
that determinism (which is an important mechanism to control the role of extra
variables in CTRSs) does not play an essential role to achieve termination.

Example 52. Consider the following nondeterministic 3-CTRS R:
a—»x < z—b (50)

Since DPg(R) = 0, DP¢(R) = {A — = < = — b}, Emb(F) = 0 and
MYD) = {a — A}, there is no infinite (DPyc(R), EMH(F, D), R)-H-chain
and R is terminating. However, for the nondeterministic 3-CTRS R’ :

a—»zr < z—a (51)

we have DPg(R') = 0, DP¢(R') = {A — z < 2 — a}, Emb(F) = 0 and
MHYD) = {a — A}. There is now an infinite (DPgc(R'), EMH(F, D), R')-H
chain with substitution o(x) = a:

A—a—->A—a—---
Therefore, R' is nonterminating.

In the following, we will investigate operational termination of CTRSs. Since
nontermination implies operational nontermination, we cannot expect that 4-
CTRSs (without useless rules) are operationally terminating. What about non-
deterministic 3-CTRSs? Note that R in Example 52 (which is terminating) is
not operationally terminating: there is an infinite well-formed proof tree

a—a a—*b
a—*b
a—a

3-CTRSs R with a proper nondeterministic 3-rule £ — r < /\?:1 s; — t; without
unsatisfiable conditions will be operationally nonterminating: thereisi, 1 <i <
nand y € Var(s;) such that y ¢ Var(¢ )UUl,l1 Var(t;). If there is a substitution
o such that o(s;) —=* o(t;) holds for all j, 1 < j < ¢, then it is not difficult to
see that an infinite well-formed proof tree like the previous one is possible.

Remark 53. In the analysis of V -termination and operational termination that
we develop in the following sections we focus on deterministic 3-CTRSs, al-
though our analysis of operational nontermination applies to arbitrary CTRSs.
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5. Dependency pairs for proving V-termination of CTRSs

In this section we consider the analysis of V-termination of deterministic
3-CTRSs. Again, we follow the methodology already summarized in Section 3.1.

5.1. Infinite computations starting from minimal non-V -terminating terms
Proposition 54 below establishes that, for t € Ty_o, there is a precise way
for an infinite computation to proceed. Roughly speaking, a ‘true’ conditional
rule £ — r < Al_;s; = t; with n > 0 must be used to try a failed root-step
on a reduct of t. The reason of this ‘failure’ is that the evaluation of one of the
conditions s; turns into an infinite climbing in the proof tree. Then, there is
a V-minimal subterm which is an instance of a nonvariable subterm of one of
the left-hand sides s; of a condition s; — t; (the infinite computation continues
through the vertical dimension). The set of ‘proper’ conditional rules of R is:

CRules(R) = {{ — r <= c € R | ¢ is not empty}.
Obviously, CRules(R) = 0 if and only if R is a TRS.

Proposition 54. Let R be a deterministic 3-CTRS and t € Ty.o. There exist
a:l—r<= /\;-L=1 sj = t; € CRules(R) and a substitution o such that

t =5 0(l) S o(r) Bt =5 - 255 0(ln) S 0(rm) Bty —2* o(€) (52)

for rules £y, — 1, <= ¢ € DRules(R), where

1. forallk, 1 <k <m,
(a) foralls =t € cy, o(s) =* o(t) and
(b) ty = o(vk) € Tv.co for some vy, € DSubterm (R, i)
2. there is i, 1 <i <n such that for all j, 1 < j <1,
(a) o(s;) is V-terminating,
(b) o(sj) =* o(t;), and
(c) there is v € DSubterm(R,s;) such that L ¥ v and o(v) € Ty.co-

PROOF. Since t is non-V-terminating, there is an infinite proof tree 7"

TOO

m
(©)

Clo@] = Clo ()]

(C)

Clo(r)] =" u

(Tran)

(Tran)

T2 U —*
Ty u =" u
t—"u

(Tran)

(Tran)

for some term u, where
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1. for all k, 1 < k < m, T} is a closed proof tree with root(Ty) = ug—1 — ug
for some terms wuy, (being ug = t),

2. C[] is a context, and

3. T¢ is an infinite well-formed proof tree

T T Ty Gig1 -+~ Gy
o(l) — o(r)

(Rp)

where:
(a) for all j, 1 < j < 4, T, ; are closed proof trees with root(T,, ;) =
o(s;) =" o(t)),
(b) for all j, i< j<n,G;=0(s;) =" o(t;) are open goals, and
(c) Tyy; is an infinite well-formed proof tree with root(T,y;) = o(si) —
o(t;) and spine(T°;) having infinitely many goals G with pred(G) =—.

m,i

The existence of T' (which is Tr (T4, ..., Tm—1, C[T)?]) for short) implies that of
a sequence t —* C[o(£)] for some rule o : £ — 7 <= N/_; s; = t; € CRules(R)
such that for all j, 1 < j <, 0(s;) =" o(t;). Assume that the length IV of this
sequence is the shortest possible. We prove by induction on N that a sequence
of the form (52) exists.

*

1. If N = 0, then t = C[o(¢)]. Since o({) is obviously non-V-terminating
and t € Ty.oo, we must have t = o(¢) (i.e., the context C[] is empty).
Therefore, we have a sequence like (52) as required with m = 0. Since
root(Ty;) = o(si) = o(t;), we have that o(s;) is not V-terminating. We
can assume (by a minimality argument on %) that for all j, 1 < j < 4,
o(sj) is V-terminating, and o(s;) —* o(t;). Clearly, a € CRules(R).
And by Lemma 23, for all j, 1 < j < i, o(t;) and all its subterms are
V-terminating. Since R is deterministic, o(x) is V-terminating for all
x € Var(s;). Since o(s;) is V-nonterminating, by Lemma 21 it contains
a subterm u € Tyv.co: 0(s;) B> u, i.e., there is a position p € Pos(o(s;))
such that o(s;)|, = u. The case p ¢ Posr(s;) is not possible; otherwise
there is € Var(s;) such that o(x) > u. Since o(y) is V-terminating for
all y € Var(s;) we get a contradiction. Thus, p € Posz(s;). Then there is
a subterm v of s;, s; > v, such that u = o(v). Since root(v) = root(u) € D
(by minimality of u), v is a defined term: v € DSubterm(R, s;). Note that
v cannot be a strict subterm of ¢, i.e., £ ¥ v. Otherwise, u = o(v) would
be a subterm of o(£), thus failing to be minimal.

