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Different grapefruit powders obtained by freeze drying and spray drying with prior addition of shell
materials (arabic gum and bamboo fiber) were studied in order to evaluate the effect of these preser-
vation processes on the retention of antioxidants, in comparison with the freeze-dried fruit with no
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carriers added. Freeze-dried samples showed above 90% retention of these phytochemicals, while spray-
dried samples presented good retention of vitamins but a sharp decrease in of phenolic compounds.
Pearson's correlation analysis showed that the most significant contribution to DPPH scavenging activity
and inhibition of B-carotene bleaching was provided by phenolic compounds, mostly flavonoids, while
the contribution to the reducing power was due to ascorbic acid and a-tocopherol. Therefore, the loss of
Antioxidant activity these compounds in the spray-dried samples resulted in products with lower antioxidant activity.
Bioactive compounds Naringin and narirutin were the major phenolic compounds in all grapefruit samples, although other
Arabic gum flavanones present in lower concentration, like hesperidin, neohesperidin didymin, poncirin or melitidin,
Bamboo fiber also showed high correlations with the antioxidant value of the samples.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Grapefruit is a very common variety of citrus fruit and an
important source of bioactive compounds such as vitamins C, E, A,
phenolic compounds (flavonoids, phenolic acids and coumarins),
v~ Corresponding author, and terpenic substan_ces, SL_lch as carotenoids and limonoids
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(LCER. Ferreira). phenolic compounds present in grapefruit have been investigated,
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and some publications have suggested that they could play an
important role in the antioxidant capacity of grapefruit juice
(Gorinstein et al., 2005; Xu et al., 2008), which has been related
with the prevention of different chronic diseases including heart
disease, obesity, diabetes, cardiovascular diseases and cancer
(Mertens-Talcott, Zadezensky, De Castro, Derendorf & Butterweck,
2006; Vanamala, Reddivari, Yoo, Pike, & Patil, 2006; Diaz-Juarez
et al,, 2009). Some epidemiological studies also pointed to the
consumption of grapefruit brings benefits in weight loss and
improve lipid metabolism (Dow, Going, Chow, Patil, & Thomson,
2012; Gorinstein et al., 2005). However, despite its high func-
tional value, the consumption of fresh grapefruit is low, probably
due to its strong bitter taste and also because it is produced on a
seasonal basis, so that in many countries it may not be available in
fresh conditions throughout the year. Dried and powdered prod-
ucts can overcome this problem, as they more stable than fresh fruit
and easier to store and distribute, making them available all around
the year. Freeze-drying and spray-drying are two techniques used
for the production of fruit powder (Fernandes, Rodrigues, Law, &
Mujumdar, 2011). Nevertheless, the process used to obtain the
powder must ensure the maximal preservation of the bioactive or
functional fruit compounds, with the type of shell materials used to
protect those compounds playing an important role in the antiox-
idant capacity of the final product (Tonon, Brabet, Pallet, Brat, &
Hubinger, 2009; Fang & Bhandari, 2012).

In this study, freeze-drying and spray-drying have been applied
to obtain powdered grapefruit and their effects on the antioxidant
capacity and the levels of ascorbic acid, a-tocopherol and phenolic
compounds of the product have been investigated and discussed.
The effect of arabic gum and bamboo fibre added as shell materials
has been considered.

2. Materials and methods
2.1. Raw material

The study was carried out with different samples of grapefruit
(Citrus paradisi var. Star Ruby) purchased in local supermarkets in
Valencia (Spain). Grapefruits were washed and peeled with careful
removal of the albedo. Arabic gum (AG, Scharlau, Spain) and
bamboo fiber (BF, VITACEL®, Rosenberg, Germany) were added to
the grapefruit pulp as shell materials for the drying process.

