
61

POWAR: Power-Aware Routing in HPC Networks

with On/Off Links

FRANCISO J. ANDÚJAR, Universidad de Valladolid, Spain

SALVADOR COLL, MARINA ALONSO, PEDRO LÓPEZ, and JUAN-MIGUEL MARTÍNEZ,
Universitat Politècnica de València, Spain

In order to save energy in HPC interconnection networks, one usual proposal is to switch idle links into a

low-power mode after a certain time without any transmission, as IEEE Energy Efficient Ethernet standard

proposes. Extending the low-power mode mechanism, we propose POWer-Aware Routing (POWAR), a simple

power-aware routing and selection function for fat-tree and torus networks. POWAR adapts the amount of

network links that can be used, taking into account the network load, and obtaining great energy savings in

the network (55%–65%) and the entire system (9%–10%) with negligible performance overhead.

CCS Concepts: • Networks → Routing protocols; Network simulations; • Hardware → Interconnect

power issues; Networking hardware; • Computer systems organization → Interconnection architectures;

Additional Key Words and Phrases: Switch architecture, high-performance computing, interconnection net-

works, power saving, routing algorithms

ACM Reference format:

Franciso J. Andújar, Salvador Coll, Marina Alonso, Pedro López, and Juan-Miguel Martínez. 2019. POWAR:

Power-Aware Routing in HPC Networks with On/Off Links. ACM Trans. Archit. Code Optim. 15, 4, Article 61

(January 2019), 22 pages.

https://doi.org/10.1145/3293445

1 INTRODUCTION

The efficient use of natural resources is a growing concern that is being transferred to the different
productive sectors. Accordingly, the design of a High Performance Computing (HPC) system and,
more specifically, its interconnection networks do not ignore this issue. The interconnection net-
work can contribute to around 10%∼20% of the total HPC system energy consumption at full load
(Abts et al. 2010; Greenberg et al. 2008). Therefore, all the actions that are carried out to achieve
energy savings at a reasonable cost make the HPC more environmentally sustainable.

This work has been supported by the Spanish MINECO and European Commission (FEDER funds) under project TIN2015-

66972-C5-1-R. Francisco J. Andújar has been partially funded by the Spanish MICINN and by the ERDF program of the

European Union: PCAS Project (TIN2017-88614-R), CAPAP-H6 (TIN2016-81840-REDT), and Junta de Castilla y Leon -

FEDER Grant VA082P17 (PROPHET Project).

Authors’ addresses: F. J. Andújar, Departamento de Informática, Universidad de Valladolid, Edificio de Tecnologías de la In-

formación, Paseo de Belén 15, Valladolid, 47011, Spain; email: fandujarm@infor.uva.es; S. Coll, Instituto de Instrumentación

para Imagen Molecular (I3M), Universitat Politècnica de València, Camino de Vera s/n, 8B Building, Valencia, 46022, Spain;

email: scoll@upv.es; M. Alonso, P. López, and J.-M. Martínez, Department of Computer Engineering, Universitat Politècnica

de València, Camino de Vera s/n, 1G Building, Valencia, 46022, Spain; email: {malonso, plopez, jmmr}@upv.es.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1544-3566/2019/01-ART61

https://doi.org/10.1145/3293445

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 61. Publication date: January 2019.

https://doi.org/10.1145/3293445
mailto:permissions@acm.org
https://doi.org/10.1145/3293445


61:2 F. J. Andújar et al.

The European Commission has launched a plan to create an Energy Union in Europe and thus
ensure that EU citizens and businesses have a secure, affordable, and climate-friendly energy sup-
ply. A more reasonable use of energy boosts growth and job creation while at the same time en-
tailing an investment in the future of Europe.

Ethernet is one of the most widely used standards in interconnection networks. In September
2010, the Institute of Electrical and Electronics Engineers (IEEE) created the IEEE 802.3az stan-
dard that came to be called Green Ethernet (Energy Efficient Ethernet (EEE)) and whose objective
was the reduction of energy consumption in Fast Ethernet, Gigabit Ethernet, and 10 Gigabit Eth-
ernet links. The links are put in sleep mode (low-power idle (LPI)) when data is not transmitted.
This leads to energy savings with some losses in performance. Refresh signals are transmitted
periodically to maintain the synchronization of link endpoints. When there are data ready to be
transmitted, a wake signal is sent to activate the links again. Some amount of time is required
to transition between link states. For instance, for 10Gbps links, switching to LPI mode requires
2.88μs whereas for switching to normal mode 4.16μs are needed.

In the Top500 list of the most powerful supercomputers, Ethernet is the most popular intercon-
nection in its different versions: 100G, 40G, 25G, 10G, or Gigabit. According to the June 2018 list,
there are 247 systems of the 500 machines that use it. Three-quarters of these systems are located
in China (Dongarra et al. 2018).

A direct implementation of the IEEE 802.3az standard shows poor performance as a result of
the overheads by switching between wake-up and sleep states compared to actual communication
time. For this reason, since the publication of the IEEE 802.3az standard, different research works
have been developed with the aim of increasing energy savings, although the loss of performance
is a determinant factor. The work of Saravanan et al. (2013) characterizes HPC applications over
on/off links and proposes “Power-Down Threshold,” a technique that reduces the performance
overheads generated by transitions between link power modes. After transmitting a packet, the
link remains in the active state until a threshold is exceeded before switching to low-power mode.
Some previous works (Alonso et al. 2010, 2015; Soteriou and Peh 2003; Totoni et al. 2013) also
proposed to switch links on and off to save power, mainly based on network utilization.

In this article, we propose to extend the standard operation of EEE with Power-Down Thresh-
old by using a power-aware routing algorithm. However, note that our proposal is not only in-
tended for the Ethernet technology, although it is strongly inspired in the EEE standard and the
Power-Down Threshold. Our power-saving strategy could be applied in any HPC interconnection
network, as long as the network technology supports on/off links and adaptive routing.

Specifically, our proposal is inspired by the mechanism proposed in Alonso et al. (2010, 2015) for
torus and fat-tree topologies. While Alonso’s proposal uses network utilization to switch links on
and off, our novel routing algorithm uses network utilization to improve routing decisions, instead
of directly changing link state, introducing power-awareness in the routing algorithm.

The rest of the document is organized as follows. In Section 2, we describe some background like
the EEE standard, related work on power-saving strategies for HPC networks by using on/off links,
and the assumed power consumption model. Section 3 presents a new routing algorithm to save
power in interconnection networks, which will be referred to as POWer-Aware Routing (POWAR).
After that, we analyze and discuss network performance and energy evaluation results in Section 4.
Finally, in Section 5, we outline the conclusions.

2 BACKGROUND

In this section, we first discuss the motivation and operating principles of EEE. Then, we describe
previously proposed power-saving algorithms based on the utilization of on/off links. Finally, we

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 61. Publication date: January 2019.



POWAR: Power-Aware Routing in HPC Networks with On/Off Links 61:3

Fig. 1. Transitions between the active and low-power modes in EEE.

present the power model we devised to estimate the energy consumption of a computer system
considering with special emphasis the contribution of the interconnection network.

2.1 Energy Efficient Ethernet: Low-Power Idle and Power-Down Threshold

Ethernet is the dominant wireline communication technology for LANs, and holds a prevalent po-
sition also in the high-performance computing field. For data rates higher that 100 Mb/s, Ethernet
transmitters consume power continuously even when there are no data to transmit. An auxiliary
signal called IDLE is used to keep transmitters and receivers properly aligned. As a consequence, a
non-negligible amount of energy is wasted because most of the elements in the interfaces are con-
suming power at all times. The evolution of technology leading to higher data rates also implies
that the energy waste will increase over time. A 1000BASE-T Ethernet physical layer transceiver
(PHY) typically consumes over 0.5W while a 10GBASE-T PHY is usually over 5W (mains AC power
consumption).

The huge amount of Ethernet devices and their widespread adoption mean that large energy
savings will be obtained by reducing Ethernet devices energy consumption. For this purpose, in
2010, IEEE Std 802.3az-2010 EEE was approved. The standard defines a low-power mode to reduce
power consumption when no data transmission occurs. LPI is used instead of the continuous IDLE
signal to maintain links properly aligned during the low-power mode. EEE moves from the active
to the low-power mode and vice versa as a function of link traffic. While in the active mode, when
no further packets are available for transmission the link enters into the low-power (or “Sleep”)
mode. During the low-power mode, the energy consumption of the link is estimated to decrease to
about 10% of its nominal value (Christensen et al. 2010). The key point is that moving links from
active to sleep mode is relatively fast (in the order of microseconds), while no change is made on
link speed. However, during transitions in and out of the low-power mode the energy consumption
is significant, ranging from 50% to 100% of the active mode energy consumption.

