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Abstract

In this work, an approach based on sliding mode ideas is proposed to sat-
isfy constraints in robot visual servoing. In particular, different types of
constraints are defined in order to: fulfill the visibility constraints (camera
field-of-view and occlusions) for the image features of the detected object;
to avoid exceeding the joint range limits and maximum joint speeds; and to
avoid forbidden areas in the robot workspace. Moreover, another task with
low-priority is considered to track the target object. The main advantages
of the proposed approach are low computational cost, robustness and fully
utilization of the allowed space for the constraints. The applicability and
effectiveness of the proposed approach is demonstrated by simulation results
for a simple 2D case and a complex 3D case study. Furthermore, the feasibil-
ity and robustness of the proposed approach is substantiated by experimental
results using a conventional 6R industrial manipulator.

Keywords: visual servoing, sliding mode, robot control

1. Introduction

Visual servoing (VS) refers to the motion control of a robot system using
visual feedback signals from a vision device [1]. For this purpose, a computer
vision algorithm must be used to obtain the visual features of the target
object present in the scene and observed by the camera. This information is
used to compute the robot control law in order to achieve the desired robot
pose. Taking into consideration the workspace in which the control law is
computed [1], the following classification can be made: position-based visual
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servoing (PBVS), in which the control law is carried out in the operational
space, the relative 3D pose of the object is reconstructed from visual features
with respect to the camera-robot system and the error is defined between
the computed current and desired 3D poses; and image-based visual servoing
(IBVS), in which the control low is directly computed in the image space and
the error is defined between current and desired visual features in the image.

Regardless of the workspace in where VS control laws are computed, the
following mechanical constraints can be violated: joint range limits ; max-
imum joint speeds ; and forbidden areas, such as the ones defined to avoid
kinematic singularity, to avoid collisions [2] between the robot manipulator
and objects in the environment, etc. Furthermore, since the VS control law
depends on the visual feedback, it is convenient to consider the so-called
visibility constraint in order to keep the image features within the camera
field-of-view (FOV) and to avoid occlusions with the obstacles in the envi-
ronment during all the task1.

Due to the fact that the violation of any of the aforementioned mechan-
ical and visual constraints can lead to the VS control task failure, different
approaches have been presented to address this issue. For instance, based on
the idea of combining advantages of PBVS and IBVS while trying to avoid
their shortcomings [6]: authors in [7] presented a switching method between
IBVS and PBVS; authors in [8] introduced a switching approach which uses
the classic PBVS control law and backward motion along the camera optical
axis; authors in [9] proposed a switching approach using hybrid VS control
laws and pure translation motions; authors in [10] introduced a path planning
and PBVS-IBVS switching method in order to deal with image singularities
and local minima; authors in [11] presented a combination approach which
uses 2D and 3D information from IBVS and PBVS to ensure the visibility
constraint ; and authors in [12] proposed a combination method based on
weighting IBVS and PBVS control strategies with a 5D objective function.

Other proposals rely on path planning algorithms: besides of the work
of [10] commented above, authors in [13] presented a shortest-path method
to guarantee both shortest Cartesian trajectory and object visibility; authors
in [14] presented a path planning method which uses a probabilistic road

1Some approaches [3, 4, 5] provide solutions when loss of the image features occur based
on the prediction of the feature behavior, although the main problem of these solutions
is that robustness and convergence cannot be guaranteed, specially when the target is
moving along an unknown or unpredictable trajectory.
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map; authors in [15] introduced a global path planning method to take into
account visibility, workspace and joint constraints; authors in [16] addressed
the issue with a path planning approach based on the use of homogeneous
forms and linear matrix inequalities; authors in [17] proposed a path planning
approach using search trees and IBVS trajectory tracking; authors in [18]
introduced a time-independent path tracking in the image and 3D space
approach for unstructured environments; authors in [19] presented a vision-
based trajectory planning approach from the point of view of a constrained
optimal control problem, solved by using the Gauss pseudo-spectral method.

Furthermore, there are some proposals relying on online corrective terms:
authors in [20] introduced a partitioned approach to IBVS control with the
combination of a potential function for giving solution to the visibility con-
straint issue; authors in [21] developed a path-following IBVS controller that
utilizes a potential function to incorporate motion constraints; and authors
in [22] and [23] presented an approach that employs a specialized potential
function, namely navigation function.

In addition, some authors have focused his research on proposing more
complex VS controllers to address the commented constraints. For instance,
authors in [24, 25, 26] introduced control laws based on model predictive
control frameworks, whilst authors in [27] on control Lyapunov functions.
Moreover, authors in [28, 29] developed several control laws in order to deal
with joint limits and space singularities.

On the other hand, other authors have focused on providing more feasible
trajectories in other to avoid visibility and mechanical constraints. Thus,
in [30], authors dealt with the visibility constraint problem using a neural
network approach which assists a Kalman filter, whilst in [31], circular-like
trajectories are designed to ensure shorter displacements and visibility.

Finally, some authors relay their proposals on new VS control tasks. For
instance, in [5], the camera invariant VS approach is redefined to take into
account the changes of visibility in image features, and in [32], a global
full-constraining task is divided into several subtasks that can be applied or
inactivated to take into account potential constraints of the environment.

This paper addresses the problem of mechanical and visual constraints
in VS with an alternative solution to all mentioned above. The proposed
method can be interpreted as a limit case of artificial potential fields [33].
The basic idea is to define a discontinuous control law inspired by the fact
that, in the limit case, as the repulsion region decreases, a potential field
could be characterized as a discontinuous force: zero away from the constraint
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limits, and a large value when touching them. One of the advantages of this
approach is that the allowed space is fully utilized, although some corrective
speed-related terms are needed to avoid approaching the limits at high speed.

Discontinuous control laws have been deeply studied in the context of
sliding mode control (SMC) [34, 2]. Concretely, in VS field of research SMC
has been used mainly to increase the robustness against errors while executing
the main robot control task [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47].
However, to the best of the authors knowledge, SMC techniques have not yet
been used in VS to fulfill constraints.

It may perhaps be observed that the algorithm solution proposed in this
work cannot be seen as a conventional SMC, since the algorithm is only
activated when the VS system is about to violate any constraint, whilst a
pure SMC would always be active to keep the system on the sliding surface.
Besides the SMC algorithm to fulfill the visibility constraints, another task
with low-priority [48] is considered to track the target object.

The paper is organized as follows: next section introduces some prelimi-
naries and objectives, while Section 3 presents the basic theory used in this
work. The proposed method is developed in Section 4, while some important
remarks about the method are given in Section 5. The main advantages and
disadvantages of the proposed approach are discussed in Section 6. Subse-
quently, Section 7 presents the conditions considered for the simulations and
experiments. The proposed approach is applied in Section 8 and Section 9
to a simple 2D case and a complex 3D case study, respectively, in order to
show its applicability and effectiveness. The feasibility and robustness of
the proposed approach is substantiated by experimental results in Section 10
using a conventional 6R industrial manipulator: the Kuka KR6 R900 sixx
(Agilus). Finally, some concluding remarks are given.

2. Preliminaries and objective

Coordinate frames. Fig. 1 shows the coordinate frames involved in the VS
problem: F robot base frame; E robot end-effector frame; C current camera
frame; C∗ desired camera frame; O object frame; C2 camera frame for eye-to-
hand configuration (in this case the camera does not move with the robot).