2.2. Sample's preparation

Prior to freeze-drying (FD), peeled grapefruits were cut and
ground using a bench top food processor (Thermomix TM 21,
Vorwerk, Spain), whereas for spray-drying (SD) they were liquid-
ized in a domestic device (DeLonghi, Spain). Six formulations (4 for
FD and 2 for SD) containing different proportions of the shell ma-
terials (AG and BF) or water content, selected according to a pre-
vious study (Agudelo, Igual, Camacho, & Martinez-Navarrete, 2016),
were prepared (Table 1). For FD formulations, AG and BF were
mixed with ground grapefruit and afterwards the samples were
placed in aluminium pans (approximately 250 g in 0.5 cm thickness
by pan) and immediately frozen at —45 °C (Liebherr Mediline,
LCT2325, Germany) for 48 h before freeze-drying in a Telstar
Lioalfa-6 Lyophyliser at 0.021 Pa and —59 °C. The obtained cakes
were ground (Kenwood, CH 580, Spain) and sieved to obtain
powder with a particle size lower than 0.7 mm. For SD formula-
tions, AG and BF were dissolved in distilled water in the desired
proportions and mixed with the liquidized grapefruit in relation
1:1 (AG-BF solutions: liquidized grapefruit). After that, the mixture
was fed into a Biichi B-290 (Switzerland) mini spray dryer with the
following operating conditions: aspirator rate 90% (35 m>/h);

Table 1

Freeze dried ground (GG) or liquidized (LG) grapefruit and different formulations of
ground grapefruit used for freeze drying (FD) or liquidized grapefruit used for spray
drying (SD).

Formulation Type of shell material and their content (g/

100 g GG or GL)
Arabic Gum (AG)

Bamboo Fiber (FB)

Freeze dried grapefruit

1 GG - —

2 LG — -

3 FD¢* 4.2 0.58
4 FD, 4.2 0.58
5 FD3 4.2 0

6 FD4 0 0.58
Spray dried grapefruit

7 SD; 4 2

8 SD, 4 0

2 Prior to freeze drying the mixture was hydrated to a level of 90 gwater/
1 Ongroduct.

atomisation air rotameter 40 mm (473 L/h) with a co-current flow;
pump rate 30% (9 mL/min), and drying air inlet temperature 120 °C.
After completion of the process and when the air inlet temperature
fell below 50 °C, the samples were collected from the product
collection vessel for further characterization. To verify the effect of
using the carriers, the ground and liquidized grapefruit without
shell materials added were also freeze-dried under the same con-
ditions (GG and LG samples, Table 1). It was not possible to spray
dry the liquidized sample without carriers.

2.3. Compound analyses

2.3.1. Ascorbic acid

Ascorbic acid was determined following a procedure previously
described by Pereira, Barros, Carvalho, and Ferreira (2013) and the
analysis was performed by ultra-fast liquid chromatography
coupled to photodiode array detection (UFLC-PDA; Shimadzu
Cooperation, Kyoto, Japan), using 245 nm as preferred wavelength.
Results were expressed in g per 100 g of grapefruit's own solutes
(GS).

2.3.2. Tocopherols

Tocopherols were determined following a procedure previously
described by Barros, Heleno, Carvalho, and Ferreira (2010), using a
HPLC system (Knauer, Smartline system 1000, Berlin, Germany)
coupled to a fluorescence detector (FP-2020; Jasco, Easton, USA)
programmed for excitation at 290 nm and emission at 330 nm,
using the IS (tocol) method for quantification. The results were
expressed in mg per 100 g GS.

2.3.3. Phenolic compounds

Grapefruit samples (1 g) were extracted with methanol/water
(80:20, v/v, 30 mL) by mechanical maceration (150 rpm, 25 °C)
during 1 h. Afterwards, the sample was filtered using a Whatman
no. 4 paper and the residue was re-extracted with an additional
portion of the solvent. The extracts were combined and the
methanol was evaporated using a rotary evaporator (Biichi R-210;
Flawil, Switzerland) and then the aqueous phase was further
lyophilized (FreeZone 4.5, Labconco, Kansas City, MO, USA). Each
extract (10 mg) was dissolved in water:methanol (80:20 v/v),
filtered through 0.2 pm nylon filters and analysed by HPLC-DAD-
ESI-MSn in a Hewlett—Packard 1100 equipment (Agilent Technol-
ogies, Waldbronn, Germany) connected to a mass spectrometer
(API 3200 Qtrap, Applied Biosystems, Darmstadt, Germany) as
previously described by the authors (Pinela et al., 2012). Results
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were expressed mg/100 g GS.