Figure 1 illustrates EEE operating on a link that experiences a period of inactivity. When the
transmission of a packet ends and no more packets are available for transmission, the link is
switched to the low-power mode. During this low-power mode, the device sends periodic refresh
signals to guarantee the link endpoints are aligned while the link stays quiet during large inter-
vals. When packets need to be transmitted, the link is woken up to the active mode. During the
transition times (Ts , Tw ) and refresh time (Tr ), the link consumes the same power as when it is
active (as indicated above, this is a conservative assumption); and during the low-power mode
(Tq ), the link consumes about 10% of its nominal power. The basic limitation of the EEE standard
is the overhead of switching links from the active to the low-power mode and back. For instance,
considering a 10Gbps link, the transmission time of a 1500-byte frame is 1.2μs , while the sleep time
is Ts = 2.88μs , and the wake-up time is Tw = 4.16μs , leading to a frame transmission efficiency of
only 14.6%. As a consequence, EEE will typically work best for long transmission bursts alternating
with long inactivity periods.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 61. Publication date: January 2019.



61:4 F. J. Andújar et al.

Preliminary EEE evaluation results (Christensen et al. 2010) showed that power saving in
EEE links quickly decreases when link utilization increases. With link utilization at 20%, the
power consumption is higher than 70%, exceeding 90% power for link utilization at 50%. This
is mainly due to the overheads incurred in switching links from the active to the low-power
modes and vice versa. The authors propose a packet coalescing technique to buffer multiple pack-
ets in the Ethernet interface to minimize the impact of link power state transitions. However,
this technique increases packet delay and produces performance degradation of latency sensitive
applications.

In Saravanan et al. (2013), the authors propose a “Power-Down Threshold” as an extension to
EEE to cope with the overhead of link state transitions. After transmitting a packet, the link re-
mains in the active state until a threshold time is elapsed before switching to low-power mode. This
strategy tries to avoid unnecessary transitions between link power modes. Their experiments show
that interconnect power saving of up to 70% with performance impact below 2% can be obtained
on typical applications running on HPC platforms. In Saravanan and Carpenter (2018) PerfBound
is proposed, a technique that also reduces link energy but imposing a bound on the application’s
performance degradation.

2.2 On/Off Power-Saving Strategies

Various research works propose strategies for switching links on and off to reduce the power
consumed by interconnection networks. In Soteriou and Peh (2003), the authors propose a dy-
namic power management policy for mesh networks where network links are turned on and off
depending on network utilization. Their proposal relies on three key mechanisms. First, a power-
performance connectivity graph that indicates which links can be turned on/off and which links
must remain always on. Second, a routing protocol that accounts for the state of the links and
steers traffic accordingly. And third, input buffer utilization metrics drive the on/off decision pol-
icy using thresholds as link state transition deciders. Their results obtained by simulation using
uniform random traffic indicate that on/off links can provide significant power saving.

Totoni et al. (2013) propose a runtime system-based approach to turn off unused links. The
runtime system, at the network power management state, makes every node to calculate the route
for each of its destinations. A notification is sent to the intermediate and destinations nodes to
mark their used links. Finally every node turns off all its unused links. If the communication pattern
between objects varies, the runtime system must detect it and the power management algorithm
needs to be executed again. Their approach results in up to 20% savings of total system power for
scientific applications with near neighbor communication.

In previous work, we propose dynamic power management for on/off links on torus with ag-
gregated links (Alonso et al. 2010) and fat-tree networks (Alonso et al. 2015). Our mechanism does
not require changes in the routing algorithm. We use link utilization as the metric to turn links
on and off by defining two thresholds Ton and Toff (Figure 2) that fix the aggressiveness and the
responsiveness of the power management policy. The thresholds dynamically change as a function
of link state to avoid generating on/off oscillations and inducing network congestion. Our detailed
evaluation of the thresholds impact using synthetic workloads shows great potential for power
saving with limited impact on performance.

The work of Kim et al. (2018) proposes a traffic consolidation strategy for achieving energy-
proportionality (TCEP) in high-radix networks, such as Flattened Butterfly (FBFLY), HyperX, or
Dragonfly. Among other contributions, their mechanism defines a set of root links that are always
connected by a star topology and concentrates active links to a small number of routers, creating
hubs. Non-root links are power-gated considering the global impact on the network of re-routing
minimal traffic vs. non-minimal traffic. Hence, TCEP prioritizes power-gating links with the least

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 61. Publication date: January 2019.



POWAR: Power-Aware Routing in HPC Networks with On/Off Links 61:5

Fig. 2. Alonso’s concept for dynamic on/off link switching.

amount of minimally routed traffic. TCEP link power-gating algorithm measures the utilization
at every router and deactivates links whose traffic can be handled by other active links unused
bandwidth (even using non-minimal routes). Although being close to POWAR, there are several
significant differences between POWAR and TCEP: TCEP can not be applied to torus topologies
with trunk links nor fat-tree topologies, where we tested POWAR; TCEP routing relies on non-
minimal routing and can not be applied on minimally-routed networks, while POWAR can; TCEP
limits the set of links that can be power gated, while POWAR does not set any restriction; TCEP
requires additional virtual channels, and POWAR does not; TCEP authors only report network en-
ergy metrics and average flit latency while we provide whole cluster energy (network plus servers)
metrics including application runtime to asses the impact of POWAR on performance.

Similar techniques exploiting the availability of high-degree switches have been used for
networks-on-chip (NoC). Node-Router Decoupling (NoRD) (Chen and Pinkston 2012) decouples
the ability of nodes to inject packets from the on/off status of routers by using bypass paths in
the NoC. In multi-networks, traffic sources select to inject a packet into an active network or to
activate a new network using oblivious (Camacho and Flich 2011) or adaptive (Das et al. 2013)
metrics. An alternative technique is adaptive bandwidth networks (ABNs) (Michelogiannakis and
Shalf 2014), which divide channels and switches into lanes for the network to provide the appropri-
ate bandwidth at every hop. ABNs use power gated lanes, which consume near zero static power
when inactive, take advantage of drowsy Static Random Access Memory (SRAM) cells that can
be reactivated in a single cycle, and restrict packets to using a single lane per hop. Unlike multi-
networks, in ABNs flits can select different lanes at each hop instead of committing to a given
network at injection time. This restriction resembles the operation of the aggregated link proposal
for HPC networks presented in Alonso et al. (2010), with the difference of much faster lane ac-
tivation and deactivation times of NoC environments. MP3 (Chen et al. 2014) defines a strategy
for power-gating for Clos topology on NoCs that resembles the proposal by Alonso et al. (2007)
for fat-tree topology on HPC networks. Both approaches rely on defining a set of resources that
are not power-gated to guarantee full network connectivity. The rest of the network elements are
power-gated according to load conditions indicated by maximum buffer occupancy (Chen et al.
2014) or link utilization (Alonso et al. 2007).

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 61. Publication date: January 2019.



61:6 F. J. Andújar et al.

2.3 Power Model

As mentioned in Section 1, the objective of this article is to demonstrate the power-saving ability
of a novel power-aware routing algorithm by showing its impact on the energy consumption of
an HPC platform (cluster or supercomputer) for different configurations of the interconnection
network topology. In Andujar et al. (2018), we defined a power model to estimate system energy
consumption. For the article to be self-contained, we include a minimal set of definitions and a
brief explanation about the power model.1

Due to the relevance of the links in the performance and energy efficiency of the network,
in order to determine the total power consumption of a switch, our model considers the power
consumption of the links and the power consumption of the remaining switch logic. According to
the state of the art, we consider the following general hypotheses:

—The switch power consumption increases linearly with the number of ports (Guo et al. 2012).
—As pointed in the previous section, a power-saving mechanism like LPI (Christensen et al.

