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Abstract

We characterize chaos for ϕ(B) on Banach sequence spaces, where ϕ is a Linear
Fractional Transformation and B is the usual backward shift operator. Char-
acterizations are computable since they involve only the four complex numbers
defining ϕ.
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Chaos has been usually considered a non-linear phenomena, although linear
chaos may appear if we let the underlying space to be infinite dimensional.
According to Devaney [1] and [23], a continuous map on a metric space is chaotic
provided it is topologically transitive and it has a dense set of periodic points.
This paper deals with the chaotic behaviour of a class of bounded linear maps
(operators) defined on separable Banach spaces. Within this context, it is well
known that topological transitivity is equivalent to the existence of a dense orbit,
and this property is known for operators as hypercyclicity. Therefore, we have
that operators defined on separable Banach spaces are chaotic if and only if they
are hypercyclic and admit a dense set of periodic points. The monographs [2, 3]
are very good sources for the theory of linear dynamics.
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The first example of a hypercyclic operator on a Banach space was given
by Rolewicz in 1969 [4]. He proved that multiples λB of the backward shift
operator B(x1, x2, . . . ) := (x2, x3, . . . ) are hypercyclic on the space `1 of abso-
lutely summable sequences if and only if |λ| > 1; in fact, they are chaotic. Since
then, (weighted) shift operators defined on sequence spaces have become a usual
ground to study linear dynamics. Hypercyclicity for weighted backward shifts
defined on `p was characterized by Salas and he also showed that any pertur-
bation of the identity by a weighted backward shift is always hypercyclic [5].
Following this direction, characterizations for hypercyclic and chaotic weighted
backward shifts defined on general sequence spaces were obtained in [6, 7], and
characterizations for chaotic perturbations of the identity by weighted backward
shifts are also in [7]. Other results for the linear dynamics of operators of the
form P (T ), where T is an operator and P (z) is a polynomial or a more general
function, can be found in [8, 9, 10, 11, 12, 13].

DeLaubenfels and Emamirad [10] proved that for a given non-constant poly-
nomial P (z), P (B) is chaotic on `p, 1 ≤ p < ∞, whenever P (D) intersects
the unit circle [10, Th. 2.8], where D is the open unit disc of C. Besides, for
a, b ∈ K, K being the scalar field, they showed that aI + bB is chaotic if and
only if |b| > |1− |a||. Further sufficient conditions for chaos of P (B) in terms of
the coefficients of the polynomial had been stated in [9]. The aim of this note
is to keep going on the search of ‘computable’ conditions for chaos of ϕ(B),
where ϕ(z) is an analytic function. In this case, we deal with Linear Fractional
Transformations, that is, analytic functions of the form ϕ(z) = (az+b)/(cz+d).
We prove that ϕ(B) is chaotic on `p if and only if∣∣∣|d|2 − |c|2 − ∣∣bd̄− ac̄∣∣∣∣∣ < |bc− ad| ,
Which obviously generalizes the above mentioned result in [10]. As a conse-
quence, we also characterize chaotic weighted backward shifts on weighted `p

spaces, result that serves us to know which operators of the form ϕ(D) are
chaotic on certain Banach spaces of analytic functions, where D is the differ-
entiation operator. Although it will be shown later, we would like to point out
that all operator considered in this paper are in fact (upper triangular) Toeplitz
operators.

Let us start setting our frame of work. For a strictly positive weight sequence
v := (vn)n, let

`p(v) :=

{
(xn)n ∈ CN, ‖x‖p :=

∞∑
n=1

|xn|p vn <∞

}
, 1 ≤ p <∞,

be the associated weighted `p-space. It is easy to check that condition

sup
i

vi
vi+1

<∞ (1)

characterizes boundedness of B : `p(v) → `p(v). This condition will always be
assumed to hold. If the weighting sequence v coincides with the sequence of
ones, the corresponding space will be denoted as `p.
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Our aim is to state the chaotic behaviour of ϕ(B) on `p, where ϕ is a Linear
Fractional Transformation. In order to avoid trivial cases when ϕ(z) reduces to
a constant or to a degree 1 polynomial, we will assume that ad − cb 6= 0 and
c 6= 0. Therefore, by saying that ϕ is a Linear Fractional Transformation (LFT
for short) we mean

ϕ(z) =
az + b

cz + d
, a, b, c, d ∈ C, ad− cb 6= 0, c 6= 0. (2)

There are several ways to describe how the operator ϕ(B) is defined but
we will only speak here about two of them. The first one is to recall that the
spectrum of B (i.e., the set of λ ∈ C such that λI + B is not invertible) is
the closed unit disc D. Now, if we impose that |d/c| > 1 we have ϕ(B) =
(aB + bI)(cB + dI)−1 is a well defined bounded operator on `p. Our second
approach defining ϕ(B) is to use the Taylor expansion (around the origin) of ϕ,
which turns out to be

b

d
+

∞∑
n=1

(−1)
n+1 ad− bc

cd

( c
d

)n
zn.