Kinematics. The VS application is characterized by the so-called visual fea-
ture vector s, which is computed from image measurements [1]. In general,
this vector depends on the robot configuration q and on the time for the case
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Fig. 1. Frames involved in visual servoing.

of a moving target object, that is:

s = l(q, t), (1)

where the nonlinear function l is called the kinematic function of the robot.
The first-order kinematics of the feature vector s results in:

ṡ =
∂l(q, t)T

∂q
q̇ +

∂l(q, t)

∂t
= Jsq̇ + ∂s/∂t, (2)

where ∂s/∂t is due to the target motion and Js is the resulting Jacobian
matrix, which can be expressed as a concatenation of three different Jacobian
matrices:

Js(q, t) = Ls(q, t)
cVe

eJe(q), (3)

where Ls is the so-called interaction matrix related to the visual feature vec-
tor s; cVe is the spatial motion transformation matrix from the camera frame
C to the end-effector frame E (which is constant for eye-in-hand systems);
and eJe is the robot Jacobian expressed in the end-effector frame (other coor-
dinate frames could be used for eye-to-hand configuration). For more details
on the computation of Js see [1, 49].
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The second-order kinematics of the feature vector s results in:

s̈ = Jsq̈ + J̇sq̇ + ∂ṡ/∂t. (4)

Reference. The robot system should carry out a task, which in VS applica-
tions consists on achieving a reference value for the visual feature vector s.
Hence, the robot task is given by the following equation:

s(q, t) = sref (t), (5)

where sref (t) is the reference for the visual feature vector and can be either
constant or varying in time.

Computer vision algorithm. This algorithm is required for both PBVS and
IBVS and is composed of three parts: the first part consists of the image
processing for obtaining the image plane coordinates (ui, vi) of all the vi-
sual feature; the second part consists of the coordinate transformation for
converting the pixel coordinates (ui, vi) to the corresponding value in the
normalized image plane using the matrix of the camera intrinsic parameters;
and the third part consists of the pose estimation of the camera (eye-in-hand)
or robot (eye-to-hand) from the features of the second part. The output of
the computer vision algorithm, both for PBVS and IBVS, is the visual feature
vector s. This work assumes existence of this computer vision algorithm.

Robot control. This work also assumes the existence of an underlying robot
control in charge of achieving a particular joint acceleration from an acceler-
ation command q̈c. Nevertheless, the actual joint acceleration q̈ = Cq̈c + dc
will not be exactly the commanded one q̈c, where C represents the dynamics
of the low-level control loop and dc represents inaccuracies due to distur-
bances. However, in this work it is assumed that the dynamics of C is fast
enough compared to that of q̈c so that the relationship:

q̈ = q̈c + dc, (6)

holds approximately true, avoiding the need of including extra state vari-
ables. Note that, the dynamic model of the robot system should be taken
into account to properly design the mentioned underlying joint controller.
Obviously, for stability reasons, the bandwidth of this underlying robot con-
trol should be faster than that of the used kinematic control.
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Problem definition. The goal of this work is to design a VS system that is
aware of the robot configuration q and that generates the commanded joint
acceleration vector q̈c to be sent to the joint controllers of the robot, so
that the actual visual feature vector s tracks the reference value sref and the
system satisfies the following requirements:

• the image features of the target object fulfill the visibility constraints
(camera FOV and occlusions);

• the joint range limits and the maximum joint speeds are not exceeded
during the operation;

• and the robot does not collide during the motion with the objects of
the environment that are located within its workspace.

3. Geometric invariance using sliding mode control

This section develops a non-conventional SMC that will be subsequently
used by the proposed approach. Let us consider a dynamical system with nx
states and nu inputs given by:

ẋ = f(x,d) + g(x) u, (7)

where x(t) is the state vector, d(t) is an unmeasured disturbance or model
uncertainty, u(t) is the control input vector (possibly discontinuous), f is a
vector field and g is a set of nu vector fields.

Consider also that the system state vector x is subject to user-specified
inequality constraints φi(x) ≤ 0, i = 1, . . . , N , where φi(x) is the ith inequal-
ity constraint function. Thus, the region Φ of the state space compatible with
the constraints on state x is given by:

Φ = {x | φi(x) ≤ 0} , i = 1, . . . , N. (8)

From the invariance point of view, the objective is to find a control input
u such that the trajectories originating in Φ remain in Φ for all times t, i.e.,
the control input u must ensure that the right hand side of (7) points to
the interior of Φ at all points in the boundary of Φ. Mathematically, the
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invariance of Φ is guaranteed by an input u such that2:

d(φi(x))

dt
= ∇φT

i (x)ẋ = ∇φT
i (x)f(x,d) +∇φT

i (x)g(x) u

= Lfφi(x,d) + Lgφi(x)u ≤ 0, ∀i | φi(x) ≥ 0, (9)

where ∇ denotes the gradient vector and the scalar Lfφi and the nu-
dimensional row vector Lgφi denote the Lie derivatives of φi(x) in the di-
rection of vector field f and in the direction of the set of vector fields g,
respectively. The constraints such that φi(x) ≥ 0 are denoted as active
constraints.

In general, any vector u such that the scalar Lgφiu is negative (i.e., any
vector pointing toward the interior of the allowed region) can be used to
satisfy (9). In particular, this work considers a simple strategy involving
only gradient computation and simple matrix operations. It is proposed to
use the variable structure control law below to make the set Φ invariant:

u =

{
0 if max

i
{φi(x)} < 0

uc otherwise,
(10)

where vector uc is chosen to satisfy:

Lgφ uc = −1b u
+, (11)

where matrix Lgφ contains the row vectors Lgφi of all active constraints, b is
the number of active constraints, 1b is the b-dimensional column vector with
all its components equal to one and u+ is the so-called switching gain, which
a positive constant to be chosen high enough to satisfy (9). In particular, one
set of sufficient, but not necessary, conditions for making the set Φ invariant
are that matrix Lgφ is full row rank and that:

u+ >

b∑
i=1

(max(Lfφi, 0)). (12)

where Lfφ is a column vector containing the elements Lfφi of all constraints.

2Note that it is assumed that the constraint function φi is differentiable around the
boundary given by φi = 0.
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Proof. See Appendix A.

When the state trajectory tries by itself to leave the allowed region Φ, the
above control law (10) will make u switch between 0 and uc at a theoretically
infinite frequency, which can be seen as an ideal sliding mode (SM) behaviour
with no open-loop phase (reaching mode) [34]. In fact, this approach is a
non-conventional SMC. Once SM is established on the boundary of Φ by the
control action u, a continuous equivalent control [34] can be obtained, i.e., the
control required to keep the system on the boundary of Φ. Hence, the SMC
generated by (10) produces such control action without explicit knowledge of
it and with a low computational cost, which is a typical advantage of SMC
strategies [50].

4. Proposed approach

The approach developed in this section to address the problem defined in
Section 2 is based on task-priority and the SMC presented in Section 3.

4.1. System tasks

Two tasks with different priority levels are considered:

• The first level (high-priority task) includes the constraints that must
be satisfied at all times to avoid that the image features of the target
object leave the camera FOV or get occluded by the obstacles, to avoid
exceeding the robot limits and to avoid invasion of forbidden space.

• The second level (low-priority task) is designed for reference tracking
in order that the visual feature vector s follows the reference sref : de-
viations from the reference trajectory are allowed if such deviations are
required to fulfill the above constraints.

The input to these tasks is the robot state {q, q̇} and each task gives an
acceleration equality whose square error must be minimized. The equality
for each task is generically given by:

A1q̈c = b1 (13)

A2q̈c = b2, (14)

where matrices A1 and A2 and vectors b1 and b2 for each task are assumed
known and subscript represents the priority order (1 for highest priority).
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The acceleration equality for the first level is obtained below using the non-
conventional SMC developed in Section 3, in order to fulfill the corresponding
constraints.

