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Abstract—The dispersion diagram of infinite periodic structures is useful for the practical design of
waveguide filters. Starting from the dispersion diagram of a unit cell, it is possible to generate a finite
structure with very similar pass- and stop-bands (gaps). However, truncation of the infinite periodic
structure degrades the pass-band performance. In this paper, these impairments are overcome by means
of suitable waveguide tapers matching the impedance of the periodic structure to the access ports. As a
result, the design of practical low-pass filters, derived from passive structures based on Electromagnetic
Band-Gap (EBG) waveguides periodically loaded with metal ridges, is successfully addressed. According
to this procedure, a five-order and an eight-order EBG low-pass filters are obtained after an optimization
step. Measurements of a manufactured prototype fully validate the proposed approach.

1. INTRODUCTION

Periodic structures exhibit very attractive properties, such as compact size and enhanced out-of-band
rejection, which have boosted interest in their potential use for filtering applications in microwave
and millimetre-wave frequency bands. The excellent properties of such structures are related to the
propagation of slow waves, which are characterized by a reduced phase velocity and wavelength. Using
periodic structures, and due to the dispersive behaviour of their slow waves, it is possible to achieve
filters with improved stop-band performance and reduced size [1–5]. Although the reported applications
of slow-wave structures have been mainly focused on planar technologies, recently, it has been shown how
to obtain Electromagnetic Band-Gap (EBG) passive waveguide structures by including metal inserts in
the E-plane of an above cut-off rectangular waveguide [6–8]. These EBG ridged waveguide structures
have a pass-band performance starting from the cut-off frequency of the housing waveguide, whereas
the upper cutoff is defined from the unit cell dimensions together with the gap between the ridges. Even
though the resulting response is pass-band in frequency terms, in microwave terminology it is commonly
referred as a low-pass characteristic since it starts from the first frequency where the waveguide ports
effectively propagate [9].

Ridged rectangular waveguide structures have been largely employed for practical filters due to
their low fundamental-mode cutoff frequency, wide monomode bandwidth and compact size. As a
result, there are well-established techniques for the design of several types of bandpass filters with metal
inserts, such as evanescent-mode filters (i.e., with ridges inserted in a below-cutoff waveguide) [10–13] or
E-plane filters including ridged resonators coupled by inductive strips [14, 15]. However, the design of
practical low-pass filters with metal inserts in a hollow above-cutoff waveguide has not received the same
attention in the technical literature. In fact, the periodic structures reported in [6–8] are unsuitable for

Received 16 November 2015, Accepted 16 March 2016, Scheduled 23 March 2016
* Corresponding author: Stephan Marini (smarini@ua.es).
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practical applications in waveguide technology due to the severe degradation in the return loss level after
truncation to a finite number of cells. Without imposing periodicity conditions, in [16] a conventional
stepped impedance approach was proposed for the design of a maximally flat ridged low-order low-pass
filter. Insertion loss techniques based on the distributed prototype, traditionally used for the design
of classic corrugated waveguide low-pass filters [17, 18], could also be employed. However, they tend
to provide conmensurated solutions (i.e., with equal electrical-length transmission lines) and have also
limitations for very high order filters due to round-off errors in the analytical synthesis of the distributed
prototype [17].

The purpose of this paper is to introduce a practical and simple technique for the design of low-
pass filters with metal ridges in an above cut-off rectangular waveguide, which can be suitable for wide
pass-bands and several numbers of cells (i.e., high order). The technique exploits the properties of EBG
waveguides periodically loaded with metal inserts by using the pass-and stop-bands of the corresponding
dispersion diagram. Once a suitable dispersion diagram for the infinite periodic structure is derived,
and in contrast to [6–8], the Bloch impedance is then matched to the impedance of the access ports to
obtain a practical filter (i.e., composed of a finite number of cells with acceptable return loss levels). To
attain such a goal, after truncation of the periodic structure, a stepped ridged waveguide transformer is
designed and added to the finite periodic structure. As a result, a practical low-pass filter derived from
an EBG structure is finally obtained.

In order to compute the dispersion diagram of the unit cell, a modal hybrid analysis method has
also been developed. It makes use of a revisited version of the Integral Equation (IE) technique for
characterizing planar waveguide junctions [19], in combination with the Boundary Integral-Resonant
Mode Expansion (BI-RME) method [20] for obtaining the modal chart of the ridged waveguides.