If |d/c| > 1, then for each x ∈ `p, we have

∞∑
n=1

( c
d

)n
‖Bnx‖ ≤

∞∑
n=1

( c
d

)n
‖x‖ <∞.

Therefore the series

b

d
I +

∞∑
n=1

(−1)
n+1 ad− bc

cd

( c
d

)n
Bn

converges pointwise on `p and we denote the limit operator as ϕ(B), which is
bounded by the Banach-Steinhauss Theorem (see, e.g., Appendix A in [3]).

At this point several observations should be made: 1) Functional Calculus
Theory ensures that both approaches give the same operator. 2) The first
approach is more direct but by the second one, it is easy to observe that if
λ ∈ C is an eigenvalue of B, then ϕ(λ) is an eigenvalue of ϕ(B). 3) The second
approach also shows that ϕ(B) is a Toeplitz operator with canonical matrix

b
d −ad−bccd

c
d

ad−bc
cd

(
c
d

)2
. . . . . . . . .

0 b
d −ad−bccd

c
d

ad−bc
cd

(
c
d

)2
. . . . . .

0 0 b
d −ad−bccd

c
d

ad−bc
cd

(
c
d

)2
. . .

...
...

...
...

...
...


To get chaos for ϕ(B) on `p we will use the well known Eigenvalue Criterion

for chaos (see any of the monographs [2, 3] for a proof of it, and [14, 15, 10, 12, 9]
for examples using it):
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Theorem 1 (Eigenvalue Criterion). Let T : X → X be an operator on a
separable complex Banach space X. Suppose that the subspaces

X0 := Span{x ∈ X ; Tx = λx for some λ ∈ C with |λ| < 1},

Y0 := Span{x ∈ X ; Tx = λx for some λ ∈ C with |λ| > 1}.

Z0 := Span{x ∈ X ; Tx = eαπix for some α ∈ Q}

are dense in X, then T is chaotic.

In this framework, since the point spectrum (i.e., the set of eigenvalues)
σp(B) = D, this Criterion reads as ϕ(B) is chaotic on `p if and only if ϕ(D)
intersects the unit circle. The following result gives a full geometrical description
of ϕ(D) when the pole of ϕ lies outside the closed unit disc. This result is already
known since it might be used to characterize when a LFT maps the unit disk
into itself [16, 17]. For the sake of completeness, we provide here an elementary
proof.

Lemma 2. Let ϕ be a LFT as in (2) and |d| > |c|. Then ϕ(D) is the disc P+rD
with center P and radius r given by

P =
bd̄− ac̄
|d|2 − |c|2

, r =
|bc− ad|
|d|2 − |c|2

.

Proof. First we recall that LFT’s map circles and lines to circles and lines. Since
D is, obviously, a bounded convex set, and the pole −d/c lies outside the unit
disc, we have that ϕ(D) must also be bounded and convex, therefore ϕ(D) is a
circle whose boundary is ϕ(∂D). Now take three distinct points in the unit circle,
for instance z1 = 1, z2 = −1, and z3 = i. Since ϕ is a one to one transformation,
we have that A := f(z1), B := f(z2), and C := f(z3) are three distinct points
in the circle ϕ(∂D), that is, the circumscribed circle passing through A, B, and
C in fact coincides with ϕ(∂D). We just need to show that

|A− P | = |B − P | = |C − P | = r.

Indeed, by using the well-known equalities |z|2 = zz̄ and |c + d| = |c̄ + d̄|, we
have

|A− P | =
∣∣∣∣a+ b

c+ d
− bd̄− ac̄
|d|2 − |c|2

∣∣∣∣
=

1

|d|2 − |c|2

∣∣∣∣ (a+ b)(|d|2 − |c|2)− (bd̄− ac̄)(c+ d)

c+ d

∣∣∣∣
=

1

|d|2 − |c|2

∣∣∣∣add̄− bcc̄− bcd̄+ adc̄

c+ d

∣∣∣∣ = r.