The dehydrated samples possessed different proportions of
added solutes, so that in order to make the results comparable to
evaluate the effects of the dehydration processes on the vitamins
content and phenolic compounds, the results were referred to the
grapefruit's own solutes (GS) according to Eq. (1) and Eq. (2).

(myp /my)
g ()
(1= x8) (xasrs)
Xosyrs = (Mag + Mep£Mio (1 - x3)) .

where: m; is the mass of each compound referred to grapefruit
solutes (mg/g GS); mjp is the mass of each compound analysed in
the powder (mg/g), x§ is the water content of the powder (gwater/
Zpowder)» Xcs/Ts is the mass fraction of grapefruit solutes (GS) to total
solutes (TS), mg, mac and mgg are the mass of ground or liquidized
grapefruit, arabic gum and bamboo fibre, respectively, in the sam-
ple and x§, is the water content of the ground or liquidized grape-
fruit (w/w).

2.4. Antioxidant activity

The methanol/water (80:20, v/v) extracts described above
(section 2.3.3) were re-dissolved (methanol/water, 80:20, v/v) to a
concentration of 10 mg/mL (stock solution). Six successive dilutions
were made starting from the stock solution and further submitted
to the different in vitro antioxidant assays as previously described
by Fernandes et al. (2016). The antioxidant activity was evaluated
using four in vitro assays: DPPH radical-scavenging activity,
reducing power, inhibition of B-carotene bleaching in the presence
of linoleic acid radicals and inhibition of lipid peroxidation using
TBARS in brain homogenates. The extract concentrations providing
50% of antioxidant activity or 0.5 of absorbance (ECsg) were
calculated from the graphs of antioxidant activity percentages
(DPPH, B-carotene bleaching and TBARS assays) or absorbance at
690 nm (reducing power assay) against extract concentrations.
Trolox was used as standard.

2.5. Statistical analysis

Analyses of variance (ANOVA) were carried out to evaluate the
effect of drying treatments. When the p value was lower than 0.05,
significant differences between samples were considered.
Furthermore, a Pearson's correlation analysis between the antiox-
idant activity and all the analysed compounds was carried out, with
a 95% significance level. All the statistical analyses were performed
using Statgraphics Centurion XV.

3. Results and discussion
3.1. Effects on vitamins and phenolic compounds

The freeze-drying process works with either whole or ground
fruits, while spray drying requires an input feedstock with low
viscosity and small particle size. For this reason, the grapefruit was
liquidized and diluted to obtain a fluid that met the conditions of
the spray dryer. Table 2 collects the levels of acid ascorbic and a-
tocopherol in the different analysed preparations. In general, the
values obtained for the content of these vitamins in GG and LG
samples were similar to those shown in the literature for ascorbic
acid (Moraga, Igual, Garcia-Martinez, Mosquera, & Martinez-

Table 2
Contents of antioxidant vitamins referred to grapefruit's own solutes (GS). The re-
sults are presented as mean + SD.

a-Tocopherol mg/100 g GS Ascorbic acid g/100 g GS

Freeze dried grapefruit powder

GG 0.60 + 0.02° 0.333 + 0.003¢

LG 0.66 + 0.03 0.381 + 0.003%

FD, 0.96 + 0.03% 0.3331 + 0.0002¢
FD, 0.95 + 0.03% 0.32592 + 0.00003°
FD3 0.93 + 0.02% 0.33263 + 0.00003¢
FD, 0.84 + 0.04> 0.3240 + 0.0007°
Spray dried grapefruit powder

SD; 0.677 + 0.009°¢ 0.3584 + 0.0003"
SD, 0.73 + 0.04¢ 0.351 + 0.002°

Different letters within the same column indicate significant differences (p < 0.05).