2. If N > 0, then we have t & ¢/ —* C[o(¢)]. Note that ' is non-V-
terminating. We consider two cases according to p:

(a) If p > ¢, then, by minimality of ¢, the reduction step is issued on
a V-terminating term t|, by means of a rule ¢/ — ' < ¢, ie,
t' =tlo(r")]p. By Lemma 23, o(r’) is V-terminating and, since ¢’ non-
V-terminating and all its immediate subterms are V-terminating, ¢’
is also minimal. By the induction hypothesis, there is a sequence

255 0(0) S o(r)Bt; =5% oo 25 0(ln) > (1) Btm —* o (0)
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and hence, we also have
>€ € >e€ >€ 4 € >e€
t —=*o(ly) > o(r1)>ty —* - =*a(ly,) = o(rm)>t, —*o(f)

If p =c¢, then t = o(¢') for some ¢/ — ' < ¢ € R and for all
u = v e d, o) =* o(v). Without loss of generality we can
assume that, for all ' — o' € ¢/, (') is V-terminating (otherwise,
we would be in the base case N = 0 by using ¢/ — ' < ¢’ instead of
¢ — r < ¢). By Lemma 23, 0(v’) is V-terminating for all v/ — v € ¢
as well. Note that o(r’) is non-V-terminating. By Lemma 21, o (1)
contains a subterm u € Ty.oo: o(r') > u, i.e., there is a position
q € Pos(o(r')) such that o(r')|;, = u. The case ¢ ¢ Posg(r) is
not possible: otherwise there is « € Var(r’) such that o(z) > u, i.e.,
o(x) is non-V-terminating (by Lemma 23). Since o(y) is terminat-
ing for all y € Var(¢'), it follows that = € Var(r') — Var(¢'). Since
R is a deterministic 3-CTRS z € Var(v') for some v — v' € .
However, since o(v') is V-terminating, o(x) is V-terminating as well,
thus leading to a contradiction. Thus, ¢ € Posx(r’). Then, there
is a defined subterm v of ', v/ &> v, such that v = o(v). Since
root(v) = root(u) € D (by minimality of u), v is a defined sub-
term of 7’: v € DSubterm(R,r"). Note that ' ¢ T(C,X), ie.,
«a € DRules(R, t). Note also that v cannot be a strict subterm of /,
i.e., £ ¥ v. Otherwise, u = o(v) would be a subterm of o({), thus
failing to be minimal.

Therefore, we have t = o(¢') 5 o(r') = ' >wu, where u € Tv.s0. That
is, t 5 o(r') = D[u] —* D[E[c(¢)]] = C[o(¥)] for some contexts D] ]
and E[]. Since u —* E[o(¢)] is shorter, by the induction hypothesis,

U =5%(ly) S o(ro)Bty =5 o 2550 (ln) 5 0(rm)Btm —* o(£)

Therefore, with ¢/ — ' < ¢’ as {1 — r1 < ¢y, (52) is obtained.

O

Corollary 55. Let R be a deterministic 3-CTRS and t € Ty.o. There ex-

ist an infinite sequence ({F — rP < N\

e sP

218t = t)p>1 of (renamed) rules in

CRules(R) and a substitution o such that t =5* (/1) and for all p > 1,

1.

there is my > 0 and rules £ — r < ¢} € DRules(R) for 1 < k < m,
such that

(a) for allk, 1 <k < m, and s — t € ¢} we have o(s) —* o(t) and

there is vy € DSubterm(R, 1) such that &k ol and o(v)) € Ty.co-

(b) a(vh,) ZS* o (PtY) and for all j, 1 < k < mp, o(v}) 6 ().

there is iy, 1 < i, < ny, such that for all j < iy, o(s%) =* o(t}), and
there is vP € DSubterm(R, si) such that 07 ¢ vP, o(vP) € Ty, and

o(vP) 2y cr(ﬂf“).
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5.2. Dependency Puairs for V-termination

Our dependency pairs for proving V-termination of deterministic 3-CTRSs
are organized into two blocks. The wvertical block DPy (R) contains pairs for
shifting the infinite computation to the conditions of the rules as shown in
Proposition 54. Each rule in DPy(R) is obtained from a rule { - r < c € R
by marking the left-hand sides ¢ and using defined subterms v in the left-hand
side s of a condition s — t € ¢. The obtained rules are of the form ¢ — vf < ¢/
for some initial subsequence ¢’ of conditions in c.

Definition 56. Let R be a CTRS. The CTRS DPy(R) of vertical dependency
pairs is:

k—1 n
DP\/(R) = {fﬁ—>’0u<: /\ Sj—>tj |€—>T<: /\ s; — t; € CRUZ@S(R),
7j=1 =1

1<k <n,veDSubterm(R,s), L ¥ v}.

The horizontal block contains those pairs that correspond to rules issuing root
steps that are required to connect pairs in DPy (R) (also according to Proposi-
tion 54). Such pairs are captured by DPg(R) in Definition 38.

Example 57. For R in Example 1, DPy(R) consists of the following rules:

SPLIT(z,cons(y,ys)) — LEQ(z,y)

SPLIT(x, cons(y,ys)) — SPLIT(x,ys) < leq(z,y) — true
SPLIT (z,cons(y,ys)) — SPLIT(z,ys) < leq(x,y) — false
QSORT (cons(z,zs)) — SPLIT(x,zs)

~ N~
(S
w

(S L
(@23
NN NN

For R in Examples 2 and 49, DPy (R) consists of a single rule:
Flz) — G(x) (57)
For R in Ezample 3, DPy(R) = {G(z) — H(x),G(x) — H(z) < h(z) — d}.

Definition 58. Let P, Q,R be CTRSs. A (P, Q,R)-V-chain is a finite or infi-
nite sequence of (renamed) rules u; — v; <= ¢; € P, together with a substitution
o satisfying that, for all i > 1,

1. foralls =t € ¢;, 0(s) =% o(t) and

2. o(v;))(—=r U >9.r) 0 (uis1), where for all terms s,t, we write s g R t

)

if there is £ — r < c € Q and a substitution 0 such that s = 6(¢), t = 6(r)
and O(u) =% 0(v) for allu —v € c.

A (P, Q,R)-V-chain is called minimal if for all i > 1, whenever
o(vi) = wir (=% © o r)wiz(—=x © FoR) - (PR © O R)Wim; =R 0(Uit1),

in the chain, then for all j, 1 < j < my, w;; is V-terminating (w.r.t. R).
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As usual, in Definition 58 we assume that different applications of rules in P
and Q do not share any variable (renaming substitutions are used if necessary).
We can prove or disprove V-termination of CTRSs as the absence (or ex-
istence) of (DPy(R),DPy(R), R)-V-chains. However, a closer examination of
the role of DP g (R) in such chains shows that we often do not need all of them.
In the following, we refine the set of pairs that are really necessary to connect
pairs 4 — v < ¢ € DPy (R) within a V-chain. In order to achieve this, we adapt
the notion of usable rules [1] to obtain an overapproximation of the rules that
can be applied during a reduction of the right-hand sides of pairs in DPy (R).

Definition 59 (Root-Usable rules for CTRSs). Let R be a CTRS and t
be a term. Let RULES (R, t) be the set of rules in R defining root(t):

RULES.(R,t) ={f — r < c € R| root({) = root(t)}
Then, the set of root-usable rules of R fort is:

U(R,t) = RULES(R,t)U U U(R®, )
l—r<=c€ERULES . (R,t)

where R®* = R — RULES. (R, t).

Now, we let
DPvy(R) = U U(DPy(R),v)
u—v<=ceDPy (R)
Since U (R, t) C R for all terms ¢, we have DPyz(R) C DPg(R).