Analogously, noticing that |ci+ d| = |c̄+ d̄i|, we get
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|B − P | =
∣∣∣∣−a+ b

−c+ d
− bd̄− ac̄
|d|2 − |c|2

∣∣∣∣
=

1

|d|2 − |c|2

∣∣∣∣ (−a+ b)(|d|2 − |c|2)− (bd̄− ac̄)(−c+ d)

−c+ d

∣∣∣∣
=

1

|d|2 − |c|2

∣∣∣∣−add̄− bcc̄+ bcd̄+ adc̄

−c+ d

∣∣∣∣ = r.

|C − P | =
∣∣∣∣ai+ b

ci+ d
− bd̄− ac̄
|d|2 − |c|2

∣∣∣∣
=

1

|d|2 − |c|2

∣∣∣∣ (ai+ b)(|d|2 − |c|2)− (bd̄− ac̄)(ci+ d)

ci+ d

∣∣∣∣
=

1

|d|2 − |c|2

∣∣∣∣add̄i− bcc̄− bcd̄i+ adc̄

ci+ d

∣∣∣∣ = r.

Theorem 3. Let ϕ be a LFT as in (2) and |d| > |c|. The operator ϕ(B) is
chaotic on `p if and only if∣∣∣|d|2 − |c|2 − ∣∣bd̄− ac̄∣∣∣∣∣ < |bc− ad| .
Proof. As in the previous lemma, denote ϕ(D) = P + rD. We have that ϕ(B)
is chaotic if and only if P + rD intersects the unit circle. In order to accomplish
that, we have two possibilities: if the center P lies inside the unit disc, then
|P | + |r| > 1; on the other hand, if P lies outside the closed unit disc, then
|P | − |r| < 1. Both conditions lead us to

− |r| < 1− |P | < |r| ,

and the conclusion follows after substituting the values for P and r and working
out the algebra.

Corollary 4. Let ϕ be a LFT as in (2), |d| > |c|, and g(z) = zn, with n any
positive integer. Consider the composition ϕ ◦ g(z) = (azn + b)/(czn + d), then
the operator ϕ ◦ g(B) is chaotic on `p if and only if∣∣∣|d|2 − |c|2 − ∣∣bd̄− ac̄∣∣∣∣∣ < |bc− ad| .
Proof. We just need to observe that ϕ(D) intersects the unit circle if, and only
if, so does ϕ ◦ g(D).

Next, we want to study chaos for ϕ(B) defined on weighted `p(v) spaces. It
is easy to see that %D ⊂ σp(B), where %p = lim infi vi

−1/i. Unfortunately, in this
framework, chaos of ϕ(B) is not equivalent to ϕ(%D)∩ ∂D 6= ∅, not even for the
simple case f(z) = z: if we take the spaces `1, `1(1/n), and `1(1/n2) (by certain
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abuse of notation, `1(1/n) = `1(v) and `1(1/n2) = `1(v′), where v := (1/n)n
and v′ := (1/n2)n, respectively), in all three cases % = 1 and f(D) ∩ ∂D = ∅.
However B is not hypercyclic on `1, it is hypercyclic but not chaotic on `1(1/n),
and it is chaotic on `1(1/n2) (see, e.g., Chapter 4 in [3]). Aware of the the
previous situation, the Eigenvalue Criterion1 ensures us that if ϕ(%D)∩∂D 6= ∅,
then ϕ(B) is chaotic on `p(v).

Before we state the theorem providing chaos for ϕ(B) on `p(v), let us remark
that % < ∞. Indeed, the weight condition (1) implies that there exists M > 0
such that for each i ≥ 2 we have vi > vi−1/M . Inductively vi > v1M

1−i for
all i > 1 and therefore %p ≤ M < ∞. Also, we disregard % = 0. To see
why, first write ϕ(B) = ϕ(0)I + φ(B), where φ is an holomorphic function with
φ(0) = 0. By the Eigenvalue Criterion 1, the operator T = ϕ(B) has a chance
to be hypercyclic only if |ϕ(0)| = |b/d| = 1, but since % = 0, we end up with a
compact perturbation of (b/d)I (i.e., T = (b/d)I+K, where K(BX) is relatively
compact), which are never chaotic (see [7, Proposition 6.1]). Indeed, if T admits
a dense set of periodic points, then the unique eigenvalue b/d of T is certain
n−root of 1, thus Tn = I+K ′ for certain compact operator K ′, and Tn admits
a dense set of periodic points too, which contradicts [7, Proposition 6.1].

Theorem 5. Let v = (vi)i be a sequence satisfying the weight condition (1).
Set %p = lim infi vi

−1/i and let ϕ be a LFT as in (2) with |d| > % |c|. If∣∣∣|d|2 − %2 |c|2 −
∣∣bd̄− %2ac̄

∣∣∣∣∣ < % |bc− ad| ,

then the operator ϕ(B) is chaotic on `p(v).

