
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/151054

Huerta-Muñoz, D.; Ríos-Mercado, RZ.; Ruiz García, R. (2017). An iterated greedy heuristic
for a market segmentation problem with multiple attributes. European Journal of Operational
Research. 261(1):75-87. https://doi.org/10.1016/j.ejor.2017.02.013

https://doi.org/10.1016/j.ejor.2017.02.013

Elsevier



An Iterated Greedy Heuristic for a Market Segmentation Problem
with Multiple Attributes

Diana L. Huerta-Muñoz
Department of Statistics and Operations Research

Universitat Politècnica de Catalunya
Jordi Girona, Edifici C5

Campus Nord 08034, Barcelona, Spain
diana.huerta@upc.edu

Roger Z. Ríos-Mercado1

Graduate Program in Systems Engineering
Universidad Autónoma de Nuevo León (UANL), Mexico

AP 111-F, Cd. Universitaria
San Nicolas de los Garza, NL 66455, Mexico

roger.rios@uanl.edu.mx

Rubén Ruiz
Grupo de Sistemas de Optimización Aplicada

Instituto Tecnológico de Informática,
Universitat Politècnica de València

Camino de Vera s/n, 46021 Valencia, Spain
rruiz@eio.upv.es

September 2014
Revised: November 2015, October 2016, January 2017

1Corresponding author



Abstract

A real-world customer segmentation problem from a beverage distribution firm is addressed.
The firm wants to partition a set of customers, who share geographical and marketing attributes,
into segments according to certain requirements: (a) customers allocated to the same segment
must have very similar attributes: type of contract, type of store and the average difference of
purchase volume; and (b) compact segments are desired. The main reason for creating a partition
with these features is because the firm wants to try different product marketing strategies. In this
paper, a detailed attribute formulation and an iterated greedy heuristic that iteratively destroys and
reconstructs a given partition are proposed. The initial partition is obtained by using a modified
k-means algorithm that involves a GRASP philosophy to get the initial configuration of centers. The
heuristic includes an improvement method that employs two local search procedures. Computational
results and statistical analyses show the effectiveness of the proposed approach and its individual
components. The proposed metaheuristic is also observed very competitive, faster, and more robust
when compared to existing methods.

Keywords: Metaheuristics; Market segmentation; Iterated greedy heuristics; GRASP; Variable
neighborhood search.



1 Introduction

Market segmentation is a strategy that involves the division of a larger market into segments
of customers that have common needs and applications for products and services offered in the
market. These segments can be identified by a number of different features, depending on the
composition of each group. One of the main reasons for creating market segments is to know more
about the customers and to try different strategies in order to obtain greater customer satisfaction
and increased profits.

A real-world problem from a beverage distribution firm is addressed in this paper. Given a
set of customers, the firm wants to partition this set into segments. Each one must be composed
of customers with the most similar type of contract, type of store, and average purchase volume.
Customers of each segment must be as close to each other as possible. This last feature along with the
previously mentioned attributes allow the company to apply different product marketing strategies
to satisfy customer needs and to obtain more substantial profits. The first contribution of this
paper is the development of a detailed attribute formulation to represent this particular clustering
problem. From this model, an efficient Iterated Greedy Algorithm composed of destruction and
reconstruction procedures to generate feasible solutions is proposed. An adapted k-means algorithm
and an improvement method based on two local search procedures are applied to obtain a good
initial solution and further improve the solution quality given by the destruction-reconstruction
method, respectively. Empirical work indicates the effectiveness and robustness of the proposed
heuristic.

This paper is organized as follows. In Section 2 some literature about work done on optimization
problems in market segmentation is discussed. In Section 3, the problem and the associated attribute
formulation are described. Then, Section 4 details the proposed algorithm based on an Iterated
Greedy Algorithm to solve this problem. In Section 5 computational results are shown to demonstrate
the suitability of the proposed approach. We wrap up in Sections 6 with the conclusions and directions
for future research.

2 Literature Review

There has been a plethora of research on market segmentation approaches and solution methods,
dating back from the seminal work of Smith (1956). An extensive review of the literature on
market segmentation is given by Wedel and Kamakura (2000). They carefully review each of several
approaches, along with a discussion of the supporting statistical methodology. Cooil et al. (2008)
review general approaches to customer segmentation, with an emphasis on the most powerful and
flexible analytical approaches and statistical models. A more recent survey can be found in Liu et al.
(2012).
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This section is divided into three parts. First, research on important computational issues
regarding market segmentation is discussed. Then a discussion on some of the most important
market segmentation techniques is provided. Finally, clustering methods are reviewed.

2.1 Market Segmentation Issues

Issues such as data measurement, the choice of computation models, the algorithm complexity, and
multi-objective optimization methods have been discussed by many authors. These issues explain
many commonalities and differences among market segmentation algorithms (Liu et al., 2012).

Similarity measures: Works such as Green et al. (1967) and Punj and Stewart (1983) have
investigated and discussed the difficulties in determining the appropriate similarity measure in
market segmentation. Kleinberg (2002) develops his impossibility theorem that describes the
degree of complexity of a clustering process.

Data dimensionality: There are certain problems, such as tourist segmentation, where the data
is characterized by small number of respondents and a large number of survey questions.
This causes serious methodological problems that have typically been addressed by using
factor-cluster analysis to reduce the dimensionality of the data; however, this kind of analysis
has been shown to be unacceptable to the issue of high data dimensionality in segmentation
(Dolnicar and Grün, 2008). To overcome this issue, techniques such as bi–clustering have been
proposed and studied by Dolnicar et al. (2012) in a tourism segmentation context.

Computational complexity: Most market segmentation problems are difficult to solve. NP-
hardness has been established for many clustering problems (Aloise et al., 2009; Brucker, 1978)
Therefore, the need for heuristic approaches is well justified.

2.2 Market Segmentation Techniques

Clustering can be defined as a technique that groups entities similar in measured characteristics.
Following Liu et al. (2012), this definition of clustering to refer to a number of traditional clustering
methods that only optimize one within-segment homogeneity objective is used. According to this
view, methods such as clusterwise regression and automatic interaction detection are not clustering
methods because they do not optimize within-segment homogeneity. A fundamental task of market
segmentation is to group customers based on similarities in their needs and preferences, and clustering
is a common tool for such a purpose.

Descriptive market segmentation methods: Segmentation techniques can be classified into
descriptive or predictive methods depending on whether the method distinguishes between
independent or dependent variables. Descriptive techniques include clustering methods such as
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k-means and its variations (Jain et al., 1999; Chiu et al., 2009), hierarchical clustering (Punj
and Stewart, 1983), p-median clustering (Klastorin, 1985), case-based reasoning (Chen et al.,
2010), and self-organizing map (Lee et al., 2002) methods. Probabilistic models are often used
for clustering as they take advantage of of the statistical inference capability (Fraley and
Rafterty, 1998) when the density distribution assumption holds for a data set.

Predictive market segmentation methods: These methods include response modeling meth-
ods such as clusterwise regression methods (Spath, 1979), clusterwise logistic and mixture
regression methods (Wedel and Kamakura, 2000). Predictive methods usually result in a
better predictive model for an individual segment rather than for the population as a whole,
and the within-segment homogeneity of predictors is relatively low.

Multi-objective market segmentation methods: Several multi-objective heuristics and meta-
heuristics have been developed in the past for market segmentation (Liu et al., 2010; Caballero
et al., 2011). Other techniques to address the multi-objective nature of market segmentation
are the multi-stage approach, which allows us to deal with one objective at a time iteratively
(Krieger and Green, 1996; Mo et al., 2010), the transformation approach, which transforms
and combines multiple objectives into a single one (DeSarbo and Grisaffe, 1998; Brusco et al.,
2003), and modification of traditional descriptive clustering methods and predictive clusterwise
methods (Vriens et al., 1996).

2.3 Clustering Methods

Clustering methods such as k-means are very popular due to their ease of implementation. This
method partitions the data set into k subsets so that all points in a given subset are closest to the
same cluster center. In a regular k-means algorithm, the cluster center is not necessarily one of the
objects; however, in this work, we consider a discrete version of the k-means algorithm, that is, one
where the center of each cluster explicitly corresponds to an object. Thus, in the reminder of the
paper whenever we refer to the k-means algorithm we mean the discrete version. Generally, the
k-means algorithm has the following important properties: (i) It is efficient in processing large data
sets; (ii) it often terminates at a local optimum; (iii) the clusters have spherical shapes. Choosing the
proper initial cluster centers is the key step in the classical k-means procedure. It is observed that
the well-known k-means algorithm is best suited for large data sets, whereas other approaches such
as artificial neural networks (ANNs), genetic algorithms (GAs), tabu search (TS), and simulated
annealing (SA) have been mainly tested on small data sets (Jain et al., 1999; Xu and Tian, 2015).
One of the most commonly used objective functions for clustering problems is the Mean Square
Error (MSE) measure (Brusco and Stahl, 2005).

Clustering algorithms have been used in a large variety of applications such as image segmenta-
tion (Jain et al., 1995; Solberg et al., 1996), object recognition (Dorai and Jain, 1995), information
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retrieval (Rasmussen, 1992), and data mining (Fayyad, 1996), among many others. A variety of
clustering techniques in the literature are reviewed and discussed more recently by Xu and Tian
(2015).