Example 60. For R in Example 1, DPy(R) contains five rules (see Example
39), but DPyy (R) consists of the single rule (27), i.e.,

LEQ(s(x),s(y)) — LEQ(z,v)

because this is the only rule in U (DP(R),v) when v is one of the right-hand
sides of the rules in DPy(R) (see Ezample 57). Actually, for the right-hand
side v of pair (53), we have U.(DPy(R),v) = {(27)}, whereas for the right-
hand sides v of pairs (28)-(31), U(DP g (R),v) = 0.

Example 61. For R in Example 2 and DPg(R) in Ezample 40, DPygy(R) =
DPy(R). For R in Example 3, although DPg(R) and DPy(R) (see Examples
40 and 57) are not empty, we have DPyy(R) = 0.

The property that motivates Definition 59 is Proposition 63 below, showing that
only pairs in DPyg(R) C DPg(R) are used in any (DPy(R),DPg(R),R)-V-
chain. The proof relies on the following auxiliary result.

Proposition 62. Let R be a CTRS, u — v < ¢ € DPy(R), and o be a
substitution such that

* ! € * * / €
o(v) =81 =R 81 —m S2 2Rk =R Sh —n. Sntl

where, for alli, 1 <i<mn, s, =o(u;) and s;41 = o(v;) for some m; : u; — v; <
¢i € DPy(R). Then, for alli, 1 <i <n, we have 7; € U (DPg(R),v).
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ProoOF. We prove by induction on n that, for all ¢, 1 < i < n, m; €
U(DPy(R),v). If n = 0, this is vacuously true. If n > 0, then we write
the sequence as follows:

* ! € * * ’ € * /€
S1 =R S1 _>DPH(R) S2 =R TR Sno1 _>DPH(R) Sn =R Sn _>DPH(R) Sp+1

By the induction hypothesis, m,—1 € U(DPg(R),v). Let F be the signa-
ture of R. Since root(vn,—1) ¢ F (due to the marking procedure for defin-
ing the dependency pairs), rewritings with R do not change the root of s,
and we have root(v,—1) = root(s,) = root(s),) = root(u,). Hence, m, €
RULES.(DPg(R),vp—1) CU(DPy(R),v), as desired. O

Proposition 63. Let R be a CTRS. Every (minimal) (DPy(R),DPg(R),R)-
V-chain is a (minimal) (DPy(R),DP vy (R), R)-V-chain and vice versa.

ProOOF. Since DPyy(R) € DPy(R), every (DPy(R),DPyy(R), R)-V-chain
is a (DPy(R),DPg(R),R)-O-chain. On the other hand, if u — v < ¢,u’ —
v' <= ¢ € DPy(R) are such that o(v)(—r U pp,(r)r) 0 («), by Proposition
62 the rules in DPy(R) that are used belong to U (DP g (R),v). Since, for all
u—v<ce€DPy(R), U(DPy(R),v) € DPyy(R), the conclusion follows.
With regard to minimality, since it depends on R and no change on R is made,
it is preserved as well. O

5.3. Proving V -termination using dependency pairs

Our next main result (Theorem 65) shows how to use DPy (R) and DP vy (R)
to prove V-termination of a deterministic 3-CTRS R. First, we need the fol-
lowing auxiliary result.

Lemma 64. Let R be a CTRS. Let u — v <= N\jL, s; = tj,u’ = v < c be a
(DPy(R),DPyg(R),R)-V-chain for some substitution o. Then, there are rules
{—=r< /\;Lzlsj — t; € R for some n >m, and {' — r' <= ¢ € R such that

u =/l 81 = C[v°] for some context C[], ' = (¢')f, and

Tl T Tm Tm+1 Om+2 T On
o(l) = o(r)

1s a finite well-formed proof tree T where:
1. for all j, 1 < j < m, Tj are closed proof trees with root(T;) = o(s;) —*
o(t;); forallj, m+2 <j<n, Oj =0o(s;) =" o(t;) is an open goal, and
2. T = Trg(tmﬂ)(}so,vl,}sl,...,V",ﬁ”,E[G’]) is a well-formed proof
tree for some k > 0 where root(Tt1) = 0(Smy1) = 0(tmy1) and
(a) for all1 < j <k, VI are closed proof trees,
(b) for all0 < j <k, PJ are sequences of a; closed proof trees (for some
a; 20),
(¢) E[] is a context and G' = o({') — o(r’).
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PROOF. Sinceu — v <= AJL, s; = tj,u' — v < cisa (DPy(R),DPyu(R), R)-
V-chain with substitution o, both u — v < AJL;s; — t; and v/ — v < ¢
belong to DPy (R) and there is k£ > 0 such that

o(s;) —5x o(t;) forall j,1<j<m,and (58)
U(S?) -5 O’(t?) for all j, 1 < j < ny (59)
where u¥ — v* < A\TE, sk — 5 € DPyg(R) for k, 1 <k < & and,
ov) =R oul) (60)
_6>DPVH(R) U(Ul) (61)
R (62)
- o) (63)
S0Py (R) (V") (64)
—r o) (65)

If kK = 0, we simply have o(v) =% o(u'). By Definition 56, there is £ — r <«

Nj=18j — t; € R with n > m such that

u = [ (66)
Smi1 = C["] for some context C[] (67)

Furthermore, there is also £/ — 1’ < ¢/ € R such that v’ By Definition

= (E/)ﬁ.
38, there are rules 0¥ — rk < /\;lil sf — tf € R for k, 0 < k < k such that

ut o= () (68)
k= C¥[(v*)°] for an appropriate context C*[] (69)

We apply (Repl) to obtain the following tree

Tl T T?n Tm+1 O7n+2 tU On
o(l) = o(r)

where for all 1 < j <m, T is a closed proof tree for o(s;) =% o(t;), see (58).
For all m +2 < j < n, O; are open goals for o(s;) =* o(t;). And tree Tp,41
with root o(sm41) = 0(tms1) is defined as

Ti1 = Trog,, (PO, VY, PY ... V", PR E[G)

with G/ = () — o(r') and components P°, V!, P*,. .. V* P* and E[] ob-
tained from (60)-(65) as follows:

1. Since 0(s;u41) = 0(C)[o(v”)] the R-rewrite sequence (60) is:

a(v) qu — R Q? —R TR qgo ZU(Ul)
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for some ay > 0. Each step q;) —R q?_H for 0 < j < ag has a closed proof
tree Q?. Since root(v) = f* does not occur in R and does not change
during the sequence, removing the marks from the roots of q}) and q? o
does not change the proof tree, which remains the same (except that a
(Cong) rule for f instead of f* is used). Denote such a proof tree with
root (q?)b — (q?+1)b as (Q?)b. Thus, if we let D[] = o(C[]), in:

o(sm+1) = Dlo(v")] = D[(3)'] == - == Dl(45,)’] = Dlo(u')’]

each step D[(q?)b] =R D[(q9+1)b] has a closed proof tree P} = D[(Q?)b].
2. For the k-th DP vy (R)-step (labelled (61) for the first, k = 1, and (64) for

the last one, k = Iﬂ;) there is (F — 1k < /\j L Sh = tk € R and a context

C*[] such that u* = (¢%)* (see (68)) and r* Ck[( %] (see (69)). Let
U* be the closed proof tree for o(¢*) =% Ck[(vk)b], which corresponds to
the step performed with the dependency pair. Then, we have:

D[CM[---C* Mo ()] ---]] =& DIC'[--- C*FHC o (")) - ]]
or, if the notation Ex[] = D[C[--- Ck¥=[C*[]]---]] is adopted (for k > 0;
if kK = 0, then Ey[] = D ]) then the rewriting step Ej_1[0((*F)] —x
(v*

[
Eplo((v*))] = By 1[Ck[ o(v*)°]] has a closed proof tree VF = Ej_1[(U*)°].
3. Each sequence o(v¥) =% o(ufT!) with 0 < k < & is as follows:

O'(’Uk) _ qg —R qf —R DR q(]ik — U(uk+1)

for some «y > 0, where each step (qf)b —R (qﬁ_l)b for 0 < j < oy has a
closed proof tree Qf. And therefore, we have the following sequence:

Elo(v*)’] = Exl(a6)") == Bil(af)’] 2 -+~ = Eel(ah,)’) = Exlo ()]

For all j, 0 < j < ag, each step Ek[(q]) ] == Exl(d* i1 1)’] has a closed
proof tree P’C Ek[(Q )’]. For all k, 0 < k < ry, Ex[(¢k )"] = Exlo(e¥)].
4. Finally, for o( ®) =% o(u') (see (65)), we have:

o) =qf =R ¢f 2R 2R, =0)

for some «,, > 0, where each step (q;) —r (¢f4 )’ for 0 < j < ay has a
closed proof tree Q7. We therefore have the followmg sequence:

Eilo(v")'] = Exl(a5)’] == - == Eil(5,)’] = Exlo(u)’]

For all j, 0 < j < o, there is a closed proof tree P = E.[Q¥%] for

E.l(qf)"] == Bcl(¢f1)). Since Bi[(q5,)") = Exlo(¢)], welet B[] = Ey[).
m

Theorem 65 (V-termination). Let R be a CTRS.
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1. If there is no infinite minimal (DPy(R),DPyy(R),R)-V-chain and R is
a deterministic 3-CTRS, then R is V -terminating.
2. If there is an infinite (DPy(R),DP vy (R), R)-V-chain, then R is non-V -

terminating.

PROOF.

1. By contradiction. If R is not V-terminating, then by Corollary 55, there
is an infinite sequence (7 — r? < /\;Li1 s = 1)p>1 of (renamed) rules
in CRules(R) and a substitution ¢ such that for all p > 1,

(a) thereis m, > 0 and rules ¢} — rt < ¢} € DRules(R) for 1 <k <m,,
such that for all k, 1 <k < m, and s — t € ¢} we have o(s) —=* o(t)
and there is v} € DSubterm(R, ;) such that ¢} # v! and o(v}) €
TV-00-

(b) o(vh, ) Z5% g(epH1) and for all j, 1 < k < m,, o(vF) =5* a(lp )

(c) there is 4, 1 <, < ny, such that for all j < iy, o(s}) = o(t}), and
there is v? € DSubterm(R, si) such that 2 ¢ vP, o(vP) € Ty.oo, and

o(vP) Z5* (T,

We have that, for all p > 1, if we let LP = (¢)¥ VP = (vP)* and CP
be /\}’51 s — 1%, then LP — VP < C? € DPy(R). Similarly, if, for
all p > 1, and k, 1 < k < my, we let L = (/)% and V' = (v})*, then
L, = VP < ¢ € DPy(R).

Now, for all p > 1, we have that, for all s — ¢t € CP, o(s) =% o(t),
and o(VP)(=r U Spp,(r),R) 0(LPT). Therefore, A : (LP — VP «
CP)p>1 is a (DPy(R),DPx(R), R)-V-chain. By Proposition 63, it is a
(DPy(R),DPyy(R), R)-V-chain as well. Furthermore, since for all p > 1,
o(vP) € Tv.oo (item 1c), and for all k, 1 < k < m,, o(v}) € Ty.oo (item
la), we have that o(V?) and o(V}) are V-terminating. Thus, A is a
minimal (DPy (R),DPyg(R), R)-V-chain, leading to a contradiction.

2. If (uL — V; <= /\;n:Z1 Sij — tij)izl is an infinite (DP‘/(R), DP VH(R),R)—
V-chain with substitution o, then, by using Lemma 64, for each ¢ > 1
there is a rule ¢; — r; < /\;L:1 s; — tj- €R,and m;, 1 <m; < n; with a
well-formed proof tree U; as follows:

rfi Trv(tin,i+1)(5i’ Ei [GJ) Oz

o(l;) = o(r)

where T} is a sequence of m; closed proof trees with roots 0'(83) —* o(th)
for 1 <j <my, O, are open goals U(sj-) —* o(té) for m; +2 < j < mny, S,
is a sequence of closed proof trees, F;|] is a context, and G; = o({;41) —
o(riy1). We define a sequence (W;);en of proof trees as follows: Wy = Uy
and for all ¢ > 0, W; is obtained from W;_; by replacing G; by U;1. Note
that, for all ¢ € N, W; C W;41. Thus, we obtain an infinite well-formed
proof tree W = (W;);en with spine(WW>°) containing an infinite number
of goals G with pred(G) = — thus proving R non-V-terminating.

O
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6. Dependency pairs for proving operational termination of CTRSs

By Theorem 14, a CTRS R is operationally terminating if and only if it is
terminating and V-terminating. We could use the results in Sections 4 and 5 to
prove operational termination using dependency pairs DPy(R), DP¢(R), and
DPy(R). However, when considering deterministic 3-CTRSs, a new, simpler,
characterization of operational termination in terms of DPg(R) and DPy (R)
only is obtained. In this section we develop such a simpler characterization.

6.1. Infinite computations starting from minimal operationally nonterminating
terms

Proposition 66 below establishes that, given ¢ € 7., there is a precise
way for an infinite computation to proceed: a rule £ — r < A’ s, — &
must be used to try a root-step on an inner reduct of ¢; then, the computation
continues on a minimal operationally nonterminating subterm which is either:
(1) an instance of a nonvariable subterm of r, or (2) an instance of a nonvariable
subterm of s; for some s; — t;, 1 <7 < n.

Proposition 66. Let R be a deterministic 3-CTRS and t € To.. There exist

a:l—r< N si—t; €R and a substitution o such that t Z5* o(0), and
there is a term v such that L ¢ v, 0(v) € To.oo and either:

1. @ € CRules(R), 3, 1 < i < n such that for all j, 1 < j < i, o(s;) is
operationally terminating, o(s;) —* o(t;), and v € DSubterm(R, s;), or

2. a € DRules(R), for all 1 < i < n, o(s;) is operationally terminating,
o(s;) =* o(t;), and v € DSubterm(R, ).