Navarrete, 2012) and a-tocopherol (Chun, Lee, Ye, Exler, &
Eitenmiller, 2006; |[USDA] United States Department of
Agriculture, Agricultural Research Service, 2011) in pink grape-
fruit varieties. Significant differences (p < 0.05) were found in the
contents of both vitamins between the two samples without shell
materials added (GG and LG), with a better vitamin retention in the
liquefied fruits further used for preparation of the spray-dried (SD)
samples.

According to Park, Lee, and Eun (2016) freeze-drying usually
conduct to lower losses in comparison with other techniques like
hot air drying, because the low temperature and the absence of
oxygen in the drying chamber, this latter being the main cause of
losses due to ascorbic acid browning reactions. Similar results were
reported by Vanamala et al. (2005) and Moraga et al. (2012), which
found that freeze-drying did not reduce significantly vitamin C
content in different varieties of grapefruits. As it is shown in Table 2,
the retention of this vitamin in relation to the non-formulated fruit
was higher in the FD (97—100%) than in the SD samples (92—94%).
Although spray-drying process caused a significant (p < 0.05)
decrease in the content of ascorbic acid, the retention levels were
high. Despite the high temperature used in the process, the drying
occurs instantaneously, so that the sample does not stay in contact
for a long time with the high temperature, which can guarantee the
preservation of sensitive compounds (Agudelo et al., 2016). More-
over a slightly greater protective effect was observed when arabic
gum and bamboo fiber were added together (SD1), with 94% of
retention for 92% in the sample containing only AG (SD3). The
degradation of vitamin C by effect of the high temperature applied
during spray-drying was also found by Langrish (2009) and Solval,
Sundararajan, Alfaro, and Sathivel (2012), whereas the protective
effects of AG addition were reported by Ali, Magbool,
Ramachandran, and Alderson (2010), among others.

As for a-tocopherol, the levels were maintained in spray-dried
samples (SD) compared to LG sample, whereas a significant loss
(p < 0.05) was observed in GG in relation to the formulated freeze-
dried samples (FD). This may be explained by the protection
afforded by the shell materials added. Arabic gum (AG) is
acknowledged to be an effective encapsulation agent due to its high
water solubility, the low viscosity of its concentrated solutions
relative to other hydrocolloid gums, and its ability to act as oil in
water-emulsifier (Glicksman, 1983, pp. 7—30), which may explain
the good retention of a-tocopherol observed in the dried prepara-
tions. Bamboo fiber (BF) has not been used with this purpose in the
literature, although the properties reported by the commercial
company for the product (Vitacel®), as a solute with synergistic
effects with proteins, capillary effects (water and oil-binding) and
binding characteristics independent of the temperature or the pH
value, and no quality changes in extreme processing conditions,
would also explain the efficiency in a-tocopherol preservation.
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The phenolic chromatographic profile of Citrus paradisi var. Star
Ruby (grapefruit) recorded at 280 nm is shown in Fig. 1. Compound
characteristics, tentative identities and quantitative results are
presented in Tables 3 and 4. Compounds were identified based on
their chromatographic and UV and mass spectra characteristics. Up
to eighteen compounds were detected, four of which were phenolic
acid derivatives and fourteen flavonoids, mainly from the group of
flavanones (Table 3). Most of these compounds have been previ-
ously reported by other authors in grapefruit or different Citrus
species (Dugo et al., 2005; Peterson et al., 2006; Gattuso, Barreca,
Gargiulli, Leuzzi, & Caristi, 2007; Mullen, Marks, & Crozier, 2007;
Djoukeng, Arbona, Argamasilla, & Gomez-Cadenas, 2008; Xu
et al., 2008; Kelebek, 2010; Igual, Garcia-Martinez, Camacho, &
Martinez-Navarrete, 2011; Zhang, Duan, Zang, Huang, & Liu, 2011;
Abad-Garcia, Garmoén-Lobato, Berrueta, Gallo, & Vicente, 2012a,
Abad-Garcia et al., 2012b; Anagnostopoulou & Kefalas, 2012;
Goulas & Manganaris, 2012; Moraga et al., 2012; Barreca et al.,
2013; Sun et al., 2013; Garcia-Castello, Rodriguez-Lopez, Mayor,
Ballesteros, Conidi & Cassano, 2015). Nonetheless, to the best of our
knowledge, compounds 1, 3 and 9 have not been previously
described in grapefruit. Compound 1 ([M-H]" at m/z 329) and 3 (M-
HJ" at m/z 325) releasing MS? fragments at m/z 167 (—162 u; [3,4-
dihydroxyphenylacetic acid-H]") and m/z 179 (-146 u; [caffeic
acid-H|"), respectively, were tentatively assigned as 3,4-
dihydroxyphenylacetic acid hexoside and caffeic acid rhamnoside.
Compound 9 ([M-H]™ at m/z 563) presented a UV spectrum char-
acteristic of a flavone and a fragmentation pattern that was
coherent with an 0,C-diglycoside of apigenin bearing pentosyl and
hexosyl residues. The loss of —120 u leading to the ion at m/z 443
supported the presence of a C-attached hexose, while the absence
of an ion [(M-H)-90]~ pointed to a 6-C attachment. The lack of an
ion [(M-H)-132] from the loss of the pentosyl residue suggested
that this sugar was not linked to the aglycone but to the other
sugar; this was confirmed by the presence of an abundant [(M-H)-