The commanded joint acceleration vector q̈c, which serves as input to the
joint controllers of the robots, is obtained by the task-priority redundancy
resolution [48] as follows:

q̈c = A†1b1 + (A2(I−A†1A1))
†(b2 −A2A

†
1b1), (15)

where I denotes the identity matrix of suitable size and superscript † denotes
the well-known Moore-Penrose pseudoinverse3.

4.2. Lie derivatives

In order to use the theory in Section 3, a dynamical system in the form of

Eq. (7) is considered with the state vector x =
[
qT q̇T

]T
, the disturbance

vector d = dc and the input vector u = q̈c. Hence, the model is a double
integrator, and from (6) the state equation results in:

ẋ =

[
O I
O O

]
x +

[
0
dc

]
+

[
O
I

]
u, (16)

and the Lie derivatives in (9) for the constraint function φi are given by:

Lgφi =∇φT
i g = (∂φi/∂q̇)T (17)

Lfφi =∇φT
i f = (∂φi/∂q)T q̇ + (∂φi/∂q̇)T dc. (18)

4.3. Level 1: visibility and robot constraints

To satisfy the constraints, the SMC in Section 3 is considered with the
dynamical system and Lie derivatives (17) and (18).

4.3.1. Modified constraints

Approaching the constraints at high speed is not advisable because, in
general, large joint accelerations q̈ would be required to slow down the robot

3Pseudoinverse may be computed via the singular value decomposition (SVD)
method [51] and using a tolerance to set to zero the very small singular values in order to
avoid extremely large values for the commanded accelerations.
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nV = 4

nV = 8

nV = 16

image plane limits

Fig. 2. Boundary of the FOV visibility constraint (i.e., σV,i = 0) for a safety margin mV

of 5% and differnt values of nV .

motion in order to keep it on the constraint boundary. Therefore, the actual
constraint σi(q) will be modified to include the speed of movement as follows:

φi(q, q̇) = σi +Kiσ̇i = σi +Ki (∂σi/∂q)T q̇ ≤ 0 (19)

where Ki is a free design parameter that determines the rate of approach to
the boundary of the constraint.

4.3.2. FOV constraints

The image features of the target object should not leave the camera FOV
since they are required to compute the robot control law. In this work,
to avoid that, a constraint is defined for each image feature in order to
confine them within the image plane limits. For this purpose, we consider
the formula of the superellipse [52]: |x/a|n + |y/b|n = 1, that for n > 2
is called hyperellipse and looks like a rectangle with rounded corners, see
Fig. 2. Therefore, the visibility constraint σV,i for the target’s image feature
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i is given by:

σV,i(ui, vi) =

∣∣∣∣∣ ui
WV

2
(1−mV )

∣∣∣∣∣
nV

+

∣∣∣∣∣ vi
HV

2
(1−mV )

∣∣∣∣∣
nV

− 1 ≤ 0, (20)

where ui and vi are the pixel coordinates of the image feature i in the im-
age plane with respect to the center of the image; nV is the hyperellipse
smoothing parameter, which is a design parameter to smooth more or less
the rounded corners of the constraint boundary (see Fig. 2); WV and HV are
the width and height, respectively, of the rectangle representing the image
plane limits (thick dark line in Fig. 2) in pixels; and mV is the safety margin
for the visibility constraints to cater for possible errors and inaccuracies, e.g.,
a safety margin of 5% is represented in Fig. 2.

Since the pixel coordinates (ui, vi) of the feature depend on the robot
configuration q, the above constraints will be modified as indicated in Sec-
tion 4.3.1 for the sliding manifold to have relative degree one with respect to
the control variable q̈c, that is:

φV,i(q, q̇) =σV,i +KV,iσ̇V,i = σV,i +KV,i ∇σT
V,i q̇ ≤ 0, (21)

where KV,i is the approaching parameter to the hyperellipse.
Using the chain rule, the gradient vector ∇σV,i for the FOV constraints

is obtained as follows:

∇σV,i =
[
∂ui/∂q ∂vi/∂q

] [∂σV,i/∂ui
∂σV,i/∂vi

]
= JT

sx

[
∂σV,i/∂ui
∂σV,i/∂vi

]
=(Lsx

cVe
eJe)

T

[
∂σV,i/∂ui
∂σV,i/∂vi

]
, (22)

where Jacobian matrix Jsx represents the first-order kinematics of the image
plane coordinates with respect to q, which is splitted into three matrices
Lsx

cVe
eJe analogously to (3), and the partial derivatives ∂σV,i/∂ui and

∂σV,i/∂vi are straightforward obtained from (20) as:

∂σV,i
∂ui

=
nV sign(ui) |ui|nV −1(
WV

2
(1−mV )

)nV

∂σV,i
∂vi

=
nV sign(vi) |vi|nV −1(
HV

2
(1−mV )

)nV
, (23)

where sign(·) is the sign function, and Lsx represents the well-known inter-
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action matrix typically used in IBVS, which is given by [1]:

Lsx =

[
−Z−1 0 xZ−1 xy −(1 + x2) y

0 −Z−1 yZ−1 1 + y2 −xy −x

]
with x = ui/Fu and y = vi/Fv, (24)

where Fu and Fv are the ratio between the focal length and the size of a pixel
and Z is the distance from the camera to the target.

4.3.3. Occlusion constraints

The image features may be occluded during the servoing task by the
obstacles located between the camera and the target. To avoid this situation,
a constraint can be used to guarantee that all image features do not enter
the area defined by these obstacles, which represents a forbidden area. The
procedure is as follows: in the first place, the computer vision algorithm
described in Section 2 has to detect the obstacle in the image plane; then, a
specific differentiable function (e.g., circle, hyperellipse, etc.) has to be used
to enclose the obstacle; and finally, the corresponding inequality constraint is
obtained as σV,i(ui, vi) ≤ 0, where, as opposed to the above FOV constraints,
function σV,i is negative for a point outside the enclosed area and positive
otherwise. The gradient vector computation is given by (22), (24) and the
partial derivatives ∂σV,i/∂ui and ∂σV,i/∂vi of the specific function σV,i used
to enclosed the object.

4.3.4. Constraints for the joint range limits

The following constraints are considered for the joint limits:

σR,qi(q) =− 1 +
| qi − qmid,i|

∆qmax,i/2
+mR,q

=− 1 + | q̃i| +mR,q ≤ 0, i = 1, . . . , n, (25)

where qmid,i and ∆qmax,i are the mid position and maximum range of motion,
respectively, for joint i, q̃i represents the normalized joint position and mR,q

is a safety margin for the joint limit constraints to cater for possible errors
and inaccuracies.

The above constraints are modified as indicated in Section 4.3.1 as follows:

φR,qi(q, q̇) =σR,qi +KR,qiσ̇R,qi = σR,qi +KR,qi ∇σT
R,qi q̇ ≤ 0, (26)
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where KR,qi is the approaching parameter to the joint limits.
The gradient vector ∇σR,qi is straightforward obtained from (25) as:

∇σR,qi =
[
0 · · · sign(q̃i) · · · 0

]T
. (27)

4.3.5. Constraints for the maximum joint speeds

The following constraints are considered for the joint speeds:

φR,si(q̇) =− 1 +
| q̇i|
q̇max,i

+mR,s

=− 1 +
∣∣∣ ˜̇qi∣∣∣ +mR,s ≤ 0, i = 1, . . . , n, (28)

where q̇max,i and −q̇max,i are the maximum and minimum4 speed, respectively,

for joint i, ˜̇qi represents the normalized joint velocity and mR,s is the safety
margin for the joint speed constraints.