PRroOF. By definition of To.o0, all proper subterms of ¢ are operationally
terminating and cannot start any infinite well-formed proof tree. Therefore,

t has an inner reduction to an instance o(¢) of the left-hand side of a rule
a:l—r<=N_;si >t €Rt Z5* ¢(¢) and o(f) is not operationally
terminating. By Lemma 24, 0(f) € To.. Thus, since £ ¢ X, by Lemma 23, for

all z € Var({), o(z) is operationally terminating. We consider two cases:

1. There is ¢, 1 < ¢ < n such that for all j, 1 < j <4, o(s;) is operationally
terminating, o(s;) —* o(t;), and o(s;) is operationally nonterminating.
Clearly, @ € CRules(R). And by Lemma 23, for all j, 1 < j < ¢, o(t;)
is operationally terminating. By determinism of R, o(z) is operationally
terminating for all x € Var(s;). Since o(s;) is operationally nonterminat-
ing, by Lemma 21, it contains a subterm u € To.oo: 0(s;) B> wu, i.e., there
is a position p € Pos(co(s;)) such that o(s;)|, = u. The case p & Posz(s;)
is not possible; otherwise there is x € Var(s;) such that o(x) > u. Since
o(y) is operationally terminating for all y € Var(s;) we get a contradic-
tion. Thus, p € Posz(s;). Then there is a subterm v of s;, s; > v, such
that u = o(v). Since root(v) = root(u) € D (by O-minimality of u), v
is a defined term: v € DSubterm(R,s;). Note that s cannot be a strict
subterm of ¢, i.e., £ ¥ v. Otherwise, u = o(v) would be a subterm of o(¥¢),
thus failing to be O-minimal.
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2. For all 4, 1 < ¢ < n, o(s;) is operationally terminating. By Lemma 23,
o(t;) is operationally terminating too. Since t is operationally nontermi-
nating, the rewriting step o(¢) % o(r) must be performed, with o(r) oper-
ationally nonterminating. Thus, o(s;) —* o(¢;) holds for all 4, 1 < i < n.
By Lemma 21, o(r) contains a subterm v € To.co: o(r) &> u, i.e., there is
a position p € Pos(o(r)) such that o(r)|, = u. The case p ¢ Posz(r) is
not possible: otherwise there is € Var(r) such that o(x) >, i.e., o(z) is
operationally nonterminating (by Lemma 23). Since o(y) is operationally
terminating for all y € Var(¢), it follows that « € Var(r) — Var(¢). Since
R is a deterministic 3-CTRS z € Var(t;) for some ¢, 1 < i < n. Since
o(t;) is operationally terminating for all ¢, 1 < i < n, o(z) is operationally
terminating as well. Thus, p € Posxz(r). Then, there is a subterm v of
r, such that v = o(v). Since root(v) = root(u) € D (by O-minimality of
u), v € DSubterm(R,r). Note that r ¢ T(C,X), i.e., « € DRules(R, t).
Also, v cannot be a strict subterm of ¢, i.e., £ [ v. Otherwise, u = o(v)
would be a subterm of o(¢), thus failing to be O-minimal.

O

As a simple corollary of Proposition 66, infinite computations starting from
minimal operational nonterminating terms can be visualized as paths over Nx N,
where each bidimensional point (z;,y;) is labeled with a rule «;.

Theorem 67. Let R = (F,R) be a deterministic 3-CTRS and t € To-co-

There is a substitution o and an infinite sequence {(x;,y;,;)}ien of triples

(zi,yi, ;) € Nx N x R, where o; is l; — r; < A\ sy — 15, such that, for all
j=1

‘]:
120, Tiy1 +Yir1 =2 +y; + 1 and

1. zo=yo=0 and t 2y a(ly).

2. For alli > 0, 0(¢;) € To-oo; furthermore, there is a term v; such that

Ui ¥ v, 0(0;) € Tomse, 0(v;) =% 0(lis1), and one of the following holds:

(a) xiy1 =x; + 1, v; € DSubterm(R, r;) and a; € DRules(R).
(b) yiy1 = yi + 1 and there is j, 1 < j < n; s.t. v; € DSubterm(R, s})
and a; € CRules(R).

Example 68. For R in Example 49, Figure 3 shows the representation of the
computation starting from f(a) € To.co according to Theorem 67, which corre-
sponds to the following proof tree:

(Rp) f(a) —b (c)
b — f(a) o c(f(a)) — c(b) c(b) =" c(b) "
O GO)N <(f(a)) =+ <(b) ;
g(a) > c(b) c(b) =" c(b) [
g(a) =" c(b)

(Rp)



/

N
N
()
N
()
&/

0 1 2 3

Figure 3: Computations starting with f(a) for R in Example 49

Remark 69. The minimal sequence f(a) — 42y b — 1) f(a) =2y b — -+ s
also possible for R in Example 49. This is because o(g(x)) =* o(c(y)) for rule
(42) is satisfied without any reduction on b if o(z) = a and o(y) = b. The
implicit assumption in the computation model of Proposition 66 is that only
reachability conditions o(s;) —* o(t;) that are free of any infinite computation
are important to decide the application of a rule. This makes sense in practice.

The following result shows that an infinite computation starting from a minimal
operationally nonterminating term can either:

1. start an infinite (horizontal) rewrite sequence (possibly as part of the
evaluation of one of the conditions of a rule) involving an infinite number
of rules in DRules(R) (nontermination), or else

2. climb infinitely many ‘vertical’ steps over the conditions in the rules, like
in an infinite stair. In the last case, those vertical steps can be preceded
by a finite number of horizontal steps using rules in DRules(R), like in
the horizontal two-step-segments using rules (40) and (41) in Figure 3
(non-V-termination).

Corollary 70. Let R be a deterministic 3-CTRS and t € To.oo. Then, the
sequence {(x,Yi, ) }i>o associated to t according to Theorem 67 satisfies one
of the following conditions. Fither:

1. There is k > 0 and an infinite ‘horizontal’ sequence {(z;, Y, ;) }i>k such
that for all i > k, ;41 = x; + 1 and «; € DRules(R), or

2. For each i € N such thaty; > 0 and y; = y;_1+1, there is k; > © such that
Yki—1 = Yi, Yk, = ¥i+ 1, ag,—1 € CRules(R), and for all j, i < j < k; —1,
a; € DRules(R).
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7. Proving termination, V-termination, and operational termination
of CTRSs using 2D DPs

We often collectively call DPy(R) and DPy(R) the 2D Dependency Pairs
of a CTRS R. We can use them to prove termination, V-termination, and oper-
ational termination of deterministic 3-CTRSs and also to disprove operational
termination of CTRSs (of any type). For this purpose, we use the following
notion of O-chain.

Definition 71. Let P, Q,R be CTRSs. A (P, Q,R)-O-chain is a finite or infi-
nite sequence of (renamed) rules u; — v; < ¢; € P, together with a substitution
o satisfying that, for all 1 > 1,
1. foralls =t € ¢, o(s) =% o(t) and
2. o(vi)(=r U-Sor) 0(uis1), where for all terms s,t, we write s g g t
if there is £ — r <= c € Q and a substitution 0 such that s = 6(¢), t = 6(r)
and §(u) =75 0(v) for allu — v € c.