mAUr
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1250 7
1000 7

750 7

500

250 7

ot

150] ion at m/z 413, which according to Ferreres, Gil-Izquierdo,
Andrade, Valentao, and Tomads-Barberan (2007) would be charac-
teristic of an O-attached pentose on the C-glycosylating hexose. The
O-glycosylation should not take place in the positions 6”, 4", or 3"
of the hexose, otherwise the fragment [(M-H)-120]~ would not be
produced. The ion at m/z 293 would result from the fragment at m/z
413 by further loss of a fragment of 120 u (partial loss of the C-
attached hexose). All in all, compound 9 was tentatively identified
as apigenin 2”-0-pentosyl-6-C-hexoside.

Flavanones were the dominant flavonoids in all grapefruit
samples, representing about 93% of total flavonoids (Table 4). These
results are similar to those compiled by Peterson et al. (2006).
Various flavanone neohesperidosides (naringin, neohesperidin,
poncirin) and rutinosides (narirutin, hesperidin, eriocitrin, and
didymin) were identified in the analyzed grapefruit samples, with
naringin and narirutin being the predominant phenolic com-
pounds, as also reported by other authors (Gattuso et al., 2007;
Moraga et al., 2012; Vanamala et al., 2006). Naringin is a charac-
teristic component of grapefruit juices and the principal respon-
sible for the bitter taste of this fruit (Mullen et al., 2007). Its mean
concentration ranged between 560 and 680 mg/100 g dw in the
two samples without carriers added (GG and GL), values similar to
those reported by Moraga et al. (2012).

In general, the freeze-drying of formulated samples did not
cause important changes in the phenolic composition, with per-
centages of retention of 90—95% in the content of total phenolics in
relation to the GG sample when expressed in relation to grapefruit
own solutes (Table 4), whatever the type of shell material added.
The lower relative retention observed in the sample FD; might be a
consequence of the rehydration it was submitted before freeze-
drying. Much greater losses of phenolic compounds were pro-
duced by the spray drying process, with mean percentages of
retention around 58% in the content of total phenolics with respect
to the starting material (LG). This might be explained by an

T
50" Time (min.)