2010) is assumed and, therefore, two states for the switch ports: wake-up (or turned on) and
sleep (or turned off ). Hence:
—Since the transceiver is working regardless of the port is transmitting data or not, the

port power consumption is 100% when it is turned on.
—When the port is in sleep mode, it consumes a small part of the total power consumption.
—During the transitions from one state to another, the port power consumption is 100%.

2.3.1 Definitions. We introduce the parameters we use to quantify both the main components
of the system and their contribution to power consumption and total energy, as well as the vari-
ables calculated by the power model, in Table 1.

2.3.2 Power Consumption Model. Here, we present the power consumption model. As we are
going to carry out a comparative study, it is not relevant to use the absolute power consumption
of each system component, but to determine the fraction of the total power consumed by each
component.

Let W s
por ts be the fraction of the power consumption that all the ports consume in a switch s

with respect to the maximum power consumption of those ports. When a port p is in sleep mode, it

only consumesω
p

Spor t
of the total power consumption. Then, a portp always consumesω

p

Spor t
, plus

(1 − ωp

Spor t
) ·U p

por t when it is turned on. Since the ports in a switch have the same characteristics,

ωSpor t is the same for all ports, and the port power consumption is:

W s
por ts = ωSpor t + (1 − ωSpor t )

1

Npor ts

Npor ts∑

i=1

U i
por t (1)

Next, we calculate the proportion of the switch power consumption with respect to its maximum
power consumption. To simplify the model, we consider that the remaining switch logic consumes
the maximum power consumption independently of its utilization, i.e., it consumes (1 − ωs

por ts ).
Therefore:

W s
sw = (1 − ωs

por ts ) + ωs
por ts ·W s

por ts (2)

1Note that the power model has been simplified regarding the one presented in Andujar et al. (2018). In previous work, we

had compared network topologies with different number of switches and ports per switch. Therefore, we normalized all

the results with respect to a “reference” network. In this article, the evaluated networks in each case study have the same

network topology and normalizing the results is not necessary. For this reason, the mentions to the “reference” network

have been removed in the power model presented in this article.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 61. Publication date: January 2019.



POWAR: Power-Aware Routing in HPC Networks with On/Off Links 61:7

Table 1. Power Model Parameters and Variables

Network parameters

Npor ts Number of ports per switch

Nsw Number of switches in the network

Nnodes Number of nodes in the system

Power Parameters (based on literature)

ω
p

Spor t
Fraction of the power consumption that a port p consumes while in sleep mode

ωs
por ts Contribution of the ports in a switch s to the total power consumption of that switch

ωnet Contribution of the network to the total power consumption of the system.

ωSnodes Fraction of the power consumption that a node always consumes, regardless of its CPUs load

Variables obtained from simulation

RunTime Execution time of the HPC application

U
p
por t Fraction of RunTime that a port p is turned on

Ucpu Fraction of RunTime that a CPU is running

Variables calculated by the power model

W s
por ts Power consumption of ports in switch s

W s
sw Power consumption of switch s

Wnet Power consumption of the network

Wnodes Power consumption of the compute nodes

Wcluster Power consumption of the cluster system

Enet Energy consumption of the network

Ecluster Energy consumption of the cluster system

By considering all switches in the network, we obtain the network power consumption. Without
loss of generality, and reasoning at network level in the same way as switch level, we consider that
the contribution of switch ports to the total switch power consumption is the same for all switches,
i.e., ωpor ts is the same for all the switches. Therefore:

Wnet =
1

Nsw

Nsw∑

i=1

W i
sw =

1

Nsw

Nsw∑

i=1

((1 − ωpor ts ) + ωpor ts ·W i
por ts ) = (1 − ωpor ts ) +

ωpor ts

Nsw

Nsw∑

i=1

W i
por ts

(3)
In order to obtain the total energy of the HPC platform, we need to consider the power consump-
tion of the computing subsystem, mainly due to the computing nodes. Considering that all the
nodes have the same characteristics, the fraction of the node power consumption with respect to
their maximum power consumption, can be expressed as:

Wnodes = ωSnodes + (1 − ωSnodes ) · 1

Nnodes

Nnodes∑

i=1

U i
cpu , (4)

where we assume that the computing nodes are energy proportional, but also there is a fixed part
of the total power consumption that is always consumed. The rest of the power consumption is
proportional to the CPU utilization.

Then, we can calculate the HPC platform power consumption:

Wcluster = ωnet ·Wnet + (1 − ωnet ) ·Wnodes (5)

Wcluster provides the fraction of the maximum power (both network and nodes) consumed dur-
ing the application execution and normalized with respect to its maximum power consumption.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 61. Publication date: January 2019.



61:8 F. J. Andújar et al.

Table 2. Power Model Parametrization

Parameter ωSpor t ωpor ts ωnet ωSnodes

Value 0.1 0.65 0.15 0.5

Table 3. Simulation Values for Power Model Example

Network RunTime U 0
por t U 1

por t Ucpu

ref 650,000 1 1 0.800
pow 685,000 0.7 0.8 0.750

Finally, the energy consumed by an application is:

Enet =Wnet · RunTime (6)

Ecluster =Wcluster · RunTime (7)

2.3.3 Parameter Characterization. Table 2 summarizes the selected values for the parameters
that determine the fraction of power dissipated by the various network building blocks, as defined
in our model.

According to the IEEE EEE standard (IEEE 802.3az), the power consumption of an idle link2 is
estimated to be 10% of the link power consumption (Christensen et al. 2010; Reviriego et al. 2009).
Therefore, we set ωSpor t to 0.1.

The weight of the link power consumption with respect to the switch power consumption is
65% and 63% for the Dell PowerConnect 5324 (24-port switch) and the Dell PowerConnect 6248
(48-port switch) (Koibuchi et al. 2009), respectively; 64% for an IBM Infiniband 8-Port 12X switch
(Li et al. 2011) and 68% for the EXTOLL Tourmalet switch (Zahn et al. 2016). According to that, we
consider that 0.65 is a realistic estimation for ωpor ts .

Finally, we set ωnet to 0.15, since the network power consumption is 10%∼20% (Abts et al. 2010;
Greenberg et al. 2008) of the full system andωSnodes to 0.5, since even energy-efficient servers still
consume half of their power while idle (Barroso and Hölzle 2007).

2.3.4 Power Model Example. Finally, we include a example of the use of the power model. Let’s
suppose a network with two switches. We want to determine the performance/energy impact of
a hypothetical power-saving strategy based on turning on/off the switch links. For this purpose,
we execute by simulation a Message Passing Interface (MPI) application in: (i) the original system
(ref configuration); and (ii) the same system after implementing the power-saving strategy (pow

configuration). Table 3 shows RunTime , Upor t , and Ucpu obtained by simulation for both configu-
rations. Note that the table directly shows the average value of Upor t per switch and the average
value of Ucpu for each system.

Since there is no power saving in the ref network, its network power consumption is the maxi-

mum, i.e.,W
r ef

net = 1. Then, we only need to calculateW
r ef

nodes
andW

r ef

cluster
, using Equations (4) and

(5), respectively:

W
r ef

nodes
= ωSnodes + (1 − ωSnodes ) ·U r ef

cpu = 0.5 + (1 − 0.5) · 0.8 = 0.9

W
r ef

cluster
= ωnet ·W r ef

net + (1 − ωnet ) ·W r ef

nodes
= 0.15 · 1 + (1 − 0.15) · 0.9 = 0.915, (8)

that is, the power consumption of the reference system is 0.915 of the maximum power consump-
tion of the system. Now we must calculate Wnet and Wcluster for pow configuration. Then, we

2Note that, in our terminology, an idle link is equivalent to an off link, while an active link is equivalent to an on link.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 61. Publication date: January 2019.