3 Problem Description

This work addresses a real-world problem of a beverage distribution firm. Given a set of customers,
the firm wants to partition this set into segments. Each segment must be composed of customers with
the most similar type of contract, type of store, and average purchase volume as possible. Another
feature to consider is the compactness of the segments. The firm wishes to get a partition with these
features because it needs to apply different product marketing strategies. The attribute formulation
to represent the specific problem is presented first. Then, an iterated greedy algorithm that is
composed of two main phases, destruction and reconstruction, and uses a variable neighborhood
search to improve the solution is proposed.

3.1 Formulation of attributes

Let V = {1, 2, . . . , n} be a set of customers, K = {1, 2, . . . , k} be a set of segments, S be a set of
types of products (SKU), C be a set of types of contracts, and E a set of types of stores. Note that |S|,
|C|, and |E| are the total number of SKU, types of contracts, and types of stores, respectively. The
considered parameters are: dij , the Euclidean distance between customers i and j, i 6= j, i < j ∈ V ;
a matrix A = {ais}, where ais represents the purchased volume (number of boxes) of SKU s ∈ S
demanded by customer i ∈ V . The number of partitions k is also a given parameter.

Given a collection Π of all feasible k-partitions from V , the problem consists of finding a
k-partition X = (X1, . . . , Xk) ∈ Π so as to minimize the following objective function:

min
X∈Π

f(X) = α1fdisp(X) + α2fsku(X) + α3ftoc(X) + α4ftos(X) (1)

where fdisp(X), fsku(X), ftoc(X) and ftos(X) are normalized values of the dissimilarity functions for
the attributes of dispersion, purchase volume, type of contract, and type of store, respectively, for
a given partition X. The values of αr ∈ [0, 1], where

∑4
r=1 αr = 1, represent the weights of these

dissimilarity functions. These dissimilarity functions are explained next.

Dispersion: To measure the dispersion of a given partition X we consider the sum of intra-cluster
distances (Brusco and Stahl, 2005). This is, for each segment q ∈ K, the total sum of the
distances between all pairs of customers i and j, where i < j, i, j ∈ Xq. The sum of intra-
cluster distances corresponds to the sum of these totals. Small values of this sum represent
less dispersed segments. This is a very common measure used in the literature. In (2) d̄ij is
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the normalized value of dij given by d̄ij = dij/dmax, where dmax = maxi<j∈V {dij}.

fdisp(X) =
∑
q∈K

∑
i<j∈Xq

d̄ij (2)

Purchase Volume: The way to represent the dissimilarity between customers, with respect to
this attribute, arose from a specific requirement of the firm. It is represented by the total sum
of squares of the differences between average purchase volumes for every pair of customers of
the same segment. For a given pair of customers i and j the dissimilarity in purchase volume
is represented by:

qsku
ij =

√√√√√√∑s∈S

(
ais

aT
i

− ajs

aT
j

)2

|S|
(3)

where ais is the volume (measured in boxes) that customer i demands from product (SKU) s
and aTi =

∑
s∈S ais is the total purchase volume for each customer i ∈ Xq, q ∈ K, for all SKU

s. Consequently, for a given partition X, the total dissimilarity corresponds to the total sum
of squares of the differences between these volumes for all pairs of customers of each segment.

fsku(X) =
∑
q∈K

∑
i<j∈Xq

qsku
ij (4)

Type of Contract and Store: For the type of contract (store) the dissimilarity between cus-
tomers of a given partition X will be zero if the type of contract (store) for these customers is
the same; otherwise, it will be equal to one. Formally we can express it as hij = 0 (gij = 0) if
the type of contract (store) of customer i is equal to the type of contract (store) of customer
j, for i 6= j, i < j ∈ Xq, q ∈ K, and hij = 1 (gij = 1) otherwise. The sum of all dissimilarities
between customers of each segment q ∈ X represents the total dissimilarity in these attributes
of the given partition.

ftoc(X) =
∑
q∈K

∑
i<j∈Xq

hij (5)

ftos(X) =
∑
q∈K

∑
i<j∈Xq

gij (6)

Under this definition, the dissimilarity function for two specific customers i, j ∈ V is given by

fij = α1d̄ij + α2q
sku
ij + α3hij + α4gij . (7)

Although it is well known that the scalar optimization approach to multiobjective combinatorial
optimization may fail to identify unsupported Pareto efficient solutions, it has to be noted that all
these dimensions represent a specific objective function that follows the business practices of the
firm. A posteriori multiobjective approach (for example, producing a Pareto front) is not acceptable
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to the firm due to its inherent complexity with the four objectives (and the thousands of potentially
non-dominated points in the objective space). A convex linear combination of the four dimensions is
a much more user-friendly approach, once the most suitable values of α1, . . . , α4 have been agreed
upon. Furthermore, the choice of this aggregation function is justified from a practical standpoint
as there are only a few weight combinations that are of interest. The purpose of this study is based
on the practical cases.
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Pseudocode 1 IGACS(IterIGmax)
Input:

IterIGmax: Iteration limit;
Output:

Xbest : Best partition found;

1: X ← MKM(V, k, β, Itermax);
2: X ← LS(X);
3: Xbest ← X;
4: iter ← 0; τIG ← 0.0001; Improvement← 1;
5: while (Improvement ≥ τIG or iter < IterIGmax) do
6: Improvement← 0
7: X ′ ← DestructionPhase(X);
8: X ′ ← ReconstructionPhase(X ′);
9: X ′ ← LS(X ′);

10: if (f(X ′) < f(X)) then
11: X ← X ′;
12: if (f(X) < f(Xbest)) then
13: Improvement← f(Xbest)− f(X); Xbest ← X;
14: end if
15: else
16: gap← f(X′)−f(Xbest)

f(Xbest)
;

17: if (iter = 0) then
18: τ ← 0.1 · gap
19: end if
20: if (gap ≤ τ and gap 6= 0) then
21: X ← X ′; as← as+ 1; csa← csa+ f(X); nas← 0;
22: else
23: nas← nas+ 1; cna← cna+ f(X); as← 0;
24: end if
25: if nas = dγ · IterIGmaxe then
26: τ ← cna

nas ; nas← 0; cna← 0;
27: else if as = dγ · IterIGmaxe then
28: τ ← csa

as ; as← 0; csa← 0;
29: end if
30: end if
31: iter ← iter + 1;
32: end while
33: return Xbest
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4 Proposed Heuristics

The proposed heuristic in this paper, called Iterated Greedy Algorithm for Customer Segmentation
(IGACS), follows an Iterated Greedy (IG) algorithm framework (Ruiz and Stützle, 2007) which is a
metaheuristic related to the Iterated Local Search (ILS) of Lourenço et al. (2002) that iteratively
applies local search in a special way focusing on the space of solutions that are locally optimal.
Instead of iterating over a local search as done in ILS, IG iterates over a greedy reconstruction
heuristic.

Besides its relatively simplicity, destroy-and-reconstruct heuristics have been particularly useful
for problems related to scheduling (Ruiz and Stützle, 2007, 2008; Fanjul-Peyro and Ruiz, 2010;
Urlings et al., 2010) and other generalized set covering problems (Jacobs and Brusco, 1995; Marchiori
and Steenbeek, 2000), where it is especially challenging to produce feasible solutions. After the work
of Ruiz and Stützle (2007), many other authors, especially in the field of scheduling, have been
applying this methodology with good results (Lozano et al., 2011; Ribas et al., 2011). Local search
heuristics based on variable neighborhood search have also been applied to clustering problems
such as the maximally diverse grouping problem (Lai and Hao, 2016) and clustering data from
heterogeneous dissimilarities(Santi et al., 2016).

In the same way as the IG, IGACS generates a sequence of solutions by iterating over greedy
constructive heuristics using two main phases: destruction and reconstruction. During the destruction
phase, some elements are removed from a previously complete candidate solution (partition) initially
obtained by an adapted k-means algorithm. Then, the reconstruction procedure applies a greedy
constructive heuristic to reconstruct the partition. The algorithm iterates over these steps until a
stopping criterion is met. To improve the given partition, a Local Search (LS) procedure (described
below) is applied.

Pseudocode 1 shows the steps of the proposed IGACS. As a first step (Step 1) an initial partition
using a variation of the k-means algorithm proposed in this work, which we have called Modified
k-Means (MKM), is obtained. Then a local search (LS) based on two neighborhood structures is
applied (Step 2) to improve this partition. A full description of the proposed MKM and LS methods
is given in Section 4.1 and 4.2, respectively. This improved partition enters the iterative part of the
IGACS.