Fig. 1. HPLC profile of phenolic compounds in the freeze-dried liquidized grapefruit sample (LG), recorded at 280 nm.
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Table 3
Retention time (Rt), wavelengths of maximum absorption in the visible region (max), mass spectral data and tentative identification of phenolic compounds in grapefruit
samples.
Peak Rt Amax Pseudomolecular ion [M- MS? (m/z) Tentative identification References*®
(min) (nm)  HJ (m/z)
1 5.5 278 329 167 (100) 3,4-Dihydroxyphenylacetic acid -
hexoside
2 5.8 332 341 179(29),161(100),135(18) Caffeic acid hexoside 1,10
3 8.3 328 325 179 (100) Caffeic acid rhamnoside -
4 9.2 284,336 595 287 (100) Eriodictyol-7-O-rutinoside (eriocitrin) 1, 2,3,7,8,11
5 9.9 332 355 193 (100) Ferulic acid hexoside 1,2
6 116 336 593 505(14),473(24),383(18),353(29),325(11) Apigenin 6,8-C-diglucoside 1,2,7,8,10
7 124 286,336 741 433(47),271(100) Naringenin-7-O-rutinoside-4'-0- 1,2,6,10
glucoside
8 13.8 286,334 741 433(14),271(5) Naringenin-7-O-neohesperidoside-4’- 1, 2,10
O-glucoside
9 183 336 563 443(30),413(100),341(28),313(15),293(48) Apigenin 2”-0O-pentosyl-6-C-hexoside — —
10 185 284,336 595 271 (100) Naringenin-O-dihexoside 2,10
11  20.7 282,336 579 271 (100) Naringenin-7-O-rutinoside (narirutin)  1,3,4,5,7,8,9,10,11,12,13,14,15,16
12 221 284,336 579 459(22),313(3),295(3),271(20) Naringenin-7-O-neohesperidoside 1,3,4,5,7,89,10,11,12,13,14,15,16
(naringin)
13 234 284,338 609 301 (100) Hesperetin-7-O-rutinoside (hesperidin) 1,3,4,5,8,9,10,12,14.15
14 248 284,338 609 301 (100) Hesperetin-7-0O-neohesperidoside 1,3,4,8,9,10,12,14,16
(neohesperidin)
15 27.6 284332 621 579(5),501(14),459(7),271(12) Acetyl naringin 11
16 279 284,336 723 661(13),621(44),579(100),271(18) 3-Hydroxymethylglutaryl naringin 11
(Melitidin)
17 314 286,324 593 285 (100) Isosakuranetin-7-O-rutinoside 1,2,3,5,6,8,10,15,16
(didymin)
18 324 286,338 593 285 (100) Isosakuranetin-7-0- neohesperidoside 1, 2,3,5,7,8,10,15,16

(poncirin)

2 References: 1-Mullen et al. (2007); 2- Abad-Garcia et al. (2012a); 3- Gattuso et al. (2007); 4- Garcia-Castello et al. (2015); 5- Goulas and Manganaris (2012); 6- Barreca et al.
(2013); 7- Djoukeng et al. (2008), p. 8- Dugo et al. (2005); 9- Kelebek (2010); 10- Abad-Garcia et al. (2012b), p. 11 -Zhang et al. (2011), p. 12- Xu et al. (2008); 13-
Anagnostopoulou & Kefalas (2012); 14- Sun et al. (2013), p. 15-Igual et al. (2011), p. 16- Moraga et al. (2012).

Table 4

Contents of phenolic compounds in freeze-dried grapefruit (GG and LG) and formulated samples (FD and SD) referred to grapefruit's own solutes (mg/100 g GS). The results are
presented as mean =+ SD.

Peak GG LG FD, FD, FD; FD,4 SD, SD,

1 6.9 + 0.5° 1.71 + 0.02f 235 +0.034 1.19 + 0035  3.44 + 0.08¢ 231 +0.01¢ 49 +0.2° 1.01 + 0.04%
2 tr tr tr tr tr tr tr tr

3 tr tr tr tr tr tr tr tr

4 10.2 + 0.4 104 +0.3° 8.46 + 0.09° 7.2 03¢ 8.4+02° 83+ 06° 5.8 + 0.3¢ 6.70 + 0.18°
5 14.6 + 0.5 8.7 +0.2° 7.89 + 0.18¢ 6.7 +0.1° 7.32 + 0.06¢ 5.93 + 0.12f 6.8 + 0.3% 5.58 + 0.03f
6 38 £2° 38.1+12° 26.6 + 0.2° 255 +0.7° 259 + 03" 28 +2° 223 +0.7¢ 25.6 + 1.6°
7 10.8 + 0.5 93105 9.98 + 0.13% 9.7 +04° 9.53 + 0.03° 9.4 +0.5P° 6.1 +0.2° 54 +0.2°