POWAR: Power-Aware Routing in HPC Networks with On/Off Links 61:9

calculateW
pow
net using Equation (3):

W
pow
net = (1 − ωpor ts ) +

ωpor ts

Nsw

Nsw∑

i=1

W i
por ts = (1 − 0.65) + 0.65 · 0.7 + 0.8

2
= 0.8375 (9)

After that, we calculateW
pow

nodes
andW

pow

cluster
using Equations (4) and (5):

W
pow

nodes
= ωSnodes + (1 − ωSnodes ) ·U pow

cpu = 0.5 + (1 − 0.5) · 0.75 = 0.875

W
pow

cluster
= ωnet ·W pow

net + (1 − ωnet ) ·W pow

nodes
= 0.15 · 0.8375 + (1 − 0.15) · 0.875 = 0.869375 (10)

Now we have calculated all the power consumption variables for ref and pow configurations,
we can calculate the energy results using the RunTime . Since we want to calculate the impact of
the power-saving strategy, we normalized the results with respect to the ref network. First, we
calculate the normalized RunTime of the pow network:

Normalized RunTime =
RunTimepow

RunTimer ef
=

685000

650000
= 1.054

Therefore, the power-saving strategy approximately increases 5% the RunTime . Now we calculate
the normalized Enet of the pow network using the results obtained in Equation (9):

Normalized E
pow
net =

E
pow
net

E
r ef
net

=
W

pow
net · RunTimepow

W
r ef

net · RunTimer ef
=

0.8375 · 685000

1 · 650000
= 0.8826,

and we calculate the normalized E
pow

cluster
using the results obtained in Equations (8) and (10):

Normalized E
pow

cluster
=

E
pow

cluster

E
r ef

cluster

=
W

pow

cluster
· RunTimepow

W
r ef

cluster
· RunTimer ef

=
0.869375 · 685000

0.915 · 650000
= 1.0013

Therefore, this power-saving strategy does not fulfill its purpose. Although the network energy
consumption is approximately reduced 12%, the cluster energy consumption is practically the same
(0.1% greater than ref network) due to the performance degradation (�5%). Then, this hypothetical
power-saving strategy is not worth it.

3 POWER-AWARE ROUTING

The main goal of this work is to minimize network energy consumption in interconnection net-
work technologies that support on/off links, like EEE with LPI (Christensen et al. 2010). Moreover,
we also want to minimize the performance overheads generated by turning links on and off, and to
achieve it through a simple routing mechanism, which will be referred to as POWAR. We present
POWAR for two of the most popular topologies used in HPC: the k-ary n-cube (a.k.a. torus topol-
ogy) and the k-ary n-tree (a.k.a. fat-tree topology). POWAR is based on popular adaptive routing
algorithms for this topologies.3

An adaptive routing algorithm can be decomposed into two functions: the routing function and
the selection function (Duato et al. 2003). The routing function supplies a set of feasible output
channels based on the source and the destination node. After that, the selection function chooses
one channel from this set based on the network status and the routing strategy.

In the fat-tree topology, the routing function consists of two phases: an ascending phase to a
nearest common ancestor switch; and a descending phase to the destination. During the ascending
phase, all the ports in the ascending direction can be chosen by the selection function, while the

3Deterministic routing algorithms drastically minimize the opportunities to reduce energy consumption by turning off

unused links since the path between every source-destination pair is fixed.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 61. Publication date: January 2019.



61:10 F. J. Andújar et al.

message is self-routed to the destination following a deterministic path during the descending
phase (Duato et al. 2003).

Regarding the torus topology, we have implemented a minimal-path fully-adaptive routing algo-
rithm using Duato’s Protocol (Duato 1993), since this methodology is widely used in HPC intercon-
nection networks (Chen et al. 2011; Fröning et al. 2013). Briefly, this methodology splits each physi-
cal link into several virtual channels (VCs). A set of them (i.e., adaptive VCs) are used by the packets
to traverse the network switches in any order. The remaining VCs are used taking into account
the restrictions imposed by a deadlock-free routing algorithm. If a packet can not go through the
adaptive VCs, the deterministic VCs provide an “escape path” that guarantees deadlock freedom.

In particular, we use the adaptive VCs to implement a minimal adaptive routing; i.e., all the
VCs that bring the packet closer to its destination can be selected. Regarding the deterministic
subnetwork, we use dimension-order routing (DOR) with two VCs to avoid deadlocks (Dally and
Seitz 1987). Although any number of VCs could be used, we will use four VCs per physical channel:
2 deterministic VCs + 2 adaptive VCs. As a consequence, the routing function returns a set of
adaptive ports/VCs and one escape link/VC.

As stated above, the selection function must also be defined. This is the point where POWAR

works in order to take a good choice that minimizes both energy consumption and performance
penalty. Note that POWAR does not turn on/off switch ports: the decision of turning on/off a port
is the sole responsibility of the link on/off mechanism. In our case, we have used the mechanism
proposed by EEE and described in Section 2.1 (LPI with Power-Down Threshold).

Algorithm 1 shows the POWAR selection function. Notice that the ports are identified with
an integer from 0 to (Num_Ports − 1). If the selection function returns the keyword NULL, it
means that there is no available port for transmitting the corresponding packet. We have chosen
round-robin arbitration as the selection function, modifying it to be power-aware. Round-robin
arbitration is a straightforward function that tries to balance network traffic. However, round-
robin arbitration presents some problems in a network with on/off links. In the first place, if there
are wake-up and sleep ports in the set returned by the routing function, the selection function could
choose a sleep port despite having free wake-up ports available. That would add extra latency to the
packet that could be avoided. For this reason, POWAR prioritizes wake-up ports: a sleep port will
be chosen only when there are no wake-up ports in the port set or all the wake-up ports are busy.

Secondly, although there were no free wake-up ports, selecting a sleep port could have a negative
impact on performance because waking it up might not compensate. Let’s consider the 2-ary 2-tree
shown in Figure 3. Note that sleep links are represented with dotted lines, while wake-up links
are represented with solid lines. As seen in Figure 3(a), node 0 is transmitting several packets to
node 2 through switch 2, when a message from node 1 to node 3 arrives at switch 0. In switch
0, since the port to switch 2 is busy, the switch wakes up its second port and sends the message
through switch 3 (Figure 3(b)). However, the ports of switch 3 are also in sleep state, and therefore,
another link will be woken up, increasing power consumption. On the other hand, waking up a
port may require much more time than transmitting a single packet. Time and power consumption
could be saved if the switch waits for finishing the previous transmission and sends the new mes-
sage through switch 2 after that (Figure 3(c)). However, the message can not indefinitely wait. If
node 0 is transmitting a large burst of messages to node 2, the new message could suffer a greater
latency penalty due to starvation than the delay for reaching its destination through switch 3 after
waking up sleep ports.

As a consequence, we must: (i) avoid waking up unnecessary resources in a situation with low
network traffic (Figure 3(b)); and (ii) wake up free resources under high network loads. For this
reason, we define a “selectable” state for switch ports. The selection function can only choose
a port if it is marked as “selectable.” To determine which ports are selectable or not, the switch

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 61. Publication date: January 2019.



POWAR: Power-Aware Routing in HPC Networks with On/Off Links 61:11

Fig. 3. Routing examples.

takes into account the switch load, adapting the mechanisms proposed by Alonso et al. for fat-tree
topologies (Alonso et al. 2015) and torus topologies with aggregated links (Alonso et al. 2010).

The operation of the selectable port setting is based on a pair of thresholds that determine when
a port is eligible for routing (selectable) or not (not selectable). The original concept, as highlighted
in Figure 2, was devised to control link power-gating. Link utilization higher than the on threshold
(Ton) indicates a new port (if available) must be powered on, while utilization lower than the off
threshold (Toff) indicates a port must be powered down (if full network connectivity is preserved).
In POWAR, the dual threshold concept does not generate power-gating actions; in contrast, it is
used to indicate if a port is selectable or not and, later, the selection function uses this information
to perform power-aware decisions in coordination with the routing function, as described below.
Eventually, idle links resulting by the power-aware routing will be switched off by means of a
power-down mechanism similar to that defined by the EEE standard.

The following restrictions hold in the selection of Ton and Toff :

—Toff > 0
—Ton < UMAX, beingUMAX the maximum link utilization for a given topology under uniform

traffic. This limitation avoids generating network congestion since new links are set to se-
lectable, and hence elegible for routing, before exceeding available network capacity.

—Ton ≥ 2Toff , to avoid selectable setting cycles for any given link. When a port is set as not
selectable the traffic through alternative routes will increase and that could trigger a deci-
sion to set the port as selectable (if the average utilization increases over the on threshold),
repeating again the sequence in a loop. Conversely, when a port is set as selectable, the
traffic through alternative routes will decrease, inducing a similar situation if the average
utilization decreases below the off threshold.

Apart from that, a peculiarity of our utilization thresholds implementation is that they can be
tuned to provide different aggressiveness and sensitivity settings:

—Mechanism aggressiveness: this is controlled by the average value of the thresholds,Tavg =

(Ton +Toff )/2. High average thresholds provide an aggressive policy, since the power-aware
routing algorithm includes new alternative routes when current ones reach high utilization.
On the other hand, ifTavg is low, a conservative policy is applied since additional routes are

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 61. Publication date: January 2019.