At each iteration of the IGACS (Steps 5–32), the solution goes through four main phases.
First, destruction and reconstruction phases are applied (Steps 7–8). In the former, D elements are
removed at random from the incumbent solution. In the latter, each removed element is reassigned
to the segment that produces the lowest increment in the dissimilarity measure. These methods are
further explained in Section 4.3. Once the partition has been completely reconstructed, the LS is
applied again to attempt to improve the partition (Step 9). Afterwards, an acceptance criterion
(Steps 10–30) is applied in order to decide whether the new reconstructed partition replaces the
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current one or not.
If the total dissimilarity of the new partition is less than the current one, the current solution is

updated (Steps 10–11). Then, if the total dissimilarity of this current solution is less than the best
solution found until now, the Improvement value is computed and the best solution is updated too
(Steps 12–14). Otherwise, the algorithm goes through Steps 17–29. When a new solution is found
and it is not better than the current one, it can be accepted if its relative percentage deviation (gap)
is less than or equal to a certain threshold value τ (Steps 20–21) computed in Steps 25–29 (or Steps
17–19 in the very first iteration). Here, csa/as (cna/nas) represents the average dissimilarity after
as (nas) iterations (proportional to the IterIGmax parameter), where as (nas) is the number of
consecutive iterations where worst solutions were accepted (not accepted). Similarly, csa (cna) is
the cost of lower quality accepted (not accepted) solutions. The IGACS iterates until the solution
improvement is less than a τIG threshold and a maximum number of iterations (IterIGmax) is
reached.

4.1 Initial Partition

To obtain the initial partition, a Modified k–Means (MKM) is proposed. Basically, in the traditional
k-means algorithm (Hartigan and Wong, 1979), k elements are selected to represent the initial
centers (means) of each segment, the others n− k elements are assigned to its closest center, and it
iteratively recalculates them based on the mean of each current group. This algorithm iterates until
a stopping criterion is reached. One of the most important advantages of this approach is that it can
find solutions quickly. The most notable disadvantage is that the solution strongly depends on the
initial selection of centers. The classic k-means is designed for elements which can be represented
with numerical data; however, some variations of this algorithm have been made to address the
nominal case (Guha et al., 2000; He et al., 2005). Pseudocode 2 shows the general MKM procedure
for the obtention of the initial partition.

The MKM uses the most centered (the least dissimilar) elements of each segment according to
the weighted sum of dissimilarities (1). The distance between each pair of elements represents the
dissimilarity with respect to the four attributes studied in this work (7).

A Greedy Randomized Adaptive Search Procedure (GRASP) (Feo and Resende, 1995) is proposed
to find a better initial configuration of centers (Step 3). In a particular iteration, given a partial set
of centers K̄ = {c1, . . . , cq}, a greedy function φ(j) that measures the cost of assigning a node j as
a center is computed for all unassigned nodes j ∈ V \ K̄. Then a Restricted Candidate List (RCL)
is built by taking those candidates whose greedy function evaluation falls within β % from the best
possible value, in other words, the RCL is restricted by the quality parameter β. An element from
the RCL is randomly chosen and added to K̄. Once the k centers are selected (Step 3), the rest of
the n− k elements are assigned to its closest center (Step 7) according to (1). At the end of this
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procedure, if there are no further elements to assign, centers are recalculated in such a way that
new centers correspond to the most centered elements of each segment (Step 8). The best solution
is updated if the new solution has been improved (Steps 9-11). The inner cycle iterates until the
configuration of centers does not change. The complete process is performed a maximum number of
iterations Itermax.

Pseudocode 2 MKM(V, k, β, Itermax)
Input:

V : Set of customers;
k : Number of segments;
β : GRASP RCL quality parameter;
Itermax: Maximum number of iterations;

Output:
Xbest : Best partition found;

1: Xbest ← ∅; iter ← 0;
2: while (iter < Itermax) do
3: K̄ ← locate_centers(V, k, β);
4: K ′ ← ∅;
5: while (K ′ 6= K̄) do
6: K ′ ← K̄;
7: X ← assignment(V,K ′);
8: K̄ ← reallocate_centers(X);
9: if (f(X) < f(Xbest)) then

10: Xbest ← X;
11: end if
12: iter ← iter + 1;
13: end while
14: end while
15: return Xbest

The purpose of introducing a GRASP-construction mechanism is to find a good configuration
of initial centers and obtain better quality solutions once the assignment step has been applied.
We use this method to get the initial partition for IGACS because k-means is one of the best
known algorithms for clustering problems due to its easy implementation and fast convergence
to good solutions. To further improve this partition, we tried three different strategies, based on
greedy heuristics for the k-dispersion problem developed by Erkut et al. (1994), within the GRASP
construction phase to get this initial configuration.

• Strategy 1: Select the k most disperse elements (considering only the dispersion attribute).
First, two nodes i and j whose dij is the maximum are chosen and added to K̄. Then, for
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the rest n− |K̄| elements, the minimum distance between each one of them and the elements
belonging to K̄ is calculated, i.e., the greedy function is computed as φ(j) = min{dji : i ∈ K̄}.
The RCL is formed by the elements with the highest value. This procedure is carried out until
|K̄| = k.

• Strategy 2: Select the k most dissimilar elements. It consists of the same procedure except that
now we directly use the dissimilarity function (7) to establish the dissimilarity between each
pair of elements. In this regard, the greedy function is computed as φ(j) = min{fji : i ∈ K̄}.

• Strategy 3: Select the k most dissimilar elements as in Strategy 2, except that now the
distance from a given node j to set K̄ is measured by the sum, not by the minimum value,
i.e., φ(j) =

∑
i∈K̄ fji.

In order to increase the diversity of solutions, we introduced a GRASP philosophy in each
strategy to select these k elements from a restricted list of candidates (RCL) which is formed using a
quality parameter β. Once k centers are selected, the assignment procedure of the MKM is applied
to obtain a partition.

4.2 Improvement Procedure

The basic idea of the proposed local search (LS) procedure is to carry out the application of two
different neighborhood search schemes in a sequential manner. The LS is used to improve the
partitions obtained by the MKM procedure and the reconstruction phase of the IGACS. This LS
(Pseudocode 3) is composed of two simple local searches or neighborhoods performed iteratively
(Steps 3 and 4). The algorithm terminates when no significant improvements (measured by ε) are
found in IterLS iterations.

The first neighborhood applied is based on insertion moves. The idea is to choose iteratively a
segment q randomly from K. Then an element i from Xq is removed and reinserted into a segment
r. If the merit function φ(i, r), that measures the benefit of inserting element i in segment r, is
positive then the move is accepted and the corresponding segments Xq and Xr are updated. This
iterative process terminates when the current segment Xq has been totally explored or as soon as an
improved move is found (first-found strategy). If no improved move is found, then another segment
is evaluated. The algorithm terminates when all the segments have been evaluated.

The swap neighborhood is based on swapping elements i ∈ Xq and j ∈ Xr from different segments
(q 6= r) considering the merit function φ(i, j). If the benefit is positive, the move is accepted and
the corresponding segments q and r are updated. The search stops when the number of segments
selected at random exceeds a predefined maximum number (Pmax) of segments to evaluate, due to
the largest computational effort in each iteration.
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Pseudocode 3 LS(X)
Input:

X : A k-partition;
Output:

X ′: A k-partition;

1: ε← 1.0× 10−6; iter ← 0;
2: while (iter < IterLS) do
3: X ′ ← Insertion(X);
4: X ′ ← Swap(X ′);
5: if (|f(X ′)− f(X)| < ε) then
6: iter ← iter + 1;
7: end if
8: X ← X ′;
9: end while

10: return X ′

4.3 Destruction, Reconstruction, and Acceptance Criterion

The destruction phase detailed in Step 5 of Pseudocode 1 is simple: given a partition X, it removes
or unassigns D elements at random from X, and outputs the remaining partial solution or partition.
The reconstruction phase (Step 6 of Pseudocode 1) takes the incomplete partition X as input and
reassigns the unassigned customers into the segment that produces the lowest increment on the
partition dissimilarity measure. That is, for any unassigned element i ∈ V \ X, assign i to the
segment Xq∗ where q∗ = arg minq∈K

{∑
j∈Xq

fij
}
. Its output is a complete partition X.

5 Computational Experience

The IGACS was implemented in C++ under a 64 bits Windows 7 operating system. The experiments
were carried out on a HP Workstation with Intel(R) @3.5 GHz, 16 Gb. of RAM. Since there
is only one real-world instance available for this specific problem, we developed previously a
descriptive analysis of the data in order to generate two sets of instances. The first set was
generated using a uniform distribution for geographical coordinates on a real–world case interval
X ∼ U(25.343, 25.978) and Y ∼ U(−100.309,−99.722), and pseudo-real instance information for
the remaining attributes. The second set considers real–world coordinates from different store
locations obtained from the Mexican Institute of Statistics and Geography database (INEGI, http:

//www3.inegi.org.mx/sistemas/mapa/denue/default.aspx). For all experiments that consider
the first set, 15 instances for each size of n = 1000, 3000, 5000 were generated. For the second
set, 15 instances (5 of each size) are created. Therefore, a total of 60 instances were considered
for the computational tests. Instances can be tested with any value for the number of segments
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k. Nevertheless, for this study we have considered four different values of k. Values of k = 5, 10
represent the number of segments which obtained the best Davies–Bouldin Index evaluation (Davies
and Bouldin, 1979) and the values of k = 20, 25 represent the number of segments proposed by the
firm in the real-world case such that k = 5, 10, 20, 25 are the values of k considered to evaluate the
performance of the proposed algorithm.