The constraint modification in Section 4.3.1 is not required for this case
since the above constraints depends on the robot speed q̇ and, therefore, the
sliding manifold has relative degree one with respect to the discontinuous
control action, i.e., φ̇R,si explicitly depends on signal q̈c, as required by SMC
theory [34].

The gradient vector ∇φR,si is obtained from (28) as:

∇φR,si =
[
0 · · · sign(˜̇qi) · · · 0

]T
. (29)

4.3.6. Constraints for forbidden areas in the robot worksapce

Forbidden areas in robot workspace can be defined in order to avoid
kinematic singularity, to avoid collisions between the robot manipulator
and objects in the environment5, etc. To fulfill this type of constraints,
the Cartesian position pj = [xj yj zj]

T of every point j of the robot
must belongs to the allowed workspace ΦWS(pj) = {pj | σR,oi(pj) ≤ 0 ∀ i},
where σR,oi is the constraint function of object i, e.g., this function could

4For simplicity, both speed limits are considered symmetric. If that would not be case,
constraints in (28) can be readily split into two constraints for maximum and minimum
speeds. Details omitted for brevity.

5Note that, in general, objects in the robot environment give rise to both occlusion
constraints and forbidden areas in the workspace.
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be the negative value of the distance from position pj to the boundary
surface of the object. Hence, the allowed C-space results in ΦCS(q) =
{q | σR,oi(lj(q)) = σR,oij(q) ≤ 0 ∀ i, j}, where lj is the kinematic function of
the Cartesian position of point j. The infinite number of points of the robot
to be considered in the above expression can reduced to a set of robot char-
acteristic points such that the distance from every point on the boundary
surface of the robot links to the closest robot characteristic point is less than
a predetermined value which is used to enlarge the constrained region of the
workspace.

The above constraints are modified as indicated in Section 4.3.1 as follows:

φR,oij(q, q̇) =σR,oij +KR,oijσ̇R,oij = σR,oij +KR,oij ∇σT
R,oij q̇ ≤ 0, (30)

where KR,oij is the approaching parameter to the boundary surface of the
i-th object.

The gradient vector ∇σR,oij is obtained as follows:

∇σR,oij = (∂pj/∂q) (∂σR,oi/∂pj) = 0JT
pj (∂σR,oi/∂pj) , (31)

where 0Jpj is the Jacobian matrix for the robot point pj expressed in the
robot base frame, which is obtained from the robot kinematics.

4.3.7. Acceleration equality for Level 1

The partial derivatives of the constraint functions {φV,i, φR,qi, φR,si, φR,oij}
are needed to compute the Lie derivatives {LgφV,i,LgφR,qi,LgφR,si,LgφR,oij}
and {LfφV,i, LfφR,qi, LfφR,si, LfφR,oij} with (17)–(18). From . (21), (26), (28)
and (30), these partial derivatives result in:

(∂φV,i/∂q)T =∇σT
V,i +KV,iq̇

THσV,i (32)

(∂φR,qi/∂q)T =∇σT
R,qi +KR,qiq̇

THσR,qi (33)

(∂φR,si/∂q)T =0 (34)

(∂φR,oij/∂q)T =∇σT
R,oij +KR,oijq̇

THσR,oij (35)

(∂φV,i/∂q̇)T =KV,i∇σT
V,i (36)

(∂φR,qi/∂q̇)T =KR,qi∇σT
R,qi (37)

(∂φR,si/∂q̇)T =∇φT
R,si (38)

(∂φR,oij/∂q̇)T =KR,oij∇σT
R,oij (39)
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where HσV,i, HσR,qi and HσR,oij denote the Hessian matrix of second-order
partial derivatives of σV,i, σR,qi and σR,oij, respectively, and all the elements
except the ith of row vectors in (37) and (38) are zero.

Thus, according to (17) and (36)–(39), equation (11) for the first priority
task is given by: 

KV ∇σT
V

KR,q ∇σT
R,q

∇φT
R,s

KR,o ∇σT
R,o

 =−


1b,V u

+
V ,

1b,qu
+
R,q

1b,su
+
R,s

1b,ou
+
R,o

 =

Lgφ1q̈c =− u+
1 , (40)

where KV , KR,q and KR,o are diagonal matrices with diagonal entries KV,i,
KR,qi and KR,oij, respectively; matrices {∇σV ,∇σR,q,∇φR,s,∇σR,o} contain
the vectors {∇σV,i,∇σR,qi,∇φR,si,∇σR,oij}, see Eqs. (36)–(39), of all active
constraints; {u+V , u

+
R,q, u

+
R,s, u

+
R,o} are the chosen value of u+ for each type of

constraint; and {1b,V ,1b,q,1b,s,1b,o} are column vectors with all its compo-
nents equal to one and their size is equal to the number of active constraints
of each type.

Therefore, by comparing the acceleration equalitiy (40) for the first task
with (13), it is obtained that A1 = Lgφ1 and b1 = −u+

1 .
It is important to remark that, according to (40), only the gradient vectors

of the active constraints (i.e., those with φi ≥ 0) are required to compute the
control action of the first task.

4.4. Level 2: reference tracking

For the reference tracking, this work considers the classical operational
space robot control [53], that taking into account (4) and (6), results in:

Jsq̈c =s̈c − (Jsdc + J̇sq̇ + ∂ṡ/∂t), (41)

where s̈c is the commanded acceleration for the visual feature vector.
Moreover, considering the classical acceleration-based kinematic con-

troller used for trajectory tracking [54], i.e., a correction based on the position
and velocity errors plus a feedforward of the second-order derivative of the
reference, the commanded acceleration s̈c results in:

s̈c =s̈ref −KT,pe−KT,vė, (42)
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where e is the error of the visual feature vector, i.e., e = s−sref , and KT,p and
KT,v are the correction gains for the position and velocity errors, respectively.
Note that the dynamics (i.e., the poles) of this kinematic controller is given
by the roots of the polynomial with coefficients [1 KT,v KT,p]. For instance,
if KT,v = 2

√
KT,p a critically damped response is obtained.

In the simulations and experiments of this work the correction gains are
defined as follows. On the one hand, it is used KT,v = 3

√
KT,p in order to

obtain an overdamped response. On the other hand, the position correction
gain is given by an exponential waveform depending on the magnitude of the
position error, i.e., KT,p(‖e‖2) with KT,p(∞) = 0 and two parameters: gain
for zero error KT,p(0) and derivative of the gain for zero error K̇T,p(0). This
approach allows to use a smaller gain at the beginning when the initial error
is large to obtain a smooth behavior and a larger gain at the end when the
final error is small to achieve promptly the reference value.

By comparing the acceleration equalitiy (41) for the second task with
equation (14), it is obtained that A2 = Js and b2 = s̈c−(Jsdc+J̇sq̇+∂ṡ/∂t).

Note that, the acceleration-based robot control given by (41)–(42) has
already been used in VS appliactions by [55] for PBVS and by [56] for IBVS.

5. Additional remarks

5.1. Discontinuous control action

In this work, the joint accelerations are considered as the SM discontin-
uous control action, which yields two advantages: firstly, the joint velocities
are continuous, i.e., the control is smoother; and secondly, it allows using
the constraint modification in Section 4.3.1 in order to reach smoothly the
boundary of the original constraints.