61:12 F. J. Andújar et al.

considered even with low loads. As a result, the power-gating mechanism pursues higher
or lower energy saving, respectively.

—Mechanism responsiveness: the hysteresis band, defined by the difference of the thresholds,
Ton-Toff controls the routing algorithm responsiveness against traffic variations. Higher hys-
teresis bands will require higher traffic variations for the routing algorithm to modify the
set of possible routes, while lower traffic variations will not modify the available routes, and
vice versa.

As seen in Algorithm 1, the selection function first tries to find an adaptive output for forwarding
the packet. If no adaptive output is found, then the selection function checks the deterministic
output and it also checks if the deterministic output is “selectable.” This can be counterintuitive
since the selection function is shared for fat-tree and torus networks with aggregated links, which
have disparate routing functions, but it is easy to explain:

—Torus topology: The selection function first searches for an adaptive channel; if no adaptive
channels are found, it checks the deterministic output. But the deterministic output returned
by the routing function is an aggregated link that comprises several ports. In the same way
as in the adaptive channels, the algorithm must check which ports of the deterministic
aggregated link are set as selectable or not. Note that there is always at least one selectable
port per aggregated link, as will be seen in Section 3.2. Indeed, to choose among the ports
of an aggregated link, another arbitration must be performed by the selection algorithm,
but we have omitted this latter arbitration for the sake of simplicity.

—Fat-tree topology: We must distinguish between the ascending and the descending phase:
—Ascending phase: All the ascending ports can be selected, but there is no deterministic

output. Therefore, the routing function returns P � ∅ and D = NULL, and the selection
function only executes the adaptive part of the pseudo-code.

—Descending phase: The routing is deterministic (self-routing), and there are no adaptive
channels. Therefore, the routing function returns P = ∅ and D � NULL, and the selec-
tion function only executes the deterministic part of the pseudo-code.

3.1 Selectable Port Management on Fat-trees

Algorithm 2 shows the management of the selectable ports on the fat-tree. Notice that the de-
scending links are always selectable (as the descending phase is deterministic), and there is always
one ascending link in selectable status. Regarding port identification, the descending ports are
numbered from 0 to (k − 1), while the ascending ports are numbered from k to (2k − 1). Each
switch requires a counter that stores the number of flits forwarded to the upper stage. Switches
periodically check their counter and calculate the utilization of the current selectable ports. If the
utilization is greater than the on threshold, called Ton , the first non-selectable port is set as se-
lectable. If the utilization is lower than the off threshold, called Tof f , and there are two or more
selectable ports, the last selectable port is set as non-selectable. After that, the flit counter is reset.

3.2 Selectable Port Management on Torus with Aggregated Links

In the torus network with aggregated links, the selectable port management algorithm is similar
to the fat-tree algorithm, but the switches require one flit counter for each aggregated link. Using
the aggregated link flit counter, the switch calculates the utilization of each aggregated link. Then,
if the utilization is greater than Ton , the first non-selectable port of the aggregated link is set as
selectable, while if the utilization is lower thanTof f , and there are at least two selectable ports, the
last selectable port of the aggregated link is marked as non-selectable. After that, all the flit coun-
ters are reset. Algorithm 3 shows the selectable port management on torus networks. Note that,
in the torus case, the ports of an aggregated link i are identified from (Ports_per_aдд_link ∗ i ) to

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 61. Publication date: January 2019.



POWAR: Power-Aware Routing in HPC Networks with On/Off Links 61:13

ALGORITHM 1: POWAR selection function

Input: A set of adaptive ports P = ({p1,p2, . . . ,pr } xor ∅) given by the routing function,

being 0 ≤ r ,pr < Num_Ports

Deterministic port D, being 0 ≤ D < Num_Ports

the round-robin pointer rrp, being 0 ≤ rrp < Num_Ports
Output: The selected port, the round-robin pointer rrp
/* Are there adaptive ports in the set given by the routing function? */

if P � ∅ then

psleep := NULL

for i := 0 to Num_Ports − 1 do

/* Check all the ports using rrp to go through the ports in the correct order */

peval := (rrp + i )%Num_Ports

/* Check if peval: (i) belongs to the adaptive port set; */
/* (ii) is not busy (is not currently transmitting a packet); (iii) is a

selectable port */

if peval ∈ P and peval is not busy and peval is a selectable port then

if peval is wake-up then

/* If peval is wake-up, update the round-robin pointer and return peval */

rrp := (peval + 1)%Num_Ports

return peval

else if psleep = NULL then

/* If peval is sleep and if the first sleep port checked, set psleep */

psleep := peval

end

end

/* No wake-up adaptive ports found. If psleep is set, update the round-robin pointer

and return psleep */

if psleep � NULL then

rrp := (psleep + 1)%Num_Ports

return psleep

end

end

/* No adaptive ports found. Check the deterministic output (if there is a deterministic

output) */

if D � NULL and D is not busy and D is a selectable port then

return D
end

/* Return NULL value to indicate that valid ports are not found */

return NULL

(Ports_per_aдд_link ∗ (i + 1) − 1), Ports_per_aдд_link being the number of ports per aggregated
link. For example, if Ports_per_aдд_link = 4, the ports of the aggregated link 0 are identified from
0 to 3; the ports of the aggregated link 1 are identified from 4 to 7, and so on.

4 PERFORMANCE EVALUATION

In this section, we show the performance/energy evaluation of POWAR. The evaluation has been
performed using an interconnection network simulator, fed by VEF traces (Andújar et al. 2015;
VEF 2017), an open-source framework to simulate MPI applications. Using the simulator, we

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 61. Publication date: January 2019.



61:14 F. J. Andújar et al.

ALGORITHM 2: Fat-tree selectable port management

Input: Set of switch ascending ports P = {pk ,pk+1, . . . ,p2k−1}
Number of selectable ports Num_Sel_Ports

Flit counter FC

Maximum number of flits transmitted per port in a checking cyclemax

Threshold for adding selectable ports Ton

Threshold for removing selectable ports Tof f .

/* Obtain the up-port utilization taking into account the number of the current

selectable ports */

utilization := FC/(Num_Sel_Ports ∗max )

/* Is the utilization greater than Ton? Is adding a new selectable port possible? */

if utilization > Ton and Num_Sel_Ports < k then

/* Set the first non-selectable up-port as selectable */

i := k + Num_Sel_Ports

SetAsSelectable (pi )

Num_Sel_Ports := Num_Sel_Ports + 1

/* Is the utilization lower than Tof f ? Is removing a selectable port possible? */

else if utilization < Tof f and Num_Sel_Ports > 1 then

/* Set the last selectable up-port as non-selectable */

i := k + Num_Sel_Ports − 1

SetAsNonSelectable (pi )

Num_Sel_Ports := Num_Sel_Ports − 1

end

/* Reset the flit counter */

FC := 0

obtain the RunTime , U
p
por t (the fraction of RunTime that the ports are turned on) and Ucpu (the

fraction of RunTime that the CPUs are running). These values are later used in the power model
(Section 2.3) for obtaining the normalized values of RunTime , Enet , and Ecluster , as seen in the
example in Section 2.3.4. These normalized values will be shown in the plots of Section 4.3.

Section 4.1 outlines the switch architecture model employed in the simulations, while Section 4.2
briefly describes the evaluated topologies, the power-saving strategies evaluated, and the VEF
traces used to feed the simulations. Finally, Section 4.3 shows and comments on the results of the
experiments.

4.1 Switch Model

The modeled architecture is not based on a single specific system, but it is realistic and repre-
sentative of current state-of-the-art HPC platforms since the design parameters have been chosen
based on several commercial networks (Alverson et al. 2012; Chen et al. 2011; Derradji et al. 2015;
Fröning et al. 2013; Yokokawa et al. 2011).

The main specifications of the switch architecture are the following: IQ (Input Queued) switches
(Karol and Hluchyj 1998), virtual cut-through switching (Anderson et al. 1993), credit-based flow
control, and the three-stage allocation algorithm implemented in the IBM Blue Gene L (Adiga et al.
2005), with the only difference that our algorithm employs round-robin arbiters at all the allocator
stages.