8 8.7 +03% 7.9+03° 6.96 + 0.05° 7.8 +02° 7.9 +0.3° 7.7 +03° 4.92 + 0.07¢ 4.41 + 0.09°
9 9.2+ 03% 8.5 + 0.57 3.61 +0.14° 555+ 0.05°  6.1+0.7° 5.6 + 0.4° 2.58 + 0.05¢ 2.91 + 0.12<¢
10 tr 0.68 + 0.02 tr tr tr tr tr tr

11 1299 +13° 1424 +0.3? 11338 £ 0.06° 1189 +12° 1172 +0.8¢ 120.18 £ 0.09°  75.7 + 0.4° 73.69 + 0.078
12 560 + 2° 6809 + 1.8° 525 + 4° 545 + 5° 532 + 49 548.7 + 1.1° 331 + 3F 3229 + 0.6%
13 8.2 +0.5° 8.17 + 0.08% 6.52 + 0.02¢ 7.4 + 0.3 6.92 +0.06°  7.57 +0.12% 5.5+ 0.3° 49 +03f
14 102 + 0.3 1313 +0.13*  8.16 + 0.13¢ 8.7 £ 0.2¢ 8.48 + 0.08° 8.8 + 0.6 6.64 + 0.04¢ 6.1 +0.2°
15 8.4 + 03¢ 8.52 + 0.02° 8.24 + 0.08° 10.2 + 0.4% 9.8 + 0.4%° 9.6 +0.2° 52 +0.2¢ 414 +0.03°
16 3.67 + 0.09°  4.19 + 0.07% 1.93 + 0.13¢ 3.02 +0.12° 259 + 0.08¢ 2.38 +0.15¢ 211 +0.12¢ 0.79 + 0.07°
17 12.7 + 044 169 + 0.4° 14.03 + 0.09¢ 18.6 + 0.5 1722+ 012> 167 £ 0.2° 6.9 + +0.5° 6.79 + 0.13°
18 452 +2.4° 44.0 £ 1.2 49.5 + 0.6° 44 £ 2% 433 +1.4%® 43.9 + 0.8 27.9 + 1.6 27.6 £ 1.5°
Total phenolic acids 14.7 + 0.3? 104 + 0.2¢ 102 +02¢ 787 +0.09¢ 10.76 + 0.02° 824 +0.12¢ 11.75 + 003"  6.59 + 0.02f
Total flavonoids 856 + 6° 9934 + 0.9° 773 +4° 812+9°€ 796 + 84 818 + 2¢ 502 + 6 492 + 4
Total phenolic compounds 871 + 7° 1003.8 + 0.6° 784 +4° 820 + 9 « 806 + 89 826 + 2¢ 514 + 6° 499 + 48

tr: Traces. Different letters within the same row indicate significant differences (p < 0.05).

increased degradation favoured by the applied temperature.

3.2. Effects on antioxidant activity

In order to evaluate the effects of freeze-drying and spray-
drying on the antioxidant activity, four chemical and biochemical
in vitro assays were performed (Table 5). The antioxidant activity
was expressed as ECsg values (mean + SD). In general, LG and GG

samples showed greater antioxidant capacity (lower ECsg values)
than dried samples, being the LG extract the most active in all as-
says, consistent with its higher levels of vitamins and phenolic
compounds. Relatively good retention of the antioxidant capacity
was found in the formulated freeze-dried powders in relation to the
non-formulated material, but in the case of the p-carotene
bleaching assay, where a sharp decrease of the activity was
observed in most of the processed samples. On the contrary, the
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Table 5

In vitro antioxidant activity presented as ECsqo values (mg/mL) obtained for the different studied samples. The results are presented as mean =+ SD.