A total of 6 different vectors for α (αr, where r ∈ {1, 2, 3, 4}) are tested, namely (0.25,0.25,0.25,0.25),
(0.1,0.4,0.4,0.1), (1,0,0,0), (0,1,0,0), (0,0,1,0) and (0,0,0,1). The first vector is referred to as “equal
weights” where the same preference is given to all objectives. The second vector corresponds to
the weights set by the company or the “commercial weights”. The other four vectors give complete
weight to each one of the four objectives or attributes (dispersion, purchase volume, type of contract
and type of store, respectively), ignoring the others. The response variable studied in this paper is
the average relative percentage deviation (ARPD) which is as follows:

ARPD = 1
N

∑ f(X)− f(Xbest)
f(Xbest) × 100 (8)

where f(X) is the resulting objective function value found for each one of the N instances tested
that exist for each size n (N = 45 for the first set and N = 15 for the second set) and f(Xbest) is
the best objective function value found for each one of these instances under the specified tested
conditions, i.e., a given number of segments k, and a specified weight vector α.

5.1 Calibration of Parameters

Initial experiments are performed to calibrate the parameters used for each component of IGACS.
These experiments are described in the following subsections.

Calibration of Strategy and β

As a first experiment, the MKM algorithm is assessed using the first set of instances. Table 1
shows the average deviation from the best solution found computed for each combination of α
averaged across all instance sizes n (1000, 3000, and 5000), number of k segments (5, 10, 20,
and 25), strategy applied, and the GRASP quality parameter (β). The GRASP iteration limit is
set at Itermax = 100, except for the case when β = 0.0 as this is the greedy deterministic case
corresponding to a single execution of this algorithm for which Itermax = 1 suffices. This experiment
contains the average of 100 replicates over the 45 instances tested for each segment size (18,000
results averaged). A parametric Analysis of Variance is carried out after considering the first four
αr values, β, n, k, and the Strategy level as factors and ARPD as the response variable.

It was observed that Strategy 2 obtained better solutions for most of the cases (in comparison
with Strategies 1 and 3), especially when β = 0.2 except when the maximum weight is given to
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Table 1: Assessment of Strategy, and β within the MKM algorithm.

β for the GRASP method in MKM

α GRASP strategy 0 0.2 0.4 0.6 0.8 1 Average

(0.25, 0.25, 0.25, 0.25) Strategy 1 3.24 0.42 0.65 0.95 1.30 1.73 1.4
equal weights Strategy 2 3.23 0.35 0.70 1.00 1.41 1.63 1.4

Strategy 3 11.23 4.47 3.66 2.24 1.80 1.70 4.2

Average 5.90 1.75 1.67 1.40 1.50 1.69

(0.10, 0.40, 0.40, 0.10) Strategy 1 4.27 0.37 0.73 0.97 1.59 2.15 1.68
commercial weights Strategy 2 3.66 0.36 0.71 1.17 1.83 2.07 1.63

Strategy 3 8.94 4.96 5.79 3.73 2.89 2.30 4.77

Average 5.62 1.90 2.41 1.96 2.10 2.17

(1.00, 0.00, 0.00, 0.00) Strategy 1 2.37 0.37 0.64 0.72 1.08 1.37 1.09
dispersion Strategy 2 2.37 0.35 0.61 0.76 1.01 1.30 1.06

Strategy 3 9.46 3.18 2.42 1.67 1.31 1.29 3.22

Average 4.73 1.30 1.22 1.05 1.13 1.32

(0.00, 1.00, 0.00, 0.00) Strategy 1 15.88 2.25 2.12 2.24 2.17 2.05 4.45
purchase volume Strategy 2 18.71 3.81 2.57 1.92 1.99 1.93 5.16

Strategy 3 15.99 4.45 3.38 1.68 1.97 1.99 4.91

Average 16.86 3.50 2.69 1.95 2.04 1.99

(0.00, 0.00, 1.00, 0.00) Strategy 1 263143.27 15435.75 16281.16 16373.83 16015.33 13574.44 56803.96
type of contract Strategy 2 705.63 649.84 648.03 644.57 646.69 14462.35 2959.52

Strategy 3 2054.15 1868.05 1850.42 1827.01 1831.98 9036.91 3078.09

Average 88634.35 5984.55 6259.87 6281.80 6164.67 12357.90

(0.00, 0.00, 0.00, 1.00) Strategy 1 342.47 102.72 150.45 149.75 146.79 75.24 161.24
type of store Strategy 2 63.72 12.27 13.06 13.19 13.26 73.04 31.42

Strategy 3 69.14 12.50 12.79 13.49 13.46 71.87 32.21

Average 158.44 42.50 58.77 58.81 57.83 73.38

the purchase volume attribute the Strategy 1 with β = 1 showed better results. Aberrant results
were observed in the cases where the maximum weight is given to the attribute of type contract
or store. As it will be seen later on, this is rapidly fixed when the initial partition is subject to
local search or to the IGACS algorithm. For the remaining statistical experiments these two last
cases are no longer considered. Another interesting observation that can be made is by comparing
the deterministic MKM algorithm (column β = 0) with MKM when β > 0, particularly with the
column β = 0.2 where the best results were observed. For instance, for the first weight combination
(0.25, 0.25, 0.25, 0.25) the solution quality found indicates absolute average improvements of 2.82,
2.88, and 6.77 %, and relative average improvements of 6.73, 8.22, and 1.52 % with respect to the
solutions found by the deterministic MKM under Strategies 1, 2, and 3, respectively. Similarly, for
the second weight combination (0.10, 0.40, 0.40, 0.10) the solution quality found showed average
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relative improvements of 10.39, 9.28, and 0.80 %, over the ones found under Strategies 1, 2, and
3, respectively. For all other weight combinations, this significant improvement of MKM over the
deterministic MKM is clearly seen. Now, given that deterministic MKM corresponds to a single
iteration (with β fixed at 0.0), the computational effort employed by the MKM when β > 0.0 is
roughly Itermax times as much as the one employed by the deterministic one. However, as can be
seen later in the last experiment, even for the largest instances tested, the time spent by MKM is
less than 300 seconds on average. Therefore, we conclude that the proposed GRASP version of the
MKM algorithm is indeed worthwhile as it significantly improves the solution quality with respect
to the deterministic MKM with a low computational effort.

A parametric Analysis of Variance is carried out after considering the first four αr values, β, n,
k, and the Strategy level as factors, and the ARPD as the response variable. The corresponding
means plot of the interaction between the Strategy and β factors and β and αr factors are shown in
Figures 1a and 1b, respectively. As it can be seen in 1a, Strategies 1 and 2 outperform Strategy 3.
In the interaction figures, β = 0.2 seems to provides the best overall results; however, there is no
significant difference when compared to the other values (except β = 0). Means plot considers Tukey’s
Honest Significant Difference (HSD) at 95% confidence intervals for the interaction between Strategy
and β factors. When α = (0.25, 0.25, 0.25, 0.25), (0.10, 0.40, 0.40, 0.10) and (1.00, 0.00, 0.00, 0.00),
Strategy 2 can be applied. For α = (0.00, 1.00, 0.00, 0.0), Strategy 1 shows a better performance
than Strategy 2 and 3. On the other hand, in Figure 1b, the four weight vectors of α interact
with β values. It can be seen that better results are obtained when β = 0.2 using weight vectors
α = (0.25, 0.25, 0.25, 0.25), (0.1, 0.4, 0.4, 0.1), and (1, 0, 0, 0). When α = (0, 1, 0, 0) there is not
significant difference between values β ≥ 0.4.
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Figure 1: (a) Interaction between β and Strategy, and (b) Interaction between β and αr.
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Calibration of Pmax

A second experiment is carried out to establish the maximum number of iterations (Pmax) for the
Swap procedure in the LS method. This stopping criterion is based on the number of segments
to evaluate. Four different values related to a specific percentage of this number of segments
were tested in order to set this parameter. Instance sizes of n = 1000, 3000, 5000, a weight vector
α = (0.25, 0.25, 0.25, 0.25), a β = 0.2, and the number of segments k = 5, 10, 20, 25 are fixed. Results
in Figure 2 show that, on average, the best ARPD value is obtained when Pmax = k; however, when
it is seen as the average for each instance size the Pmax = k

2 (which is the second best average result)
show less deviation specifically for instances of size n = 1000. Therefore, the required computation
time is less than the first case. For that reason, this parameter is fixed to Pmax = k

2 .
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Figure 2: Assessment of parameter Pmax in the LS procedure.

Calibration of IterIGmax, γ, and D

Once we have fixed the Pmax, the IterIGmax and γ values used in the IGACS algorithm are set. For
this, 15 instances of size n = 5000, the maximum number of segments k = 25, and the Itermax = 100,
are used. We have fixed α=(0.25, 0.25, 0.25, 0.25) and used the MKM with β = 0.2 and Strategy
2 since all the attributes are considered and this combination obtained the best evaluation in the
previous experiment, respectively. The stopping criteria considered for IGACS are as follows: stop
once the improvement is less than 0.0001 and the maximum number of iterations is IterIGmax = 50.
The goal of this test is to reduce the IterIGmax in order to decrease computation time without
quality loss. Results show that most of the instances finished before 30 iterations. Also, there is no
significant improvement in most of them when IterIGmax > 30. Therefore, IterIGmax = 30 is used
for the next experiments.