Data are transmitted in flits of 16 bytes, grouped in 8-flit packets (or 128-byte packets). The
switch logic frequency is 625MHz (i.e., the switch clock resolution is 1.6ns). Since the switch

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 61. Publication date: January 2019.



POWAR: Power-Aware Routing in HPC Networks with On/Off Links 61:15

ALGORITHM 3: Torus selectable port management

Input: Set of switch ports P = {p0,p1, . . . ,pN um_Por ts−1}
Number of aggregated links Num_Aдд_Links

Set of flit counters F C = { f c0, f c1, . . . , f cN um_Aдд_Links−1}
Maximum number of flits transmitted per port in a checking cyclemax

Threshold for adding selectable ports Ton

Threshold for removing selectable ports Tof f

/* Obtain the number of ports per aggregated link */

Ports_per_aдд_link := Num_Ports/Num_Aдд_Links

/* Check all the aggregated links */

for aдд := 0 to Num_Aдд_Links − 1 do

/* Get the number of selectable ports of the current aggregated link */

Num_Sel_Ports = дetNumberO f SelectablePorts (aдд)

/* Obtain the aggregated link utilization */

utilization := f caдд/(Num_Sel_Ports ∗max )

First_Port_in_aдд_link := Ports_per_aдд_link ∗ aдд
/* Is the utilization greater than Ton? Is removing a selectable port possible? */

if utilization > Ton and Num_Sel_Ports < Ports_per_aдд_link then

/* Set the first non-selectable port in the aggregated link as selectable */

i := First_Port_in_aдд_link + Num_Sel_Ports

SetAsSelectable (pi )

/* Is the utilization lower than Tof f ? Is removing a selectable port possible? */

else if utilization < Tof f and Num_Sel_Ports > 1 then

/* Set the last selectable port in the aggregated link as non-selectable */

i := First_Port_in_aдд_link + Num_Sel_Ports − 1

SetAsNonSelectable (pi )

end

/* Reset the flit counter of the current aggregated link */

f caдд := 0

end

crossbar can deliver one flit per cycle, each switch port offers a peak bandwidth of 10Gbytes/s.
The latency per hop is approximately 50ns. Each input port has an input buffer of 1024 flits, or
16Kbytes, statically split between the four VCs.

Finally, although our switch is not referred to EEE or any specific technology, we have imple-
mented the LPI mechanism (Christensen et al. 2010) and the Power-Down Threshold (Saravanan
et al. 2013) for saving energy on the links. We have used the time values specified in IEEE EEE stan-
dard (Reviriego et al. 2009) to configure the delays for turning on (4.16μs) and turning off (2.88μs)
a link, while we have evaluated several time values for configuring the Power-Down Threshold,
as we will explain in the next section.

We have used a system with 64 nodes and 8 cores per node (i.e., 512 cores) for evaluating POWAR.
Since we want to test POWAR in torus and fat-tree networks, we have evaluated the following
topologies, also shown in Table 4:

—4 × 4 × 4 3D torus with four ports per aggregated link: The network comprises 64
switches with 7 aggregated links composed of 4 single links (6 links for building a 3D torus

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 61. Publication date: January 2019.



61:16 F. J. Andújar et al.

Table 4. Evaluated Topologies

and 1 link to the compute node), i.e., 28 ports per switch. The switches use the fully-adaptive
routing algorithm described in Section 3.

—8-ary 2-tree: The network comprises 16 switches with 16 ports per switch. The switches
use fully-adaptive routing in the ascending phase, and self-routing in the descending phase,
as described in Section 3.

We have performed experiments varying the value of the Power-Down Threshold. Specifically,
we selected the values of 0, 1, 10, and 100μs , and 1ms . Note that we could choose lower values,
in the order of ns , but according to Saravanan et al. (2013), those values offer poor performance
results. For this reason, we have chosen values in the order of μs .

4.2 Case Studies

Regarding the network load, we have used the VEF trace framework (Andújar et al. 2015; VEF 2017),
an open access trace-driven traffic model. VEF traces are generated by capturing the MPI traffic
injected by parallel applications. VEF traces preserve message communication dependences and,
using the library provided by the VEF framework, the traffic can be replayed in the network sim-
ulator. VEF traces model both MPI point-to-point and MPI collective communication primitives,
using the collective communication algorithms implemented in OpenMPI (Gabriel et al. 2004).

Specifically, we have performed the evaluation using the VEF traces generated by parallel ap-
plications run in the GALGO supercomputer (GALGO 2017). For our tests, we have selected the
following applications, trying to consider different realistic scenarios:4 Nanoscale Molecular Dy-
namics (NAMD, formerly Not Another Molecular Dynamics program) (Phillips et al. 2005), a par-
allel application for simulating large biomolecular systems; Gromacs (Pronk et al. 2013), a scientific
application to perform molecular dynamics; and Linpack and MPI Random Access application from
High-Performance Computer Challenge (HPCC) benchmark (HPCC n.d.).

In order to analyze the behavior of POWAR, each case study has been tested using 5 different
configurations:

—Reference: LPI is not implemented and, therefore, no power-saving strategies are applied.
The network implements the adaptive routing algorithms described in Section 3, performing
the selection function with a round-robin arbitration. Note that the results of the remaining
configurations are normalized with respect to this network. For this reason, this config-
uration is not included in the plots, since its normalized runtime or energy values would
always be 100%.

In addition, to evaluate the impact of the power-saving mechanisms, we have also mea-
sured the “ideal” energy consumption of the reference network. We consider the “ideal”

4All the VEF traces described in this work and the software needed to run the VEF traces are freely available at the VEF

website (VEF 2017).

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 61. Publication date: January 2019.



POWAR: Power-Aware Routing in HPC Networks with On/Off Links 61:17

energy consumption as the energy consumed if the network has an ideal mechanism that
instantaneously wakes up a port when a packet requires it, and instantaneously powers
off the port when the packet transmission finishes. We have added the “ideal” energy con-
sumption to the Enet and Ecluster plots.

—Alonso: Same configuration as reference network but implementing LPI and the power-
saving mechanisms by Alonso et al. for fat-tree networks (Alonso et al. 2015) and torus
with aggregated links (Alonso et al. 2010). Note that the ports are turned on/off by Alonso’s
mechanism, not by the Power-Down Threshold, as the remaining configurations. For these
reason, Alonso appears in the plots as a single line instead of a bar for each Power-Down
Threshold value. We setTon to 0.5 andToff to 0.25, for the same reasons explained in POWAR

configuration below.
—Round-Robin: Same configuration as reference network, but implementing LPI with the

Power-Down Threshold (i.e., the ports are switched to low-power mode after a certain time
without packet transmissions). The selection function is also a round-robin arbiter and it
does not take into account the port status or the utilization of the links.

—First-On: Implements LPI and Power-Down Threshold, and the round-robin algorithm
gives higher priority to wake-up ports. This selection function only chooses a sleep port
if there are no available wake-up ports. This selection algorithm is basically the same as
Algorithm 1, but the network ports are always selectable.

—POWAR: Implements LPI, Power-Down Threshold, and the power-saving strategy pro-
posed in Section 3; that is, the round-robin algorithm gives higher priority to the wake-up
ports and it also manages which ports can be selectable taking into account the link uti-
lization (Section 3.1 for fat-trees topologies and Section 3.2 for torus topologies). To test
POWAR, we have selected a set of on/off thresholds that provide both high aggressive-
ness and moderate responsiveness. In particular, Ton is set to 0.5 and Toff to 0.25. It must
be noted that any pair of thresholds fulfilling the limitations defined in Section 3 is logi-
cally correct and provides power reduction. When considering real HPC applications, the
eventual impact on energy consumption ranges in a 3% window for different threshold
configurations for the applications we tested, always providing benefits with respect to
the non-power-aware system. In general, more aggressive threshold values provide greater
power consumption reductions and greater performance penalties, while more conserva-
tive thresholds generate the opposite effect, thus reducing the performance penalty and the
power savings. However, unless we choose very conservative/aggressive threshold values,
the observed differences are not very significant, although the best pair of threshold values
is different for each application. To sum up, POWAR is resilient to the specific values of the
configuration parameters (inside the limits fixed in Section 3), provides energy savings with
low performance impact, while finding an optimal mechanism for the energy-performance
binomial remains an open problem. For these reasons, and for the sake of clarity, we have
only shown a pair of threshold values that obtains excellent results (although not the best
results) in all the cases.