DPPH scavenging activity Reducing Power

Ferricyanide/Prussian blue assay

Lipid peroxidation inhibition

B-Carotene bleaching inhibition TBARS formation Inhibition

Freeze dried grapefruit powder

GG 7.11 +0.13¢ 2.26 + 0.03¢
LG 5.61 + 0.07° 1.67 + 0.01°
FD, 721 £0.11° 3.1+03°
FD, 6.1 +0.2¢ 244 + 0.04°
FD; 6.4 + 0.3¢ 2.72 + 0.02°
FD, 6.3 + 0.5% 251 + 0.07°
Spray dried grapefruit powder

SD, 8.61 + 0.10° 2.73 + 0.01°
SD, 7.6 +0.3° 2.50 + 0.07¢

9.1+03° 2.75 + 0.15¢
2.7 +04° 1.65 + 0.038
16.1 + 0.4° 1.86 + 0.06°
9.5+ 0.4° 2.04 + 0.03°
14.1 + 059 3.0 £ 0.3¢

14.6 + 0.3° 40+02°

192 +0.72 2.13 + 0.04°
19.0 + 0.7% 4.17 + 0.06

Different letters within the same column indicate significant differences (p < 0.05).

spray-dried samples showed the lowest antioxidant activity, which
is coherent with a greater loss was produced in their levels of
phenolic compounds. Pearson's statistical correlation analysis was
used to establish correlations between the antioxidant capacity and
the studied bioactive compounds. The obtained results showed that
the most significant contribution to DPPH scavenging activity
(—-0.82, p < 0.05) and inhibition of B-carotene blanching (—0.76,
p < 0.05), and was provided by total phenolic compounds specif-
ically by flavonoids. However, these compounds did not present
significant correlations with the reducing power (-0.43, p > 0.05)
and TBARS formation inhibition (—0.32, p > 0.05).

The antioxidant activity of flavonoids as electron or hydrogen
donors relates to the reduction potentials and reactivity of the
substituent reactive groups, so in DPPH scavenging activity the
compounds, didymin (-0.91, p < 0.05), naringin (—0.8405,
p < 0.05), narirutin (—0.81, p < 0.05), poncirin (0.81, p < 0.05) and
hesperidin (—0.73, p < 0.05) presented the best correlations, while
in the inhibition of p-carotene bleaching, melitidin (—0.94,
p < 0.05), nehosperidin (—0.90, p < 0.05), and apigenin 2”-0-pen-
tosyl-6-C-hexoside (- 0.84, p < 0.05) were the most promising
compounds.

There are many studies in the literature that also described a
high correlation between phenolic compounds content and anti-
oxidant capacity of many fruits (Deepa, Kaura, George, Singh, &
Kapoor, 2007; Contreras-Calderén, Calderén-Jaimes, Guerra-
Hernandez, & Garcia-Villanova, 2011), attributing this behaviour
to the redox properties of these compounds, which allow them to
act as reducing agents, hydrogen donors and singlet oxygen
quenchers (Miranda et al., 2010). In extracts from Rio Red grape-
fruit, Jayaprakasha, Girennavar, and Patil (2008) also reported a
high correlation (R?>0.94) between total polyphenol content and
radical scavenging activity by the DPPH method.

Ascorbic acid (—0.7890, p < 0.05) and «-tocopherol (—0.54,
p < 0.05) contributed to increase the reducing power, in addition to
some individual phenolic compounds suggesting that all these
compounds can work synergistically in the protection against
oxidative damages.

4. Conclusions

The results obtained in the present study showed that adding
arabic gum and bamboo fiber to obtain grapefruit powder by
freeze-drying is a good alternative, maintaining the functional
components of the fruit, namely antioxidant vitamins and phenolic
compounds, and antioxidant properties. However, in the case of
spray-drying it lead to a loss of bioactive compounds affecting the
functional quality of the fruit. In both cases, the addition of arabic
gum helps protect especially the a-tocopherol against degradation
by acting as encapsulation agents. Bamboo fiber added together

with the gum showed a protective effect against ascorbic acid and
total phenols degradation. Clearly the largest contribution to the
antioxidant capacity of the studied samples is provided by the
presence of phenolic compounds, mainly flavonoids that can
effectively scavenge various reactive oxygen species or free radicals
under in vitro conditions.
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