A (P, Q,R)-O-chain is called minimal if for all i > 1, whenever

o(vi) = win (=R © SoR)wia(=R © FoR) (PR © TrQR)Wim, —R 0(Uit1),
in the chain, then for all j, 1 < j < m;, w;; is R-operationally terminating.

First, we show that termination of CTRSs R that preserve terminating substi-
tutions can be proved by using O-chains involving pairs in DP g (R) only.

Theorem 72 (Termination II). Let R be a CTRS.

1. If there is no infinite (DPy(R), D, R)-O-chain and R preserves terminat-
ing substitutions, then R is terminating.
2. If there is an infinite (DPy(R), D, R)-O-chain, then R is nonterminating.

PROOF.

1. Every (DPg(R),0, R)-H-chain is also a (DPy(R),0, R)-O-chain. Thus,
if there is no infinite (DPg(R),®, R)-O-chain, then there is no infinite
minimal (DPg(R), 0, R)-H-chain. Since R preserves terminating substi-
tutions, by Corollary 50, R is terminating.

2. If there is an infinite (DP g (R), 0, R)-O-chain I', then there is a substitu-
tion o and an infinite sequence (u; — v; <= ¢;);>1 of pairs in DP 5 (R) such
that for all s — t € ¢;, o(s) =% o(t) and o(v;) =% o(u;41). Since for all
u—v<c€DPg(R), we have that v ¢ X, we have v ¢ X —Var(u;) C X.
Thus, I' is an infinite (DP gy (R), #, R)-H-chain as well. By Theorem 47, R
is not terminating.

O

Requiring the absence of infinite minimal (DPg(R), 0, R)-O-chains (only) in
Theorem 72(1) does not imply the absence of infinite minimal (DPg(R), 0, R)-
H-chains (as required to use Corollary 50 in the proof): since termination does
not imply operational termination, there can be minimal (DPy(R),#, R)-H-
chains which are not minimal (DP g (R), 0, R)-O-chains.
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Example 73. Consider the first nonterminating CTRS R in Example 27. We
have DPg(R) = {F(a) — F(a),F(a) — A}. Note that a is an irreducible term,
hence terminating; however, it is not operationally terminating due to rule (24).
There is an infinite minimal (DPg(R), 0, R)-H-chain (where F(a) is obviously
R-terminating):

F(a) —op,(r) F(a) =pPy(R) ** —DP4(R) F(3) DRy (R) -

However, it is not a minimal (DP g (R), 0, R)-O-chain because F(a) is not opera-
tionally terminating. There is no infinite minimal (DP g (R), 0, R)-O-chain (but
R is nonterminating). Thus, focusing on minimal (DPg(R), 0, R)-O-chains in
Theorem 72 could lead to wrongly concluding termination of R.

V-termination of CTRSs can also be investigated by using O-chains.

Theorem 74 (V-termination II). Let R be CTRS.

1. If there is no infinite (DPy(R),DPyvi(R), R)-O-chain and R is a deter-
manistic 3-CTRS, then R is V -terminating.

2. If there is an infinite (DPy(R),DPyr(R), R)-O-chain, then R is non-V -
terminating.

PROOF.

1. For all CTRSs P, Q, and R, every (P, Q,R)-O-chain is a (P, Q,R)-V-
chain and viceversa. Thus, the absence of infinite (DP(R),DP vz (R), R)-
O-chains implies the absence of infinite (DPy (R), DP vz (R), R)-V-chains,
in particular the absence of infinite minimal (DPy(R),DP vy (R), R)-V-
chains. By Theorem 65, R is V-terminating.

2. If there is an infinite (DPy(R), DP vy (R), R)-O-chain, then there is an
infinite (DPy(R),DPyyi(R), R)-V-chain. By Theorem 65, R is non-V-
terminating.

O

Unfortunately, we cannot restrict our attention to proving the absence of
infinite minimal (DPy(R),DPyr(R), R)-O-chains in Theorem 74(1): since
V-termination does not imply operational termination, there can be minimal
(P, Q,R)-V-chains that are not minimal (P, Q, R)-O-chains.

Remark 75. Theorems 72 and 74 allow us to prove and disprove termination
and V -termination of CTRSs using the same dependency pairs and chains that
are used to prove and disprove operational termination of CTRSSs.

7.1. Characterizing operational termination of CTRSs using 2D DPs

We now establish the conditions for proving and disproving operational ter-
mination of CTRSs using 2D Dependency Pairs.

Theorem 76 (Operational termination). Let R be a CTRS.
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1. IfR is a deterministic 3-CTRS, there is no infinite minimal (DP g (R), D, R)-
O-chain, and there is no infinite minimal (DPy (R), DP vy (R), R)-O-chain,
then R is operationally terminating.

2. If there is an infinite (DPg(R),0,R)-O-chain or an infinite
(DPy(R),DPyy(R),R)-O-chain, then R is operationally nonterminat-

mg.
PROOF.

1. By contradiction. If R is not operationally terminating, then there is
t € To.o (Lemma 21). By Corollary 70, there is a computation whose
bidimensional representation according to Theorem 67 satisfies one of the
following conditions:

(a) There is k > 0, a rule {, — 7 < ¢k, and an infinite ‘horizontal’
sequence {(2;, Yk, ;) }i>k such that for all ¢ > k, z;41 = z; + 1,
a; : b; = r; < ¢; € DRules(R), and there is v; € DSubterm(R, ;)
such that v; is not a proper subterm of ¢;, o(v;) € To.00, and
o(vi) =5* o (liy1). Then, for all i > k, Ef — vf < ¢; € DP(R),
a(v?) is operationally R-terminating, and a(v?) 2 U(Egﬂ). Thus,
there is an infinite minimal (DPg(R),#, R)-O-chain which contra-
dicts our initial assumption.

(b) For each i € N such that y; > 0 and y; = y;—1 + 1, there is v; > i such
that y,, = y; + 1, ay,—1 € CRules(R) and for all j, i < j <v; — 1,
a; € DRules(R). Therefore, by Theorem 67, we have:

k-1 ,
i. Since y; = yi_1 + 1, we have £#_| = o} | < A s;-*l — t;fl €
i=1
DPy(R) for some 1 < k < n;_1.
Ny 1
ii. there is a rule ay,—1 : by,—1 = 1pm1 <= A s?iil — t}'iil and

7j=1
a term vy, 1 € DSubterm(R, s,’:”_l) for some k, 1 <k <n,,_1,
such that o (v,,_1) € To-00, and o (vy,_1) —=* (£,,). Therefore,
k—1
Gy == NS o 14T € DPy(R), o(v),_,) is
j=1

vi—1

operationally R-terminating, and o(v,, 1) = a(vﬁi_l) also is.
iii. forall j, i <j <wvy;—1,and a; : ¢; = r; < ¢; € DRules(R),
there is v; € DSubterm(R,r;) such that o(vj) € To-00, O'(’Ug)
is operationally R-terminating, and Eg- — vlg < ¢; € DPy(R)
is such that o(c;) holds and O'(’Ug) —% U(Z§-+1). Furthermore,
o(vi_y) =% o(£).
We repeat this to obtain an infinite minimal (DPy (R),DP vy (R), R)-
O-chain, which leads to a contradiction.