For the γ parameter, we have considered the first set of instances (15 per each size n =
1000, 3000, 5000) and the parameters fixed in previous tests: Strategy 1, β = 1 for the purchase
volume attribute and Strategy 2 with β = 0.2 for the remaining values, the number of segments
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k = 5, 10, 20, 25, the Itermax = 100, Pmax = k
2 , and IterIGmax = 30. Five different values for

γ = 0.10, 0.20, 0.30, 0.40, 0.50 were tested. Each value represents the proportion of the number of
iterations of IGACS to be performed before update τ which is the self-adjusting parameter used to
evaluate if a worse solution should be accepted. Figure 3 shows that using γ = 0.5 the algorithm
provides the best ARPD values when compared to the other values of γ.

On the other hand, the number of elements (D) to be removed from the solution (partition)
in the destruction phase of the IGACS algorithm is evaluated as well. For this experiment, the 15
instances from Set 1 are used and all the parameters are fixed as mentioned before. Four different
values of D based on a certain percentage of the instance size are evaluated. For example, for an
instance with n = 1000, 3000, and 5000, a 5% value for D equals 50, 150, and 250 elements to be
removed, respectively. Results show (Figure 4) that the ARPD (5,400 results averaged for each
combination of α values) is better when a size of D = 15% or 20% is considered. Since there is
only a slight difference in the average computation time between both options, we have selected to
remove 20% of the elements for the remaining experiments.
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5.2 Evaluation of IGACS

Once parameters of the proposed methods have been set, the following experiment is carried out.
For each weight vector alpha, the proposed MKM algorithm (Strategy 1 for the purchase attribute
using β = 1 and Strategy 2 for the remainder α’s with β = 0.20 in all cases) was tested with a
total of 100 replications per instance. The proposed LS algorithm was also assessed, i.e., the result
obtained in the MKM algorithm and then a single run of the LS method. Lastly, the IGACS method
is also run 30 times after the initialization with the MKM+LS methods using D = 20%. Tables 2-7
show the improvement of the ARPDs between the MKM-LS and the LS-IGACS (Pseudocode 1)
procedures, and also their required computational time (in seconds). The results are further detailed
and grouped by n and k. Columns 3-4 describe the ARPD improvement percentage obtained by
applying the LS to the MKM solutions and the improvement obtained after the iterative part of the
IGACS is applied to the resulting partitions from the LS.
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Table 2: Algorithm comparison, α = (0.25, 0.25, 0.25, 0.25).

Improvement (%) Time (sec)

n k VNS IGACS MKM LS IGACS Total

1000 5 0.54 0.00 6.66 0.70 9.60 16.96
10 1.61 0.03 9.35 0.89 11.35 21.59
20 3.63 0.08 13.02 0.99 12.11 26.12
25 4.92 0.12 11.56 0.77 9.51 21.84

3000 5 0.28 0.00 48.46 8.37 106.05 162.87
10 1.23 0.01 54.66 12.62 119.33 186.60
20 2.96 0.06 52.10 13.41 125.18 190.68
25 3.47 0.07 41.92 18.71 132.99 193.63

5000 5 0.28 0.00 136.46 27.02 330.87 494.34
10 1.05 0.00 152.85 49.61 404.70 607.16
20 2.30 0.03 141.23 51.91 429.01 622.15
25 3.03 0.05 134.11 68.15 436.80 639.05

Average 2.11 0.04 66.86 21.09 177.29 265.25

Table 3: Algorithm comparison, α = (0.1, 0.4, 0.4, 0.1).

Improvement (%) Time (sec)

n k VNS IGACS MKM LS IGACS Total

1000 5 0.64 0.02 7.06 0.78 10.77 18.61
10 1.94 0.03 8.39 0.89 11.13 20.42
20 4.98 0.25 12.10 1.09 12.65 25.84
25 5.67 0.21 11.10 0.77 10.00 21.87

3000 5 0.45 0.00 42.35 8.28 100.85 151.48
10 1.57 0.01 42.91 11.32 119.42 173.64
20 3.67 0.06 42.07 16.17 125.57 183.81
25 4.30 0.04 41.92 18.71 132.99 193.63

5000 5 0.37 0.00 117.18 25.83 317.11 460.12
10 1.29 0.04 109.51 11.32 119.42 240.25
20 3.38 0.03 97.63 49.97 363.94 511.55
25 4.02 0.05 90.78 68.49 385.59 544.86

Average 2.69 0.06 51.92 17.80 142.45 212.17

Table 4: Algorithm comparison, α = (1.0, 0.0, 0.0, 0.0).

Improvement (%) Time (sec)

n k VNS IGACS MKM LS IGACS Total

1000 5 0.51 0.00 7.09 0.61 9.66 17.36
10 1.44 0.04 9.69 0.85 11.09 21.62
20 3.63 0.13 13.06 0.97 11.78 25.81
25 4.35 0.29 11.70 0.77 9.40 21.87

3000 5 0.31 0.00 55.05 8.73 106.61 170.39
10 0.86 0.01 68.35 10.32 120.83 199.50
20 1.94 0.01 64.32 12.12 123.07 199.51
25 2.44 0.07 61.14 11.65 125.72 198.51

5000 5 0.20 0.00 115.24 19.37 245.84 380.45
10 0.75 0.00 147.91 28.73 278.28 454.92
20 1.57 0.02 141.62 33.12 282.12 456.86
25 1.94 0.06 133.61 37.42 285.91 456.93

Average 1.66 0.05 69.07 13.72 134.19 216.98

Table 5: Algorithm comparison, α = (0.0, 1.0, 0.0, 0.0).

Improvement (%) Time (sec)

n k VNS IGACS MKM LS IGACS Total

1000 5 3.61 0.04 4.53 1.56 11.79 17.88
10 8.23 0.07 4.21 2.27 13.87 20.35
20 16.49 0.30 4.11 2.41 15.95 22.46
25 19.32 0.30 3.20 1.70 12.48 17.39

3000 5 9.67 0.00 38.62 19.32 124.18 182.12
10 7.20 0.04 30.22 37.72 172.15 240.08
20 13.13 0.10 24.69 42.51 215.14 282.34
25 15.13 0.09 23.06 49.10 204.62 276.79

5000 5 2.80 0.00 77.17 82.17 288.61 447.95
10 6.59 0.05 57.17 105.35 421.16 583.68
20 11.77 0.08 45.60 126.83 453.46 625.88
25 14.08 0.06 43.13 120.07 473.69 636.88

Average 10.67 0.10 29.64 49.25 200.59 279.48

Table 6: Algorithm comparison, α = (0.0, 0.0, 1.0, 0.0).

Improvement (%) Time (sec)

n k VNS IGACS MKM LS IGACS Total

1000 5 100.07 0.00 8.23 0.55 8.01 16.79
10 0.00 0.00 8.74 0.04 0.00 8.78
20 0.00 0.00 11.42 0.04 0.00 11.46
25 0.00 0.00 10.84 0.14 2.28 13.27

3000 5 103.67 0.00 60.64 6.02 83.42 150.08
10 0.00 0.00 51.02 0.12 0.00 51.14
20 0.00 0.00 56.16 0.11 0.00 56.27
25 0.00 0.00 58.07 0.11 0.00 58.19

5000 5 106.24 0.00 122.60 13.23 179.15 314.98
10 0.00 0.00 104.68 0.22 0.00 104.90
20 0.00 0.00 109.46 0.20 0.00 109.66
25 0.00 0.00 113.02 0.20 0.00 113.22

Average 25.83 0.00 59.57 1.75 22.74 84.06

Table 7: Algorithm comparison, α = (0.0, 0.0, 0.0, 1.0).

Improvement (%) Time (sec)

n k VNS IGACS MKM LS IGACS Total

1000 5 164.96 0.00 9.14 1.10 9.08 19.32
10 422.04 0.07 9.95 0.72 6.92 17.59
20 712.38 0.00 12.23 0.47 5.71 18.41
25 650.03 0.00 10.84 0.14 2.28 13.27

3000 5 161.68 0.00 68.44 12.72 90.66 171.83
10 444.19 0.00 62.68 7.64 58.92 129.23
20 739.60 0.00 57.15 4.04 45.36 106.56
25 613.59 0.00 58.86 1.64 21.86 82.37

5000 5 159.83 0.00 147.31 31.42 198.52 377.25
10 452.43 0.00 131.25 17.15 123.49 271.90
20 751.24 0.01 118.35 9.84 105.89 234.08
25 6575.53 0.00 115.81 4.00 56.02 175.83

Average 487.29 0.01 66.83 7.57 60.39 134.80

Columns 5-7 represent the computation time required by each method to obtain. Finally, column
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8 shows the total time required by the complete IGACS procedure to obtain the final solution. As
can be seen, the results of the MKM algorithm improve considerably after a single pass of the VNS
method is applied. This is particularly important for the last two cases where the maximum weight is
given to the attributes of type of contract or store with α = (0.0, 0.0, 1.0, 0.0) or α = (0.0, 0.0, 0.0, 1.0).
The additional CPU time needed increases substantially, especially for larger problems. For example,
MKM needs 66.86 seconds on average for α = (0.25, 0.25, 0.25, 0.25) and VNS requires an additional
21.09 seconds on average. The solution quality observed after applying IGACS is slightly better
then the one observed from LS. Of course, such improvements come at a computational cost, as the
additional CPU time of IGACS exceeds 473 seconds in the worst case for the largest instances of
5000 customers. In any case, the total CPU time of applying IGACS (which comes after applying
MKM, LS, and then IGACS) rarely exceeds 630 seconds in the worst case. Considering the large
size of the real-world clustering problem dealt with in this paper (up to 5000 customers), this is
highly acceptable.