In practice, if the order of the actual control action for the system at
hand does not match the order of the discontinuous control action, a filter6

(or a pure integrator) with the right order can be used between both signals.
For instance, if the actual control action are the joint positions, which is the
case for experiments in Section 10, a double integrator can be applied to the
discontinuous control in order to compute the actual control action, which is
continuous.

6If a filter is considered, it has to be properly designed since it limits the bandwidth of
the controlled system.
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5.2. Task abort

As indicated in Section 3, the stability of the SMC used in the high-
priority task to fulfill the constraints is guaranteed if matrix Lgφ is full row
rank and the switching gain u+ fullfills (12). However, if the former is not
satisfied at a certain time, e.g., the number of active constraints is larger
than the number of joints, the robot operation should be aborted since the
fulfillment of the constraints cannot be guaranteed.

5.3. Chattering

Discrete-time implementations of any practical SMC makes the system
leave the ideal SM and oscillate with finite frequency and amplitude inside
a band around φ = 0, which is called chattering [34]. The upper bound for
the chattering band 4φ of the proposal can be obtained using the Euler-
integration of the discontinuous control action given by (11), that is:

4φ = Ts |Lgφ uc| = Ts u
+ 1b, (43)

where Ts is the sampling time of the robotic system and the value of u+ is
{u+V , u

+
R,q, u

+
R,s, u

+
R,o} for the visibility and robot constraints.

5.4. Non-static constraints

The proposed approach can also be used if there are non-static con-
straints, e.g., moving obstacles for the occlusion avoidance constraints or
a moving target object. In that case φi also depends explicitly on time
and, therefore, the derivative of φi in equation (9) must be replaced by

φ̇i = L̃fφi + Lgφi u, where L̃fφi is equal to Lfφi + ∂φi/∂t, and Lgφi and
Lfφi are given again by (17) and (18), respectively. Thus, all developments

keep unchanged except for changing Lfφi to L̃fφi. Hence, only the value
of the lower bound for the switching gain u+ is changed when non-static
constraints are considered and, therefore, the iterative computation of the
algorithm remains the same.

5.5. Differentiability of the constraint functions

As indicated in Section 3, the constraint functions φi must be differen-
tiable. If this assumption is not satisfied at a certain point of the constraint
boundary, the SM behavior of the proposed method is temporarily lost and
the constraints may be unfulfilled. In particular, if the non-allowed region
defined by the constraint boundary at the non-differentiable point is concave
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the constraint is unfulfilled and if it is convex it is fulfilled, see Section 8.2
for an illustrative example.

6. Advantages and disadvantages of the proposal

Advantages of the proposed SMC to fulfill visibility and robot constraints:

• In contrast to other similar techniques, like the artificial potential fields
used in [21], the proposed method fully utilizes the available allowed
space, e.g., the rectangle representing the image plane limits for the
FOV constraint, see Section 10. Moreover, the boundary of the con-
straints is reached smoothly depending on a free design parameter.
Thus, the velocity perpendicular to the constraint boundary is pro-
gressively reduced to zero.

• The method uses partial information of the system model, i.e., the Lie
derivatives Lfφi (18) are not needed, only the Lie derivatives Lgφi (17)
are required. Therefore, only first-order derivatives (gradient vectors,
Jacobian matrices, etc.) are needed, see (36)–(40), and no second-
order derivatives (Hessian matrices, derivative of Jacobians, etc.) are
required, see (32)–(35).

• The method is robust against environment modeling errors, i.e., it is
not affected by the inaccuracies and uncertainties in the second-order
derivatives mentioned above. Furthermore, the first-order derivatives
(gradient vectors, etc.) required for the SMC law (40) could be rela-
tively inaccurate and the performance of the algorithm would still be
satisfactory (see Section 10.2) as long as the SM control action is able
to switch the value of the active constraint functions from positive to
negative7.

• The algorithm only requires a few program lines and has reduced com-
putation time since only linear algebra is used, see Appendix B.

Main limitations of the method:

7The gradient vector of a constraint function represents the direction of maximum
increase of the function. However, other similar directions may also be useful to properly
modify the value of the constraint function.
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• The SMC algorithm uses linear extrapolation (i.e., local first-order
derivatives) to predict the value of the constraint functions at the next
time step. Hence, the algorithm may be blocked in trap situations [57].
However, similarly to other reactive planning techniques such as poten-
tial fields, the control remains stable at the local minima reached by
the robot system, see Section 8.2 for an illustrative example. Some of
these trap situations could be avoided using high-level planning with
the complete data of the problem. However, the complexity and com-
putational cost for this planner are significantly greater than those of
the approach proposed in this work, see Appendix B.

• Like other SMC applications, the proposed method has the chatter-
ing drawback, see Section 5.3. Nevertheless, the chattering problem
becomes negligible for reasonable fast sampling rates, see (43).

7. Conditions for the simulations and experiments

Several simulations and experiments are presented below considering both
PBVS and IBVS, where the eye-in-hand configuration is used, i.e., camera
rigidly attached to the robot end-effector.

For the case of PBVS simulations and experiments, the typical visual
feature vector is considered:

s =
[
C∗

tTC
C∗
θuT

C

]T
, (44)

where the first element represents a translation vector and the second element
gives the angle/axis parameterization for the rotation, both between the
desired camera pose and current camera pose, see [1] for further details.

For the case of IBVS experiments, the visual feature vector is given by
the eight image plane coordinates of the four markers of the target object,
as usual.

The simulation results presented below were obtained using MATLAB R©.
Details of pseudo-code and computing load for the proposed method is de-
tailed in Appendix B.

8. Simulation: first example

As first example, a simple two-dimensional (2D) robot system is consid-
ered for better illustration of the main features of the algorithm. The robot
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Fig. 3. System used for 2D simulation: 3R planar robot, target object with two features
and coordinate frames.

considered for this case consists of a planar mechanisms composed by four
links (the first of them is fixed) connected serially by three revolute joints,
i.e., a 3R planar robot. This robot is used to perform a positioning task
with respect to a motionless target object while fulfilling FOV and occlu-
sion constraints. Fig. 3 depicts the VS application in consideration with the
following elements: 3R robot, target object, as well as the involved frames:
robot base frame F , object frame O, initial camera frame C and desired
camera frame C∗. The Jacobian matrix eJe for this 3R robot can be readily
obtained [53] taking into account the Denavit-Hartenberg (DH) parameters
shown in Table 1. In order to better illustrate the behavior of the proposed
SMC algorithm, only the visibility constraints described in Section 4.3.2 and
Section 4.3.3 are considered for this first example.

Link i θi (rad) di (m) ai (m) αi (rad)
1 q1 0 1 0
2 q2 0 1 0
3 q3 0 0 −π

Table 1. DH parameters for the 3R planar robot.
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For analysis purposes, two occlusion constraints are defined as follows:

σV,b(ui, vi) =1− 45−2
(
0.72(ui + 50)2 + ((vi − 20)− (ui + 50)2)2

)
≤ 0 (45)

σV,h(ui, vi) =1− 35−2
(
0.82(ui + 102)2 + (vi − |ui + 102|)2

)
≤ 0, (46)

where the shape of the first and second occlusion constraints are a “bowl” and
a “heart”, respectively, and their partial derivatives with respect to ui and vi,
which are required for the gradient vector computation, are straightforward
obtained from the above expressions.