2. If there is an infinite (DPg(R), ), R)-O-chain, then, by Theorem 72, R is
not terminating and, therefore, it is not operationally terminating. If there
is an infinite (DP g (R), DP v (R), R)-O-chain, then, by Theorem 74, R is
not V-terminating and, therefore, it is not operationally terminating.

42



O

Example 77. For R in Ezample 2, and DPy(R) and DPyy(R) as given in
Ezamples 57 and 61, there is an infinite (DPy(R),DPyy(R), R)-O-chain:

F(a) —’DPvx(R) G(a) —DPvi(R) B —DPvx(R) F(a) —DPy(R) "

witnessing operational nontermination of R. For R in Example 49, we have a
similar proof of operational nontermination.

The following result establishes that we can always move rules from Q to P
without losing infinite (minimal) O-chains.

Proposition 78. Let P, Q, R be CTRSs. For every infinite (minimal) (P, Q, R)-
O-chain there is an infinite (minimal) (P U Q, 0, R)-O-chain.

PrOOF. Let I' be an infinite (P, Q, R)-O-chain with substitution o. Then,
there is an infinite number of renamings u; — v; < ¢; of rules in P such that,
for all i > 1, o(s) =% o(t) for all s — t € ¢;, o(v;)(=r U <o r) o(Uit1).
If T' is minimal, then o(v;) is operationally terminating. Assume that each
connection between o(v;) and o(u;11) involves ¢; > 0 steps with i)Q’R using
variants uy — vy <= cj,...,uy — v, <= ¢ of rules in Q. Note that each
5o r-step with a rule v/ — v/ <= ¢ € Q implies that o(s') =% o(t') for all
s' =t € ¢. Then, we can build the infinite (P U Q, ), R)-O-chain I

! !/ / ! !/ /
U1 — U1 <= Cq, Ul—)’U1<=Cl,...7Uq1—)’Uql<:Cq17...,’U,2—>'U2<:CQ7...

with the same substitution o. If I' is minimal, for all j, 1 < j < ¢, o(v}) is
operationally terminating, i.e., IV is minimal as well. O

In general, the converse does not hold. For instance, with @ = {a — a} we
have a trivial infinite (Q, ), R)-O-chain. But there is no (@, Q, R)-O-chain!

8. Contributions and related work

Termination of CTRSs was defined in [6, Definition 4.7(i)] as the absence
of infinite rewrite sequences. Further research on the topic led to the under-
standing that such a traditional view of termination based on rewrite sequences
did not provide a good account of the termination behavior of rewriting with
CTRSs because the role of the conditions was neglected. Ohlebusch [36, Section
7.2] provides a good account of the development of the area until the end of the
nineties. However, [36] presented five different notions of CTRS termination,
some of them actually wrong, in the sense that any reasonable interpreter will
loop evaluating CTRSs declared terminating under the given notion, so consid-
erable uncertainty about the right notion of CTRS termination remained. The
notion of operational termination was proposed in [26] for general logics [32] and
used in [14] to study and characterize the termination of MEL Rewrite Theories
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(based on the Membership Equational Logic (MEL) in [33]) and of CTRSs in
[26], where the notion of quasi-decreasingness (see [36, Definition 7.2.39]) and
of operational termination of a CTRS were proved equivalent.

In this setting, the contributions of this paper can be summarized as fol-
lows. First, we have revisited operational termination of CTRSs to establish
connections with existing termination properties of CTRSs:

1. We describe termination of CTRSs in a proof-theoretic style as the absence
of a specific class of infinite well-formed proof trees of the CTRS logic.

2. We have defined a new termination property of CTRSs, which we call V-
termination, and proved that operational termination of CTRSs is char-
acterized as the conjunction of termination and V-termination.

3. We have defined different notions of minimal non-A-terminating terms (for
A € {H,V,0}, corresponding to the three aforementioned termination
properties of CTRSs) and proved a number of auxiliary results which
are the basis for the development of the different notions of dependency
pairs that are introduced to characterize termination, V-termination, and
operational termination of CTRSs.

Thanks to the above-mentioned results, we have also been able to develop a
unified methodology (described in the first paragraphs of Section 3.1) to ana-
lyze termination, V-termination, and operational termination using the notions
of minimal term and minimal computation, in agreement with previous experi-
ences developing frameworks for proving termination of rewriting [1, 17, 21] and
variants of rewriting like context-sensitive rewriting (as in [2, 20]), order-sorted
rewriting (as in [27]), and equational rewriting with AVC-theories (as in [4]).
Regarding termination, V-termination and operational termination of CTRSs:

1. Our characterization of termination of CTRSs using dependency pairs
DP(R) and DP¢(R) is novel in the literature, valid for arbitrary CTRSs,
and draws interesting connections with other termination analyses where
collapsing dependency pairs also play an essential role (see, e.g., [2, 20]).

2. The analysis of termination of 2-CTRSs can also be accomplished as ter-
mination of the underlying TRS (i.e., the TRS R, which is obtained by
just dropping the conditional part of the rules), see [36, Lemma 7.1.2] for
instance. However, in contrast to our Corollary 51, the analysis of termi-
nation of 2-CTRSs R as termination of the underlying TRS R, provides
a sufficient condition only; it may fail in those cases where taking into
account the conditions of the rules is essential to prove termination.

Example 79. The one rule 1-CTRS R
a—a <« a—b (70)

is terminating but R, = {a — a} is not. With DPg(R) = {A - A <
a — b} we see that there is no infinite (DPy(R), 0, R)-O-chain (due to the
insatisfiability of the conditional part of the pair). Thus, R is terminating,
by Theorem 72.

44



3. We provide a complete characterization of V-termination of deterministic
CTRSs using dependency pairs DPy (R) and DP vy (R) (which is a subset
of the dependency pairs in DPg(R)). Since, as far as we know, this
property has never been formulated before, our developments are a new
contribution to the analysis of termination properties of CTRSs.

4. Thanks to our results in the first part of the paper, proofs of termination
and V-termination of CTRSs can be immediately used to conclude opera-
tional termination. However, we provide a simpler analysis of operational
termination of CTRSs on the basis of DPg(R), DPy(R) and DPy4(R),
where DP¢(R) becomes unnecessary.

5. Our definitions highlight the flexibility of our approach: with the same no-
tion of O-chain we can prove not only operational termination of CTRSs,
but also termination and V-termination of CTRSs. We believe that this is
a good basis for the development of a unified dependency pair framework
for CTRSs which can be used to prove or disprove all these properties.

8.1. Related work
8.1.1. Nakamura et al.’s Conditional Dependency Pairs

The Conditional Dependency Pairs (CDPs) by Nakamura et al. [34] apply
to a restricted subclass of 1-CTRSs: the condition ¢ in the 1-rules (¢ — r < ¢)
considered in [34] is a term rather than a sequence s; — t1,...,8, — t,. An
instance o(c) of condition c is satisfied if and only if o(c) —* true. For the 1-
CTRSs considered in [34], our proposal generates a subset of the pairs considered
in [34, Definition 3.1], i.e., DPy(R)UDPy(R) C CDP(R). Often, the inclusion
is strict due to our more restrictive generation of pairs: we avoid using defined
subterms v in the right-hand side r of a rule £ — r < ¢ (or in the left-hand side
s of a condition s — t € ¢) which are strict subterms of the left-hand side®, £.