Table 8: Evaluation of LS within IGACS.

ARPD (%) Time (sec)

n k Case A Case B Case C Case D Case A Case B Case C Case D

1000 5 0.00 0.06 0.71 0.22 17.42 17.82 5.15 19.12
10 0.02 0.00 1.38 0.02 17.98 18.39 10.50 12.39
20 0.36 0.00 3.14 0.03 21.39 21.68 11.35 17.10
25 0.00 0.02 6.58 0.02 20.80 17.76 9.53 24.39

3000 5 0.13 0.00 0.80 0.80 163.47 165.18 53.31 53.31
10 0.06 0.00 0.40 0.40 160.79 163.37 52.75 52.75
20 0.22 0.00 1.24 1.24 167.89 169.86 51.94 51.94
25 0.18 0.00 2.86 2.86 163.70 167.32 52.32 52.32

5000 5 0.00 0.12 0.99 0.99 406.65 412.52 127.76 127.76
10 0.00 0.00 0.33 0.33 416.00 422.90 124.59 124.59
20 0.00 0.06 0.44 0.44 415.27 426.70 118.15 118.15
25 0.18 0.00 1.44 1.44 417.90 427.80 115.28 115.28

Average 0.10 0.02 1.69 0.73 202.61 199.10 61.05 64.09

The LS method applied after the MKM method improved enough the final solution and the
improvement obtained for the destruction and reconstruction procedures is not as great in comparison
with the one obtained from the LS at the beginning of IGACS. For that reason, the following test
was made in order to analyze clearly the performance of the IGACS method considering or not the
LS procedure inside of it. Four different cases were evaluated:
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• Case A: The proposed IGACS.

• Case B: Remove LS after MKM and before the iterative part of IGACS (the LS procedure
still remains to improve the reconstructed solutions).

• Case C: IGACS without LS (in any part of the algorithm).

• Case D: Apply LS to improve the final solution of IGACS after all reconstructions.

Table 8 shows the effectiveness of the LS method within IGACS. The best results were obtained
when LS is removed from the beginning of the IGACS and it is only used to improve the re-
constructed partition. The worst (highest) ARPD was obtained when LS is removed completely from
the proposed method. Also the IGACS required more time when LS was not applied to improve the
MKM solution, but at the end it showed the best results for all cases. Computation time decreases
significatively when LS is applied at the end of IGACS; however, it was not able to find better
solutions than the ones obtained when LS is applied after reconstructing each solution.

5.3 Comparison with Existing Methods

A final question remains about the comparison between the proposed approaches and the
segmentation methods used by the firm. While a quantitative analysis cannot be provided, it can
be clearly stated that the proposed approach is vastly superior. This is based on the fact that the
methods employed by the firm were basically manual and only guided by a Geographical Information
System (GIS). This manual process required hours of intensive work and the results were far from
optimal. Furthermore, the final result did not consider all the attributes in a meaningful way. With
our presented approaches the result is obtained much faster and the partitions have better values in
all tested attributes. Furthermore, no software licenses have to be paid. Nevertheless, as a good
practice, the performance of IGACS should be compared with other clustering approaches.

With this in mind, the purpose of this section is to present a comparison of the proposed
metaheuristic with some of the existing methods in literature. The Waikato Environment for
Knowledge Analysis (WEKA) is an open source software written in Java which contains a collection
of machine learning techniques developed by a research group from the University of Waikato. The
k-means algorithm is one of the methods of this collection. More information about this tool and
its methods can be found in Witten et al. (2011). A second approach used for the comparison is
the hybrid data mining metaheuristic (DM-G) proposed by Plastino et al. (2011) for the p-median
problem. The C++ code of this metaheuristic was provided by the authors and tests were performed
considering the same server features as IGACS but under Ubuntu 14.04 Operating System to
avoid possible inconsistencies as it was developed for a Linux kernel. A third method, a GRASP
metaheuristic with path-relinking (PR-G), proposed by Frinhani et al. (2011), is considered in this
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evaluation. The Java code was provided by the authors and tests were performed under the Windows
7 Operating System.

For this experiment, the second set of instances, the combination of weights α = (0.25, 0.25, 0.25, 0.25)
and the number of segments k = 5, 10, 20, 25 were taken into account. Parameters of IGACS are
fixed as proposed in Section 5. All source codes were adapted in order to match the objective
function of our studied problem. These five approaches are compared: the k-means algorithm from
WEKA, the DM-G, the PR-G, the proposed MKM (with β = 0.20), and the IGACS approach
which takes the MKM solution as initial solution to be improved. In a first test we set the stopping
condition for both DM-G and IGACS to 30 iterations, while for WEKA and MKM we use 100
iterations. On the other hand, PR-G was stopped after 1 elapsed iteration due to its high time
requirement. These results are shown in Table 9.

Table 9: Comparison of MKM and IGACS with existing methods (WEKA, DM-G, and PR-G).

ARPD (%) Time (sec)
n k WEKA DM-G PR-G MKM IGACS WEKA DM-G PR-G MKM IGACS

1000 5 17.83 6.20 0.00 8.19 0.06 5.39 30.89 25.22 2.07 23.02
10 58.75 11.71 0.96 29.55 0.00 4.63 30.46 38.81 2.37 23.45
20 71.38 16.24 0.00 38.41 0.26 11.52 30.34 58.70 3.78 30.30
25 60.06 14.68 0.04 34.70 0.00 28.27 30.26 69.23 4.51 33.78

3000 5 22.06 6.69 0.00 7.91 0.11 55.87 313.68 1886.05 13.03 248.26
10 53.22 11.93 0.00 31.02 0.46 56.16 310.46 1177.97 11.29 250.84
20 56.46 17.94 0.00 36.02 0.27 59.87 309.48 1696.32 12.65 295.01
25 67.37 16.40 0.00 35.55 0.66 67.51 309.42 1781.26 12.73 307.80

5000 5 22.40 6.82 0.00 8.38 0.59 178.26 744.57 6809.83 40.91 731.17
10 53.55 11.55 0.00 32.94 0.18 171.42 737.20 7648.47 28.84 611.12
20 56.80 18.17 0.00 32.23 0.06 200.02 735.29 10279.05 22.50 614.25
25 54.20 14.58 0.76 29.56 0.00 157.21 734.87 13338.75 22.33 693.02

In each cell, the ARPD of five instances, for a given number of clusters k, is shown. It is
remarkable than the MKM outperforms WEKA. However, although DM-G obtains better results
than the MKM, it does not outperform IGACS. PR-G obtained, in most of the cases, better results
than IGACS but the results of the latter are not so far from the best ones reported by PR-G. In
fact, IGACS can obtain very similar results in much less time. PR-G needs a large amount of time
to perform only one iteration.

In a second experiment, we set now the stopping condition for DM-G and IGACS to the time
required by PR-G after one elapsed iteration per each n and each k. This is given in Table 10. Note
that columns referring to WEKA and MKM were omitted in the remaining tables since their results
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do not change significantly with respect to Table 9. We will only focus on the three approaches
that have yielded the best results. In Table 10 we can observe that, as the time increased, it was
possible for IGACS to improve the best solution of the PR-G approach in a few cases. The values in
parentheses indicate the number of best solutions encountered during experimentation.

Table 10: Comparison among DM-G, PR-G, and IGACS approaches. Stopping criterion for DM-G
and IGACS set to that of 1 iteration of PR-G according to each combination of n and k.

ARPD (%) Time (sec)
n k DM-G PR-G IGACS DM-G PR-G IGACS

1000 5 6.32(0) 0.00(5) 0.48(2) 25.79 25.22 25.43
10 10.35(0) 0.00(5) 0.06(3) 39.26 38.81 38.73
20 16.16(0) 0.00(5) 0.22(3) 59.06 58.70 58.81
25 15.17(0) 0.89(0) 0.00(5) 69.58 69.23 68.90

3000 5 6.37(0) 0.01(1) 0.00(5) 1922.99 1886.05 1887.60
10 11.44(0) 0.21(1) 0.03(4) 1186.76 1177.97 1139.39
20 16.89(0) 0.00(5) 1.30(1) 1702.45 1696.32 1702.54
25 15.97(0) 0.68(0) 0.00(5) 1786.41 1781.26 1780.16

5000 5 6.55(0) 0.00(5) 0.41(2) 6926.77 6809.83 6823.89
10 9.20(0) 0.00(5) 0.00(5) 7698.9 7648.47 7668.59
20 16.39(0) 0.00(5) 0.57(2) 10309.62 10279.05 10304.86
25 12.94(0) 0.36(2) 0.00(5) 13372.68 13338.75 13370.41

In the following experiment, we set the stopping condition for DM-G, PR-G and IGACS to the
maximum time required by the PR-G to perform one iteration per each size n. That is, for n =
1000, 3000, and 5000, time limit is set to 70, 1890, and 13340 sec, respectively. Results are displayed
in Table 11.