8.1. Simulation conditions and parameter values for the first example

i) The camera is attached to the robot end-effector, i.e., the camera pose
is equivalent to the end-effector pose.

ii) Parameters used for the FOV and occlusion constraints: mv = 5%,
nV = 16, KV,i = KV,b = KV,h = 0.2 and u+V = 10.

iii) Parameters used for the kinematic controller: KT,p(0) = 20 and
K̇T,p(0) = 40.

iv) A static target object is considered with two markers8, see Fig. 3.

v) The initial error for the camera position and orientation is zero and π
radians in the Z-axis, respectively, see Fig. 3.

vi) The algorithm was computed with a sampling time Ts of 5 milliseconds.

8.2. Simulation results for the first example

Four different simulations have been carried out for the first example in
order to highlight the main features of the proposed method.

The first simulation only considers the FOV constraints. Fig. 4 shows
the result for this case, where it can be seen that the second feature remains
in the FOV, where the allowed space is fully utilized and the boundary of
the hyperellipse constraint is reached smoothly. Note also that: the initial

8For clarity in the figures, only two markers are considered for the 2D simulation.
Note that, regarding data redundancy in the image plane, using two markers in 2D robot
systems (three variables) is analogous to using four markers in 3D robot systems (six
variables), as usually considered.
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Fig. 4. First example considering only FOV constraints. Top: FOV constraint (thin line)
and feature trajectories (thick lines) in the image plane, where circle and star symbols are
used to represent the starting (green-light) and final (dark-black) positions for the first
and second feature, respectively. Bottom: position and orientation errors; joint positions;
and FOV constraint function for the second feature.
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error for the camera orientation is made zero; a position error arises when
the FOV constraint is activated, which subsequently is made zero; the FOV
constraint becomes active at the time intervals 3-5 s and 8-9 s for the second
image feature; and the FOV constraint is fulfilled, i.e., φV,2 ≤ 0.

For the second simulation, the position correction gain for zero error has
been increased to KT,p(0) = 50, which yields a faster robot motion, i.e.,
the positioning task is perform around three times faster. In this case, two
values have been considered for the switching gain: the one used in the
first simulation and another one increased to u+V = 50. The results for both
simulations are depicted in Fig. 5, where it can bee seen that the smaller value
of the switching gain is not enough to fulfill the FOV constraint. In contrast,
when the large value is used the FOV constraint is fulfilled. Therefore, it
can be concluded that, in general, the switching gain of the proposed SMC
has to be increased when faster robot motions are considered since larger
corrections are needed, i.e., the lower bound in (12) for the switching gain is
larger. However, the resulting chattering amplitude is also increased, which
can be appreciated by comparing the constraint function φV,2 in Fig. 5 to
that in Fig. 4. Therefore, the sampling time has to be reduced in accordance
to keep the same chattering amplitude, see (43).

For the third simulation, it is considered the FOV constraint together
with the occlusion bowl-shaped constraint function in (45). Fig. 6 shows the
results for this case, where it can be seen that the first feature is blocked in a
trap situation with the highly attractive bowl-shaped constraint. Therefore,
the robot reaches a local minima where the orientation error is zero but the
position error is not zero. Note that, although reference value has not been
achieved, the SMC is stable at the mentioned local minima.

The fourth simulation considers the FOV constraint together with the
occlusion heart-shaped constraint function in (46). For this simulation, two
cases are analyzed: the heart-shaped constraint function with a clockwise
rotation of 90 degrees and with no rotation. On the one hand, Fig. 7 shows
the results for the first case, where it can be seen that the convex non-
differentiable point of the heart-shaped constraint is overcome with no prob-
lem. On the other hand, Fig. 8 shows the results for the second case, where it
can be seen that the constraint is unfulfilled (i.e., φV,1occ > 0) at the concave
non-differentiable point.
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Fig. 5. First example using fast motion. Top: feature trajectories in the image plane
for small (thick-solid line) and large (thick-dashed line) switching gains. Bottom: FOV
constraint function for the second feature using small and large switching gains.
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Fig. 6. First example in a trap situation. Top: feature trajectories (thick lines) and
occlusion bowl-shaped constraint (thin line) in the image plane. Bottom: position and
orientation errors; and FOV (cyan-solid line) and occlusion (green-dash-dotted line) con-
straint functions.
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Fig. 7. First example for a convex non-differentiable point. Top: feature trajectories
(thick lines) and occlusion heart-shaped constraint (thin line) in the image plane. Bottom:
position and orientation errors; and FOV (cyan-solid line) and occlusion (green-dash-
dotted line) constraint functions.
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Fig. 8. First example for a concave non-differentiable point. Top-left: feature trajec-
tories (thick lines) and occlusion heart-shaped constraint (thin line) in the image plane.
Top-right: detail view of the heart-shaped constraint unfulfillment. Bottom: position
and orientation errors; and FOV (cyan-solid line) and occlusion (green-dash-dotted line)
constraint functions.
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Fig. 9. System used for 3D simulation: 6R robot, target object with four markers, sphere
representing a forbidden area and coordinate frames.

9. Simulation: case study

A three-dimensional case study is presented in this section to demonstrate
the general effectiveness and applicability of the method.

In the proposed case study, a classical 6R serial manipulator with spher-
ical wrist is considered to perform two consecutive positioning tasks with
respect to a motionless target object while fulfilling the visibility and robot
constraints described in Section 4.3. Fig. 9 depicts the VS application in
consideration with the following elements: 6R robot, target object, sphere
representing a forbidden area, as well as the involved frames: robot base
frame F , object frame O, initial camera frame C, desired camera frame C∗1

for the first phase and desired camera frame C∗2 for the second phase. The
Jacobian matrix eJe for this 6R robot can be readily obtained [53] taking
into account the DH parameters shown in Table 2.

The constraint function σR,o1 for the sphere representing a forbidden area
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Link i θi (rad) di (m) ai (m) αi (rad)
1 q1 0.335 0.075 −π/2
2 q2 0 0.27 0
3 q3 0 0.09 π/2
4 q4 −0.295 0 −π/2
5 q5 0 0 π/2
6 q6 − π/2 −0.08 0 π

Table 2. DH parameters for the 6R robot.

is given by:

σR,o1(pj) = rs − ‖pj − ps‖2 +mR,o, (47)

where rs and ps are the radius and center, respectively, of the sphere, mR,o

is the safety margin for the constraint and pj is the Cartesian position of
the considered point of the robot. This forbidden are could represent, for
instance, a region where the robot is close to kinematic singularity. For sim-
plicity, it is assumed that no visibility problems are caused by this forbidden
area.

Therefore, the partial derivative of σR,o1 with respect to pj, which is
needed for computing the gradient vector in (31), results in:

∂σR,oi
∂pj

= − pj − ps
‖pj − ps‖2

. (48)

9.1. Simulation conditions and parameter values for the case study

i) The camera is attached to the robot end-effector, i.e., the camera pose
is equivalent to the end-effector pose.

ii) Parameters used for the FOV constraint: mv = 5%, nV = 16, KV,i =
0.1 and u+V = 2.

iii) Parameters used for the joint limit constraints: mR,q = 0, KR,qi = 0.1,
u+R,q = 2, qmid,6 = −0.5 and ∆qmax,6 = 1.2 rad. The range constraints
for the remaining joints are omitted for simplicity.

iv) Parameters used for the joint speed constraints: mR,s = 0, u+R,s = 1
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and q̇max,2 = 0.4 rad/s. The speed constraints for the remaining joints
are omitted for simplicity.

v) Parameters used for the constraint for forbidden areas in the robot
workspace: mR,o = 0, KR,o1 = 0.1, u+R,o = 0.2, rs = 0.05 m and

ps =
[
0.57 0.2 0.405

]T
m. For simplicity, in the simulation only the

Cartesian position pe of the robot end-effector will be evaluated as
point pj in the constraint for forbidden areas.

vi) Parameters used for the kinematic controller: KT,p(0) = 20 and
K̇T,p(0) = 60.

vii) A static target object is considered with four markers, representing the
vertices of a square with a side length of 0.2 m, see Fig. 9.

viii) The algorithm was computed with a sampling time Ts of 2 milliseconds.