2. THEORY

2.1. Analysis of EBG Ridged Waveguides

Figure 1 shows the two-dimensional layout of the finite EBG waveguide periodically loaded with metal
ridges considered in this paper. The structure also includes input and output transformers to standard
waveguide ports. The ridges of length Lr and width w, are placed symmetrically in both the upper and
lower walls, providing a gap separation dr.

Figure 1. Two-dimensional layout and dimensions of a truncated Electromagnetic Band-Gap (EBG)
waveguide periodically loaded with metal ridges. The finite EBG waveguide of period p is ended in
stepped ridge tapers to match the impedance of the access ports.

The multimodal ABCD chain matrix of one period p of the structure under study is directly
obtained by solving the cascade connection of the waveguide sections and steps included in such a basic
period (see Fig. 1):

M =

[
A B
C D

]
=

5∏
i=1

[
Ai Bi

Ci Di

]
(1)

where the elements of the first, third and fifth ABCD matrices are trivial, since they correspond to
hollow waveguides with finite lengths. On the other hand, the second and fourth matrices are related to
the modelling of the same planar waveguide junction between the rectangular and the ridge waveguide.
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In order to obtain the full-wave characterization of the involved planar junction, a very efficient
method based on an integral equation technique is followed [19]. The application of this full-wave
analysis method requires the knowledge of the modal charts of the waveguides involved in the planar
junction under consideration, as well as the coupling coefficients between the modes of such waveguides.
To obtain this information, the well-known Boundary Integral-Resonant Mode Expansion (BI-RME)
technique has been employed [20]. Following all these methods, the generalized multimode Z-matrix of
the planar waveguide junction is first determined, and next the full-wave two-port ABCD parameters
of such junction are numerically derived as follows:

A = Z11 · Z−1
21

B = Z11 · Z−1
21 · Z22 − Z12

C = Z−1
21

D = Z−1
21 · Z22

(2)

In a periodic structure of period p, we can impose the Floquet condition [21], then:(
V1

I1

)
= M

(
V2

−I2

)
= eγp

(
V2

−I2

)
(3)

where γ is the propagation constant of the Floquet modes of the infinite periodic structure.
The right-hand side of Eq. (3) can be expressed in the classical canonical form

M · x = Λ · I · x (4)

where I is the identity matrix. The solutions (Λ and x) of the standard eigenvalue problem in Eq. (4),
which are related to the required propagation constants and transverse field distributions in the periodic
structure, respectively, can be determined straight forwardly by using well-established routines.

At a given frequency, the real and imaginary parts of the propagation constant, i.e., γ = α + jβ,
corresponding to a Floquet mode are directly related to the vector component Λi as

αi =
ln |Λi|

p
βi =

∠Λi

p
. (5)

The frequency ranges where at least a Floquet mode propagates provide different pass-bands of
the periodic structure. Conversely, the stop-bands are characterized by the lack of propagating Floquet
modes (i.e., non-trivial solutions of Eq. (4)). Therefore, in order to characterize the behaviour of the
periodic structure in a given frequency range, the dispersion diagram resulting from the solution of the
linear eigenvalue problem (4) must be computed on a frequency by frequency basis [22].

It must be pointed out that the technique just described takes into account rigorously both
propagating and relevant evanescent modes at each frequency point. As a result, the computed
parameters of the dispersion diagram also include the effect of the evanescent-modes in the pass-band
and band-gap regions.

2.2. Finite Structure and Connection with Input/Output Rectangular Waveguide

The next step is the analysis of a real structure composed of a finite number of cells, which is connected
to standard access ports. The number of cells after truncation is related with the attenuation to be
attained in the band gap. However, the scattering parameters of the truncated structure are usually
unsatisfactory for practical applications. In such a case, we propose adding an external input/output
transformer while keeping the periodicity of the filtering structure, in order to gradually modify the
impedance level from the waveguide port to the periodic part of the structure. To apply this procedure,
we first compute the Bloch impedance of the first Floquet mode of the periodic structure using the
eigenvectors V2i and I2i obtained from (3). This Bloch impedance must then be matched to the
TE10 characteristic impedance (defined as the voltage to current ratio) of the input/output rectangular
waveguide

ZTE10 =
V

I
=

πb

2a

ωμ0√
ω2μ0ε0 −

(π
a

)2 . (6)
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Such adaptation can be obtained, as a first approximation, from the design of an ideal quarter-
wavelength stepped ridged waveguide transformer or a short-step ridged waveguide transformer [9, 23].
To obtain an initial guess of the transformer physical dimensions, one can find different works in the
technical literature relating the dimensions of the ridges and the corresponding characteristic impedance.
For this work we have used Hoefer formulation [24], in which the characteristic impedance (as voltage-
to-current ratio) is computed as:

Z0 =
Z0∞√(

1− (λ/λcr)
2
) (7)

being λcr the ridge wavelength at its cutoff frequency and Z0∞ the characteristic impedance at infinite
frequency. This last parameter can be obtained by

Z0∞ = 120π2K1

K2
(8)

where the constants K1 (the normalize cut-off ridge wavelength) and K2 have the closed-form
expressions derived in [24] and [25]:

K1 =
b

λcr
=

b

2(a− w)

[
1+
(
2.45 + 0.2

w

a

)( wb

dt(a− w)

)
+

4

π

(
1+0.2

√
b

a− w

)
b

a− w
ln csc

(
πdt
2b

)]− 1
2

K2 =
b

dt
sin

(
πw

b

b

λcr

)
+

[(
2

b

λcr

)
ln csc

(
πdt
2b

)
+ tan

(
π

2

b

λcr

a− w

b

)]
· cos

(
πw

b

b

λcr

)
and w and dt are the ridge width and gap, respectively.

Figure 2. Flowchart of the whole design process employed.
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The final result is obtained after an optimization process (simplex algorithm) of the parameters
corresponding to the taper waveguide sections (their lengths Lt and gaps between ridge insertions dt)
using FEST3D [26]. This full-wave optimization considers rigorously the effect of the higher-order modes
in the discontinuities (including also the attenuation factor of the evanescent ones), and the impedance
variations along the taper sections.

As a summary, Fig. 2 shows a flowchart indicating the step-by-step design process.

3. RESULTS

In order to demonstrate the practical application of an EBG structure, a WR-90 rectangular waveguide
periodically loaded with symmetrical ridges has been first considered. In this example the period of the
unit cell is p = 8mm, all the insertions have the same width w = 0.5mm, length Lr = 2mm and are
separated dr = 1mm. Fig. 3(a) shows the dispersion diagram of this EBG structure computed using the
technique described in Section 2. These results are confirmed by the commercial software HFSS [27].
From Fig. 3(a) we can state that the EBG has a first pass-band from 5 to about 10.2GHz, and presents
a second pass-band from 14.5GHz (due to the propagation of the second Floquet mode).

In the next step, we have transformed the infinite EBG into a real filter, i.e., considering only a
finite number of cells (5 in this case, resulting in a fifth-order low-pass filter), and taking advantage of
the existence of the first pass-band. The filter has a low-pass performance whose pass-band lower cutoff
frequency coincides with the TE10 cut-off frequency of the WR-90 input/output rectangular waveguide,
and the upper cut-off frequency is the same of the first EBG pass-band. The truncation of the infinite
periodic structure highly degrades the reflection behaviour in the pass-band (see blue lines in Fig. 2(b)).
In [6], to achieve a better impedance matching between the input/output WR-90 waveguides and the
EBG, the authors proposed reducing by half the lengths of the first and last ridges with respect to the
remaining ridges. This solution keeps the periodicity of the inner structure if the basic cell p defined
in Fig. 1 is used (although the number of cells is then reduced to 4). However, as seen in the same
Fig. 3(b) with black lines, in this case, the resulting filter still presents an unacceptable return loss level.
After a quantitative analysis and an optimization process performed with FEST3D, we found that the
best choice for both lengths Lr1 and Lr5 is 0.77mm (red lines in Fig. 3(b)), improving the pass-band
reflection in a short band (9.25–9.93 GHz). Nevertheless, this result clearly demonstrates that only by

(a) (b)

Figure 3. (a) Dispersion behaviour (βp versus f) for a WR-90 waveguide periodically loaded with
symmetrical ridges. With circles results from HFSS. (b) Electrical response (|S21| parameter in dashed
lines) of the fifth-order EBG low-pass filter varying the length dimension of the first (Lr1) and last
ridges (Lr5). With blue lines a structure with all identical ridges (Lr1 = Lr5 = 2mm); with black lines
a similar solution to the one proposed in [6] (Lr1 = Lr5 = 1mm); with red lines the best option found
by optimization (Lr1 = Lr5 = 0.77mm).
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tuning the first and last ridge lengths it is impossible to reach acceptable return loss levels for filtering
applications in a wide band.