PR-G needs a big amount of time to perform only one iteration and, as aforementioned, we
used this time of a single iteration as a stopping time for both DM-G and IGACS. Basically, PR-G
cannot be stopped before this CPU time, which is a serious limitation of the method. Furthermore,
it seems that IGACS cannot reach the very best results in all cases when compared to PR-G. Still,
the difference in solution quality between both methods is largely minor and the speed advantage of
IGACS more than compensates this potential shortcoming.

In a last experiment, Table 12 shows another advantage of IGACS, as it can be used in
collaboration with PR-G to further improve the solution obtained by PR-G. First, the PR-G was
run and, once the solution after a single iteration is obtained, it was used as an input to IGACS.
The stopping criterion for IGACS was half of the time required by PR-G.
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Table 11: Comparison among DM-G, PR-G, and IGACS approaches. Stopping time for DM-G,
PR-G and IGACS set to the maximum time required by the PR-G to perform one iteration among
all k for each fixed n.

ARPD (%) Time (sec)
n k DM-G PR-G IGACS DM-G PR-G IGACS

1000 5 5.87(0) 0.00(5) 1.03(1) 71.61 73.24 70.02
10 10.97(0) 0.69(3) 0.00(5) 70.77 75.32 70.01
20 16.16(0) 0.00(5) 0.46(1) 70.37 84.87 70.06
25 13.94() 0.00(5) 0.15(1) 70.36 79.62 70.41

3000 5 6.07(0) 0.05(4) 0.00(5) 1922.99 2226.36 1895.64
10 10.28(0) 0.00(5) 0.18(4) 1903.27 2431.10 1890.91
20 16.61(0) 0.00(5) 0.47(1) 1896.21 2387.95 1891.83
25 15.39(0) 0.20(1) 0.00(5) 1895.11 2626.98 1896.16

5000 5 6.54(0) 0.00(5) 0.64(0) 13566.36 14658.45 13343.40
10 8.90(0) 0.02(3) 0.00(5) 13427.80 14544.31 13367.26
20 16.66(0) 0.00(5) 0.23(2) 13379.88 16365.22 13361.42
25 13.01(0) 0.00(5) 0.07(2) 13372.68 16757.67 13355.31

Table 12: Comparison between PR-G and IGACS taking as input the PR-G solution.

ARPD (%) Time (sec)
n k PR-G IGACS PR-G IGACS Total

1000 5 0.00 0.00 32.46 15.51 47.97
10 0.01 0.00 47.51 23.51 71.03
20 0.07 0.00 70.35 34.61 104.96
25 0.40 0.00 86.44 41.04 127.47

3000 5 0.00 0.00 2659.93 1335.43 3995.35
10 0.00 0.00 2025.81 1012.34 3038.16
20 0.05 0.00 3130.50 1570.14 4700.65
25 0.02 0.00 2905.46 1449.85 4355.31

5000 5 0.00 0.00 12123.77 6072.68 18196.44
10 0.00 0.00 12947.98 6492.73 19440.71
20 0.01 0.00 15158.60 7574.55 22733.15
25 0.01 0.00 23395.06 11699.91 35094.96

It was observed that IGACS was able to further improve the solution of the PR-G in almost all
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runs. Given all these characteristics that IGACS presents with respect to PR-G, it can be concluded
that IGACS obtains solutions as almost as good as those obtained by PR-G but in much less time.
This makes it more robust and efficient than PR-G especially for large size instances which are
common in real-world applications.

6 Conclusions

In this study a formulation to represent a market segmentation problem that considers multiple
attributes, arising from a real-world application in a beverage distribution firm, is presented. An
iterated greedy algorithm (IGACS) to solve the problem efficiently was proposed. In addition, an
adaptation of the well-known k-means algorithm was developed to create partitions to our problem.
The modifications include three different GRASP-based strategies to select the initial configuration
of centers in an attempt to obtain better solutions. To improve the solution, a local search procedure
was developed and incorporated after the MKM and the reconstruction phase of the IGACS.

Comprehensive computational and statistical experiments have been performed for fine tuning
the algorithmic parameters of the IGACS. Some statistical tests were made to guarantee that the
observed differences in the average results were indeed statistically significant. Empirical results show
that applying the LS procedure after the MKM algorithm improve the dissimilarity of the partition
significantly. Moreover, IGACS can improve this dissimilarity even more. At the end of IGACS,
excellent results were obtained in a reasonable amount of time. Furthermore, the proposed approach
was compared with the k-means algorithm from WEKA and two metaheuristics proposed in the
literature. Results showed that IGACS outperformed the tested algorithms in terms of efficiency
and robustness.

About future research directions, although IGACS has shown an efficient performance during
the tests, it has room for improvement. One of the opportunity areas is still the selection of the
initial cluster centers. We have used the well-known k-means algorithm because of its simplicity and
its rapid convergence, and we tried to improve some of its main drawbacks such as the selection
of the initial centers creating a GRASP procedure and the problems caused by the presence of
outliers considering the most centered (similar) customers of each segment as cluster centers instead
of means. A new improvement to consider is the one proposed by Kanungo et al. (2002); Likas
et al. (2003); Z̆alik (2008). They use a k-d tree structure in which some information is stored
during the optimization process in order to avoid recalculating it in future iterations and make the
algorithm faster. Another improvement can be the use of a new alternative of the initialization
method; for example, Celebi et al. (2013) studied a computational efficiency comparison among
eight known initialization methods for the k-means algorithm and give some recommendations of
which algorithms are better suitable for certain situations. Another improvement can be to eliminate
the dependency on the number of clusters in the MKM as it is proposed in Cheung (2003). Other
works involving more sophisticated procedures can be found in Liu and Li (2014).
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Another important issue about scalarization is how each of the individual objective functions in
the scalar objective (1) is normalized. As seen in Section 3, we normalized each individual objective
function by dividing by a quantity that guarantees each measure is in the 0-1 scale. A more robust
approach would be to normalize each function by considering the single-objective optimal value (or
best known value) as normalization factor. In this particular problem, the inherent difficulty of the
problem rules out the possibility of computing single-objective optimal objective function values.
Furthermore, no good bounds about the quality of individual best known values are known either.
Therefore, deriving either exact values or good quality bounds for the single-objective optimal values
become an interesting area for further research.
Acknowledgements: This research has been supported by the Mexican National Council for Science
and Technology (CONACYT) through grants CB2005-01-48499Y and CB2011-01-166397, and a
scholarship for graduate studies, and by the Universidad Autónoma de Nuevo León through its
Scientific and Technological Research Support Program (PAICYT), grants CA1478–07, CE012–09,
IT511–10, and CE331–15. Rubén Ruiz is partially supported by the Spanish Ministry of Economy
and Competitiveness, under the project “SCHEYARD – Optimization of Scheduling Problems in
Container Yards” (No. DPI2015-65895-R) financed by FEDER funds. We would like to thank Rafael
Frinhani, Richard Fuchshuber, and their corresponding research teams for providing us the source
code of their algorithms to carry out the corresponding tests. Furthermore, we are grateful to the
editor and the four anonymous reviewers for their careful reading of our manuscript and their
constructive comments and suggestions which helped us improve its quality.

References

Aloise, D., Deshpande, A., Hansen, P., and Popat, P. (2009). NP-hardness of Euclidean sum-of-
squares clustering. Machine Learning, 75(2):245–248.

Brucker, P. (1978). On the complexity of clustering problems. In Henn, R., Korte, B., and Oettli,
W., editors, Optimization and Operations Research, volume 157 of Lecture Notes in Economics
and Mathematical Systems, pages 45–54. Springer, Berlin, Germany.

Brusco, M. J., Cradit, J. D., and Tashchian, A. (2003). Multicriterion clusterwise regression for
joint segmentation settings: An application to customer value. Journal of Marketing Research,
40(2):225–234.

Brusco, M. J. and Stahl, S. (2005). Branch-and-Bound Applications in Combinatorial Analysis.
Springer, New York.

Caballero, R., Laguna, M., Martí, R., and Molina, J. (2011). Scatter tabu search for multiobjective
clustering problems. Journal of the Operational Research Society, 62(1):2034–2046.

Celebi, M. E., Kingravi, H. A., and Vela, P. A. (2013). A comparative study of efficient initialization

25



methods for the k-means clustering algorithm. Expert Systems with Applications, 40(1):200–210.

Chen, Y.-K., Wang, C.-Y., and Feng, Y.-Y. (2010). Application of a 3NN+1 based CBR system to
segmentation of the notebook computers market. Expert Systems with Applications, 37(1):276–281.

Cheung, Y.-M. (2003). k*-means: A new generalized k-means clustering algorithm. Pattern
Recognition Letters, 24(15):2883–2893.

Chiu, C.-Y., Chen, Y.-F., Kuo, I.-T., and Chun Ku, H. (2009). An intelligent market segmentation
system using k-means and particle swarm optimization. Expert Systems with Applications,
36(3):4558–4565.