4.3 Results

Fat-tree Topology. Figure 4 shows normalized RunTime , normalized Enet , and normalized
Ecluster obtained after running the four applications on the fat-tree. Note that the normalized
values have been calculated as explained in Section 2.3.4.

As expected, according to the state of the art, small values for the Power-Down Threshold
(0 and 1μs) have negative impact on application performance. For these very low Power-Down
Thresholds, in the worst case (Linpack application), the runtime is more than 400% higher than the

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 61. Publication date: January 2019.



61:18 F. J. Andújar et al.

Fig. 4. RunTime , Enet , and Ecluster for fat-tree topology.

runtime of the network without LPI. Applying “First-On” and POWAR selection functions reduces
performance penalty in all cases, although the performance improvement is not high enough
to save energy when the whole system is considered. Gromacs is the only application that gets
power saving, while all the other applications increase their energy consumption due to longer
runtime.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 61. Publication date: January 2019.



POWAR: Power-Aware Routing in HPC Networks with On/Off Links 61:19

For the Power-Down Threshold of 10μs , the Round-Robin selection function has moderate per-
formance penalties, except for Linpack, for which runtime increases to 140%. For the remaining
thresholds (100μs and 1ms), this selection function has no significant performance penalty. Again,
these results agree with the results obtained in the state of the art.

Considering the three higher values for the Power-Down Threshold, POWAR also has negligible
impact on performance (only 1% in the worst case), but comparing it with the Round-Robin se-
lection function, POWAR always reduces the network and system power consumption. Moreover,
energy consumption provided by POWAR is very close to ideal.

The First-On selection function also has negligible impact on performance and reduces the
power consumption with respect to the Round-Robin function. Specially with the Power-Down
Threshold of 10μs , the energy savings are very close to the results obtained by POWAR. However,
the higher the values of the Power-Down Threshold, the lower the energy savings achieved by
First-On function.

In contrast, POWAR is more resilient to increasing values of the Power-Down Threshold. This is
an extra advantage, since the choice of the best Power-Down Threshold depends on the application
traffic. As shown in the results, for Linpack, MPI Random Access, and NAMD, the greatest system
energy savings are achieved by setting the threshold to 10μs , but the best threshold for Gromacs
is 100μs . In this case, although Enet is lower for 10μs , the increased application runtime makes the
entire system consume more energy than using 100μs as a threshold.

Regarding Alonso configuration, it has a negligible impact on performance and obtains good
energy savings. Alonso’s power-saving strategy always maintains a turned-on subset of ports to
ensure that the network is fully-connected. For this reason, the performance degradation is negli-
gible, but the power saving is more limited. Due to this limitation, POWAR obtains greater power
savings, also obtaining non-significant performance degradation.

Summarizing, for Power-Down Threshold lower than 10μs , the negative impact on execution
time increases the whole system energy consumption for all the analyzed selection functions. For
Power-Down Threshold greater than or equal to 10μs , POWAR has negligible performance penal-
ties, obtains good energy savings, and it is resilient to the changes of the Power-Down Threshold.

Torus Topology. Figure 5 shows normalized RunTime , normalized Enet , and normalized Ecluster

obtained after running the four applications in the 3D torus network. The results are similar to
those obtained with the fat-tree, although the performance penalty is lower for lower values of
Power-Down thresholds (0 and 1μs). In the torus, the greatest penalty is approximately 45% for
MPI Random Access and Linpack applications.

In general, POWAR achieves good energy savings with a small performance penalty for the
torus network regardless of the Power-Down threshold value. Only for MPI Random Access and
the Power-Down Threshold of 0, POWAR incurs in a great performance penalty, increasing the
execution time up to 120% of the runtime on the reference network. But in the remaining cases,
the performance penalty does not exceed 4%, including the values of 0 and 1μs of the Power-Down
threshold. For the remaining thresholds, the performance penalty is negligible in most of the cases.
The greatest system energy savings are achieved using the Power-Down Threshold of 10μs , except
for the Gromacs application, which again achieves the best results with the threshold of 100μs for
the same reason as in the fat-tree analysis.

Comparing POWAR with the Alonso configuration, we can reach the same conclusions as in the
fat-tree: although the performance impact of Alonso’s mechanism is negligible, it achieves lower
power savings than POWAR due to Alonso always maintaining a turned-on subset of ports.

Summarizing, in the torus network, POWAR achieves great results, having small or negligi-
ble performance penalties independently of the selected Power-Down Threshold, while achieving
good energy savings very close to the ideal energy consumption of the system.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 61. Publication date: January 2019.



61:20 F. J. Andújar et al.

Fig. 5. RunTime , Enet , and Ecluster for torus topology.

5 CONCLUSIONS

In this article, we propose the use of POWARselection function to improve power savings of HPC
network whose technology supports on/off links, such as EEE. While the LPI and the Power-Down
Threshold mechanism manages when the ports can be switched “on” or “off,” POWAR determines

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 61. Publication date: January 2019.



POWAR: Power-Aware Routing in HPC Networks with On/Off Links 61:21

which network ports can be used for forwarding the packets, as a function of the network utiliza-
tion, thus being aware of the energy consumption. Evaluation experiments have been performed
by trace-driven simulation using typical HPC workloads on the most popular topologies (i.e., fat-
tree and torus). Based on our results, we conclude that our proposed POWAR selection function
maximizes energy savings both at network and at system levels, with little impact on performance,
extending in all cases the benefits of using Power-Down Threshold alone. Energy savings in the
order of 55%–65% have been obtained at network level, generating savings at system level in the
order of 9%–10%, with no runtime penalties in most cases (less than 2% in the worst case). Most
important, the energy consumption of the system when applying our proposal is very close to the
ideal situation where network links only consume power while sending data. In addition, POWAR

increases the resilience of the energy saving mechanism to suboptimal values of the Power-Down
Threshold.

REFERENCES

Dennis Abts, Michael R. Marty, Philip M. Wells, Peter Klausler, and Hong Liu. 2010. Energy proportional datacenter net-

works. In Proceedings of the 37th Annual International Symposium on Computer Architecture (ISCA’10). ACM, New York,

NY, 338–347.

N. R. Adiga et al. 2005. Blue Gene/L torus interconnection network. IBM Journal of Research and Development 49, 2 (March

2005), 265–276.

M. Alonso, S. Coll, J. M. Martínez, V. Santonja, and P. López. 2015. Power consumption management in fat-tree intercon-

nection networks. Parallel Comput. 48, C (Oct. 2015), 59–80.

Marina Alonso, Salvador Coll, Juan-Miguel Martínez, Vicente Santonja, Pedro López, and José Duato. 2010. Power saving

in regular interconnection networks. Parallel Comput. 36, 12 (2010), 696–712.

Marina Alonso, Salvador Coll, Vicente Santonja, Juan-Miguel Martínez, Pedro López, and José Duato. 2007. Power-aware

fat-tree networks using on/off links. In High Performance Computing and Communications. Springer Berlin, Germany,

472–483.

Bob Alverson, Edwin Froese, Larry Kaplan, and Duncan Roweth. 2012. Cray XC series network. Cray Inc., White Paper

WP-Aries01-1112 (2012).

T. Anderson, S. Owicki, J. Saxe, and C. Thacker. 1993. High-speed switch scheduling for local-area networks. ACM Trans-

actions on Computer Systems 11 (1993), 319–352.

F. J. Andujar, S. Coll, M. Alonso, J. M. Martinez, P. Lopez, F. J. Alfaro, J. L. Sanchez, and R. Martinez. 2018. Analyzing topology

parameters for achieving energy-efficient k-ary n-cubes. In 2018 IEEE 4th International Workshop on High-Performance

Interconnection Networks in the Exascale and Big-Data Era (HiPINEB). 24–31.

Francisco J. Andújar, Juan A. Villar, Jose L. Sánchez, Francisco J. Alfaro, and Jesús Escudero-Sahuquillo. 2015. VEF traces:

A framework for modelling MPI traffic in interconnection network simulators. In the 1st IEEE International Workshop

on High-Performance Interconnection Networks in the Exascale and Big-Data Era. Chicago, IL, 841–848.