In this paper, as a potential solution we propose to add a stepped transformer to the finite periodic
structure with half-length input and output ridges (see Fig. 1). The transformer includes ridged
waveguides with the same width w and different gaps dt. With this solution, the periodicity p of
the unit cell of the infinite structure is still maintained.

Figure 4 shows the final result after the optimization step (carried out with FEST3D tool) on a
single stage quarter-wavelength transformer. The design specification was a level of |S11| below −20 dB
in the pass-band for the whole component. These results are also confirmed by the commercial software
HFSS. Note that only one section has been required to obtain a good matching over such a wide
bandwidth, being the length of the section Lt1 = 18.914mm and its ridge gap dt1 = 6.613mm.

A prototype of this low-pass filter has been manufactured in three pieces of brass using a milling
machine. Fig. 5(a) shows the manufactured component, whereas Fig. 5(b) compares the simulated and

Figure 4. Electrical response of the fifth-order EBG low-pass filter after adding one-stepped ridged
transformer.

(a) (b)

Figure 5. (a) Pictures of the fifth-order EBG manufactured low-pass filter. (b) Simulations (lossless
case and with a finite conductivity value of σ = 1.6× 107 S/m) and measurements of the filter electrical
response.
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measured response of this optimized low-pass filter (lossless case, and also assuming a finite conductivity
value of σ = 1.6 × 107 S/m (brass conductivity)). In this last case, the propagation losses have been
computed using a technique based on the perturbation of boundary conditions [28, 29].

In Fig. 5(b), measurements have been obtained using a Vectorial Network Analyzer with a WR-
90 TRL calibration kit. The agreement between simulated and measured performances is very good,
and only an upwards shift of 50MHz is observed in the measured response of the filter, which can be
attributed to manufacturing tolerances. Insertion loss level is above 0.15 dB in the entire filter pass-band.
These results fully validate the proposed approach.

Finally, we have designed a more demanding K-band filter by periodically loading a WR-34
(a = 8.636mm and b = 4.318mm) rectangular waveguide with symmetrical ridges. Fig. 6(a) shows the
dispersion diagram of the infinite periodic structure whose cell has the following dimensions: p = 5mm,
Lg = 3mm, w = 0.2mm and dr = 1.2mm. In this second example, we can see that the first pass-band
ranges from 14.5 to 25GHz, and the second pass-band is present from 36.5GHz. In Fig. 6(a) we have
also displayed the dispersion diagram of the same structure considering high propagation losses (a finite
conductivity of σ = 106 S/m has been simulated).

(a) (b)

Figure 6. (a) Dispersion behaviour (βp versus f) for a WR-34 waveguide periodically loaded with
symmetrical ridges. In dashed blue lines we have also simulated the effect of propagation losses (finite
conductivity of σ = 106 S/m). (b) Electrical response of the eight-order EBG low-pass filter before and
after adding a two-section short-step ridged transformer optimized with FEST3D.

Figure 7. Magnitude of the scattering parameters of the eight-order EBG low-pass filter with a short-
step ridged waveguide transformer considering the lossless case and propagation losses.
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From the information provided by the dispersion diagram, we have designed an eight-order low-pass
filter (8 unit cells) providing more selectivity than for the previous example. Fig. 6(b) shows the filter
electrical response before and after adding a two-stage short-step ridged transformer optimized with
FEST3D (Lt1 = 3.17mm, Lt2 = 3.99mm, dt1 = 2.968mm and dt2 = 3.728mm, respectively). As it can
be seen, the periodic filter loaded with optimized input and output tapers, has achieved a return loss
level better than 17 dB in an extremely wide pass-band. Note also that the input and output tapers
added to the periodic structure affect mainly to the passband return loss, while keeping the stopband
performance essentially unaltered.

In Fig. 7 we compare the magnitude of the scattering parameters of this optimized low-pass filter
considering the lossless case, as well as a real structure with a finite conductivity value of σ = 106 S/m.
A downwards frequency shift of about 52.5MHz is observed in the simulated response with finite
conductivity, whereas the insertion loss increases to 0.37 dB.

4. CONCLUSIONS

In this work, we have designed practical low-pass filters from the dispersion diagram of rectangular
waveguides periodically loaded with metal ridges. The proposed design technique has been validated
with two examples. In the first case, we have improved the pass-band performance of aperiodic structure
by adding a step ridged waveguide transformer to its input and output stages. Using this approach, we
have also designed a second higher order wideband filter for more demanding K-band applications, thus
demonstrating the practical application of EBG ridged waveguide structures. The proposed procedure
has been fully validated by means of measurements of a manufactured prototype.
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