9.2. Simulation results for the case study

The results of the simulation are depicted at different figures. Fig. 10
shows that the position and orientation error is made zero for both phases,
where the desired camera frame is changed from the first to the second phase
around time instant 4 s. Fig. 10 also shows the trajectories followed by the
image features in the image plane. Note that, the second and third features
remain in the FOV fully utilizing the allowed space and reaching smoothly
the boundary of the hyperellipse constraint.

Fig. 11 shows that: all the constraints are fulfilled, i.e., max(φi) ≤ 0;
the joint limit constraint for the sixth joint (dark-dashed line in the first
plot) and the speed constraint for the second joint (dark-dashed line in the
second plot) become active during the first phase; the constraint for forbidden
areas becomes active for the time interval 6-8 s during the second phase; and
the FOV constraint becomes active for the second and third feature during
the first phase and for the second feature during the second phase. It is
interesting to remark that in some phases of the simulation there are up to
three active constraints at a time.

Finally, Fig. 12 depicts four snapshot frames of a 3D representation of
the robot at different time instants, including a detail view of the spherical
forbidden area, where it can be seen that this constraint is fulfilled.
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Fig. 10. Simulation for the case study. Top: image features trajectories, where a symbol
(circle, triangle, square, star) is used to represent the starting (green-light) and final
positions (white, dark-black) in both phases for each feature. Bottom: Position and
orientation error: ex and eα (solid-blue), ey and eβ (dashed-magenta) and ez and eγ
(dotted-red).
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Fig. 11. Simulation for the case study. From top to bottom plots: (1) joint postions
q (the horizontal dark-dashed line represents the joint limit for the active constraint;
(2) joint speeds q̇ (the horizontal dark-dashed line represents the speed limit for the active
constraint; (3) maximum value of the constraint functions φi; (4) horizontal lines indicating
when a constraint is active (the dashed vertical lines correspond to the time instants of
the frames in Fig. 12 and the circles indicate the active constraints at those instants). The
thick dashed vertical line represents the time instant when the desired camera frame is
changed from the first to the second phase.
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of the fulfillment of the constraint for the spherical forbidden area.
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10. Experiments: visibility constraints in PBVS and IBVS

The proposed SMC has been implemented to obtain real experiments
in order to demonstrate its feasibility and robustness. The following setup
has been used (see Fig. 13): a Kuka KR6 R900 sixx robot manipula-
tor, coined as Agilus, in ceiling-mounted position, is equipped with the
Kuka.RobotSensorInterface (RSI) technology that allows external real-time
communication using the Ethernet UDP protocol; a general purpose web cam
rigidly attached to the robot end-effector, which is used for image acquisition;
a screen, which is used to display the target object markers; and an external
PC with Ubuntu 12.04 OS prompted with real time kernel that implements
the computer vision and control algorithms proposed in this work. The po-
sition of the image features is updated using the dot tracker in ViSP (Visual
Servoing Platform) [58], whilst the object pose is estimated to update the
visual feature vector s and to compute Ls. The Jacobian matrix eJe for this
robot can be readily obtained taking into account the DH parameters shown
in Table 3.

Fig. 13. Experimental setup: 6R serial industrial manipulator in ceiling position with
the camera rigidly attached to the robot end-effector (eye-in-hand) and a screen to display
the object markers.

10.1. Experimental conditions and parameter values

i) The commanded joint accelerations q̈c computed by the proposed algo-
rithm are double integrated to obtain the commanded joint positions
qc sent to the robot controller.
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Link i θi (rad) di (m) ai (m) αi (rad)
1 q1 −0.400 0.025 π/2
2 q2 0 −0.455 0
3 q3 0 −0.035 −π/2
4 q4 −0.420 0 π/2
5 q5 0 0 −π/2
6 q6 −0.080 0 π

Table 3. DH parameters for the 6R robot used in the experiment.

ii) The perspective camera model without distortion is considered with the
following parameters: [Fu, Fv] = [710.1, 709.8] pixels and [WV , HV ] =
[640, 480] pixels. The camera to end-effector transformation matrix is
cMe =

[
0 0.07 −0.05 0 0 −π/2

]T
, where the first three elements

are the Cartesian coordinates, in meters, and the last three are the roll,
pitch and yaw angles in radians.

iii) Four markers define the object, representing the vertices of a square
with a side length of 17 centimeters.

iv) Parameters used for the visibility constraints due to the limited camera
FOV in PBVS: mV = 30 pixels, nV = 16, KV,i = 3 and u+V = 1.

v) Parameters used for the visibility constraints due to object occlusion
in IBVS: mV = 0 pixels, KV,i = 3, u+V = 1 and the forbidden area
in the image plane is given by an hyperellipse with the parameters
[x, a, y, b, nV ] = [460, 100, 375, 100, 4].

vi) Parameters used for the kinematic controller: KT,p(0) = 0.6 and
K̇T,p(0) = 10.

vii) In order to verify the robustness of the proposed approach, a gradient
vector with error∇σV e is also considered introducing a signed variation
in percentage of the computed value ∇σV as follows:

∇σV e = ∇σV + ce
[
−1 1 1 1 −1 −1

]T ◦ |∇σV |, (49)

where symbol ◦ denotes the element-wise or Hadamard product and
the scalar ce is the introduced error. In particular, a 30% percentage
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error is considered, i.e., ce = 0.3.

ix) The control period Ts is set to 100 milliseconds due to the requirements
of image acquisition and processing.

10.2. Experimental results

To illustrate the applicability of the method, PBVS and IBVS experi-
ments have conducted for positioning the robot with respect to a motionless
target object while fulfilling FOV and occlusion constraints, respectively.
Note that, for stability reasons, the movement speed in the experiments has
to be relatively slow to meet the limited bandwidth of the discontinuous con-
trol action, which is given by the sampling period of 0.1 seconds required for
image acquisition and processing.

10.2.1. Experiment 1: Visibility constraints due to the limited camera
FOV in PBVS

A video of the PBVS9 experiment using the gradient vector with no errors
can be accessed from the web link in [59]. For this experiment, Fig. 14 shows
the position and orientation errors, the control action q̈c and the constraint
function φV , whereas Fig. 15 shows the trajectories followed by the image
features. Note that, one of the markers remains in the FOV fully utilizing
the allowed space and reaching smoothly the boundary of the hyperellipse
constraint.

A second PBVS experiment has been conducted to verify the robustness
of the proposed approach using the gradient vector ∇σV e with a 30% error.
The result is very similar to the first PBVS experiment, where no errors were
introduced. In particular, Fig. 16 compares the image features trajectories
and the commanded joint speeds q̇c for both experiments, as they are the
only variables where a little difference can be appreciated.

10.2.2. Experiment 2: Visibility constraints due to object occlusion in
IBVS

A video of the IBVS experiment using the gradient vector with no errors
can be accessed from the web link in [60]. For this experiment, Fig. 17
shows the image errors, the control action q̈c and the constraint function φV ,

9Note that it is more likely that the image features leave the camera FOV in PBVS
because the control law is defined in the Cartesian space.
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Fig. 14. PBVS experiment with no errors in the gradient vector. From top to bottom
plots: (1) position errors; (2) orientation errors; (3) control action q̈c; (4) constraint
function vector φV .

whereas Fig. 18 shows the trajectories followed by the image features. Note
that, one of the markers remains visible, i.e., outside the forbidden area in
the image plane, fully utilizing the allowed space and reaching smoothly the
boundary of the hyperellipse constraint.