L. A. Barroso and U. Hölzle. 2007. The case for energy-proportional computing. Computer 40, 12 (Dec. 2007), 33–37.

Jesus Camacho and Jose Flich. 2011. HPC-mesh: A homogeneous parallel concentrated mesh for fault-tolerance and energy

savings. In Proceedings of the 2011 ACM/IEEE Seventh Symposium on Architectures for Networking and Communications

Systems (ANCS’11). IEEE Computer Society, Washington, D.C., 69–80. DOI:https://doi.org/10.1109/ANCS.2011.17

Dong Chen et al. 2011. The IBM Blue Gene/Q interconnection network and message unit. In 2011 International Conference

for High Performance Computing, Networking, Storage and Analysis. 1–10.

Lizhong Chen and Timothy M. Pinkston. 2012. NoRD: Node-router decoupling for effective power-gating of on-chip routers.

In Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-45). IEEE Com-

puter Society, Washington, D.C., 270–281. DOI:https://doi.org/10.1109/MICRO.2012.33

L. Chen, L. Zhao, R. Wang, and T. M. Pinkston. 2014. MP3: Minimizing performance penalty for power-gating of Clos

network-on-chip. In 2014 IEEE 20th International Symposium on High Performance Computer Architecture (HPCA). 296–

307. DOI:https://doi.org/10.1109/HPCA.2014.6835940

K. Christensen et al. 2010. IEEE 802.3az: The road to Energy Efficient Ethernet. IEEE Communications Magazine 48, 11

(November 2010), 50–56.

W. J. Dally and C. L. Seitz. 1987. Deadlock-free message routing in multiprocessor interconnection networks. IEEE Trans-

actions on Computers C-36, 5 (1987), 547–553.

Reetuparna Das, Satish Narayanasamy, Sudhir K. Satpathy, and Ronald G. Dreslinski. 2013. Catnap: Energy propor-

tional multiple network-on-chip. In Proceedings of the 40th Annual International Symposium on Computer Architecture

(ISCA’13). ACM, New York, NY, 320–331. DOI:https://doi.org/10.1145/2485922.2485950

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 61. Publication date: January 2019.

https://doi.org/10.1109/ANCS.2011.17
https://doi.org/10.1109/MICRO.2012.33
https://doi.org/10.1109/HPCA.2014.6835940
https://doi.org/10.1145/2485922.2485950


61:22 F. J. Andújar et al.

S. Derradji, T. Palfer-Sollier, J. P. Panziera, A. Poudes, and F. W. Atos. 2015. The BXI interconnect architecture. In 2015 IEEE

23rd Annual Symposium on High-Performance Interconnects. 18–25.

Jack Dongarra, Hans W. Meuer, and Erich Strohmaier. 2018. TOP500 Supercomputer Sites. Retrieved from https://

www.top500.org.

José Duato. 1993. A new theory of deadlock–free adaptive routing in wormhole networks. IEEE Transactions on Parallel

and Distributed Systems 4, 12 (Dec. 1993), 1320–1331.

José Duato, Sudhakar Yalamanchili, and Lionel Ni. 2003. Interconnection Networks. An Engineering Approach. Morgan Kauf-

mann Publishers Inc., San Francisco, CA.

H. Fröning, M. Nüssle, H. Litz, C. Leber, and U. Brüning. 2013. On achieving high message rates. In 2013 13th IEEE/ACM

International Symposium on Cluster, Cloud, and Grid Computing. 498–505.

Edgar Gabriel et al. 2004. Open MPI: Goals, concept, and design of a next generation MPI implementation. In Proceedings

of the 11th European PVM/MPI Users’ Group Meeting. 97–104.

GALGO 2017. GALGO—Albacete Research Institute of Informatics Supercomputer Center homepage. Retrieved from http:

//www.i3a.uclm.es/galgo.

Albert Greenberg, James Hamilton, David A. Maltz, and Parveen Patel. 2008. The cost of a cloud: Research problems in

data center networks. SIGCOMM Comput. Commun. Rev. 39, 1 (Dec. 2008), 68–73.

F. Guo, O. Ormond, M. Collier, and X. Wang. 2012. Power measurement of NetFPGA based router. In 2012 IEEE Online

Conference on Green Communications (GreenCom). 116–119.

HPCC [n.d.]. HPC Challenge Benchmark. Retrieved from http://icl.cs.utk.edu/hpcc/index.html.

M. Karol and M. Hluchyj. 1998. Queuing in high-performance packet-switching. IEEE Journal on Selected Areas 1 (1998),

1587–1597.

G. Kim, H. Choi, and J. Kim. 2018. TCEP: Traffic consolidation for energy-proportional high-radix networks. In 2018

ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA). 712–725. DOI:https://doi.org/10.1109/

ISCA.2018.00065

M. Koibuchi et al. 2009. An on/off link activation method for low-power ethernet in PC clusters. In 2009 IEEE International

Symposium on Parallel Distributed Processing. 1–11.

J. Li, W. Huang, C. Lefurgy, L. Zhang, W. E. Denzel, R. R. Treumann, and K. Wang. 2011. Power shifting in thrifty intercon-

nection network. In 2011 IEEE 17th International Symposium on High Performance Computer Architecture. 156–167.

G. Michelogiannakis and J. Shalf. 2014. Variable-width datapath for on-chip network static power reduction. In 2014

8th IEEE/ACM International Symposium on Networks-on-Chip (NoCS). 96–103. DOI:https://doi.org/10.1109/NOCS.2014.

7008767

James C. Phillips et al. 2005. Scalable molecular dynamics with NAMD. Journal of Computational Chemistry 26, 16 (2005),

1781–1802.

Sander Pronk, Szilárd Páll, Roland Schulz, Per Larsson, Pär Bjelkmar, Rossen Apostolov, Michael R. Shirts, Jeremy C. Smith,

Peter M. Kasson, David van der Spoel, Berk Hess, and Erik Lindahl. 2013. GROMACS 4.5: A high-throughput and highly

parallel open source molecular simulation toolkit. Bioinformatics 29, 7 (2013), 845–854.

P. Reviriego, J. A. Hernandez, D. Larrabeiti, and J. A. Maestro. 2009. Performance evaluation of Energy Efficient Ethernet.

IEEE Communications Letters 13, 9 (Sept. 2009), 697–699.

K. P. Saravanan and P. Carpenter. 2018. PerfBound: Conserving energy with bounded overheads in on/off-based HPC

interconnects. IEEE Trans. Comput. (2018), 1–1.

Karthikeyan P. Saravanan, Paul Carpenter, and Alex Ramírez. 2013. Power/performance evaluation of Energy Efficient

Ethernet (EEE) for high performance computing. In 2012 IEEE International Symposium on Performance Analysis of

Systems & Software, Austin, TX, April 21-23, 2013. 205–214.

V. Soteriou and Li-Shiuan Peh. 2003. Dynamic power management for power optimization of interconnection networks

using on/off links. In 11th Symposium on High Performance Interconnects. 15–20.

E. Totoni, N. Jain, and L. V. Kale. 2013. Toward runtime power management of exascale networks by on/off control of links.

In 2013 IEEE International Symposium on Parallel Distributed Processing, Workshops and PhD Forum. 915–922.

VEF 2017. VEF traces homepage. Retrieved from http://www.i3a.info/VEFtraces.

M. Yokokawa, F. Shoji, A. Uno, M. Kurokawa, and T. Watanabe. 2011. The K-computer: Japanese next-generation super-

computer development project. In Proceedings of the International Symposium on Low Power Electronics and Design.

371–372.

F. Zahn, P. Yebenes, S. Lammel, P. J. Garcia, and H. Fröning. 2016. Analyzing the energy (dis-)proportionality of scalable

interconnection networks. In 2nd IEEE International Workshop on High-Performance Interconnection Networks in the

Exascale and Big-Data Era. 25–32.

Received May 2018; revised November 2018; accepted November 2018

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 61. Publication date: January 2019.

https://penalty -@M www.top500.org
https://penalty -@M www.top500.org
http://www.i3a.uclm.es/galgo
http://www.i3a.uclm.es/galgo
http://icl.cs.utk.edu/hpcc/index.html
https://doi.org/10.1109/ISCA.2018.00065
https://doi.org/10.1109/ISCA.2018.00065
https://doi.org/10.1109/NOCS.2014.7008767
https://doi.org/10.1109/NOCS.2014.7008767
http://www.i3a.info/VEFtraces