Cooil, B., Aksoy, L., and Keiningham, T. L. (2008). Approaches to customer segmentation. Journal
of Relationship Marketing, 6(3–4):9–39.

Davies, D. L. and Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 1(2):224–227.

DeSarbo, W. S. and Grisaffe, D. (1998). Combinatorial optimization approaches to constrained
market segmentation: An application to industrial market segmentation. Marketing Letters,
9(2):115–134.

Dolnicar, S. and Grün, B. (2008). Challenging factor cluster segmentation. Journal of Travel
Research, 47(1):63–71.

Dolnicar, S., Kaiser, S., Lazarevski, K., and Leisch, F. (2012). Biclustering: Overcoming data
dimensionality problems in market segmentation. Journal of Travel Research, 51(1):41–49.

Dorai, C. and Jain, A. K. (1995). Shape spectra based view grouping for free-form objects. In
Proceedings of the International Conference on Image Processing (ICIP-95), pages 249–243,
Washington DC. IEEE Computer Society.

Erkut, E., Ürküsal, Y., and Yenycerioğlu, O. (1994). A comparison of p-dispersion heuristics.
Computers & Operations Research, 21(10):1103–1113.

Fanjul-Peyro, L. and Ruiz, R. (2010). Iterated greedy local search methods for unrelated parallel
machine scheduling. European Journal of Operational Research, 207(1):55–69.

Fayyad, U. M. (1996). Data mining and knowledge discovery: Making sense out of data. IEEE
Expert, 11(5):20–25.

Feo, T. A. and Resende, M. G. C. (1995). Greedy randomized adaptive search procedures. Journal
of Global Optimization, 6(2):109–133.

Fraley, C. and Rafterty, A. E. (1998). How many clusters? which clustering methods? answers via
model-based cluster analysis. The Computer Journal, 41(8):578–588.

Frinhani, R. M. D., Silva, R. M. A., Mateus, G. R., Festa, P., and Resende, M. G. C. (2011). GRASP
with path-relinking for data clustering: A case study for biological data. In Pardalos, P. M. and

26



Rebennack, S., editors, Experimental Algorithms: Proceedings of the 10th International Symposium
(SEA 2011), volume 6630 of Lecture Notes in Computer Science, pages 410–420, Berlin, Germany.
Springer-Verlag.

Green, P. E., Frank, R. E., and Robisnson, P. J. (1967). Cluster analysis in test market selection.
Management Science, 13(8):B387–B400.

Guha, S., Rastogi, R., and Shim, K. (2000). ROCK: A robust clustering algorithm for categorical
attributes. Information Systems, 25(5):345–366.

Hartigan, J. A. and Wong, M. A. (1979). A K-means clustering algorithm. Journal of the Royal
Statistical Society, Series C: Applied Statistics, 28(1):100–108.

He, Z., Deng, S., and Xu, X. (2005). Improving k-modes algorithm considering frecuencies of
attribute values in mode. In Hao, Y., Liu, J., Wang, Y., Cheung, Y., Yin, H., Jiao, L., Ma, J.,
and Jiao, Y.-C., editors, Computational Intelligence and Security, volume 3801 of Lecture Notes
in Computer Science, pages 157–162. Springer, Berlin, Germany.

Jacobs, L. W. and Brusco, M. J. (1995). A local search heuristic for large set-covering problems.
Naval Research Logistics Quarterly, 42(7):1129–1140.

Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering: A review. ACM Computing
Surveys, 31(3):264–323.

Jain, R., Kasturi, R., and Schunk, B. G. (1995). Machine Vision. McGraw-Hill Series in Computer
Science. McGraw-Hill, New York.

Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., and Wu, A. (2002). An efficient
k-means clustering algorithm: analysis and implementation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(7):881–892.

Klastorin, T. D. (1985). The p-median problem for cluster analysis: A comparative test using the
mixture model approach. Management Science, 31(1):84–95.

Kleinberg, J. (2002). An impossibility theorem for clustering. In Becker, S., Thrun, S., and
Obermayer, K., editors, Advances in Neural Information Processing Systems 15, pages 463–470,
Vancouver, Canada. MIT Press.

Krieger, A. M. and Green, P. E. (1996). Modifying cluster-based segments to enhance agreement
with an exogenous response variable. Journal of Marketing Research, 33(3):351–363.

Lai, X. and Hao, J.-K. (2016). Iterated maxima search for the maximally diverse grouping problem.
European Journal of Operational Research, 254(3):780–800.

Lee, S. C., Suh, Y. H., Kim, J. K., and Lee, K. J. (2002). A cross-national market segmentation of
online game industry using SOM. Expert Systems with Applications, 27(4):559–570.

Likas, A., Vlassis, N., and Verbeek, J. (2003). The global k-means clustering algorithm. Pattern

27



Recognition Letters, 36(2):451–461.

Liu, X. and Li, M. (2014). Integrated constraint based clustering algorithm for high dimensional
data. Neurocomputing, 142:478–485.

Liu, Y., Kiang, M., and Brusco, M. (2012). A unified framework for market segmentation and its
applications. Expert Systems with Applications, 39(11):10292–10302.

Liu, Y., Ram, S., Lusch, R. F., and Brusco, M. (2010). Multicriterion market segmentation: A new
model, implementation, and evaluation. Marketing Science, 29(5):880–894.

Lourenço, H. R., Martin, O. C., and Stützle, T. (2002). Iterated local search. In Glover, F. and
Kochenberger, G. A., editors, Handbook of Metaheuristics, International Series in Operations
Research and Management Science, chapter 11, pages 321–353. Kluwer, Norwell.

Lozano, M., Molina, D., and García-Martínez, C. (2011). Iterated greedy for the maximum diversity
problem. European Journal of Operational Research, 214(1):31–38.

Marchiori, E. and Steenbeek, A. (2000). An evolutionary algorithm for large set covering problems
with applications to airline crew scheduling. In Cagnoni, S., Poli, R., Li, Y., Smith, G., Corne,
D., Oates, M. J., Hart, E., Lanzi, P. L., Boers, E. J. W., Paechter, B., and Fogarty, T. C., editors,
Real-World Applications of Evolutionary Computing, volume 1803 of Lecture Notes in Computer
Science, pages 367–381. Springer, Berlin, Germany.

Mo, J., Kiang, M. Y., Zou, P., and Li, Y. (2010). A two-stage clustering approach for multi-region
segmentation. Expert Systems with Applications, 37(10):7120–7131.

Plastino, A., Fuchshuber, R., Martins, S. d. L., Freitas, A. A., and Salhi, S. (2011). A hybrid
data mining metaheuristic for the p-median problem. Statistical Analysis and Data Mining,
4(3):313–335.

Punj, G. and Stewart, D. W. (1983). Cluster analysis in marketing research: Review and suggestion
for application. Journal of Marketing Research, 20(2):118–134.

Rasmussen, E. (1992). Clustering algorithms. In Frakes, W. B. and Baeza-Yates, R., editors,
Information Retrieval: Data Structures and Algorithms, pages 419–442. Prentice-Hall, Upper
Saddle River.

Ribas, I., Companys, R., and Tort-Martorell, X. (2011). An iterated greedy algorithm for the
flowshop scheduling problem with blocking. Omega, 39(3):293–301.

Ruiz, R. and Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem. European Journal of Operational Research, 177(3):2033–2049.

Ruiz, R. and Stützle, T. (2008). An iterated greedy heuristic for the sequence dependent setup
times flowshop problem with makespan and weighted tardiness objectives. European Journal of
Operational Research, 187(3):1143–1159.

28



Santi, É., Aloise, D., and Blanchard, S. J. (2016). A model for clustering data from heterogeneous
dissimilarities. European Journal of Operational Research, 253(3):659–672.

Smith, W. R. (1956). Product differentiation and market segmentation as alternative marketing
strategies. The Journal of Marketing, 21(1):3–8.

Solberg, A., Taxt, T., and Jain, A. (1996). A Markov random field model for classification of
multisource satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 34(1):100–
113.

Spath, H. (1979). Clusterwise linear regression. Computing, 22(4):367–373.

Urlings, T., Ruiz, R., and Stützle, T. (2010). Shifting representation search for hybrid flexible
flowline problems. European Journal of Operational Research, 207(2):1086–1095.

Z̆alik, K. (2008). An efficient k’-means clustering algorithm. Pattern Recognition Letters, 29(9):1385–
1391.

Vriens, M., Wedel, M., and Wilms, T. (1996). Metric conjoint segmentation methods: A Monte
Carlo comparison. Journal of Marketing Research, 33(1):73–85.

Wedel, M. and Kamakura, W. A. (2000). Market Segmentation: Conceptual and Methodological
Foundations, volume 8 of International Series in Quantitative Marketing. Springer, New York,
2nd edition.

Witten, I. H., Frank, E., and Hall, M. A. (2011). Data Mining: Practical Machine Learning Tools
and Techniques, chapter 10, pages 403–406. Morgan Kaufmann, Burlington, 3rd edition.

Xu, D. and Tian, Y. (2015). A comprehensive survey of clustering algorithms. Annals of Data
Science, 2(2):165–193.

29