Proof. Since %D ⊂ σp(B), we have to check that ϕ(%D) meets the unit circle.
Take the homothety g(z) = %z and observe that ϕ(%D) = ϕ ◦ g(D). Now, apply
Lemma 2 to the composition ϕ ◦ g(z) = (%az+ b)/(%cz+ d) and follow a similar
argument to Theorem 3.

Remark 6. Some operators can be represented as a weighted backward shift
operator Bw(x1, x2, . . . ) := (w2x2, w3x3, . . . ) defined on a weighted `p(v) space.
This case may be reduced to the previous one via topological conjugacy. Set

a1 := 1, ai := w2 . . . wi, i > 1,

and consider `p(v̄) where

v̄i =
vi∏i
j=2 w

p
j

, for all i.

Take φa : `p(v) → `p(v̄) defined as φa(x1, x2, . . . ) := (a1x1, a2x2, . . .) to con-
struct a commutative diagram φa ◦ Bw = B ◦ φa. Since φa is an isome-
try, ‖x‖`p(v) = ‖φa(x)‖`p(v̄), by topological conjugation we have that ϕ(B)
is chaotic on `p(v̄) if and only if ϕ(Bw) is chaotic on `p(v) (notice that Bn =
(φa ◦Bw ◦ φ−1

a )n = φa ◦Bnw ◦ φ−1
a and use the Taylor expansion of ϕ).
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LFT’s of differential operators on Hilbert spaces of entire functions
(see [18]). Let γ(z) be an admissible comparison entire function, that is, the
Taylor coefficients γj > 0 for all j ∈ N0 and the sequence (jγj/γj−1)j≥1 is
monotonically decreasing. We consider the Hilbert space E2(γ) of power series

g(z) =

∞∑
j=0

ĝ(j)zj

for which

‖g‖22,γ :=

∞∑
j=0

γ−2
j |ĝ(j)|2 <∞.

Chan and Shapiro showed that for a 6= 0 the translation operator Ta is hyper-
cyclic on E2(γ) (see [18, Theorem 2.1]). They proved that Ta =

∑
n≥0 a

n/n! Dn,
where D is the operator of differentiation. They pointed out that the hy-
percyclicity of Ta is in fact the hypercyclicity of ϕ(D) for the particular case
ϕ(z) = eaz. They also asked for the dynamics of ‘other’ operators; we consider
here operators of the form ϕ(D), where ϕ(z) is a LFT.

It is clear that E2(γ) is isometric to `2(v) with v = (vj)j∈N0
= (γ−2

j )j∈N0

and with the identification f 7→ (f (j)(0)/j!)j≥0. Moreover, the operator of
differentiation D turns out to be a weighted backward shift with weights w =
(wj)j≥1 = (j)j≥1 or, equivalently, as a backward shift defined on `2(v̄), where

v̄j =
1

(γj j!)
2 , j ≥ 0.

Since γ(z) is an admissible comparison entire function, it is easy to check that
the weight condition (1) is satisfied and ϕ(B) is a bounded operator on `2(v̄) for
any LFT ϕ with |d| > % |c| (this is equivalent to saying that ϕ(D) is a bounded
operator on E2(γ) for any LFT ϕ with |d| > % |c|).

Let us now consider only those spaces for which limj→∞ jγj/γj−1 > 0. Since
the limit of successive roots coincides with the limit of successive ratios we have
that % = limj→∞ jγj/γj−1 > 0, and Theorem 5 may be applied to LFT’s ϕ with
|d| > % |c|.

To focus on a concrete example take γ(z) = eαz with α > 0; it is clear that
% = α. If ∣∣∣|d|2 − α2 |c|2 −

∣∣bd̄− α2ac̄
∣∣∣∣∣ < α |bc− ad| ,

then ϕ(D) is chaotic on E2(eαz), where ϕ is a LFT with |d| > % |c|.

Backward shift operators on spaces of analytic functions. Consider
spaces consisting on formal power series φ(z) :=

∑∞
j=0 f̂jz

j for which the se-
quence (f̂j)j belongs to `2(v) for a certain weight sequence v = (vj)j . For
example, the Hardy space H2 is obtained for v = (1)j , the Bergman space A2

for v = (1/(1+j))j , and the Dirichlet space D for v = (j+1)j . For the orthogo-
nal basis (zj)j≥0, the backward shift is defined as B(zj) := zj−1 for j ∈ N, and
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B(1) = 0. Now, if ϕ is a LFT with |d| > |c|, since %2 = lim infj v
−1/j
j = 1 for

the spaces H2, A2, and D, chaos of ϕ(B) may be obtained by using Theorem 3.