Again, a second IBVS experiment has been conducted to verify the ro-
bustness of the proposed approach using the gradient vector ∇σV e with a
30% error. The result is very similar to the first IBVS experiment, where no
errors were introduced. In particular, Fig. 19 compares the image features
trajectories and the commanded joint speeds q̇c for both experiments, as
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Fig. 15. Image features trajectories for the PBVS experiment with no errors in the
gradient vector. Snapshot in the desired pose.

they are the only variables where a little difference can be appreciated.

11. Conclusions

An approach for constrained visual servoing has been presented using
sliding mode concepts. In particular, the proposal used non-conventional
sliding control to satisfy the typical robot constraints (range limits, speed
limits and forbidden areas in the robot workspace) and to satisfy the visi-
bility constraints (camera field-of-view and occlusions) of the visual servoing
application. Moreover, another task with low-priority has been considered
to track the target object.

On the one hand, the main advantages of the proposed approach are: low
computational cost (see Appendix B), robustness and fully utilization of the
allowed space for the constraints. On the other hand, like other sliding mode
control applications, the proposed method has the chattering drawback.

The feasibility and effectiveness of the proposed approach was illustrated
in simulation for a simple 2D case and a complex 3D case study. Furthermore,
real experimentation with a conventional 6R industrial manipulator was also
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Fig. 16. Comparison of PBVS experiments without and with errors in the gradient vec-
tor. (1) Image features trajectories, from initial (circle) to desired (cross) pose ; (2) com-
manded joint speeds q̇c. Blue-solid line experiment with no errors and magenta-dashed
line experiment with errors.

presented to demonstrate its applicability and robustness. In particular, it is
interesting to remark that, despite that the sampling time of the real platform
used for experimentation was not very small, 0.1 s, the performance of the
proposed SM algorithm was satisfactory even for a 30% gradient vector error.

40



0 20 40 60

e
x
,i
e
y
,i
(m

)

-0.2

0

0.2

0.4

0 20 40 60

q̈
c
(r
a
d
/
s)

×10
-3

-5

0

5

0 20 40 60

φ
V

-0.4

-0.2

0

Fig. 17. IBVS experiment with no errors in the gradient vector. From top to bottom
plots: (1) visual feature errors; (2) control action q̈c; (3) constraint function vector φV .

Appendix A. Proof of condition (12)

Proof. From (9) and (11), the column vector φ̇ composed of the constraint
function derivatives φ̇i is given by:

φ̇ = Lfφ− z u+, (A.1)

where z is a column vector with the ith-component zi = 1 if φi ≥ 0 and
zi = 0 otherwise.

Assuming that φ(0) > 0, the goal is to show that convergence to point
φ = 0 is achieved in finite time. For this purpose, let V = zT φ be a
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Fig. 18. Image features trajectories for the IBVS experiment with no errors in the
gradient vector. Snapshot in the desired pose.

Lyapunov function candidate. Vector φ can be generically partitioned into
two subvectors φ = [φa T φN−a T]T, where SM occurs in the manifold given
by φa = 0a, whereas φN−a > 0N−a. Obviously, one of these two subvectors
may be empty at a certain time. Since zN−a is a constant column vector
with all its elements equal to 1 , the time derivative of V results in:

V̇ =
d

dt

(
zT φ

)
=
d

dt

([
za

zN−a

]T [
φa

φN−a

])

=

[
ża

0N−a

]T [
0a

φN−a

]
+ zT φ̇ = zT φ̇. (A.2)

Replacing vector φ̇ with its value from (A.1), it is obtained:

V̇ = zT Lfφ− zT z u+. (A.3)

The components of vector z range from 0 to 1, hence the upper bound of
the first term in (A.3) is given by zi = 1 if Lfφi > 0 and zi = 0 if Lfφi < 0,
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Fig. 19. Comparison of IBVS experiments without and with errors in the gradient vector.
(1) visual feature errors; (2) commanded joint speeds q̇c. Blue-solid experiment with no
errors and magenta-dashed experiment with errors.

that is:

zT Lfφ ≤
N∑
i=1

(max(Lfφi, 0)). (A.4)

Assuming that u+ > 0, the second term in (A.3) is negative and its upper
bound is given by:

− zT z u+ = −‖z‖22 u+ ≤ −u+ where ‖z‖2 ≥ 1 ∀ φ 6= 0N , (A.5)
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because if vector φN−a is not empty at least one component of vector z is
equal to 1.

From (A.4) and (A.5), the upper bound of V̇ results in:

V̇ ≤
N∑
i=1

(max(Lfφi, 0))− u+. (A.6)

Therefore, if u+ fulfills (12) the Lyapunov function decays at a finite rate,
it vanishes and collective SM in the intersection of the N constraints occurs
after a finite time interval.

Appendix B. Computer Implementation

The pseudo-code of the proposed method is shown below. The algorithm
is executed at a sampling time of Ts seconds and uses the following auxiliary
functions:

• Constraint functions and gradient vectors for the visibility and
robot constraints: {φV,i(q, q̇), φR,qi(q, q̇), φR,si(q̇), φR,oij(q, q̇)} and
{∇σV,i(q),∇σR,qi(q),∇φR,si(q̇),∇σR,oij(q)}.

• Jacobian matrix: Js(q, t).

• Visual feature vector (which is obtained with the computer vision al-
gorithm described in Section 2) and its reference: s(q, t) and sref (t).

• Moore-Penrose pseudoinverse function (using a tolerance to set to zero
the very small singular values): (·)†.

• Robot sensors: GetRobotState(), which returns the current robot state
given by q and q̇.

• Actuators: SendToJointControllers(q̈c), which sends the current com-
manded joint acceleration vector to the joint controllers.

The computation time per iteration of the algorithm in a computer with
Intel Core i7-4710HQ processor at 2.5 GHz clock frequency using MATLAB R©

R2015b (compiled C-MEX-file) was around 20 microseconds for the case
study example in Section 9.
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Algorithm executed at sampling time of Ts seconds

1 [q, q̇] =GetRobotState();
2 ṡ = (s− sprev)/Ts ; // Derivative

3 ṡref = (sref − sref,prev)/Ts ; // Derivative

4 s̈ref = (ṡref − ṡref,prev)/Ts ; // Derivative

5 J̇s = (Js − Js,prev)/Ts ; // Derivative

6 s̈c = s̈ref −KT,p(s− sref )−KT,v(ṡ− ṡref ) ; // Eq. (42)

7 A1 =


KV ∇σT

V

KR,q ∇σT
R,q

∇φT
R,s

KR,o ∇σT
R,o

 with the gradients of all active constraints:

φV,i > 0, φR,qi > 0, φR,si > 0, φR,oij > 0 ; // Eq. (40)
8 b1 = −u+

1 ; // Eq. (40)
9 A2 = Js ; // Eq. (41)

10 b2 = s̈c − J̇sq̇− ∂ṡ/∂t ; // Eq. (41)

11 q̈c = A†1b1 + (A2(I−A†1A1))
†(b2 −A2A

†
1b1) ; // Eq. (15)

12 sprev = s ; // For next iteration

13 sref,prev = sref ; // For next iteration

14 ṡref,prev = ṡref ; // For next iteration

15 Js,prev = Js ; // For next iteration

16 SendToJointControllers(q̈c);
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