Example 80. Consider the following 1-CTRS with a conditional rule & la Naka-
mura et al.:

f(false) — true (71)
f(f(z)) — false < f(x) — true (72)

Here, CDP(R) = {F(f(z)) — F(z)}. However, we would not include it as part of
(in this case) DPy (R). This is because f(x) in the condition of the conditional
rule is a strict subterm of the left-hand side f(f(x)) of the rule. Such defined
subterms are ruled out by our definition of DPy (R) regarding the generation of
a dependency pair. Actually, DPy(R) = DPy(R) = 0.

Their notion of chain ([34, Definition 3.2]) is also different from our Definition
71 (no component Q is used in [34]). The following results, involving chains of
a simpler type (like those in [34], where pairs are connected by rewritings with
R only), also characterize operational termination of CTRSs.

8This observation is originally due to Dershowitz [10] and exploited by Hirokawa and
Middeldorp to refine the definition of DPs for TRSs [21, 22].
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Theorem 81 (Operational termination II). Let R be a CTRS.

1. If there is no infinite (minimal) (DPy(R) UDPy(R), 0, R)-O-chain and
R is a deterministic 3-CTRS, then R is operationally terminating.

2. If there is an infinite (DPy(R)UDPy (R), 0, R)-O-chain, then R is oper-
ationally nonterminating.

PROOF.

1. By contradiction. If R is not operationally terminating, Theorem 76 en-
sures that (i) there is an infinite minimal (DPg(R),#, R)-O-chain or (ii)
there is an infinite minimal (DPy(R),DPyy(R), R)-O-chain. In both
cases (with (ii) using Proposition 78 and since DPyy(R) C DPy(R)),
there is an infinite minimal (DP g (R) UDPy(R), 0, R)-O-chain.

2. By contradiction. If R is operationally terminating, Theorem 76 ensures
that there is no infinite (DPg(R), 0, R)-O-chain and there is no infi-
nite (DPy(R),DPyg(R), R)-O-chain. Assume that there is an infinite
(DPy(R)UDPy(R),0,R)-O-chain I : (u; — v; < ¢;);>1 with substitu-
tion o. Since there is no infinite (DPg(R), ), R)-O-chain, I' contains an
infinite number of occurrences of pairs in DP(R) and I" can be seen as
a (nonminimal) (DPy (R),DPg(R), R)-V-chain. By Proposition 63, T is
an infinite (DPy(R),DPyg(R), R)-V-chain. Since every V-chain is also
an O-chain (but minimality is not guaranteed to be preserved!), T' is an
infinite (DPy (R),DPyg(R), R)-O-chain. This leads to a contradiction.

O

Theorem 81 provides an alternative characterization of operational termi-
nation of CTRSs, which is already more general than the one in [34] because
it applies to deterministic 3-CTRSs. However, these results are less power-
ful than those in Section 7 in that there is no explicit distinction between the
two dimensions of operational termination; thus, no analysis of termination or
V-termination is possible with these results (or within [34]).

8.1.2. Transformation techniques

As remarked in the introduction, existing tools for proving termination of
deterministic 3-CTRSs currently use transformation techniques. Except for [30]
(see Section 8.2 below), we are not aware of any implementation of direct CTRS
termination methods. The transformation which is typically used for this pur-
pose is U in [36, Definition 7.2.48]. This transformation is not complete, however
(see Example 3, where R is operationally terminating but U(R) is not) Thus,
disproving operational termination is not possible with this transformation, in
sharp contrast to our approach. Furthermore, when U(R) is terminating, tools
may fail to find a proof. This is often due to the loss of information introduced
by transformations, and also to the presence of new symbols and rules that
prevent the search process from finding a proof.

Schernhammer and Gramlich investigated a variant of the transformation
U originally proposed in [13], where symbols are given replacement restrictions
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by means of a replacement map p which associates a subset u(f) of reducible
arguments to each function symbol f in the signature [25]. In this variant of
the transformation U/, only the new symbols U introduced by the transforma-
tion are given replacement restrictions; in particular, u(U) = {1} for all such
symbols, whilst u(f) = {1,...,ar(f)} for all symbols f € F in the signature F
of R (i.e., the original symbols get no replacement restriction). They proved
that this variant U,(R) of the transformation is complete for proving opera-
tional termination of terms of the original signature, i.e., if a term t € T (F, X)
is terminating with respect to the context-sensitive rewrite relation —y, (r)u
induced by the replacement map p and the TRS U, (R), then ¢ is operationally
R-terminating. Still, there can be terms in the signature of U, (R) which are
not terminating even when R is operationally terminating. Thus, U, is still
unable to prove operational nontermination of R as nontermination of U, (R).

8.2. Practical use of our results

Our results are the basis of the implementation described in [30] as part of
the tool MU-TERM. We have participated in the 2014 and 2015 editions of the
International Termination Competition where we were able to obtain the first
position among the participating tools of the TRS Conditional subcategory, see

http://nfa.imn.htwk-leipzig.de/termcomp/show_job_results/5382

With our tool, we were able to outperform for the CTRS class other termination
tools like AProVE [18] and VMTL [38] that rely on the use of the aforementioned
sound transformations. Moreover, these tools are not able to disprove opera-
tional termination of CTRSs due to the incompleteness of the transformations.

9. Conclusion

To the best of our knowledge this is the first correct and complete charac-
terization of both termination and operational termination of CTRSs which is
based on the notion of dependency pair. We have proposed the new notion of
V-termination of CTRSs and showed that, together with termination, it is one
of the dimensions of operational termination of CTRSs. The corresponding no-
tions of minimal non-V-terminating and operationally nonterminating term and
the properties explored here are also new in the literature. Our bidimensional
approach to the problem of proving operational termination of CTRSs is useful
to simplify the analysis of operational termination and also to prove already
known termination properties like nontermination of 3-CTRSs and termination
of (a subclass of) 3-CTRSs.

The theoretical notions presented in this paper are the basis for the imple-
mentation of our techniques for automatically proving operational termination
of CTRSs that have been developed in [30], and incorporated in the latest ver-
sion of the tool MU-TERM [3]. This makes these techniques available to tools like
MTT [12], which use MU-TERM as a backend for achieving proofs of operational
termination of more general theories like membership equational programs or
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order-sorted rewrite theories (see [29] for a recent account of the computational
problems arising when computing with these theories and some envisaged solu-
tions). Direct termination methods for these wider logics will require extending
the techniques presented here to the case of order-sorted conditional rewrite the-
ories with types and subtypes, and where rewriting is context-sensitive and can
take place modulo axioms B. This is a subject for future work. Also, a deeper
investigation about the role of V-termination in the practical use of strategies
for conditional rewriting is another interesting subject of future work.

Acknowledgements. We warmly thank the anonymous referees for their com-
ments and suggestions that led to many improvements in the paper.
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