Remark 7. In this article we only considered the notion of chaos in the sense
of Devaney, but other forms of chaos, like the existence of mixing invariant
probability measures with full support (see [19, 20, 21]), or distributional chaos
(see [22]) also happen under the same conditions presented here for Devaney
chaos.

Acknowledgements

We want to thank the referee whose careful report produced an improvement
in the presentation of the paper.

References

[1] R. L. Devaney, An introduction to chaotic dynamical systems, Addison-
Wesley Studies in Nonlinearity, Addison-Wesley Publishing Company Ad-
vanced Book Program, Redwood City, CA, second edn., 1989.

[2] F. Bayart, É. Matheron, Dynamics of linear operators, vol. 179 of Cam-
bridge Tracts in Mathematics, Cambridge University Press, Cambridge,
2009.

[3] K.-G. Grosse-Erdmann, A. Peris Manguillot, Linear chaos, Universitext,
Springer, London, 2011.

[4] S. Rolewicz, On orbits of elements, Studia Math. 32 (1969) 17–22.

[5] H. N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (3)
(1995) 993–1004.

[6] K.-G. Grosse-Erdmann, Hypercyclic and chaotic weighted shifts, Studia
Math. 139 (1) (2000) 47–68.

[7] F. Martínez-Giménez, A. Peris, Chaos for backward shift operators, Inter-
nat. J. Bifur. Chaos Appl. Sci. Engrg. 12 (8) (2002) 1703–1715.

[8] T. Bermúdez, V. G. Miller, On operators T such that f(T ) is hypercyclic,
Integral Equations Operator Theory 37 (3) (2000) 332–340.

[9] J. A. Conejero, F. Martínez-Giménez, Chaotic differential operators, Rev.
R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 105 (2) (2011)
423–431.

[10] R. deLaubenfels, H. Emamirad, Chaos for functions of discrete and con-
tinuous weighted shift operators, Ergodic Theory Dynam. Systems 21 (5)
(2001) 1411–1427.

8



[11] G. Herzog, C. Schmoeger, On operators T such that f(T ) is hypercyclic,
Studia Math. 108 (3) (1994) 209–216.

[12] F. Martínez-Giménez, Chaos for power series of backward shift operators,
Proc. Amer. Math. Soc. 135 (2007) 1741–1752.

[13] V. Müller, On the Salas Theorem and hypercyclicity of f(T ), Integr. Equ.
Oper. Theory 67 (2010) 439–448.

[14] G. Godefroy, J. H. Shapiro, Operators with dense, invariant, cyclic vector
manifolds, J. Funct. Anal. 98 (2) (1991) 229–269.

[15] J. Bonet, F. Martínez-Giménez, A. Peris, Linear chaos on Fréchet spaces,
Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (7) (2003) 1649–1655.

[16] M. D. Contreras, S. Díaz-Madrigal, M. J. Martín, D. Vukotić, Holomorphic
self-maps of the disk intertwining two linear fractional maps, in: Topics in
complex analysis and operator theory, vol. 561 of Contemp. Math., Amer.
Math. Soc., Providence, RI, 199–227, 2012.

[17] M. J. Martín, Composition operators with linear fractional symbols and
their adjoints, in: Proceedings of the First Advanced Course in Operator
Theory and Complex Analysis, Univ. Sevilla Secr. Publ., Seville, 105–112,
2006.

[18] K. C. Chan, J. H. Shapiro, The cyclic behavior of translation operators
on Hilbert spaces of entire functions, Indiana Univ. Math. J. 40 (4) (1991)
1421–1449.

[19] F. Bayart and É. Matheron, Mixing operators and small subsets of the
circle, J. Reine Angew. Math. (To appear).

[20] S. Grivaux and E. Matheron, Invariant measures for frequently hypercyclic
operators, Adv. Math. 265 (2014), 371–427.

[21] M. Murillo-Arcila, A. Peris, Strong mixing measures for linear operators
and frequent hypercyclicity, J. Math. Anal. Appl. 398 (2013), 462–465.

[22] N.C. Bernardes Jr., A. Bonilla, V. Müller, A. Peris, Distributional chaos
for linear operators, J. Funct. Anal. 265 (2013), 2143-2163.

[23] J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, On Devaney’s
definition of chaos, Amer. Math. Monthly 99 (1992), 332–334.

9


